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Phase and group velocities for correlation spreading in the Mott phase
of the Bose-Hubbard model in dimensions greater than one
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Lieb-Robinson and related bounds set an upper limit on the speed at which information propagates in
nonrelativistic quantum systems. Experimentally, light-cone-like spreading has been observed for correlations in
the Bose-Hubbard model (BHM) after a quantum quench. Using a two-particle irreducible (2PI) strong-coupling
approach to out-of-equilibrium dynamics in the BHM we calculate both the group and phase velocities for
the spreading of single-particle correlations in one, two, and three dimensions as a function of interaction
strength. Our results are in quantitative agreement with measurements of the speed of spreading of single-particle
correlations in both the one- and two-dimensional BHM realized with ultracold atoms. They also are consistent
with the claim that the phase velocity rather than the group velocity was observed in recent experiments in two
dimensions. We demonstrate that there can be large differences between the phase and group velocities for the
spreading of correlations and explore how the anisotropy in the velocity varies across the phase diagram of the
BHM. Our results establish the 2PI strong-coupling approach as a powerful tool to study out-of-equilibrium

dynamics in the BHM in dimensions greater than one.
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I. INTRODUCTION

Ultracold atoms in optical lattices provide a versatile set-
ting to investigate out-of-equilibrium dynamics in interacting
quantum systems [I-8]. Atomic realizations of the Bose
Hubbard model (BHM) [9], a minimal model describing in-
teracting bosons in an optical lattice [10], have also been
proposed as quantum simulators in dimensions higher than
one [11,12]. Understanding how information propagates in
these systems provides insights that can help the engineer-
ing of efficient quantum channels necessary for fast quantum
computations [13]. In this work we focus on the question
of how the speed of information propagation depends on di-
mensionality and model parameters in the BHM and whether
theory can match experimental observations, particularly for
two dimensions.

The existence of a bound on the group velocity of the
spreading of correlations in nonrelativistic quantum spin
systems with finite-range interactions was demonstrated by
Lieb and Robinson [14]. For bosonic systems with infinite-
dimensional Hilbert space and unbounded Hamiltonians,
analogous bounds can be found in some cases [15], but it
is also possible to construct models with accelerating exci-
tations [16]. Additionally, Lieb-Robinson bounds have been
derived for spin-boson models relevant for trapped ions [17].
In the specific case of the BHM, a bound has been derived
for a specific class of initial states [18], but there are no
rigorous results for the spreading of correlations in, e.g., a
Mott state. Experimentally, in situ imaging techniques such
as quantum gas microscopes [19,20] have enabled the demon-
stration of light-cone-like spreading [21] of correlations for
bosons in a one-dimensional optical lattice simulating the
BHM.
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There are multiple theoretical methods that enable the
calculation of dynamical correlations in the BHM in one
dimension, including exact diagonalization (ED) and time-
dependent density-matrix renormalization-group methods
(t-DMRG) [21-30]. However, these tools are not effective for
calculating the spreading of correlations in higher dimensions.
Theorists have responded to this challenge by using a variety
of methods to study the spreading of correlations in the
BHM in two dimensions, including considering Gutzwiller
mean-field theory with perturbative corrections [31-34], time-
dependent variational Monte Carlo [35] and doublon-holon
pair theories [36]. We employ a two-particle irreducible
(2PI) [37,38] strong-coupling approach to the BHM
developed by two of us that uses a closed time path method
to treat out-of-equilibrium dynamics (details can be found in
Refs. [39-42] and Appendix A) allowing accurate calculation
of the speed at which correlations spread in dimensions higher
than one. This approach is exact in both the weak- and strong-
interaction limits and is applicable for small average particle
number per site, 7i. In Ref. [40] two of us used this approach to
obtain 2PI equations of motion for single-particle correlations.
These equations of motion are not amenable to numerical so-
lution due to the presence of multiple time integrals, but taking
a low-energy limit yields an effective theory (ET) that gives
predictions that match exact results in one dimension [41].

Our work is motivated by recent experiments reported by
Takasu et al. [12], who studied the spreading of single-particle
correlations for bosonic atoms confined in an optical lattice in
one, two, and three dimensions after a quench in the optical
lattice depth starting from a Mott-insulating state. In terms
of the BHM, these quenches correspond to different values
of the ratio U/Jy, where U is the characteristic interaction
energy scale and J; is the final value of the characteristic
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hopping energy scale J. In one dimension they considered
parameters well in the Mott phase [U/J; = 6.8, compared
with the critical value (U/J )gd = 3.4], and in two dimen-
sions they considered parameters close to the transition to a
superfluid [U/J; = 19.6 compared with the critical value of
wJ )gd = 16]. Defining the correlation wavefront as the first
peak in the time evolution of the single-particle correlation
function at each particle separation distance, Takasu et al.
found the wavefront to propagate in one dimension with a
velocity of vpeak = 5.5(7)Ja/h, where a is the lattice spacing,
in accord with previous experimental [21] and theoretical
results [21,27,30,41].

Takasu et al. [12] reported the first measurements of
propagation speeds in two dimensions, Vpeax = 13.7(2.1)Ja/h
(obtained from the first peak in the single-particle correla-
tions) and vyougn = 10.2(1.4)Ja/h (obtained from the first
trough after the first peak). These values, especially vpeak,
are considerably larger than the value of v2¢ = 8.4Ja/h
that Takasu et al. expected based on doublon-holon effec-
tive theories [21,27]. We note that Refs. [21,27] studied
the one-dimensional Bose Hubbard model and made use of
the Jordan-Wigner transformation—a one-dimensional tech-
nique. The only derivation for vy, which Takasu er al. state
can be interpreted as a Lieb-Robinson-like bound (i.e., cor-
responding to the group velocity) in dimensions larger than
one, that we are aware of is that of Krutitsky er al. [33].
However, their result agrees with the v24  expression given
by Takasu et al. only to zeroth order in J/U. Moreover, the
expression obtained by Krutitsky et al. is only valid deep in

J

Hein = — ) _J(0)(a}a,, +al a,)

(i.J)

where &I, and a,, are bosonic creation and annihilation op-
erators, respectively, and 7, is the number operator, on site
i (located at r;), U is the interaction strength, and u is the
chemical potential. We restrict the hopping to be between
nearest-neighbor sites and allow the magnitude J () to be time
dependent, as required for a quench protocol. Our ET and the
equations of motion for the single-particle correlations were
derived in Refs. [40,41]. We calculate the same quantity that
was measured by Takasu er al., the single-particle density
matrix

piI(Ar =r1; — 1), 1) = (aIi(t)&rj(t)), 2

which contains all the information about single-particle ob-
servables, and on a lattice can be written in the form

p1(Ar,t) = ]% Xk: cos(k - Ar)n(t), 3)

where N; is the number of sites, and nk(¢) is the particle
distribution over the quasimomentum Kk at time #, and Ar is
the particle separation distance. nk(¢) is related to the density
n(t) via

1
n(t) = - D (o). )
fk

the Mott-insulating regime, so is not applicable to the U/J
values considered by Takasu et al. that are of interest here.
Takasu et al. argue that they measured the phase rather than
the group velocity; these were identified as being distinct for
the BHM in one dimension in Ref. [30].

In this paper we solve the equations of motion for our
2PI ET and calculate the group and phase velocities for the
spreading of single-particle correlations in the BHM after a
quench in one, two, or three dimensions.

Our main results are as follows: (i) We obtain the group
and phase velocities for correlation spreading throughout the
Mott phase of the BHM in one, two, and three dimensions.
(i) We obtain quantitative agreement between the phase and
group velocities of single-particle correlations in the one- and
two-dimensional BHM calculated using our ET and velocities
measured experimentally in Refs. [12,21]. (iii)) We confirm
that the phase rather than the group velocity was measured
in two dimensions in Ref. [12]. (iv) We track the evolution of
anisotropy in the phase and group velocities in the BHM in
both two and three dimensions.

This paper is structured as follows: In Sec. II we introduce
the BHM and our methodology, in Sec. III we present our
results for one, two, and three dimensions, and in Sec. IV we
discuss our results and conclude.

II. MODEL AND METHODOLOGY

We study the BHM on a d-dimensional cubic lattice, with
d =1, 2, and 3, for which the Hamiltonian is

_MZﬁri—l—%Xi:ﬁrl(ﬁn—l), (1)

(

Note that usually one would expect the total particle number
to be conserved, but due to truncations in our ET, there are
small fluctuations in the particle number that do not appear
to affect the determination of the velocity at which correla-
tions spread [41]. In addition to single-particle correlations,
density-density correlations have also been considered in the
literature [27,30]. Such correlations are not as easily accessi-
ble with our approach, but in the strong-coupling limit of the
BHM, higher-order correlations contain the same information
as single-particle correlations [27,41].

The protocol we follow is to start with J/U =0 for a
i =1 Mott phase and then ramp J to a final value J; over a
timescale 7y, with the timescale #, marking the midpoint of the
quench [41]. We solve the ET equations of motion to obtain
p1(Ar, t), from which we extract the group and phase ve-
locities for the spreading of single-particle correlations. More
details on the procedure we used can be found in Appendix B.
‘We now discuss our results for one, two, and three dimensions
in turn.

III. RESULTS
A. One dimension

We consider one-dimensional chains with 50 sites and
periodic boundary conditions (PBCs). In previous work [41]
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FIG. 1. Dynamics of p;(Ar,t) calculated from the ET in one
dimension for Ar/a = 10. The envelope of the wave packet is shown
in red and the center of the wave packet is marked by the dashed
black vertical line. We use parameters U = 1000, U/J; = 18.2,
w/U =0.4116,1. /U =5,1,/U™" = 0.1, and N; = 50.

we showed that the spreading of correlations calculated with
our ET matches well with ED results in small systems and
exact results for larger systems in one dimension. For a given
U/Js, we calculate p;(Ar,t) and for each value of Ar we
obtain the time-wise positions of the wave packet, and the
largest peak [i.e., the point in time where p;(Ar, t) takes its
maximum value]. We track the propagation of the maximum
peak of the p; (Ar, ¢) time series to extract the phase velocity.
To obtain the group velocity we first perform both linear
and cubic interpolations to determine the upper and lower
envelopes of p;(Ar,t) and then average the centers of the
pairs of upper and lower envelopes to identify the position
of the wave packet. Full details of our procedure are given
in Appendix B. An example of the envelope for p;(Ar,1t)
is given in Fig. 1 for Ar/a =10 and U/J; = 18.2, with the
time-wise position of the wave packet marked by a vertical
dashed black line. By tracking the propagation of the wave
packet, we can extract the group velocity for the spreading
of single-particle correlations [41]. Figure 2 plots the times
t/U~! for the maximum peak and the wave packet to travel
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FIG. 2. Scatter plots of the time /U~ for the maximum peak
(green) and the wave packet (blue) to travel a distance Ar/a. Param-
eters are the same as in Fig. 1.
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FIG. 3. (a) Phase velocity (vy,) and group velocity (v,) for
single-particle correlations as a function of U/J; for a 50-site chain.
Experimental results from Cheneau ez al. [21] and Takasu ez al. [12]
are also shown. The dashed lines are to guide the eye. (b) Comparison
between experiment and theory in the range of U/J; where experi-
mental data are available.

a particle separation distance Ar/a for the same parameters
used in Fig. 1. By performing linear fits to the data in Fig. 2,
we extract estimates for the phase and group velocities. The
wave packets show less damping than those seen experi-
mentally [12,21]. There are several possible sources for this
discrepancy: on the theoretical side, there are higher-order
terms in the 2PI expansion that lead to an imaginary part of
the self-energy which should lead to damping [43]. We ex-
clude these terms because they should be small in comparison
with the terms that we keep, and in doing so the problem
becomes more numerically tractable. Experimentally, sources
of damping that are not included in our calculation, such as
atom number fluctuations, may also be important.

We repeat the process illustrated in Figs. 1 and 2 through-
out the Mott phase to determine the group and phase velocity
at each value of U/J;. These results and a comparison to
the velocities determined experimentally in Refs. [12,21]
are presented in Fig. 3. Note that the velocities obtained in
Ref. [21] are actually for density-density correlations rather
than single-particle correlations, but at strong coupling, these
two correlations should spread with similar velocities [27,41].
Deep in the Mott-insulating phase, the phase velocity is much
larger than the group velocity but the two velocities converge
in the vicinity of the critical point. Our results are consis-
tent with those recently obtained theoretically using matrix
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FIG. 4. Phase velocity vy, and group velocity v, along both the
crystal axes (superscript ca) and along the diagonal (superscript d)
as a function of U/J; for the BHM in two dimensions. The peak
velocity in the single-particle correlations determined by Takasu
et al. [12] is also shown.

product states by Despres et al. [30]. Our results for the
group velocity are consistent with measurements of the group
velocity by Cheneau ef al. [21] at several different values
of U/J;. Takasu et al. [12] identified their results with the
group velocity, which agree with the value we compute for
the group velocity. However, they used the position of the
peak to determine the velocity, which would suggest they may
have measured the phase velocity—they note that the two
values are quite close for U/Jy = 6.8. The value we obtain
for the phase velocity is just outside the error bars of Takasu
et al.’s measurement, but given that we consider a uniform
system, whereas the experiment is in a trap, it would appear
that the results of Takasu et al. are not inconsistent with them
having measured the phase velocity in one dimension. Having
established that our ET reproduces existing experimental re-
sults for the group velocity and theoretical results obtained
using essentially exact methods in one dimension, we now
turn to two dimensions, where the phase velocity has not been
previously considered theoretically.

B. Two dimensions

We consider a 50 x 50 lattice with PBCs and follow the
same procedure as for one dimension to calculate p;(Ar, t).
As noted by previous authors, the spreading of correlations in
two dimensions is anisotropic in both the Mott [33,41] and
superfluid [35] regimes. We calculate the phase and group
velocities as a function of U/J; along both the crystal axes and
the diagonals using the same protocol as for one dimension
and present the results in Fig. 4. We consider parameters
BU = 1000, n/U = 0.4116,1./U"" =5,and 1,/U~" = 0.1.

Takasu et al. [12] identified propagation velocities for
single-particle correlations by fitting to the peak and the
following trough in p;(Ar,t) at each Ar. These values
were Upeak = 13.7(2.1)Jra/h and vyouen = 10.2(1.4)Jra/h
for U/Jy = 19.6. In Fig. 4 we show the group and phase
velocities, evaluated along both the diagonals and the crystal
axes in two dimensions. We used the peaks in p;(Ar,1?) to
calculate the phase velocity and accordingly plot the value of
Takasu et al. for vpeq in Fig. 4. For U/J; = 19.6 we find the
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FIG. 5. Snapshots of p;(Ar,t) at four times after the quench:
(a) 0, (b) 0.12A/J, (c) 0.23h/J, and (d) 0.357/J. The parameters
used are BU = 1000, U/J; = 19.6, u/U = 0.4116, and N; = 50.

group velocity and phase velocity [determined using the peak
in p;(Ar,t)] along the diagonals to be vg >~ 8.8Jra/h and

”Sh ~ 11.5Jra/h and along the crystal axes vg" =~ 8.2Jra/h
and v ~ 11.9Jra/h respectively. We also determined the
phase velocity using the first trough after the peak in p; (Ar, )
and obtained vy = 11.2Jra/h and vgh = 11.0Jra/h, also
consistent with experiment. This result indicates a strength of
our method relative to the truncated Wigner approximation
(TWA) used in Ref. [12], which failed to capture the locations
of the correlation troughs. Our results are consistent with
the statement of Takasu e al. that they measure the phase
velocity rather than the group velocity for the spreading of
correlations.

We find both the group and phase velocities to be
anisotropic, but with opposite sense—the velocity along the
diagonals is larger than along the crystal axis for the group
velocity and the converse for the phase velocity. The degree
of anisotropy of both the phase and group velocities in two
dimensions is maximum at large values of U/J; and the ve-
locities are close to isotropic as U/Jy approaches the critical
value of (U/J )Ed = 16. Theoretical calculations for the group
velocity in the superfluid regime [35] indicate that the super-
fluid also displays anisotropic spreading of correlations, with
the opposite sense to that in the Mott regime. In Fig. 5 we
show the spreading of p; (Ar, t) at four times after the quench,
for Euclidean distances A < 4, as measured by Takasu et al.
(we display correlations for the same times as those shown in
Ref. [12]). The magnitude of p; (Ar, ¢) we find from our ET is
about twice the amplitude at the peak observed in experiment
or ED calculations in small systems, but the phase of p; (Ar, t)
appears to be considerably more accurate. At larger values of
U/J; the ET accurately reproduces ED results, as illustrated
in Appendix B.

C. Three dimensions

We followed a procedure similar to that used for one and
two dimensions to determine the group and phase velocities
for the spreading of correlations in three dimensions for a
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FIG. 6. Phase velocity (vpn) and group velocity (v,) along the
(1,0,0), (1,1,0), and (1,1,1) directions as a function of U/J, for the
BHM in three dimensions.

28 x 28 x 28 lattice with PBCs, and the results are illustrated
in Fig. 6. The group velocity is relatively insensitive to U /Jy,
as found in Ref. [41], whereas the phase velocity increases ap-
proximately linearly with U /J¢. Similarly to two dimensions,
there is also anisotropy in both the group and phase velocities
which decreases as the critical point is approached, and it has
the opposite sense for phase and group velocities. The group
velocity is maximal along the (1,1,1) direction and the phase
velocity is minimal along the same direction at a given U/J;.

IV. DISCUSSION AND CONCLUSIONS

We have applied our 2PI strong-coupling approach to the
BHM to calculate the spreading of single-particle correla-
tions and found excellent agreement with experiments in
one [12,21] and two [12] dimensions. This establishes our
2PI strong-coupling approach as a powerful tool to study out-
of-equilibrium dynamics in the BHM in dimensions greater
than one. Given that the method gives more accurate results
for equilibrium properties, such as phase boundaries, with
increasing dimension [40], we expect the same to be true for
out-of-equilibrium dynamics. Hence, as it reproduces exact
results in one dimension, the 2PI method is complementary to
numerical methods that give essentially exact results for out-
of-equilibrium dynamics only in one dimension. In addition,
the 2PI method can be extended to disordered systems [42,44]
and multicomponent boson systems. We have also demon-
strated anisotropy in the spreading of correlations on a lattice
in both two and three dimensions. This anisotropy persists
throughout the entire Mott phase, apparently vanishing only
around the critical point. Our results for the phase velocity
and group velocity as a function of U/J; demonstrate that,
while they are relatively similar in the vicinity of the tran-
sition to the superfluid, deeper in the Mott phase there can
be very significant differences, with the phase velocity being
much larger than the group velocity. Differentiating between
these two velocities is important for understanding the rate of
information spreading in the BHM. At the present time there
have been only a few measurements of the velocities at which
correlations spread in the BHM, and we hope that our results
give an incentive to further experimental measurements of
correlation spreading in the BHM.
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APPENDIX A: REAL-TIME TWO-PARTICLE
IRREDUCIBLE APPROACH TO THE BOSE-HUBBARD
MODEL

In this Appendix we provide a brief summary of our
real-time two-particle irreducible (2PI) approach to the Bose-
Hubbard model developed in Refs. [40,41]. We then give a
brief review of the equations of motion we solve.

We use a contour-time formalism, making use of the
Konstantinov-Perel (KP) [45] contour, illustrated in Fig. 7.
Fields are labeled according to their contour, which can be
+, —, or 7, and we use the notation &f{a for bosonic fields on
site i (located at position r;) and contour o where &;a =y,
and &%ja = &I{a. We cast the generating functional Z for the
Bose-Hubbard model in path integral form (omitting source
terms),

Z= / [DajeiSumia (A1)
where Sgum[a] is the action for the Bose-Hubbard model.

We perform two Hubbard-Stratonovich transformations on
the BHM action [39-41,46] and then perform a cumulant
expansion to quartic order, which gives the following ac-
tion [40]:

1
SBHM[Z] - E(zjxlxz + [gil]xmz + ﬁxmz)zmzxz

1

+ Euxl x4 8x1 Zxp T3 Ty

where the z fields can be shown to have the same correlations
as the original a fields [40,46]. We make use of the Einstein
summation convention and introduce highly condensed nota-
tion so that for a quantity Q,

(A2)

Qxlxz...x,, = ?‘.]]li-zi;il;-m,ala%,an (Sl 3825 0y sn)’ (A3)
A
t/ €+ tf
C_
Cr
t—if

FIG. 7. KP contour used in calculations. The system is taken to
be prepared in an initially thermal state at time #; and then evolved to
a final time #;.
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where «; is a contour label, r;, is a lattice site position, and s;
is a non-negative real parameter that indicates a position along
the contour segment Cy,. The u vertex is nonlocal in time and
generates “physical” and “anomalous” diagrams (i.e., those
with internal lines of G~1). The ii vertex cancels anomalous
terms generated by u vertices, and G and G are connected 1-
and 2-particle Green’s functions in the atomic limit (J = 0).
These vertices are illustrated in Fig. 8. Full details of the ex-
pressions for each of these vertices are presented in Ref. [40].
With the effective theory defined by Eq. (A2) we can construct

the 2PI effective action from whence we obtain equations of
motion.

Two-particle irreducible equations of motion

With the effective theory defined by Eq. (A2) we can
construct the 2PI effective action and hence obtain the 2PI
equations of motion [37]. The equations of motion for the
superfluid order parameter ¢ and the propagator G take the
form

8S[p]  1T.8[D s, 8Ts[¢. Gl
8¢x + EI:Z 8¢x GXZ)CI] + 8¢x - Ov (A4)
and
iGNy, = i[D Ny, — iZ4 s (AS)

where Eq. (A5) is the Dyson’s equation, i{[D™!] is the inverse
“bare” propagator, and ¥ is the 2PI self-energy:

_ 5S¢l 8Tl G
3¢5, 8Grmy,

The 2PI self-energy is obtained from a functional derivative
of I', which is represented diagrammatically to second order
in the interaction vertex in Fig. 9.

The equations of motion obtained from Eqgs. (A4) and (A5)
when including diagrams a, b, and c in I'; can have as many
as seven time integrals. Hence we make several approxima-
tions to obtain equations that are more amenable to numerical
solution. First, we make the Hartree-Fock Bogoliubov (HFB)

ilD N, Y, = 2i (A6)

FIG. 9. Diagrammatic expansion of I';. The interaction vertex u
is represented by a bullet o, the propagator G is represented by a solid
line, and the superfluid order parameter ¢ is represented by a dashed
line.

approximation [41] and keep only diagram a in I';. Second,
we make a low-frequency approximation. This allows the
vertices u and i to be replaced by constants u, u,, and vy,
details of which are given in Refs. [40,41]. Terms involving
uy can be shown to be small in comparison to those involving
uy, and hence after following through these simplifications, as
outlined in Refs. [40,41] we obtain equations of motion for
the spectral function

A, 1) = (@ O (") — ay () (1)), (A7)
and the kinetic Green’s function
GP, 1) = —ila ()a) (") + af (a (0)) . (A8)

where the expectation values are taken with respect to the
initial state
e*ﬂHBHM(ti)
pi= ————. A9
Pi Tr[e—PHBmm(i)] (A9)
For a quench that leads to a final state in the Mott-
insulating regime and in which the system is initially
thermalized in the atomic limit (/ = 0), the equations of mo-
tion take the form [41]

Ax(t, 1)

t
=Al—1)—i / dt" At — "= A 1),
.
(A10)
G, 1)

t
— g(l()(t _ [/) _ l/ dl//A([ _ t//)zl((HFB)(l//)Gl((K)([//, t/)
0

p
+ i / dt"G® @ — TP A", 1), (Al
0

where A(t —t') and G®)(t —¢') are the spectral function and
the kinetic Green’s function in the atomic (J/ = 0) limit (in this
limit both quantities are time translation invariant). Specific
forms for A and G are specified in Refs. [40,41]. The
Hartree-Fock-Bogoliubov-like approximation for the self-
energy (obtained by only keeping diagram a of I';) takes the
form

SHB) (1) = (1) + 2uy[n(t) — ny—o], (A12)
with

d
a = —2J(t) ) cos(kia), (A13)

i=1

1

n =5 ;nkm, (Al14)
n(t) = %{iG{(K)(t,t) — 1}, (A15)

and u; depends on U, u, and temperature [40]. Knowledge
of nk(¢)—the particle distibution over the quasimomentum k
at time t—allows us to calculate the single-particle density
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matrix. The full expression for u; is

(n+1)(n+2)

nn—1)

2R () — (-4
u - _2{G (e =0} Zeﬁ(gnsno){

Z
0 n=0

(n+1)? n?

(gn+2 - gn)(gn-H - gn )2
nn+1)

(511—2 - gn)(gn—l - 511)2

- (gn+1 - “:n)3 - (gnfl - gn)3 a

where

ng,(R)(a)/ — 0)
__ LS peey
Zy

(n+1)
5n+l _gn

n
5}1—1 - En '
(A17)

n=0

and Z is the atomic partition function,

o
Zy = Z e—ﬂ(5»1—5»10)7 (A18)
n=0

with ng = [u/U7 and

U
&= 5n(n — 1) —nu. (A19)
The Hartree-Fock-Bogoliubov self-energy is most accu-
rate in the strongly interacting limit and is least accurate at
the tips of the Mott lobes. This is illustrated in Fig. 6 of

0.041 (a)

ET:Ar/a= (8,0)

0.02

p1<AI‘, t)

0.00

—0.02

0.04

0.02

0.001

p1(Ar,t)

—0.02

—0.04

(gnJrl - gn)(gnfl - gn)z ;

nn+1) } (AL6)

(gnJrl - gn)z(gnfl - 511)

(

Ref. [40], where phase boundaries between the Mott and su-
perfluid phases were calculated with the HFB self-energy and
compared with both mean-field theory and exact numerical
results. In dimensions 1, 2, and 3, the HFB self-energy leads
to a significant improvement beyond mean-field theory, and
in dimensions 2 and 3 it is only at the tips of the Mott lobes
where there is some deviation between exact and HFB results.
The deviations in 1 dimension are larger, but even there the
HFB result is a dramatic improvement on mean-field theory.
The explicit form of J(¢) that we consider is

]f t—1,
J@t) = ?|:1 +tanh( o )],

where J; characterizes the final hopping strength, ¢, charac-
terizes the time at which the middle of the quench occurs, and
7o characterizes the duration of the quench. The equations of
motion do not have any known analytical solution, and hence
we have solved them numerically using a block-by-block

(A20)

(b)
20 s e
’d' ',-'
5 ‘. ‘,»l
£
10 »‘. o
o "t
,i -
5 ‘;,r’ e Peak
=+ Wave packet
0
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-’ -'"
o« o
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S s ' 4
= P
< ‘.p ",i
10 o "
s
’F/“ e Peak
» .
-+ Wave packet
0
25 50 16 100

t/U!

FIG. 10. Tracking the wavefront for a 50 x 50 system. (a), (c) Dynamics of p; (Ar, t) for Ar/a = (8, 0) and Ar/a = (8, 8). (b), (d) Scatter

plots of the times # /U ~! for the maximum peak (green) and the wave packet (blue) to travel a particle separation distance Ar/a along the crystal
axes and diagonals, respectively. In panels (a) and (c) the solid red lines trace the envelopes of the wave packets, while the dashed black vertical
lines indicate the positions of the wave packets. In panels (b) and (d) we fit straight lines to the data to obtain the group and phase velocities
along the crystal axes and diagonals. The parameters are BU = 1000, U/J; = 28.6, u/U = 0.4116, 1. /U~ =5,15/U"" = 0.1.
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FIG. 11. (a)—(e) Dynamics of p;(Ar, t) along the crystal axis from Ar/a = (2,0) to Ar/a = (6, 0). The solid vertical green lines show
the positions of the peaks related to the phase velocity and dashed vertical black lines show the positions of the wave packets related to group
velocity. The parameters in panels (a) and (e) are U = 1000, U/J; = 19.6, /U = 0.4116,1./U"" = 5,1,/U~" = 0.1, and the system size

is 50 x 50.

scheme detailed in Ref. [41]. We give additional details about
the solutions of these equations in the following section.

APPENDIX B: SINGLE-PARTICLE CORRELATIONS

In this Appendix we provide additional details relating
to the methodology we used to identify the group velocity
and phase velocity for the spreading of correlations from our
calculations of p;(Ar,t). We discussed the one-dimensional

0.4
0.3
r0.2

0.1

0.0

FIG. 12. (a)-(i) Spatial dependency of p; (Ar, ¢) at different mo-
ments in time t/U~! for a 50 x 50 site system. The parameters
used are BU = 1000, U/J; = 19.6, u/U = 0.4116, /U™ =5,
to/U™ =0.1.

case in the main body of the paper but provide additional
details for the two- and three-dimensional cases here. For a
given U /Jy, we calculate p;(Ar, t) and for each value of Ar
we obtain the time-wise positions of the wave packet, and the
largest peak [i.e., the point in time where p;(Ar, t) takes its
maximum value].

We track the propagation of the maximum peak of the
p1(Ar, t) time series to extract the phase velocity. For the
group velocity we first locate all local maxima and minima
of pi(Ar,t) and then use these points to construct upper

(a) —— ED:Ar/a=(1,1)
ET:Ar/a= (1,1)

—— ED:Ar/a=(1,1)
ET:Ar/a= (1,1)

0.10

0.05

pi(Ar,t)
pi(Ar,t)

0.00

—0.05

20 30
tju-!

40 50 0 2 30 40 50
tju-t

—— ED:Ar/a=(1,1)
ET:Ar/a=(1,1)

— ED:Ar/a=(1,1)
ET:Ar/a= (1,1)

0.6 10

pi(Ar,t)
pi(Ar,t)

0 10

20
t/u!

30 10 20 30

: 40
t/u-!

50

FIG. 13. Comparison of exact diagonalization (ED) calculations
and effective theory (ET) calculations of p; (Ar, ¢) for Ar/a = (1, 1)
for interaction strengths (a) U/J; = 66.7,(b)U/J; =40,(c0)U/J; =
25, and (d) U/J; = 19.6. The parameters are BU = 1000, u/U =
0.4116,1. /U =5,15/U~" = 0.1.
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FIG. 14. Tracking the wavefront in a 28 x 28 x 28 system. Dynamics of p;(Ar,t) for (a) Ar/a = (7,0,0), (b) Ar/a = (7,7,0), and
(c) Ar/a = (7,7, 7). The solid red lines trace the envelopes of the wave packets, while the dashed black vertical lines indicate the positions of

the wave packets. The parameters are U = 1000, U/J; = 55.6, u/U

and lower envelopes using both linear and cubic interpola-
tion. Having found two different pairs of upper and lower
envelopes, one from the linear interpolation and one from the
cubic interpolation, we find the times #,,,,x and t,;, where each
envelope has a maximum or minimum, respectively. To find
the center of the wave packet we average fm,x and #y;, in three
different ways, for each pair of upper and lower envelopes
(i.e., we consider six different estimates for the center of the
wave packet).
The averages we consider are

'max t fmin
C = — (BI)
and
C, = Qlmax + Blmin ’ (B2)

a+p

where o = |Omax — pavl and ,B = |pav - pmin|s with Pmax the
maximum value of p;(Ar,t), Pmin the minimum value of
p1(Ar, t) and p,, the average of p;(Ar,t). We calculate C,
with (i) p,y averaged over the whole time interval and (ii)
with p,, averaged over the time interval [0, fp,x + SU -1
(to capture the average of p;(Ar,t) in the only the first
peak). We then average C; and the two different versions
of C, for both sets of envelopes to determine the cen-
ter of the envelope. These multiple approaches allow us
to estimate the uncertainty in the center of the envelope,
which is generally small, e.g., see Figs. 10(b) and 10(d).
By tracking the propagation of the wave packet, we can ex-

=0.4116,1, /U™ =5,1,/U™" = 0.1.

tract the group velocity for the spreading of single-particle
correlations [41].

In Figs. 10(a) and 10(c) we display the time evolution
of pi(Ar,t) for Ar/a = (8,0) (i.e., along the crystal axis)
and Ar/a = (8, 8) (i.e., along the diagonal), respectively. Fig-
ures 10(b) and 10(d) plot the times /U ! for the maximum
peak and the wave packet to travel a particle separation dis-
tance Ar/a along the crystal axes [Fig. 10(b)] and diagonals
[Fig. 10(d)], respectively. The calculations are for U/J; =
28.6 and a 50 x 50 lattice.

Similarly to the one-dimensional case, we calculate
p1(Ar, t) for a variety of U /J in the Mott phase and calculate
the phase and group velocities for correlation spreading. To
illustrate the process of determining the phase and group
velocities more clearly, in Fig. 11 we show snapshots of
p1(Ar, t) fromr/a = (2,0) to r/a = (6, 0) along the crystal
axis. For each plot, we mark the time-wise positions of the
maximum peak and the wave packet by vertical solid green
and vertical dashed black lines, respectively. The increasing
gap between the two lines with increasing distance along the
crystal axis illustrates the difference between the group and
phase velocities.

In Ref. [12] the authors used both peaks and troughs
to determine the phase velocity of excitations. In Fig. 12
we illustrate the spreading of correlations in two dimen-
sions for U/J; = 19.6. Peaks are visible as light blue circles
and troughs are visible as dark blue circles. There is some
anisotropy in the spreading, but it is relatively small since the
value of U /Jy is close to the critical value.

12,51 ) (b) . . 20{ (©) . .
o . 15 < - ¥ I~
10.0 ‘ﬁ A ‘ P Pt 15 ./d 4
i L s - % L
L 75 1 el S0 i - = s b
- s Lo = ’ s - » )l
< ¢ A 4 hd el 410 /
5ol > g s
. ; 2 . i oas g
2.5 z—f,—/ ®  Peak ‘,/" ®  Peak 5 .,;'/". ®  Peak
> = Wave packet -+ Wave packet -+ Wave packet
0.0 0 0
0 25 50 5 20 40 60 80 100 2 50 i) 100
t/jU! tjut t/U!

FIG. 15. Scatter plots of the time /U~ for the maximum peak (green) and the wave packet (blue) to travel a distance Ar/a along (a) the
(1,0,0) direction, (b) the (1,1,0) direction, and (c) the (1,1,1) direction. Parameters are the same as in Fig. 14.
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As a test of our approach in two dimensions, we performed
exact diagonalization calculations on a 3 x 3 system and com-
pared the results for p; (Ar, ¢) with the results of our effective
theory. The comparisons between both methods are shown
in Fig. 13. We find that the quantitative agreement between
the effective theory and ED is excellent at large values of
U/J;, but becomes less accurate for values of U/Jy close to
the transition, where there is a discrepancy in the magnitude

of p1(Ar,t) by roughly a factor of two. However, the phase
of pi(Ar,t), in particular, the position of the first peak, is
represented accurately by the effective theory.

We also give a sample of some of the calculations of
p1(Ar, t) we calculated for three dimensions, showing traces
of p;(Ar, t) along three different crystal directions in Fig. 14
and fits used to determine the group and phase velocities along
the respective directions for U/J; = 55.6 in Fig. 15.
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