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Effective-field-theory analysis of boson-trimer bond lengths to next-to-leading order
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Cold helium atoms are a unique system in which a single excited three-body Efimov bound state occurs,
naturally, without the need for an external magnetic field. While three-body bound-state energies of cold helium
atoms have previously been investigated, recent experimental techniques have allowed their structure to also
be studied. The weak interaction between helium atoms leads to a helium-helium (dimer) scattering length a
much larger than the helium-helium effective range of interaction r. This feature is exploited in a theory that
systematically expands observables in powers of r/a, known as short-range effective field theory (SREFT),
which has been used successfully to investigate properties of cold-atom systems. Using SREFT, we investigate
the average bond length of atoms in the three-body ground state and excited Efimov bound state of cold helium
atoms. At leading-order (next-to-leading order) in SREFT, we find the average bond length of the 4He trimer
ground state is 8.35(33) Å (10.29(2) Å) and the average bond length of the excited 4He trimer Efimov bound
state is 103(4) Å (105.3(2) Å).

DOI: 10.1103/PhysRevA.103.023333

I. INTRODUCTION

In the limit where the scattering length between two par-
ticles a → ∞, the two-body system (dimer) becomes very
weakly bound. Efimov showed that in this limit, the three-
body system forms an infinite tower of geometrically spaced
three-body bound states (trimers) [1]. For identical bosons,
the ratio between adjacent energy levels is 515. Discovery
of the Efimov effect spurred searches for Efimov states in
nuclear systems. However, no real Efimov bound state has
been found in a nuclear system to date [2]. Signals of a virtual
Efimov state can be seen in neutron-deuteron scattering [3].
The first experimental observation of an Efimov bound state
was in ultracold cesium [4], where a magnetic field created
a Feshbach resonance [5] to control the scattering length
between cesium atoms. The signature of the Efimov bound
state was seen in the loss rate of cesium atoms near an Efimov
resonance. This Efimov resonance occurred at a negative scat-
tering length between cesium atoms where the first Efimov
trimer, which is the first excited state above the ground state,
becomes bound. Efimov states were also observed in cold
lithium atoms, tuned with a Feshbach resonance and detected
using loss measurements [6] and spectroscopy [7,8]. Cesium
atoms were also used to discover the second excited Efimov
state, which is the second excited state above the ground
state [9]. The first observation of Efimov states in cold atoms
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without the need for a Feshbach resonance was in cold helium
atoms [10]. Weak van der Waals interactions between helium
atoms cause helium atoms to form weakly bound dimers and
a single excited Efimov bound state, circumventing the need
for a Feshbach resonance to create an Efimov bound state.
The Efimov bound state in helium atoms has been imaged
using the Coulomb explosion technique, which maps the size
and physical structure of helium trimers [10]. Matter wave
diffraction has also been used to measure the size of the
helium trimer ground state [11].

Phenomenological potential models have been used to
calculate the helium trimer bound-state energy [12–17]
and structural properties [12–14,16,17], such as average
bond length. Effective field theory (EFT) offers a model-
independent approach for determining the properties of
helium trimers and estimating errors in theoretical calcula-
tions. When probing distance scales much larger than the
range of the underlying interaction r, we can approximate
a short-range interaction by a series of contact interactions.
At long-distance scales (or low energies), the short-distance
details of the interaction are encoded into the coefficients
of the contact interactions. An EFT approach systematically
expands observables in a ratio of disparate scales. Because the
weakly bound helium dimer has a scattering length a much
larger than the effective range r, we can use the expansion pa-
rameter r/a. At leading-order (LO) short-range EFT (SREFT)
has a single two-body parameter and three-body parameter.
The two-body parameter is typically fixed to reproduce the
dimer binding energy or the atom-atom scattering length. A
LO three-body force is necessary because the solution to the
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three-boson problem does not possess a unique solution and
needs a three-body counterterm to fix the trimer spectrum and
give a unique solution [18,19]. The loss rate of cold atoms
has been calculated in SREFT at LO [20–22] and next-to-
leading order (NLO) [23]. SREFT has calculated the binding
energies of helium trimers and the atom-dimer scattering am-
plitude to next-to-next-to-leading order (NNLO) [23,24]. LO
SREFT needs only a single two- and three-body interaction
to describe four, five, and six boson bound states [25], while
at NLO an additional four-body force term is required [26].
Although the bond length of helium trimers was previously
determined using potential models, the bond length has not
yet been calculated in SREFT away from the unitary limit
[27]. This work presents a SREFT calculation of the bond
length between helium atoms in the three-body ground state
and excited Efimov bound state.

Any system described by short-range interactions pos-
sessing relatively shallow bound states can be described
systematically using SREFT. In the context of halo nuclei this
SREFT is known as halo-EFT, and in few-nucleon systems it
is known as pionless EFT (EFT(π )). Halo-EFT and EFT(π )
have been used to great success in describing properties of
halo nuclei (see Ref. [28]) and few-nucleon systems, respec-
tively (see Refs. [29,30]). The charge radii and matter radii
of halo nuclei were calculated in Refs. [31–33], and range
corrections were considered in [34,35]. Similar techniques
were used to calculate charge radii of three-nucleon systems
[36–38] using EFT(π ). This work adapts the techniques of
Refs. [30,36] for halo nuclei and three-nucleon systems to
cold-atom trimers.

This paper is organized as follows. Section II reviews
SREFT. In Sec. III, how to perform three-body calculations in
SREFT is shown. Section IV calculates the form factor for the
helium trimer up to NLO. Results for the trimer bond length
are presented and compared to experimental and theoretical
predictions in Sec. V. Conclusions are given in Sec. VI.

II. SREFT

At low energies, S-wave scattering dominates the scat-
tering between two cold bosons. S-wave scattering has the
scattering amplitude

A(k) = 4π

m

1

k cot δ0 − ik
, (1)

where k is the center-of-mass (c.m.) momentum and δ0 is
the S-wave phase shift. Using the effective range expansion
(ERE) [39–41], the phase shift contribution can be written as

k cot δ0 = −1

a
+ 1

2
rk2 − sk4 + · · · , (2)

where a is the scattering length, r is the effective range of
interactions, and s is the shape parameter. At low energies,
only the first few terms are relevant in the ERE. A more con-
venient parametrization of the ERE uses the fact that a pole at
positive imaginary values of k corresponds to a boson-boson
bound state (dimer). Expanding around this bound state, the
ERE gives

k cot δ0 = −γ + 1
2ρ(γ 2 + k2) − ρ1(γ 2 + k2)2 + · · · , (3)

LO

NLO

FIG. 1. Diagrammatic representation of the dimer propagator at
LO and NLO. The gray bar is the bare dimer propagator given
by i/�. Single lines represent a single boson, and the double line
shows the dressed dimer propagator. Finally, the cross represents an
insertion of an effective range correction.

where the bound-state energy of the dimer state is Bd = γ 2

m .
Matching coefficients of powers of momentum k, these differ-
ent parametrizations can be matched, leading to

1

2
r = 1

2
ρ − 2ρ1γ

2 + · · · , (4)

−1

a
= −γ + 1

2
ργ 2 + · · · . (5)

Because the ρ1 term is suppressed relative to r and a, we drop
the ρ1 term to find ρ = r. Throughout this work, we will use
the ERE expansion about the bound-state pole of the dimer.

The Lagrangian in SREFT for interacting bosons is

L = ψ̂†

(
i∂0 + ∇2

2m

)
ψ̂ − d̂†

[
c2

(
i∂0 + ∇2

4m
+ γ 2

m

)
− �

]
d̂

(6)

− y(d̂†ψ̂ψ̂ + H.c.) + hd̂†d̂ψ̂†ψ̂,

where ψ̂ and d̂ are the boson and dimer fields, respectively.
y sets the strength of the interaction between the dimer and
boson, while h is a three-body force term necessary to prop-
erly renormalize the three-boson system [18,19]. Rather than
refitting h at each order, we expand it perturbatively as

h = hLO + hNLO + · · · . (7)

The dressed dimer propagator up to NLO is given by the
infinite sum of diagrams in Fig. 1. The expression for the
dressed dimer propagator up to NLO is

iD̄(p0, �p ) = 4π

my2

i

4π
my2 � −

√
�p2

4 − mp0 − iε + 

2π

×
⎡⎣1 +

c2
m

(
mp0 − �p2

4 + γ 2
)

4π
my2 � −

√
�p2

4 − mp0 − iε + 

2π

⎤⎦. (8)

When calculating loop integrals, we use a cutoff regularization
scheme by use of the step function θ (
 − q) in loop mo-
mentum q. Cutoff regularization introduces additional terms
that scale like 1/
n. These terms are ignored in the analytical
expression of the dimer propagator and three-boson numerical
computations by taking sufficiently large 
. The boson-boson
scattering amplitude in the c.m. frame is related to the dressed
dimer propagator via

A(k) = −y2D̄

(
k2

m
, 0

)

= −4π

m

1
4π
my2 � + 


2π
+ ik

[
1+

c2
m (γ 2+k2)

4π
my2 �+ 


2π
+ik

]
. (9)
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LO LO

FIG. 2. Diagrammatic representation of the integral equation for
the LO trimer vertex function. Triple lines represent a trimer propa-
gator, and the gray circle shows the LO trimer vertex function.

Matching this to the ERE, Eq. (3), the parameters in the
Lagrangian are

y2 = 4π

m
, � = γ − 


2π
, c2 = m

1

2
r. (10)

The dimer wave-function renormalization is given by the
residue about the dimer bound-state pole of the dressed dimer
propagator, which at LO gives

Zd = 2γ

m
. (11)

An alternative formalism for the Lagrangian introduces a
trimer field t̂ [42] and is given by

L = ψ̂†

(
i∂0 + ∇2

2m

)
ψ̂

− d̂†

[
c2

(
i∂0 + ∇2

4m
+ γ 2

m

)
− �

]
d̂ + t̂†�t̂ (12)

− y(d̂†ψ̂ψ̂ + H.c.) − ω(t̂†d̂ψ̂ + H.c).

Parameters in the two Lagrangians can be matched by per-
forming Gaussian integration over the trimer field or by
performing a simple matching calculation, yielding

h = −ω2

�
. (13)

Introduction of a trimer field eases some features of three-
boson bound-state calculations [36].

III. THREE-BOSON SYSTEMS

In order to find properties of the trimer, it is necessary to
determine the trimer wave function or, equivalently, the trimer
vertex function. The LO trimer vertex function is given by an
infinite sum of diagrams, which is equivalent to the solution of
the integral equation shown diagrammatically in Fig. 2. This
integral equation is given by

G0(E , p) = 1 + K (q, p, E )D(q, E ) ⊗q G0(E , q), (14)

where G0(E , p) is the LO trimer vertex function and the
subscript 0 denotes it is LO. Projecting the propagator of
the exchanged boson in Fig. 2 onto the relative S-wave state
between the boson and dimer gives

K (q, p, E ) = 4π

qp
ln

(
q2 + p2 + qp − mE − iε

q2 + p2 − qp − mE − iε

)
. (15)

D(q, E ) is the dimer propagator, given by

D(q, E ) = 1√
3
4 q2 − mE − iε − γ

. (16)

NLOLONLO NLO

FIG. 3. Diagrammatic representation of the integral equation for
the NLO correction to the trimer vertex function.

⊗q is shorthand for integration, defined by

A(q) ⊗q B(q) = 1

2π2

∫ 


0
dqq2A(q)B(q). (17)

At NLO the trimer vertex function receives a range correc-
tion, giving the NLO correction to the trimer vertex function,
which can be solved by using the integral equation shown
diagrammatically in Fig. 3. The NLO correction to the trimer
vertex function is given by

G1(E , p) = R1(E , p)G0(p)+K (q, p, E )D(q, E ) ⊗q G1(E , q),
(18)

where the kernel of the integral equation is the same as the
LO trimer vertex function and R1(E , p) containing the range
correction is given by

R1(E , p) = 1

2
r

(
γ +

√
3

4
p2 − mE − iε

)
. (19)

Finally, the trimer wave-function renormalization up to NLO
is

Zt = π

�′
0(B0)

⎡⎢⎢⎢⎣ 1︸︷︷︸
LO

− �′
1(B0)

�′
0(B0)︸ ︷︷ ︸
NLO

+ · · ·

⎤⎥⎥⎥⎦, (20)

where B0 is the LO trimer binding energy. Functions �n(E )
are given by

�n(E ) = πD(E , q) ⊗q Gn(E , q). (21)

Note that the expression for the trimer wave-function renor-
malization at NLO includes contributions from the residue
about the trimer propagator bound-state pole as well as a
NLO correction to the three-body force. Further details can
be found in Ref. [36].

The LO boson-dimer scattering amplitude without three-
body forces is given by an infinite sum of diagrams that can
be calculated via the integral equation represented diagram-
matically in Fig. 4 and is given by

t0(k, p, E ) = B0(k, p, E )+K (q, p, E )D(q, E ) ⊗q t0(k, q, E ),
(22)

where

B0(k, p, E ) = 4π

kp
ln

(
k2 + p2 + kp − mE − iε

k2 + p2 − kp − mE − iε

)
. (23)

LO LO

FIG. 4. Diagrammatic representation of the integral equation for
the LO boson-dimer scattering amplitude with no three-body forces.
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NLO LO NLO

FIG. 5. Diagrammatic representation of the integral equation for
the NLO correction to the boson-dimer scattering amplitude with no
three-body forces.

k (p) is the incoming (outgoing) c.m. momentum between the
boson and dimer. The outgoing boson and dimer are off shell,
but the incoming boson and dimer are on shell, giving the
condition E = 3k2

4m − Bd . The NLO correction to the boson-
dimer scattering amplitude without three-body forces is given
by the integral equation

t1(k, p, E ) = R1(E , p)t0(k, p, E )

+ K (q, p, E )D(q, E ) ⊗q t1(k, q, E ), (24)

represented diagrammatically in Fig. 5.
With the LO scattering amplitude without three-body

forces and its NLO correction the LO three-body force can

be fit to the dimer-boson scattering length aad via

hLO = x

1 + x�0(−Bd )
, (25)

where

x = −[ 3πaad
m + Zdt0(0, 0,−Bd )

]
πZd [G0(−Bd , 0)]2 . (26)

From the LO three-body force the LO binding energy of the
trimer can be found through the condition �3(B0) = 0, where

�3(B) = 1 − hLO�0(B). (27)

The NLO correction to the trimer binding energy B1 is
given by

B1 = −hLO�1(B0) + hNLO�0(B0)

hLO�′
0(B0)

, (28)

where the NLO correction to the three-body force hNLO is
given by

hNLO = −{[t1(0, 0,−Bd ) + γ rt0(0, 0,−Bd )]�2
3(B0) + πh2

LO�1(B0)[G0(−Bd , 0)]2

+ πhLO�3(B0)G0(−Bd , 0)[γ rG0(−Bd , 0) + 2G1(−Bd , 0)]
}{

π [G0(−Bd , 0)]2
}−1

. (29)

For details of how these three-body forces and bound-state
energies are determined see Ref. [36].

IV. SIZE OF THE TRIMER

One approach to determine the size of the trimer is to
calculate the form factor of an interacting probe. A simple
way to do this is to give bosons a fictitious electric charge
by gauging the derivatives. Although helium bosons have no
actual electric charge, calculating the helium trimer charge
radius squared by giving helium a fictitious electric charge
while ignoring charge interactions between atoms is equiva-
lent to calculating the average radius squared of the helium
trimer. Carrying out this procedure, the LO form factor is
given by the sum of diagrams in Fig. 6, where the zigzag line
represents an insertion of a single current probe from gauging
the time derivatives of the boson Lagrangian. Choosing the
so-called Breit frame in which the probe has zero energy and
momentum �Q, the resulting form factor F0(Q2) is a function
of Q2 and can be expanded in powers of Q2, yielding

F0(Q2) = 1 − 1
6 〈r2〉0Q2 + · · · . (30)

(a) (b) (c)

LOLOLOLO LOLO

FIG. 6. Diagrams for the LO form factor.

The LO form factor is normalized at Q2 = 0 such that it equals
1, and the coefficient of the Q2 contribution to the form factor
is proportional to the average squared radius of bosons from
the c.m. of the trimer state. In principle the form factor can
be calculated for various small powers of Q, and a polynomial
can be fit to find the radius squared of the trimer state. An
alternative approach we take here is to directly calculate the
constant term and Q2 contribution to the form factor by ex-
panding the analytical expression for the form factor in powers
of Q2 and picking out each respective piece. The constant term
of the LO form factor is given by

1 = 2πmZLO
t G̃0(q) ⊗q

×
⎧⎨⎩π

2

δ(q − �)

q2
√

3
4 q2 − mB0

− 4

q2�2 − (q2 + �2 − mB0)2

⎫⎬⎭
× ⊗� G̃0(�), (31)

where

G̃n(p) = D(p, E )Gn(B0, p). (32)

The NLO form factor is given by the sum of diagrams in
Fig. 7, where diagrams with the NLO vertex function on
the right are not shown. Diagram (e) is subtracted from the
other diagrams to avoid double counting from diagram (a)
and its time-reversed version with the NLO vertex function
on the right-hand side. Diagram (d) comes from gauging the
time derivative acting on the dimer. This term is necessary to
ensure that the NLO correction to the form factor does not
change the form-factor normalization at Q2 = 0. The NLO
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(c)(b)(a)

(d) (e)

OLOLOL

LO LO LO LO

NLONLONLO

FIG. 7. Diagrams for the NLO correction to the form factor.
Diagrams related by time-reversal symmetry are not shown. The
boxed diagram is subtracted to avoid double counting from diagram
(a) and its time-reversed version.

correction to the form factor has the Q2 expansion

F1(Q2) = − 1
6 〈r2〉1Q2 + · · · , (33)

where 〈r2〉1 is the NLO correction to the average squared
radius of the trimer. Since the LO form factor at Q2 = 0
is already normalized to 1, the constant piece of the NLO
correction to the form factor must give zero, leading to the
condition

0 = 4πmZLO
t

[
G̃1(q)−�′

1(B0)

�′
0(B0)

G̃0(q)

]
⊗q

⎧⎨⎩π

2

δ(q − �)

q2
√

3
4 q2 − mB0

− 4

q2�2 − (q2 + �2 − mB0)2

⎫⎬⎭⊗� G̃0(�)

− 2πmrZLO
t G̃0(q) ⊗q

{
π

2

δ(q − �)

q2

}
⊗� G̃0(�). (34)

To find the size of the trimer it is necessary to obtain
the coefficient of the Q2 contribution of the form factor. The
coefficient of the Q2 contribution from type (a) diagrams at
LO and NLO to the form factor is given by

1

2

∂2

∂Q2
F (a)

n (Q2)
∣∣∣
Q2=0

= ZLO
t

i+ j�n∑
i, j=0

{
G̃i(p) ⊗p An−i− j (p, k) ⊗k G̃ j (k)

+ 2G̃i(p) ⊗p An−i(p)δ j0 + Anδi0δ j0
}
. (35)

Functions An(p, k), An(p), and An, are given in the Ap-
pendix. Q2 contributions from diagram (b) at LO and NLO
are given by

1

2

∂2

∂Q2
F (b)

n (Q2)
∣∣∣
Q2=0

= ZLO
t

n∑
i=0

G̃i(p) ⊗p B0(p, k) ⊗ G̃n−i(k),

(36)

and the form of B0(p, k) is in the Appendix. Contributions to
Q2 from type (c) diagrams at LO and NLO are

1

2

∂2

∂Q2
F (c)

n (Q2)
∣∣∣
Q2=0

= ZLO
t

i+ j�n∑
i, j=0

{
G̃i(p) ⊗p Cn−i− j (p, k)

⊗k G̃ j (k) + 2G̃i(p) ⊗p Cn−i(p)δ j0
}
,

(37)

where, again, Cn(p, k) and Cn(p) are given in the Appendix.
Finally, at NLO the Q2 contribution from diagram (d) is

1

2

∂2

∂Q2
F (d )

1 (Q2)
∣∣∣
Q2=0

= ZLO
t

{
G̃0(p) ⊗p D1(p, k) ⊗k G̃0(k)

+ 2G̃0(p) ⊗p D1(p)
}
, (38)

where the functions D1(p, k) and D1(p) are in the Appendix.
The LO Q2 contribution to the form factor is given by the
sum of contributions from diagrams (a), (b), and (c) in Fig. 6,
yielding

1

2

∂2

∂Q2
F0(Q2)

∣∣∣
Q2=0

= 1

2

∂2

∂Q2

[
F (a)

0 (Q2) + F (b)
0 (Q2) + F (c)

0 (Q2)
]∣∣∣

Q2=0
. (39)

At NLO the Q2 contribution of the form factor is given by
the contributions from NLO diagrams (a), (b), (c), and (d) in
Fig. 7 and the LO form factor times the NLO correction to the
trimer wave-function renormalization, which yields

1

2

∂2

∂Q2
F1(Q2)

∣∣∣
Q2=0

= 1

2

∂2

∂Q2

[
F (a)

1 (Q2) + F (b)
1 (Q2) + F (c)

1 (Q2) + F (d )
1 (Q2)

−�′
1(B0)

�′
0(B0)

F0(Q2)

]∣∣∣
Q2=0

. (40)

V. RESULTS

The LO (NLO correction to the) average radius squared
〈r2〉0 (〈r2〉1) of the trimer state is obtained from the form factor
by

〈r2〉n = −6

(
1

2

∂2

∂Q2
Fn(Q2)

∣∣∣
Q2=0

)
. (41)

This trimer radius assumes that the helium atoms with respect
to the probe are point particles. Leading corrections due to the
finite size of the helium atoms contain two derivatives and, by
power counting, occur at NNLO [43]. The trimer radius up to
NLO is given by

r =
√

〈r2〉0

⎛⎜⎜⎝ 1︸︷︷︸
LO

+ 1

2

〈r2〉1

〈r2〉0
+ 1

2

∂〈r2〉0

∂E

∣∣∣
E=B0

〈r2〉0
B1︸ ︷︷ ︸

NLO

⎞⎟⎟⎠, (42)

where the final term is due to a NLO correction B1 to the
trimer binding energy. Although the derivative of the NLO
trimer radius squared can be calculated analytically, we cal-
culate it numerically. If the binding energy of the trimer
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TABLE I. Binding energies of the ground- and excited-state Efimov helium trimers at LO and NLO in SREFT. Their energies are given
in units of the helium dimer binding energy Bd . Also shown are the LO and NLO SREFT predictions for the bond length of the ground- and
excited-state Efimov helium trimers. Various theoretical and experimental determinations of the bond lengths are also shown for comparison.
Naive SREFT errors are based on the expansion parameter γ r ∼ 8%.

Order B(1)
t (in units of Bd ) B(0)

t (in units of Bd ) r (0) (Å) r (1) (Å)

LO 1.723(135) 97.12(7.59) 8.35(33) 103(4)
NLO 1.736(11) 89.50(55) 10.29(2) 105.3(2)
Expt. [11] 11+4

−5
Expt. [10] 10.4
TTY [14] 1.737 96.32 10.96 105.3

is fixed at each order, the expression for the trimer radius
reduces to expressions found for similar calculations of nu-
clear charge radii [36]. The trimer radius gives the average
distance from the helium atoms to the helium trimer c.m.
From simple geometry the average distance between helium
atoms, or the bond length, is equivalent to the trimer radius
multiplied by

√
3.

Kolganova et al. [15] found a helium-helium scattering
length of a = 100.01 Å and a helium dimer binding energy
of 1.30962 mK using the Tang-Toennies-Yiu (TTY) poten-
tial [44]. However, Roudnev and Yakovlev [14], using the
TTY potential, found a helium dimer binding energy of
1.312262 mK and did not give a value for the helium-helium
scattering length. Using Bd = γ 2/m and the binding energy
from Roudnev and Yakovlev we find γ = 0.01041 Å−1. Com-
bining the dimer binding energy from Roudnev and Yakovlev
and the scattering length from Kolganova et al., Eq. (5)
can be used to determine an effective range of r = 7.51 Å,
in good agreement with the value of Ji and Phillips [23],
r = 7.50(5) Å.1 Fitting the three-body counterterm to re-
produce the atom dimer scattering length of 1.205 γ −1, as
determined by Roudnev [45] using the TTY potential, we
were able to reproduce the predictions for the ground state,
B(0)

t , and excited state, B(1)
t , trimer energies as found by Ji

and Phillips. Note that our NLO value for the trimer ground-
state energy slightly underpredicts the Ji and Phillips value
of 89.72Bd . Changing the effective range to 7.50 Å does not
alleviate this. All other values of Ji and Phillips are reproduced
exactly and are the SREFT results for the binding energies
shown in Table I. The error of the LO trimer energies is
estimated by γ r ∼ 8%, and the error of the NLO trimer en-
ergies is estimated by (γ r)2 ∼ 0.6%. Comparing them to the
TTY potential calculations of Roudnev and Yakovlev [14],
we find agreement within errors for the excited-state trimer
energies. The LO prediction for the ground-state trimer energy
agrees within error with the TTY prediction [14], but the
NLO prediction does not agree within error. As noted by Ji
and Phillips [23], this is likely because the ground state is
deeply bound relative to the scale set by the effective range.
The binding momentum of the trimer ground state is roughly

1We choose the dimer binding energy from Roudnev and Yakovlev
[14] because we want to compare to their predictions for the trimer
bond lengths. The scattering length is taken from Kolganova et al.
[15] because Roudnev and Yakovlev did not give a value for the
scattering length.

κ3 =
√

mB(0)
t = γ

√
96.32 = 0.0783 Å−1. Multiplying this by

the effective range, we find an expansion parameter of κ3r =
0.58, which is considerably larger than the expansion param-
eter γ r = 0.0781.

Using the same parameters used to calculate the trimer
bound-state energies, we also calculated the average bond
length of the ground- and excited-state trimers, as shown in
Table I. Note that due to the square root the error estimate
for the bond length is given by 1

2γ r ∼ 4% (( 1
2γ r)2 ∼ 0.2%)

at LO (NLO). Our NLO prediction for the ground-state he-
lium trimer bond length agrees within errors with the central
value from matter-wave diffraction of 11+4

−5 Å [11]. However,
the experimental error is quite large. Measurements from the
Coulomb explosion technique give an average ground-state
bond length of 10.4 Å [46]. Note that this value did not come
with an error likely because the width of the distribution from
which it was obtained was larger than the mean value. The LO
and NLO ground-state trimer bond lengths disagree within er-
rors with the TTY predictions of Roudnev and Yakovlev [14]
shown in Table I. Again, this is likely due to the fact that the
ground-state energy is smaller than but close to the energy cut-
off of our SREFT. Using the expansion parameter κ3r ∼ 0.58,
instead of γ r ∼ 8%, the LO and NLO ground-state trimer
bond lengths agree within errors with the TTY predictions.
Although data exists for the distribution of bond lengths in the
excited-state trimer [10], the average value was not calculated.
Our NLO bond length for the excited-state trimer, roughly 10
times larger than the ground-state trimer, agrees exactly with
the TTY prediction of Roudnev and Yakovlev [14], shown in
Table I, and the LO value agrees within its error.

VI. CONCLUSION

Cold helium atoms offer a unique window into Efimov
physics. The weak interaction between helium atoms naturally
gives rise to a single excited Efimov bound state, without
the need for an external magnetic field. This allows the
Coulomb explosion technique to be used to determine the
structure of trimer states in helium and test the predictions
of Efimov physics [10]. In this work we used SREFT to
investigate structural properties of helium trimers. Calculating
to NLO, we included nonuniversal effects from range correc-
tions. Given that there is insufficient experimental data and
available experimental data have large errors, we primarily
compared our calculations to theoretical calculations using
the TTY potential [14,15,45]. SREFT up to NLO has three
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parameters that we fit to the dimer binding energy, helium-
helium effective range, and atom-dimer scattering length as
determined by the TTY potential. Using these parameters
as determined by the TTY potential, we were able to re-
produce the average bond length of the trimer excited state
of TTY potential model calculations. We found an average
ground-state trimer bond length of 8.35(33) Å (10.29(2) Å) at
LO (NLO) and an excited-state trimer bond length of 103(4)
Å (105.3(2) Å) at LO (NLO). Our calculation of the helium
trimer ground-state bond length disagreed with the TTY po-
tential model predictions [14] using a naive error estimate of
γ r ∼ 8%. However, using the expansion κ3r ∼ 58%, where
κ3 is the helium trimer ground-state binding momentum, our
ground-state bond length agrees with the TTY potential model
predictions within errors. Thus, by using a proper error esti-
mate the properties of the helium ground state are explained
within errors by SREFT [23,25].

SREFT can serve as a tool to give correlations between
physical observables with the added benefit of allowing for
theoretical error estimation. In principle a NLO SREFT calcu-
lation can predict the excited-state trimer average bond length
to less than 1%. However, this is limited by the uncertainty

in experimental measurements or theoretical potential model
calculations used to fit the parameters in SREFT. Given the
relatively sizable difference between potential model calcula-
tions and SREFT for observables of the trimer ground state,
in comparison to the excited trimer state, it would be prudent
to carry this work to higher order in SREFT, as was done by
Ji and Phillips [23]. A NNLO calculation will be hindered by
the introduction of a new three-body counterterm that requires
a new three-body datum. This could, in principle, be fit to
the excited trimer bound-state energy as was done by Ji and
Phillips [23].

Future efforts should consider other structural properties
of helium trimers such as bond angles and the distribution of
bond lengths. In this work we used a field-theoretic approach
to calculate the form factor for the helium trimer with a fic-
titious probe that interacted with helium atoms. To ease the
calculation of structural properties the wave functions can be
directly obtained from the trimer vertex function in SREFT.
With the wave function in hand it is a more straightforward
exercise to calculate any structural observable of interest.
Another direction is to consider structural properties of het-
erogeneous systems in SREFT [47,48] such as 3He 4He2.

APPENDIX

The Q2 contribution to type (a) diagrams from Figs. 6 and 7 depends on the values An and functions An(p) and An(p, k) [see
Eq. (35)], where n = 0 (n = 1) gives the LO (NLO) contribution. An is given by

An =
∫ 


0
dqq2 f (n)(q), (A1)

where

f (0)(q) = m

576π2

1

D̃5D4

[
q2(D2 − 2DD̃ + 2D̃2) + 4DD̃2(3D̃ − γ )

]
(A2)

and

f (1)(q) = γ r f (0)(q). (A3)

D̃ and D are defined by

D̃ =
√

3

4
q2 − mB0, D = γ − D̃. (A4)

The function An(p) is given by

An(p) =
∫ 


0
dqq2 f (n)(p, q), (A5)

where

f (0)(p, q) = 4

3

[
−3π f (0)(q)

1

pq
Q0(a) − m

27π

1

D(pq)3

{
5a

(1 − a2)2
+
[(

q

p
+ p

q

)
(1 + 3a2) − a(3 + a2)

]
1

(1 − a2)2

}

− m

432π

1

(D̃D)3(pq)2

(
D̃2D

{
38

1 − a2
+
[(

20
q

p
+ 8

p

q

)
a − 4(1 + a2)

]
1

(1 − a2)2

}
− (γ − 3D̃)

9

2

q2

1 − a2

)]
,

(A6)

f (1)(p, q) = 1

2
r

[
(γ + D̃) f (0)(p, q) − 8πD f (0)(q)

1

pq
Q0(a) − m

324π

1

D̃3(Dpq)2

{[
38D̃2D − 9

2
q2(γ − 3D̃)

]
1

1 − a2

−D̃2D

[
4(1 + a2) −

(
20

q

p
+ 8

p

q

)
a

]
1

(1 − a2)2

}]
, (A7)
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and

a = q2 + p2 − mB0

qp
. (A8)

Finally, the function An(p, k) is defined by

An(p, k) =
∫ 


0
dqq2 f (n)(p, k, q), (A9)

where

f (0)(p, k, q) = 16

3

[
− 6π

8

{
f (0)(k, q)

1

pq
Q0(a) + f (0)(p, q)

1

kq
Q0(b)

}
− 12π2 f (0)(q)

1

kq
Q0(b)

1

pq
Q0(a)

+ m

108

1

D̃D2

1

q4(kp)2

(
2D̃D

{[
12(1 − b2)(1 − a2) + 4

q

p
a(1 − b2) + 4

q

k
b(1 − a2)

]
+ 2ab

[
k

p
(1 − b2) + p

k
(1 − a2)

]
+ 2b

k

q

[
2b2 − (1 + a2)

]+ 2a
p

q

[
2a2 − (1 + b2)

]
+ 2

k

q

(
q

p
a − 2

)
(1 − b2)2Q0(b) + 2

p

q

(q

k
b − 2

)
(1 − a2)2Q0(a)

}
1

(1 − b2)2(1 − a2)2

+ q2

{[
4 + k

q
b + p

q
a − 2

k

q

p

q
ab

]
+ k

q
(1 − b2)

(
1 − 2a

p

q

)
Q0(b)

p

q
(1 − a2)

(
1 − 2b

k

q

)
Q0(a) − 2

k

q

p

q
(1 − b2)(1 − a2)Q0(b)Q0(a)

}
1

(1 − b2)(1 − a2)

)]
, (A10)

f (1)(p, k, q) = 8

3

[
3

16
r(γ + D̃) f (0)(p, k, q)

− 3

2
π f (1)(k, q)

1

pq
Q0(a) − 3

2
π f (1)(p, q)

1

kq
Q0(b)

+ 1

2
r

m

54D̃D(qkp)2

{[
4 + k

q
b + p

q
a − 2

k

q

p

q
ab

]
+ k

q
(1 − b2)

(
1 − 2a

p

q

)
Q0(b) + p

q
(1 − a2)

(
1 − 2b

k

q

)
Q0(a)

− 2
k

q

p

q
(1 − b2)(1 − a2)Q0(b)Q0(a)

}
1

(1 − b2)(1 − a2)

+3

2
π

1

2
r(γ + D̃)

[
f (0)(k, q)

1

pq
Q0(a) + f (0)(p, q)

1

kq
Q0(b)

]
− 6π2

(
f (1)(q) − 1

2
r(γ + D̃) f (0)(q)

)
1

pq
Q0(a)

1

kq
Q0(b)

]
, (A11)

and

b = q2 + k2 − mB0

qk
. (A12)

The Q2 contribution to the form factor from type (b) diagrams [see Eq. (36)] depends on the function B0(p, k), defined by

B0(p, k) = 4mπ

27

1

(pk)3

1

(1 − a2)2

{
4

3

a

1 − a2
− 2a − 1

3

p2 + k2

pk

1 + 3a2

1 − a2

}
, (A13)

where

a = p2 + k2 − mB0

pk
(A14)
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for the rest of this Appendix. Q2 contributions to the form factor from type (c) diagrams are given by the functions Cn(k) and
Cn(p, k) [see Eq. (37)]. C0(k) is given by

C0(k) = m

576D̃5D3

{
4D̃2D(2D̃ − γ ) + k2(γ − 3D̃)D + 2k2D̃2

}
, (A15)

and C1(k) is given by

C1(k) = 1

2
r
[
(γ + D̃)C0(k) + m

288D̃4D2

{
2D̃2D + k2(D̃ − D)

}]
, (A16)

where

D̃ =
√

3

4
k2 − mB0, D = γ − D̃ (A17)

for the rest of this Appendix. The function C0(p, k) is defined via

C0(p, k) = 8

3

(
− 3πC0(k)

1

pk
Q0(a)

− mπ

54D̃Dpk

{
1

pk

1

1 − a2
+ 1

p2

[
4a + a

( p

k

)2
− 2

p

k
(1 + a2)

] 1

(1 − a2)2

}
− mπ

144

k

p

1

D̃3D2

{
1

k2
Q0(a) − 1

pk

2 − p
k a

1 − a2

}[
γ − 3D̃

])
, (A18)

and C1(p, k) is given by

C1(p, k) = 4

3
r
[
(γ + D̃)C0(p, k)

− mπ

96D̃4D2

1

pk
Q0(a)

{
2D̃2D + k2(D̃ − D)

}
− k

p

mπ

72D̃2D

{
2

pk

1

1 − a2
− 1

k2

1

1 − a2
− 1

k2
Q0(a)

}]
. (A19)

Finally, the diagram (d) contribution at NLO to the Q2 contribution of the form factor [see Eq. (38)] depends on the functions

D1(k) = − m

576D̃3D3
r
{
4D̃2D + k2(3D̃ − γ )

}
(A20)

and

D1(p, k) = 8

3

(
−3πD1(k)

1

pk
Q0(a) + mπ

54D(pk)2
r

[(
4

k

p
+ p

k

)
a − 3a2 − 1

]
1

(1 − a2)2
− mπ

72D̃D2

1

pk
r

{
Q0(a) +

a − 2 k
p

1 − a2

})
.

(A21)
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