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Population trapping in a pair of periodically driven Rydberg atoms
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We study the population trapping extensively in a periodically driven Rydberg pair. The periodic modulation
of the atom-light detuning effectively suppresses the Rabi couplings and, together with Rydberg-Rydberg
interactions, leads to the state-dependent population trapping. We identify a simple yet general scheme to
determine population trapping regions using driving-induced resonances, the Floquet spectrum, and the inverse
participation ratio. Contrary to the single-atom case, we show that the population trapping in the two-atom setup
may not necessarily be associated with level crossings in the Floquet spectrum. Further, we discuss under what
criteria population trapping can be related to dynamical stabilization, taking specific and experimentally relevant
initial states, which include both product and the maximally entangled Bell states. The behavior of the entangled
states is further characterized by the bipartite entanglement entropy.
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I. INTRODUCTION

Periodic driving has emerged as a tool to coherently ma-
nipulate the states of quantum systems. Consequently, Floquet
systems exhibit a wide variety of unique phenomena related to
nonequilibrium dynamics and many-body physics [1–8]. One
such phenomenon, namely dynamical stabilization, has been
a subject of study in both classical and quantum mechanical
systems. Dynamical stabilization is the stabilization of an
otherwise dynamically unstable configuration of a system by
periodically varying the system parameters in time. It was
first demonstrated by Kapitza [9] using a classical pendulum.
By periodically moving the point of suspension with high
frequency, it is possible to stabilize the pendulum in its in-
verted position. In the quantum world, a phenomenon closely
analogous to the Kapitza pendulum is the population trapping
in a two-level atom [10–12]. The population can be trapped for
a substantial time in an initial quantum state by periodically
varying the atom-field detuning in time, even in cases in which
the state would otherwise evolve instantly into another state
due to the Rabi coupling. Effectively, the periodic modulation
may suppress the Rabi coupling depending on the modulation
amplitude and frequency, leading to dynamical stabilization of
the initial state. Dynamical stabilization has various applica-
tions, for instance, in ion-trapping [13], mass spectrometers,
and particle synchrotrons [14].

Other quantum phenomena related to dynamical stabiliza-
tion are the coherent destruction of tunneling in a double-well
potential [15–17], the localization of a moving charged parti-
cle under the action of a time-periodic electric field [18,19],
and the localization of a wave packet in a periodic lattice due
to periodic shaking of the lattice [20–23] or modulating the
interparticle interactions [24]. In interacting quantum gases, a

Kapitza or a dynamically stabilized state has different man-
ifestations, e.g., stabilizing a Bose-Einstein condensate [25]
or a bright soliton [26,27] against collapse, freezing spin
mixing dynamics in spinor condensates [28–30], inhibit-
ing dissipation from a spin-half particle [31], stabilizing a
classically unstable phase (π -mode) in a bosonic Joseph-
son junction [32], or giving rise to unconventional ordered
phases that have no equilibrium counterparts [33]. Addition-
ally, dynamical stabilization has been used to control the
superfluid-Mott insulator quantum phase transition of bosons
in an optical lattice [22].

Currently, ultracold Rydberg atoms are emerging as a
promising platform for probing quantum many-body phe-
nomena and implementing quantum information protocols
[34,35]. The Rydberg blockade, in which strong Rydberg-
Rydberg interactions (RRIs) suppress simultaneous excitation
of two Rydberg atoms within a finite volume [36–39], and
the breaking of the blockade (antiblockade) [40–43] are
of central utility for these applications. For two atoms, it
has been predicted that through modulation-induced res-
onances, one can engineer the parameter space for both
the Rydberg blockade and antiblockade [44–46]. The lat-
ter is proposed to have applications in implementing robust
quantum gates [46–48] and accelerating the formation of
dissipative entangled steady states [49]. To realize periodic
driving in a Rydberg chain, one can either modulate the
light field that couples the ground to the Rydberg state
or apply additional radiofrequency fields. Those approaches
give rise to sidebands either in the driving field or in the
atomic levels [12,50–52]. Experiments with interacting Ry-
dberg atoms in oscillating electric fields [53] have been
employed to explore dipole-dipole interactions via Förster
resonances [54–57]. Also, the dynamical stabilization of
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thermal Rydberg atoms against ionization, exposed to periodic
kicks, has been a subject of intense study in the past, es-
pecially in classical-quantum correspondence [58,59]. In the
latter case, the RRIs were not relevant. In a recent experiment,
an intensity-modulated off-resonance laser was used to vary
the energy of an excited atomic state sinusoidally to generate
interacting Rydberg polaritons [60].

In this paper, we study the population trapping compre-
hensively in a pair of periodically driven interacting two-level
atoms, in which one of the energy levels is a Rydberg state.
In particular, we consider the periodic modulation of the
atom-field detuning. In general, the periodic modulation can
enhance or suppress the population dynamics in the system,
and the latter implies population trapping. In our setup, the
dynamical stabilization emerges as a particular case of popu-
lation trapping. The stability of the initial state against “time
evolution” determines whether the population trapping can be
accounted for as a phenomenon of dynamical stabilization.
Suppose the initial state evolves in time in the absence of
periodic modulation. In that case, we have a dynamical stabi-
lization phenomenon similar to that of the Kapitza pendulum.
Whenever this scenario occurs, we explicitly refer to it as dy-
namical stabilization; otherwise, we use the term “population
trapping.”

The two-atom setup we consider is one of the most com-
mon scenarios in Rydberg atom experiments [38,61–72], and
it can be easily realizable using optical tweezers or micro-
scopic optical traps [64]. The same setup also constitutes the
basic building block for quantum simulations and quantum
information protocols [35]. We show that the presence of RRIs
leads to (initial) state-dependent population trapping in the
modulated two-atom setup. In particular, we look at how a
specific set of experimentally relevant initial states, including
both product and maximally entangled Bell states, can be
dynamically stabilized or freeze for significantly long periods.
The product states we consider are those in which both atoms
occupy either ground or Rydberg states. In a Rydberg setup,
the Bell states have been demonstrated experimentally using
various techniques [61,62,68,73–75]. We identify a simple
scheme for locating population trapping regions for any initial
state, relying on driving-induced resonances and the Floquet
spectrum. We also introduce the inverse participation ratio
(IPR), calculated from the overlap of the initial state with the
Floquet eigenstates, as an indicator of population trapping.
Contrary to the previous conception from the single-atom
case, the population trapping or the dynamical stabilization
in the two-atom setup is not necessarily related to the level
crossings in the Floquet spectrum.

This paper is structured as follows. In Sec. II, we discuss
the physical setup, the Hamiltonians including an effective
time-independent one in the high-frequency limit, and tech-
niques that we employ to study the emergence of Kapitza
or dynamically stabilized states. The population trapping in-
cluding the dynamical stabilization in a single two-level atom
and the scheme for identifying dynamical stabilization are
discussed in Sec. III. In Sec. IV, we extend the scheme to
the two-atom setup, and in particular, we discuss the popula-
tion trapping in both product and entangled states, including
the driving-induced resonances, and the Floquet spectrum.
Finally, we summarize in Sec. VI.

II. SETUP, MODEL, AND TECHNIQUES

We consider a chain of two two-level atoms, in which the
electronic ground state |g〉 is coupled to a Rydberg state |e〉
via a light field, the frequency of which is varied periodically
in time t . The system is described in the frozen gas limit,
after the rotating wave and dipole approximations, by the
time-dependent Hamiltonian (h̄ = 1):

Ĥ = −�(t )
2∑

i=1

σ̂ i
ee + �

2

2∑
i=1

σ̂ i
x + V0σ̂

1
eeσ̂

2
ee, (1)

where σ̂ab = |a〉〈b| with a, b ∈ {e, g} includes both transi-
tion and projection operators, σ̂x = σ̂eg + σ̂ge, � is the Rabi
frequency, and �(t ) = �0 + δ sin ωt is the time-dependent
detuning with modulation amplitude δ > 0 and the mod-
ulation frequency ω. The Rydberg excited atoms interact
via strong van der Waals interactions, V0 = C6/r6, where
C6 is the interaction coefficient and r is the separation
between two Rydberg excitations [64]. The exact dynam-
ics of the system is obtained by numerically solving the
Schrödinger equation: i∂ψ (t )/∂t = Ĥ (t )ψ (t ). To gain in-
sight, especially at high modulation frequency (ω � �), we
move to a rotating frame: |ψ ′〉 = Û (t )|ψ〉, where Û (t ) =
exp[i f (t )

∑
j σ̂

j
ee + itV0σ̂

1
eeσ̂

2
ee] with f (t ) = (δ/ω) cos ωt −

�0t . The new Hamiltonian, Ĥ ′(t ) = Û ĤÛ † − ih̄Û ˙̂U †, af-
ter using the Jacobi-Anger expansion exp(±iz cos ωt ) =∑∞

m=−∞ Jm(z) exp(±im[ωt + π/2]), is [44]

Ĥ ′ = �

2

2∑
j=1

∞∑
m=−∞

imJm(α)gm(t )eiV0
∑

k �= j σ̂ k
eet σ̂ j

eg + H.c., (2)

where Jm(α) is the mth-order Bessel function with α =
δ/ω and gm(t ) = exp[i(mω − �0)t]. Comparing Eq. (1)
with Eq. (2), we can see that the periodic detuning has
effectively modified the Rabi coupling, thereby affect-
ing the excitation dynamics. Further, using e±iV0

∑
k �= j σ̂ k

eet =∏
k �= j [σ̂ k

ee(e±itV0 − 1) + I], where I is the identity operator,
we rewrite the Hamiltonian in Eq. (2) as

Ĥ ′ = �

2

∞∑
m=−∞

imJm(α)gm(t )

(
2∑

j=1

σ̂ j
eg + X̂ (eiV0t −1)

)
+H.c.,

(3)
where the operator X̂ = σ̂ 1

egσ̂
2
ee + σ̂ 2

egσ̂
1
ee describes the cor-

related Rabi coupling [44,76]. The correlated Rabi process
is analogous to the density assisted interband tunneling
or density-dependent hopping for atoms in optical lat-
tices [77,78].

Floquet theory

According to the Floquet theorem, the time evolution op-
erator associated with a time-periodic Hamiltonian Ĥ (t ) is
Û (t ) = P(t )e−iĤF t , where the Floquet Hamiltonian ĤF is de-
fined through the evolution operator over a full period T =
2π/ω, i.e., Û (T ) = e−iĤF T [8,15,79–81]. The unitary opera-
tor P̂(t ) = P̂(t + T ) has the same periodicity as that of the
Hamiltonian, and it becomes an identity operator at the in-
stants tn = nT , where n = 0, 1, 2, . . . . Further, we can write
Û (T ) = e−iĤF T = ∑

k e−iθk |φk (0)〉〈φk (0)|, where the Floquet

023335-2



POPULATION TRAPPING IN A PAIR OF PERIODICALLY … PHYSICAL REVIEW A 103, 023335 (2021)

5 10 15 20

5 10 15 200

(c)

(d)

-0.25

0.00

0.25

1.00

0.00

-0.35
5 10 15 20

0.00

1.00

-0.41

5 10 15 20

(e)

(f)

-0.5

0.0

0.54.0

0.0

-4.0

1.0

0.0

0 4 8 12 16

0 4 8 12 16

(a)

(b)

20

20

0 0

0

FIG. 1. Floquet mode properties of a driven single two-level atom with ω = 8�. (a) The quasienergies εk and (b) IPR (�|g〉
1 ) as a function

of �0 for δ = 15�. (c) The quasienergies εk and (d) IPR (�|g〉
1 ) as a function of α = δ/ω for the resonance �0 = ω (n1 = 1). In (d), we also

show the Bessel function, J1(α). Its zeros coincide with �
|g〉
1 = 0 indicating the population trapping. The parameter α is varied by changing

δ. Plots (e) and (f) show the results for the case of primary resonance, �0 = 0 (n1 = 0). The crossings of εk in (e) and the zeros of �
|g〉
1 in (f)

coincide with the zeros of J0(α). The plots (e) and (f) are the special case of population trapping corresponding to the dynamical stabilization.
The parameter α is varied by changing δ and keeping ω constant.

modes {|φk (0)〉} are the eigenstates of the Hamiltonian ĤF ,
and they form a complete set of square-integrable states. The
Floquet mode |φk (t )〉 = exp(iεkt )Û (t )|φk (0)〉 has the same
periodicity in time as that of the Hamiltonian Ĥ (t ), and the
quasienergy εk = θk/T is defined up to a multiple of ω. Then,
a general state of the system can be written as

|ψ (t )〉 =
∑

k

ckexp(−iεkt )|φk (t )〉, (4)

where the time-independent coefficient ck gives the proba-
bility amplitude for finding the system in the Floquet mode
|φk (t )〉 and is determined from the initial state |ψ (0)〉. It is
worth mentioning that the population in the Floquet modes
remains preserved even if the actual state of the system
or the Hamiltonian is changing over time. In that spirit, if
the initial state coincides with one of the Floquet modes,
population trapping takes place. The quasienergies εk and
the modes {|φk (0)〉} are calculated numerically by obtaining
the eigenvalues λk = exp(−iεkT ) of the one-period operator
Û (T ) [82,83]. To obtain Û (T ), we evolve each of the basis
states using the original Hamiltonian in Eq. (1).

Further, to characterize the behavior of Rydberg excitation
dynamics, we define the inverse participation ratio (IPR),

�
|I〉
N = 1∑

k p2
k

− 1, (5)

where pk = |〈φk (0)|I〉|2 is the projection of the initial state |I〉
on the Floquet mode |φk (0)〉 for N atoms. If the initial state
coincides with one of the Floquet modes, the IPR vanishes.
Since the population in Floquet mode does not vary in time,
�

|I〉
N = 0 may indicate the population trapping or dynamical

stabilization of the state |I〉. In the same spirit, a smaller value
of �

|I〉
N indicates a slower transition rate from the state |I〉 to

other states.

III. A TWO-LEVEL ATOM (N = 1)

In the following, we briefly review the population trapping
in a periodically driven single two-level atom. In particular,
we discuss the criteria under which the population trapping
can be identified as dynamical stabilization. For N = 1, the

Hamiltonian in Eq. (2) takes the simplest form [10–12],

Ĥ ′ = �

2

∞∑
m=−∞

imgm(t )Jm(α)σ̂eg + H.c. (6)

In the high-frequency limit (ω � �), the term satisfying the
resonance condition, n1ω = �0, where n1 = 0, 1, 2, . . . , be-
comes the only relevant term in the summation of Eq. (6).
Neglecting nonresonant terms is equivalent to a second
rotating-wave approximation. Once the resonance condition
is satisfied, the population dynamics exhibits coherent Rabi
oscillations between |g〉 and |e〉. In Figs. 1(a) and 1(b), we
show the Floquet spectrum and IPR (�|g〉

1 ) as a function of �0.
The resonances can be identified as either avoided crossings
in the Floquet spectrum or peaks in the IPR (�|g〉

1 ). At those
peaks (�|g〉

1 = 1), the Floquet modes become an equal super-
position of |g〉 and |e〉. Far away from the avoided crossings
(resonances), i.e., for �0 �= n1ω and �0 � �, the periodic
driving is ineffective. In that case, the Floquet modes approxi-
mately become the eigenstates of the undriven Hamiltonian,
Ĥ (t = 0), which are either |g〉 or |e〉 with a weak mixing
between them. Due to this, �|g〉

1 decays to almost zero between
the resonances.

At the resonance n1ω = �0, the effective Rabi coupling
between the states |g〉 and |e〉 is proportional to Jn1 (α). There-
fore, at the Bessel zeros [Jn1 (α) = 0], the dynamics freezes
and leads to population trapping. This can be further veri-
fied by looking at the quasienergies εk as a function of α

keeping the resonance condition satisfied. The quasienergies
or the energy gap between them oscillate as a function of α,
and crossings occur at the zeros of the Bessel function [83].
Figures 1(c) and 1(d) show the results for the case of �0 =
ω, and the crossings occur at the zeros of J1(α). At those
crossings, the degenerate Floquet modes become purely |g〉
and |e〉, which results in a vanishing �

|g〉
1 or �

|e〉
1 as seen in

Fig. 1(d). Since the Floquet modes do not evolve in time,
the population in states |g〉 or |e〉 freezes. Note that at the
crossings, an arbitrary superposition of |g〉 and |e〉 is also a
Floquet mode making the population trapping independent of
the initial state. As we show below, the latter breaks down in
the presence of RRI, leading to a state-dependent population

023335-3



S. KUMAR MALLAVARAPU et al. PHYSICAL REVIEW A 103, 023335 (2021)

0 4 8 16

0.2

0.4

0.6

0.8

1.0

0

4

12

8

12
0.0

FIG. 2. The IPR (�|g〉
1 ) as a function of α and �0 for ω = 8�.

The pearl-stripes are along the α axis at the resonances nω = �0.
The local minima (�|g〉

1 = 0) along the first stripe are the points of
DS for which J0(α) = 0. The parameter α is varied by changing δ

and keeping ω constant.

trapping. In short, a vanishing IPR at the driving-induced res-
onance indicates the freezing of the initial state or population
trapping.

Note that if the initial state is dynamically unstable in the
absence of periodic modulation, then only the corresponding
population trapping can be called dynamical stabilization. It is
easy to see that the dynamical stabilization occurs only when
n1 = 0. If n1 is a nonzero integer, in the high-frequency limit,
the resonance condition demands a large value of �0. For such
large values of �0, there is hardly any dynamics in the states
|g〉 and |e〉 in the absence of periodic driving. Therefore, popu-
lation trappings for n1 > 0 cannot be interpreted as dynamical
stabilization. In other words, the population trapping at the
primary resonance (n1 = 0), i.e., when J0(α) = 0 for �0 = 0,
provides us with the phenomenon of dynamical stabilization.
The results for the latter case with an initial state |I〉 = |g〉
are shown in Figs. 1(e) (quasienergies) and 1(f) (IPR). Note
that the leading terms in the excited-state population due to
m �= n1 terms in Eq. (6) are proportional to (�/ω)2 in the
high-frequency limit, which can be ignored [11]. More exten-
sive results of the IPR (�|g〉

1 ) for the initial state |g〉 are given in
Fig. 2. In the α-�0 plane, �

|g〉
1 exhibits pearl-chains along the

α axis at the resonances n1ω = �0. The local minima along
the chains provide the values of α at which population trap-
ping takes place [or Jn(α) = 0], and those along α at �0 = 0
are the points of dynamical stabilization. Between the stripes
(along the �0 axis), �

|g〉
1 vanishes due to the far off-resonant

driving of the atom, as discussed above. Note that the effect of
a finite ω is apparent only for sufficiently small ω for which
the crossings in Floquet energies start to deviate slightly from
the Bessel zeros.

In short, by varying the amplitude of periodic modula-
tion, the avoided crossings (resonances) [see Fig. 1(a)] in
the quasienergy spectrum become actual level crossings [see
Fig. 1(c)]. At the crossings, the population dynamics freezes,
and also the IPR vanishes. We term this, at resonance, “popu-
lation trapping.” Population trapping at the primary resonance
is identified as the dynamical stabilization. Thus, we have a
scheme to identify population trapping (including dynamical
stabilization) of any initial state in two steps. First, identify

resonances in which the initial state is involved, and second,
vary the amplitude of modulation, keeping the resonance con-
dition satisfied.

IV. TWO-ATOM CHAIN (N = 2)

This section extends the above analysis from a single
two-level atom to a pair of Rydberg atoms, and discusses
how RRIs affect the population trapping. In particular, we
are interested in the conditions under which the states |gg〉,
|ee〉, |+〉 = (|eg〉 + |ge〉)/

√
2, and |B〉 = (|gg〉 + |ee〉)/

√
2 are

dynamically stabilized. The first two states are product states,
and the last two are the maximally entangled Bell states. If we
restrict the dynamics to the symmetric states, we can truncate
the basis to {|gg〉, |+〉, |ee〉}. On this basis, the off-diagonal
matrix elements of Ĥ ′ in Eq. (3) provide the time-dependent
coupling strengths for |gg〉 ↔ |+〉 and |+〉 ↔ |ee〉 transitions,
and they are, respectively,

�1(t ) ∝ �√
2

∞∑
m=−∞

Jm(α)ei(mω−�0 )t+imπ/2, (7)

�2(t ) ∝ �√
2

∞∑
m=−∞

Jm(α)ei(mω−�0+V0 )t+imπ/2, (8)

and in general, �1 �= �2. As a first step toward analyzing
the population trapping, we discuss the resonances in the
two-atom driven setup.

A. Resonances

At high ω, the most relevant terms in Eqs. (7) and (8) give
the resonance criteria n1ω = �0 (R1) and n2ω = �0 − V0

(R2), which are associated with the transitions |gg〉 ↔ |+〉 and
|+〉 ↔ |ee〉, respectively. For sufficiently large values of |V0 −
nω| with n = 0,±1,±2, . . . , the resonances of types R1 and
R2 can be well separated along the �0 axis. If V0 = nω, the
criteria for R1 and R2 are satisfied simultaneously with n1 =
n2 + n. Assuming R1 and R2 resonances do not overlap, and
only if R1 is fulfilled, the effective (time-averaged) Rabi cou-
plings become �1 ≈ �Jn1 (α)/

√
2 and �2 ≈ 0 for |gg〉 ↔ |+〉

and |+〉 ↔ |ee〉 transitions, respectively. Therefore, for the
initial state |I〉 = |gg〉, the system exhibits Rabi oscillations
between |gg〉 and |+〉 states [see Fig. 3(a) for n1 = 1], which
corresponds to the dynamics under the Rydberg blockade.
In contrast, if |I〉 = |ee〉, the dynamics freezes, as shown in
Fig. 3(b). The latter is expected since the state |ee〉 is far
off-resonant from |+〉 due to large V0, and hence the periodic
driving is nonrelevant. If the condition for R2 is satisfied,
we have �1 ≈ 0 and �2 ≈ �Jn2 (α)/

√
2, which leads to the

Rabi oscillations between |ee〉 and |+〉 states and hardly any
dynamics if the initial state is |gg〉, as shown in Figs. 3(c)
and 3(d) for n2 = −1, respectively. Apart from the resonances
R1 and R2, there exists a third one n3ω = 2�0 − V0 (R3),
which is not directly visible from Eqs. (7) and (8), but can
be revealed using the adiabatic impulse approximation [45].
R3 leads to resonant transitions between |gg〉 and |ee〉.

In Figs. 4(b) and 4(c), we show the IPR (�|I〉
2 ) as a func-

tion of �0 for the initial states |gg〉 and |ee〉, respectively.
The value of other parameters is the same as in Fig. 3. The
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FIG. 3. Population dynamics for the resonance type R1 (n1ω =
�0) for the initial states (a) |I〉 = |gg〉 and (b) |I〉 = |ee〉. The same,
but with the resonance type R2 (n2ω = �0 − V0) for the initial state
(c) |I〉 = |gg〉 and (d) |I〉 = |ee〉 with �0 = 2�. In (a) we see the Rabi
oscillations between |gg〉 and |+〉 states, whereas in (b) we observe
no dynamics. Similarly, (c) shows the absence of dynamics, and the
Rabi oscillations between |+〉 and |ee〉 states are shown in (d). We
took V0 = 10�, δ = 15�, and ω = 8� for all plots. The value of �0

is taken such that n1 = 1 for (a) and (b), and for (c) and (d) we have
n2 = −1.

peaks in Fig. 4(b) correspond to the resonances R1 and R3,
labeled by n1 and n3, respectively. Similarly, the peaks in
Fig. 4(c) correspond to the resonances R2 and R3, labeled
by n2 and n3, respectively. As expected, the R3 resonances
(marked by n3) are very narrow since |gg〉 and |ee〉 are not
directly coupled. Between the resonant peaks, �

|I〉
2 vanishes

due to the off-resonant driving as discussed above. These

FIG. 4. (a) The quasienergy spectrum for N = 2 as a function of
�0 for V0 = 10�, δ = 15�, and ω = 8�. Plots (b) and (c) show �

|gg〉
2

and �
|ee〉
2 , respectively. The peaks in �2 and the avoided crossings in

εk indicate the three different resonant transitions: (R1) n1ω = �0,
(R2) n2ω = �0 − V0, and (R3) n3ω = 2�0 − V0, labeled by n1, n2,
and n3, respectively.

resonances cause the avoided crossings in the quasienergies
shown in Fig. 4(a). To calculate εk in Fig. 4(a), we used the
basis {|gg〉, |eg〉, |ge〉, |ee〉}, and therefore we have four levels
in the quasienergy spectrum.

B. Dynamical stabilization of product states: |gg〉 and |ee〉
R1

First we discuss the dynamical stabilization of the product
states |gg〉 and |ee〉. To identify the regions of dynamical stabi-
lization, we choose the primary resonance in each of R1, R2,
and R3, i.e., n j∈1,2,3 = 0, and we vary the amplitude of mod-
ulation. Equivalently, one can vary α by keeping ω constant.
First, we consider the resonance R1 with n1 = 0 (�0 = 0).
For the noninteracting case (V0 = 0), as discussed for the
single-atom case in Sec. III, the dynamical stabilization occurs
at the zeros of the J0(α). As expected, when J0(α) = 0, all
three quasienergies cross [dashed lines in Fig. 5(a)]. Since we
have eliminated the asymmetric state |−〉 = (|eg〉 − |ge〉)/

√
2

from the dynamics, there are only three relevant quasienergy
eigenvalues. The color bar in Fig. 5 quantifies the probability
density of |gg〉 in each of the Floquet states. A finite V0 par-
tially lifts the degeneracy of εk at the crossings [see the solid
lines in Fig. 5(a)]. For small RRIs (V0  �), the resonance R2
is not well isolated from R1 and all three states (|gg〉, |+〉, |ee〉)
participate in the dynamics for any initial state. Therefore, we
need to address the dynamical stabilization of both |gg〉 and
|ee〉 when RRI is small.

Satisfying R1 and for V0/ω  1, in the high-frequency
limit (ω � �), we can obtain an effective time-independent
Hamiltonian from Eq. (3) as Heff = 1/T

∫ T
0 dt Ĥ ′(t ), where

T = 2π/ω [8,24,84] (see Appendix). Then, expanding Ĥeff in
powers of V0/ω, we have

Ĥ (V0ω)
eff � in1 Jn1 (α)�

2

(
2∑

j=1

σ̂ j
eg + iπ

V0

ω
X̂

)

+�

2

∑
m �=n1

imJm(α)

(m − n1)

V0

ω
X̂ + O(

V 2
0 /ω2) + H.c.

(9)

Equation (9) implies that in the infinite-frequency limit
(V0/ω → 0), the population trapping occurs at the zeros of
the Bessel function Jn1 (α) irrespective of the initial state. At
the primary resonance (n1 = 0), we have the dynamical stabi-
lization. For nonzero but small values of V0/ω, the dominant
interaction dependence comes from the second and third terms
in Eq. (9), which are linear in V0/ω. For n1 = 0, the third
term in Eq. (9) vanishes, which means that the DS occurs at
J0(α) = 0. To verify this, we analyze IPRs �

|gg〉
2 and �

|ee〉
2 as

a function of α, shown, respectively, in Figs. 5(d) and 5(e)
for V0 = 0.2� and �0 = 0 (green dashed lines). As expected,
they both vanish when J0(α) = 0, indicating the dynamical
stabilization of both |gg〉 and |ee〉.

When n1 �= 0, and for α such that Jn1 (α) = 0, the third
term in Eq. (9) also becomes vanishingly small and can be
safely ignored. That means, for small values of V0/ω with R1
being satisfied, that the population trapping always occurs at
the zeros of the Bessel function Jn1 (α). The corrections from
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FIG. 5. The quasienergy spectrum εk and IPR (�|gg〉
2 , �

|ee〉
2 ) for

N = 2, �0 = 0, and ω = 8�, as a function of α for different V0.
Plot (a) shows εn for V0 = 0� (dashed lines) and V0 = 0.2� (solid
lines), and (b) and (c) show the same for V0 = 2� and V0 = 8�,
respectively. Since �0 = 0, in (a) and (b) the level crossings take
place at the zeros of J0(α). In (a)–(c) the color bar indicates the
probability of finding the state |gg〉 in each of the Floquet modes.
The dashed vertical lines in (c) mark J0(α) = 0, and at those points
the central Floquet mode consists purely of the |gg〉 state, which
indicates dynamical stabilization. Plots (d) and (e) show the IPR �

|gg〉
2

and �
|ee〉
2 , respectively. In (f), we show the Bessel functions J0(α)

(solid line) and J−1(α) (dashed line). The parameter α is varied by
changing δ and keeping ω constant.

the terms involving X̂ in Eq. (9) may introduce a tiny shift in
the value of α at which the DS occurs, especially for the case
|I〉 = |ee〉. It can also be seen from Fig. 5(a) that the value

of α for which the crossings in the Floquet spectrum occur is
hardly affected by small values of V0.

Coming back to the case of dynamical stabilization for
n1 = 0, and as V0 increases (excluding V0 = nω, where n is
a nonzero positive integer), one quasienergy level [topmost
level in Figs. 5(a) and 5(b)] moves away from the other two,
and eventually becomes purely |ee〉 in the blockade regime
(V0 � �), for any value of α [see Fig. 5(b)]. At that stage, the
two lowest Floquet modes shown in Fig. 5(b) become super-
positions of |gg〉 and |+〉 states, except at the level crossings.
At the crossings, which occur for J0(α) = 0, the two Floquet
modes become purely |gg〉 and |+〉 states, and |gg〉 is dynam-
ically stabilized. The latter is further confirmed by �

|gg〉
2 [see

Fig. 5(d)], which vanishes at the crossings. �
|gg〉
2 = 1 implies

the Rydberg blockade for which we have an effective two-
level system consisting of |gg〉 and |+〉 states. In the blockade
regime, the state |ee〉 is dynamically stable even in the absence
of periodic driving, which makes �

|ee〉
2 ∼ 0 independent of α

[see Fig. 5(e) for V0 = 5�].
When V0 = nω, where n is a nonzero positive integer,

both R1 and R2 are satisfied simultaneously. In that case, the
Bessel functions Jn1 (α) and Jn2=n1−n(α) [see Eqs. (7) and (8)]
determine the couplings for the transitions |gg〉 ↔ |+〉 and
|+〉 ↔ |ee〉, respectively. In Figs. 5(c)–5(e), we show the
results for �0 = 0 and V0 = ω = 8�, therefore n1 = 0 and
n2 = n1 − n = −1. Thus, the dynamical stabilization of |gg〉
occurs at the zeros of J0(α), and the population trapping in
|ee〉 takes place when J−1(α) = 0. When both R1 and R2 are
satisfied simultaneously, both εk and �

|gg〉
2 exhibit qualitatively

different features compared to the case when only either R1
or R2 (see below) is satisfied. The first thing to notice is
that εk does not show any level crossings as a function of α

[see Fig. 5(c)]. Despite that, we observe dynamical stabiliza-
tion of |gg〉 at J0(α) = 0 [marked by dashed vertical lines in
Fig. 5(c)]. This is because at those values of α, one of the
Floquet modes [the middle one in Fig. 5(c)] becomes purely
|gg〉. It is in stark contrast to the case of a single two-level atom
for which the dynamical stabilization is always accompanied
by a level crossing in the quasiparticle spectrum. Additionally,
both �

|gg〉
2 and �

|ee〉
2 exhibit primary and secondary minima

as a function of α [see Figs. 5(d) and 5(e) for V0 = ω]. The
primary minima in �

|gg〉
2 [that occur when J0(α) = 0] coincide

with the secondary minima of �
|ee〉
2 [Jn2=−1(α) = 0] and vice

versa. At the secondary minima of �
|gg〉
2 , the system exhibits

blockade dynamics, and at the secondary minima of �
|ee〉
2 , the

system undergoes Rabi oscillations between the states |+〉 and
|ee〉.

The maxima of both �
|gg〉
2 and �

|ee〉
2 in Figs. 5(d) and 5(e)

for V0 = ω do not coincide. At those maxima (�|gg〉
2 ∼ 2 or

�
|ee〉
2 ∼ 2), the system undergoes Rabi oscillations between

|gg〉 and |ee〉 via the intermediate state |+〉 with an effective

Rabi frequency ∝
√

J2
0 (α) + J2

−1(α). Therefore, the max-

ima (�|gg〉
2 = 2) in Fig. 5(d) correspond to driving-induced

Rydberg antiblockade [44,46]. Figures 6(a) and 6(b) show
�

|gg〉
2 and �

|ee〉
2 , respectively, for a wider range of V0 and α. In

Fig. 6(a), we identify three different regions: dynamical sta-
bilization (shown by horizontal dark regions with �

|gg〉
2 ∼ 0),
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FIG. 6. The IPR (a) �
|gg〉
2 and (b) �

|ee〉
2 as a function of V0 and

α for N = 2, �0 = 0 (R1 resonance), and ω = 8�. The regions of
�

|gg〉
2 = 0 correspond to the dynamical stabilization of |gg〉, those

where both �
|gg〉
2 ∼ 1 and �

|ee〉
2 ∼ 0 indicate the population trapping

of |ee〉, and �
|gg〉
2 = 2 represents the Rydberg antiblockade in which

the system exhibits Rabi oscillations between |gg〉 and |ee〉 via the
intermediate state |+〉. The intricate patterns arise due to the compe-
tition between the Rabi couplings for the transitions |gg〉 ↔ |+〉 [∝
Jn1 (α)] and |+〉 ↔ |ee〉 [∝ Jn2 (α)]. If R2 is satisfied with V0 = �0

instead of R1, (a) is �
|ee〉
2 and (b) is �

|gg〉
2 . The parameter α is varied

by changing δ and keeping ω constant.

antiblockade (curved shapes with �
|gg〉
2 ∼ 2 around V0 = nω),

and population trapping of |ee〉 (�|gg〉
2 ∼ 1 and �

|ee〉
2 = 0) in

the remaining majority of the parameter space. In Fig. 6(b),
the dominant regions with population trapping of |ee〉 (�|ee〉

2 ∼
0) are primarily due to the Rydberg blockade. �

|ee〉
2 becomes

nonzero in the vicinity of V0 = nω, except when Jn2 ∼ 0. The
nontrivial patterns in IPR that we see in the α-V0 plane (Fig. 6)
arise due to the interplay between the Rabi couplings for the
transitions |gg〉 ↔ |+〉 [∝ Jn1 (α)] and |+〉 ↔ |ee〉 [∝ Jn2 (α)].

R2

Now we analyze the population trapping of |gg〉 and |ee〉
when R2: n2ω = �0 − V0 is satisfied, and in particular, we fo-
cus on the dynamical stabilization, i.e., for n2 = 0 or �0 = V0.
Following the discussions we had on R1, it is easy to see that
for V0  �, the dynamical stabilization of the states |ee〉 and
|gg〉 is provided by the condition J0(α) = 0. As V0 (or equiva-
lently �0) increases, the state |gg〉 completely decouples from
the dynamics (except when �0 = V0 = nω). In the latter case,
we only have to consider the dynamical stabilization of |ee〉,
which is provided again by J0(α) = 0. If �0 = V0 = nω, both
R1 and R2 are satisfied simultaneously, the freezing of |gg〉
is provided by Jn(α) = 0, and the dynamical stabilization of
|ee〉 is given by J0(α) = 0. In addition, the results for R2 are
identical to that of R1 with �0 = 0, V0 = nω, except that the
roles of |ee〉 and |gg〉 are interchanged. Therefore, Figs. 6(a)

and 6(b) equivalently show �
|ee〉
2 and �

|gg〉
2 for V0 = �0,

respectively.

R3

Now, we consider the case of third resonance, R3: n3ω =
2�0 − V0. As mentioned earlier, the resonance condition for
R3 cannot be extracted directly from the Hamiltonian in
Eq. (3) or Eqs. (7) and (8) for the Rabi couplings, and hence
they do not provide us with any direct hint on how dynam-
ical stabilization is related to the Bessel roots. When R3 is
satisfied, the system exhibits Rabi oscillations between |gg〉
and |ee〉. Note that, for V0  �, the resonances R1, R2, and
R3 are not well separated, and all three states (|gg〉, |+〉, |ee〉)
are relevant in the dynamics which leads to the population
transfer between |gg〉 and |ee〉 via |+〉 state. For large values
of V0, R3 gets well isolated from R1 and R2 along the �0

axis. In that case, the population in |+〉 becomes negligible
for sufficiently large values of V0/ω, except when �0 = nω.
For small values of both RRIs and �0 compared to the driving
frequency, i.e., for �0/ω  1 and V0/ω  1, we obtain an
effective Hamiltonian as

Ĥ (�0ω,V0ω)
eff

� �J0(α)

2

(
1 − iπ

�0

ω

) 2∑
j=1

σ̂ j
eg

+ in3�

2
[Jn3 (α) − J0(α)]

(
1 + iπ

�0

ω

)
X̂ + H.c. (10)

When n3 = 0, the second term with X̂ in Eq. (10) van-
ishes, and the dynamical stabilization of both |gg〉 and |ee〉
is provided by the zeros of J0(α). This result has been further
verified by numerical calculations of the Schrödinger equa-
tion, using the crossings in the Floquet spectrum and IPR [see
Fig. 7(a)]. In contrast with R1 and R2, as V0 increases, the
dynamical stabilization for R3 demands both higher driving
frequencies (ω) and larger modulation amplitudes (α). As
shown in Fig. 7(a), for V0 = 0.01�, we get the IPR almost
identical to that of the noninteracting case [see Fig. 1(f)],
which exhibits sharp minima at J0(α) = 0. For a fixed ω,
increasing V0 makes the minima broader, and in particular,
those at small values of α get lifted from zero. That means
that increasing V0/ω destroys dynamical stabilization at small
values of α, as seen for V0 = 0.2� and 1� in Fig. 7(a). In
Fig. 7(b), we show IPR at a sufficiently large value of RRIs
(V0 = 6�) and for different ω, and we see that the sharp
minima with vanishing IPR have disappeared completely and
become smooth minima. These results can be understood
from Eqs. (7) and (8). For sufficiently large V0, satisfying
resonance condition 2�0 = V0 does not select a single Bessel
function for the Rabi couplings, which hinders the dynamical
stabilization. This strong dependence of V0 on the dynamical
stabilization under R3 resonance is in high contrast with that
of R1 and R2. To show that explicitly, we look at the dynamics
at the first Bessel zero of J0(α) for the three resonances R1,
R2, and R3 for sufficiently large V0 [see Figs. 7(c) and 7(d)]. In
Fig. 7(c), we show the dynamics for the initial state |gg〉, sat-
isfying resonances R1 and R3, and in Fig. 7(c), the dynamics
is shown for the initial state |ee〉 satisfying R2 and R3. In both
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FIG. 7. (a) The IPR (�|gg〉
2 ) as a function of α for ω = 30� for

different V0 satisfying the R3 resonance with n3 = 0, i.e., 2�0 = V0.
(b) The same as in (a), but for different ω and V0 = 6�. In (c), we
show the dynamics for the initial state |gg〉 for the two different
resonances: R1 (solid line with n1 = 0) and R3 (dashed line with
n3 = 0) at the first root of J0(α), ω = 15�, and V0 = 6�. In (d), we
show the same as in (c), except that the initial state is |ee〉, and for
the resonances: R2 (solid line with n2 = 0) and R3 (dashed line with
n3 = 0). The parameter α is varied by changing δ and keeping ω

constant.

figures, we observe population dynamics for R3, indicating
the absence of dynamical stabilization at large RRI.

C. Dynamical stabilization of maximally entangled Bell states

In the following, we consider the dynamical stabilization of
two classes of Bell states: |+〉 and |B+〉 = (|gg〉 + |ee〉)/

√
2,

and they are both maximally entangled two-qubit states. We
use the bipartite entanglement entropy to characterize the
correlation or entanglement between the qubits. To quantify
it, we label the qubits as A and B, and the entanglement
entropy of subsystem A is obtained as SA =
−Tr(ρA log2 ρA) = −∑

k λk log2 λk , where ρA is the reduced
density matrix of the subsystem A, and λk are the eigenvalues
of ρA. Both |+〉 and |B+〉 have SA = 1, and under dynamical
stabilization we expect SA also to be stabilizing over time.
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FIG. 8. (a) IPR �
|+〉
2 as a function of α and V0 for ω = 8� and

�0 = 0. The parameter α is varied by changing δ and keeping ω

constant. (b) The general behavior of the dynamics of the entan-
glement entropy SA for �

|+〉
2 = 0 (solid line), indicating dynamical

stabilization and for �
|+〉
2 = 1 (dashed line).

|+〉 state

The state |+〉 is involved in two resonances: R1 and R2. For
V0  �, the resonances R1 and R2 are not entirely separable.
The latter implies that the population from |+〉 state trans-
fers almost equally to both |gg〉 and |ee〉 states for V0  �.
Following Eq. (9) for V0/ω  1, we can see that dynamical
stabilization of |+〉 occurs when J0(α) = 0. For sufficiently
large V0 (excluding V0 = nω), the resonances R1 and R2 can
be well isolated from each other, and the dynamical stabiliza-
tion of |+〉 is still determined by the zeros of J0(α) if either
R1 or R2 is satisfied. If R1 alone is satisfied, the Rydberg
blockade prevents any transition to |ee〉 thereby stabilizing
|+〉 state dynamically at J0(α) = 0. On the other hand, the
resonance condition R2 demands a large detuning, which pre-
vents any population transfer from |+〉 to |gg〉. The latter helps
the dynamical stabilization of state |+〉. Note that, when |+〉
is dynamically stabilized, one of the Floquet modes becomes
|+〉, as we have discussed in Sec. IV B.

Keeping n1 = 0 and for V0 = nω with n being a nonzero
integer, both R1 and R2 are satisfied simultaneously, and the
dynamical stabilization of |+〉 requires both J0(α) = 0 and
J−n(α) = 0. The latter criteria can never be satisfied with
n �= 0, which prevents the dynamical stabilization of |+〉.
This implies that the entangled state is harder to stabilize
dynamically than the product state |gg〉. The above results are
summarized in Fig. 8(a), in which we show the IPR �

|+〉
2 as a

function of α and V0. The broken horizontal stripes in Fig. 8(a)
correspond to the regions of dynamical stabilization of |+〉
state. The regions with �

|+〉
2 = 1 correspond to the blockade

dynamics, and those with �
|gg〉
2 = 2 indicate that all three

states are very involved in the dynamics. As expected, for
R2 resonance and V0 = �0, we get the same results as above,
with the only difference being that the regions with �

|+〉
2 = 1
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indicate the Rabi oscillations between |+〉 and |ee〉. Further,
the time evolution of the entanglement entropy for the initial
state |+〉 and different IPR is shown in Fig. 8(b). As seen in
Fig. 8(b), when �

|+〉
2 = 0, we hardly find any dynamics in SA,

which indicates that the correlation between the two atoms is
preserved under the periodic driving. For the case in which
�

|+〉
2 = 1, the entropy SA undergoes periodic oscillations, and

for the particular case shown in Fig. 8(b), the oscillations in
SA are due to the Rabi oscillations between the entangled state
|+〉 and the product state |gg〉.

|B+〉 state

To discuss the dynamical stabilization of the Bell state
|B+〉, we need to consider the resonances, which include ei-
ther |gg〉 or |ee〉, or both. Such resonances can drive the system
out of the |B+〉 state. We comment on the case in which both
|gg〉 and |ee〉 are involved in the resonant dynamics. The latter
happens when either R3 is satisfied or both R1 and R2 are
met simultaneously. As already mentioned, when the primary
resonance of R3 is met (2�0 = V0), the system exhibits Rabi
oscillations between |gg〉 and |ee〉 via |+〉. For large V0, the
population in |+〉 can be neglected, and |B+〉 becomes the
stationary state of the unmodulated system. Therefore, the
question of dynamical stabilization is irrelevant, and periodic
modulation may make |B+〉 dynamically unstable. For small
RRIs and V0/ω  1, the dynamical stabilization is provided
by the roots of J0(α), which can be easily seen from Eq. (10).
On the other hand, satisfying R1 and R2 conditions simulta-
neously requires two different Bessel functions to vanish at
the same value of α, which is never possible, ruling out the
possibility of dynamical stabilization of |B+〉.

V. EXPERIMENTAL PARAMETERS

Finally, we comment on the experimental setup and pa-
rameters, which can be used to investigate our findings. We
consider a Rydberg nS1/2 state of a rubidium atom. The two-
atom setups are easily realizable in labs using either optical
tweezers or optical microtraps [64]. Moreover, the interac-
tion strengths between the Rydberg atoms can be controlled
precisely by adjusting the separation between the atoms or
using external fields [64]. As we mentioned before, the pe-
riodic modulation can be generated by applying an additional
oscillating rf field, which creates sidebands in the Rydberg
state as shown in [52,56,85,86]. Additional control over the
sidebands, thereby selecting either odd or even bands, are
accessible via ac or dc electric fields [52]. In an alternative
method, as demonstrated in a recent experiment, an intensity-
modulated off-resonance laser is used to vary the energy of
the intermediate excited state sinusoidally, in a two-photon
transition to the Rydberg state from the ground state [60]. The

latter approach is equivalent to modulating the effective light
field, which couples the ground to the Rydberg state.

Taking a typical Rabi frequency of � = 1 MHz, our stud-
ies use interaction strengths V0 = 0–20 MHz and modulation
frequency ω = 0–30 MHz. Consider the Rydberg state to
be |e〉 ≡ |45S1/2〉 of a rubidium atom, which can be cou-
pled from the ground state |g〉 ≡ |5S1/2〉 via a two-photon
transition. As we can see, the frequency differences between
neighboring states are (E45S1/2 − E44S1/2 )/h̄ = 92.96 GHz and
(E46S1/2 − E45S1/2 )/h̄ = 86.53 GHz, which ensures that side-
bands generated by the periodic modulation do not populate
the nearest Rydberg states. The latter can also be suppressed
by taking a moderately strong modulated field, for instance
the intensity of the oscillating rf field [52,86].

VI. SUMMARY

In summary, we have studied the dynamical stabilization of
a set of experimentally relevant product and entangled states
in a Rydberg atom pair. The presence of Rydberg-Rydberg
interactions leads to state-dependent population trapping. As
we have shown, unlike in the case of a single two-level atom,
the population trapping or dynamical stabilization in two in-
teracting Rydberg atoms may not be accompanied by level
crossings in the Floquet spectrum. We have discussed the
dynamical stabilization of a few selected states, including both
product and entangled Bell states. The latter case offers a way
to preserve entanglement or correlation between two qubits
for sufficiently long times, with limitations arising only from
the decoherent processes. Our analysis reveals that the driv-
ing parameters are more restricted to stabilize the entangled
states compared to the product states dynamically. The results
we have discussed here on population trapping or dynamical
stabilization are valid for a pair of any interacting two-level
systems.

Our studies immediately raise the question of population
trapping or dynamical stabilization in extended systems, i.e.,
beyond a pair of atoms. For instance, it would be interesting
to analyze how the population trapping affects the bipartite
and tripartite entanglement of W and GHZ states in a setup
of three or more atoms. As the number of qubits or atoms
increases, the Floquet spectrum’s complexity also increases,
making the scenario more intriguing.
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APPENDIX: DERIVATION OF EQ. (9)

When R1 resonance (n1ω = �0) is satisfied, we can write Eq. (3) as

Ĥ ′ = �

2
in1 Jn1 (α)

(
2∑

j=1

σ̂ j
eg + X̂ (eiV0t − 1)

)
+ �

2

∑
m �=n1

imJm(α)ei(m−n1 )ωt

(
2∑

j=1

σ̂ j
eg + X̂ (eiV0t − 1)

)
+ H.c., (A1)
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where the first term provides the resonant contribution. In the limit ω � � and ω � V0, the contribution from the second term in
Eq. (A2) is negligible, and we can obtain an effective time-independent Hamiltonian Heff = 1/T

∫ T
0 dt Ĥ ′(t ), where T = 2π/ω,

as

Ĥeff = �

2
in1 Jn1 (α)

(
2∑

j=1

σ̂ j
eg + X̂

(
eiV0T − 1

iV0T
− 1

))
+ �

2

∑
m �=n1

imJm(α)X̂

(
eiV0T − 1

i[(m − n1)ω + V0]T

)
+ H.c. (A2)

In leading orders of V0/ω, we get Eq. (9) from the main text. In a similar manner, we can derive the effective Hamiltonian in
Eq. (10).
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Lukin, Phys. Rev. Lett. 121, 123603 (2018).

[73] X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M.
Saffman, Phys. Rev. A 82, 030306(R) (2010).

[74] K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J. Piotrowicz,
A. W. Carr, L. Isenhower, and M. Saffman, Phys. Rev. A 92,
022336 (2015).

[75] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S.
Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, J. Cui, M.
Rossignolo, P. Rembold, S. Montangero, T. Calarco, M. Endres,
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