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Readout of quasiperiodic systems using qubits
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We develop a theoretical scheme to perform a readout of the properties of a quasiperiodic system by coupling
it to one or two qubits. We show that the decoherence dynamics of a single qubit coupled via a pure dephasing
type term to a one-dimensional quasiperiodic system with a potential given by the André-Aubry-Harper (AAH)
model and its generalized versions (GAAH model) is sensitive to the nature of the single-particle eigenstates
(SPEs). More specifically, we can use the non-Markovianity of the qubit dynamics as quantified by the backflow
of information to clearly distinguish the localized, delocalized, and mixed regimes with a mobility edge of
the AAH and GAAH models and evidence the transition between them. By attaching two qubits at distinct
sites of the system, we demonstrate that the transport property of the quasiperiodic system is encoded in the
scaling of the threshold time to develop correlations between the qubits with the distance between the qubits.
This scaling can also be used to distinguish and infer different regimes of transport such as ballistic, diffusive,
and no transport engendered by SPEs that are delocalized, critical, and localized respectively. In addition, the
localization length of the SPEs can also be gleaned from the exponential decay of correlations at long times as
a function of distance between qubits. When there is a mobility edge allowing the coexistence of different kinds
of SPEs in the spectrum, such as the coexistence of localized and delocalized states in the GAAH models, we
find that the transport behavior and the scaling of the threshold time with qubit separation are governed by the
fastest spreading states.

DOI: 10.1103/PhysRevA.103.023330

I. INTRODUCTION

Quantum simulation has at its heart the idea of using
simple, controllable systems to study other complex, less
controllable quantum systems. This idea has now matured
into an active area of current research [1–3] spread over
multiple quantum technology platforms such as ultracold
atoms [4,5], superconducting qubits [6], trapped ions [7],
and exciton-polariton condensates in microcavities [8–10].
Along with progress towards the ultimate goal of simulating
strongly correlated many-body systems, experimental realiza-
tions of quantum simulation, especially in ultracold atoms
have provided the first clean and clear realizations of textbook
solid-state phenomena such as Bloch oscillations [11] and
Anderson localization [12,13]. These demonstrations have not
only shed light on the phenomena but the degree of con-
trol and manipulation possible with the experimental set-ups
has further stimulated research in related directions [14,15].
Furthermore, the high degree of control in such quantum
technology platforms has also led to novel ways to probe
and measure the system. In addition to standard projective
measurements realized for example in the absorption imaging
of ultracold atomic gases [5] or in the famous quantum gas
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microscope experiments [16], there is now a large body of
work on nondestructive, in situ measurements such as us-
ing the light field of a cavity coupled to atoms to probe
them [17,18] and using impurities immersed in ultracold
atomic systems as probes [19–33]. The common feature in
such measurement techniques is the coupling of the system
of interest to an ancillary probe system and performing usual
projective measurements on the probe. In many situations the
tailoring of system-probe interactions and/or continuous mea-
surement of the probe leads to interesting advantages in terms
of the observables that can be accessed [34] and measurement
precision [35–39]. The second attribute of these approaches
is that such measurements are essentially a controlled way to
“open” up an otherwise “closed” quantum system leading to
richer behavior [18] and new avenues of quantum control [40].
In line with this, in the present article we develop a theo-
retical scheme to read out the properties of a noninteracting
quasiperiodic system by coupling it to two-level “probe” qubit
systems.

Quasiperiodic lattice systems are in a sense in between or-
dered systems with periodic on-site potential and completely
disordered systems with random on-site potential. The lat-
ter provide the setting for the famous Anderson localization
phenomenon with localized single particle states in one and
two dimensions (1D and 2D), and a possible coexistence
of localized and delocalized states with a mobility edge in
3D. In contrast, quasiperiodic systems have rich localization
and transport properties even in 1D. An exemplary system
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to illustrate this is the one with the André-Aubry-Harper
(AAH) potential, where by tuning the system parameters it is
possible to get delocalized, critical, and localized single parti-
cle states [41]. Moreover, various generalized versions of the
AAH potentials that support a single-particle mobility edge
even in 1D have been proposed [42,43]. The intense theoreti-
cal research in this area focusing on different properties such
as single-particle and many body localization, transport, etc.
has been complemented and invigorated by the experimental
realizations of such quasiperiodic potentials and the detec-
tion of localization and other associated phenomena [44–52].
While typical theoretical works have largely focused on local-
ization and transport properties of the isolated quasiperiodic
systems [53–55], in some recent work these systems have
also been treated in an “open” quantum manner by attach-
ing two baths at the edges of the lattice and studying the
nonequilibrium steady state transport properties of the system
[54,56–60]. Our aim is to take a middle path where we will
couple the quasiperiodic system to qubits, thereby in a con-
trolled manner “opening” the system with the goal of inferring
the localization and transport properties of the system from the
dynamics of the qubits.

Since our system of interest, to which the qubits are to be
coupled, is a simple noninteracting quadratic model, it can be
easily diagonalized (numerically). Hence, from the point of
view of the qubits the system is essentially a bosonic bath with
energy of the modes given by the single particle eigenenergies
of the quasiperiodic system. In this light, we will use known
results concerning spin-Boson type models especially the so
called dephasing bath models as we will consider a form of
coupling between the qubits and quasiperiodic system that
commutes with the free Hamiltonian of the qubits [61–67].
Thus, when a single qubit is coupled to the system it results
in the pure dephasing or decoherence of the qubit state. We
will show that the decoherence dynamics of this qubit is
greatly influenced by the nature of single-particle states of
the quasiperiodic system and can hence be used as a readout
of the same. More specifically, we will see that the degree
of non-Markovianity of the qubit dynamics will provide a
clear quantitative measure for the readout that correlates with
the localization properties of the system. Subsequently, we
will show that we can access a very different aspect of the
quasiperiodic system’s properties, namely transport proper-
ties, by studying the dynamics of the correlation between two
qubits coupled to different sites of the system.

Before discussing the structure of the article, we would
like to briefly draw attention to some relevant previous work.
We note that the idea of using qubits as probes of quan-
tum systems is a topic that has received significant attention
especially in the context of ultracold atoms, with contribu-
tions on both the theoretical [19–21,24,29–33,68–74] and
experimental [22,23,25–27,75] fronts. Of particular relevance
to the present article are theoretical works considering the
decoherence dynamics of qubits coupled to ultracold Fermi
gases [68,75] as well as performing thermometry using such
qubits [76], using a qubit probe to study phononic excitations
of a ultracold Bose gas [29], coupling of multiple qubits to
an ultracold atom in a lattice to study local fluctuations and
two-point correlations of density [30,31], and using a single
qubit to read out the local excitation spectrum of a quantum

gas in a two-dimensional optical lattice [32]. These theoretical
developments have been complemented by a range of related
experiments such as the study of the decoherence of a single
ionic qubit immersed in a cold Bosonic gas [22], decoherence
of a Fermionic atom in a double well potential (forming
a “motional” qubit) immersed in a Bosonic gas [23], and
interferometric measurements of a qubit to probe the many-
body dynamics of an ultracold Fermi gas [25]. In addition to
such system specific studies of qubits as probes, there have
also been theoretical proposals for reaching ultimate limits
of thermometry using dephasing dynamics of a qubit [77,78]
and experimental implementation of such thermometry using
photon-polarization qubits [79]. Another important feature of
our article that has received attention previously is the idea
to use non-Markovianity of the qubit dynamics as a readout
mechanism [21,24,80,81]. In particular the proposal to evi-
dence a structural phase transition in a trapped-ion chain using
the non-Markovian dynamics of one of the ionic qubits [33]
in the chain and the study [82] suggesting to probe a topolog-
ical phase transitions in the Su-Schreiffer-Heeger model, by
measuring the non-Markovianity in the decoherence dynam-
ics of a coupled qubit are similar in spirit to our results to
use non-Markovianity to probe the localization-delocalization
transition in the bosonic AAH model. In the same vein, in [70]
the coupling of a qubit to a Fermionic quasiperiodic lattice
system was considered and it was shown that the localized
phase can be considered as a non-Markovian environment
for the qubit. The form of the coupling we will use and the
focus on reading out transport properties using multiple qubits
coupled to bosonic AAH and generalized AAH lattice systems
distinguishes our work from [70].

The paper is organized as follows. In Sec. II, we describe
the model and the basic theoretical framework for the problem
starting from a recapitulation of the essential properties of the
quasiperiodic AAH and generalized AAH models, followed
by the readout scenarios with one and two qubits coupled to
the quasiperiodic system. In Sec. III we will describe the main
results that will establish how the dynamics of the coupled
qubits can be used as a readout of the properties of the system.
In Sec. IV we conclude the paper and comment on the possible
experimental realization of the ideas we have presented. We
present the details regarding the calculation of decoherence
rates of the qubit in the Appendix.

II. MODEL AND THEORY

The central claim of our paper is that the nature of on-site
potential, localization, and transport properties of an oth-
erwise isolated noninteracting system can be read out by
coupling the system to one or two-qubit probes. We will
demonstrate this claim by considering a specific 1D tight-
binding model, the André-Aubry-Harper (AAH) model and
its generalized versions. In Fig. 1, we depict in a schematic
manner the coupling scheme we will use for the readout.
We consider two scenarios: in the first case a single qubit
[Fig. 1(a)] will be coupled to a given site of the 1D tight-
binding system and in the second case two qubits will be
coupled at two different sites [Fig. 1(b)]. We will see that the
two scenarios lead to the readout of complementary aspects
of the 1D tight-binding system. Towards this end, we begin
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(a)

(b)

FIG. 1. Schematic representation of the readout of a quasiperi-
odic system using one or two qubits. (a) A single qubit (represented
by the red circle) with energy splitting ωA between its two levels is
coupled to the i th site of an one-dimensional quasiperiodic system
(the black lines represent the on-site potential of the lattice). (b) Two
qubits with splitting energies ωA and ωB are coupled to two different
sites i and j of the quasiperiodic system respectively.

by briefly revisiting the basic properties of AAH and the
generalized André-Aubry-Harper (GAAH) models relevant
to our study, followed by the details of the one- and two-
qubit coupling model that we will employ and the readout
mechanism.

A. Properties of 1D AAH and GAAH models

A paradigmatic example of a quasiperiodic system that has
been the subject to intense theoretical [42,43,53,54,56,57,83]
and experimental research [44–49,51] is the 1D tight-binding
nearest neighbor hopping model with André-Aubry-Harper
(AAH) potential and its generalized version. The Hamiltonian
for the 1D N-site tight-binding chain with GAAH potential
has the form [43] (we take h̄ = 1 throughout)

Ĥ =
N∑

n=1

(
μ + 2λ cos[2πbn + φ]

1 + α cos[2πbn + φ]

)
ĉ†

nĉn

+
N−1∑
n=1

(ĉ†
ncn+1 + ĉ†

n+1ĉn). (1)

Here we have written the Hamiltonian in units of the hopping
strength J , ĉ†

n(ĉn) is the bosonic creation (annihilation) op-
erator at site n, μ is a constant on-site potential energy, b is
an irrational number which makes the potential quasiperiodic,
and φ is the phase factor which also determines the differ-
ent configurations of the quasiperiodic potential. Moreover,
henceforth we take the phase φ = 0 and choose α, λ > 0 for
simplicity. For α = 0, the GAAH Hamiltonian reduces to the
regular AAH model. When α = 0, for any choice of irrational
number b all the single-particle eigenstates (SPEs) are com-
pletely delocalized for λ < 1 and exponentially localized for
λ > 1 [41]. For λ = 1 all the SPEs are critical. Thus, for the

AAH model, by changing λ one can access different kinds of
SPE. In contrast, the GAAH model with α, λ > 0 supports a
mobility edge at the energy E = μ + 2(1 − λ)/α [43]. If the
energy E falls within the spectrum, all SPEs with energy less
than E are extended while those higher than E are localized.
We would like to reiterate that henceforth all parameters with
the dimensions of energy such as μ, λ (including the qubit
parameters to be introduced in the following subsection) are
understood to be in units of J and variables with the dimen-
sions of time will be in units of J−1.

B. One qubit coupled to a quasiperiodic system

Our first strategy to read out the properties of the GAAH
chain, Eq. (1), is to couple a qubit of frequency ωA with the
site i in the chain resulting in a total Hamiltonian of the form

Ĥ1q = Ĥ + ωA

2
σ̂ i

z + gσ̂ i
z (ĉ†

i + ĉi ), (2)

with g denoting the strength of the coupling between the
qubit and the chain. We can rewrite the above Hamiltonian
in terms of the eigenmodes of the GAAH chain, i.e., in
the representation that diagonalizes the Hamiltonian (1) as
Ĥ = ∑N

k=1 ωk η̂
†
k η̂k , with ωk denoting the kth single-particle

eigenenergy and η̂k the corresponding annihilation operator.
The unitary matrix that transforms between the local operators
at site i and the eigenmodes, denoted by S, satisfies

ĉi =
N∑

k=1

Si,k η̂k. (3)

With this transformation, we can recast Eq. (2) as

ĤSB
1q = ωA

2
σ̂ i

z +
N∑

k=1

ωk η̂
†
k η̂k +

N∑
k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
)
, (4)

with gi
k = gSi,k , and σ̂ i

τ with τ = z,± denoting the usual Pauli
and ladder operators for the qubit. From the above equation
it is clear that the Hamiltonian of interest here falls into the
familiar family of spin-Boson type Hamiltonians and more
specifically the spin-Boson problem with a dephasing bath
that has been extensively studied especially in the context
of decoherence in quantum computation [61–67]. The key
advantage of this model is its exact solubility, which arises
from the fact that the qubit Hamiltonian ωA

2 σ̂ i
z commutes with

the term representing the interaction with the bosonic modes.
For the sake of completeness, we provide the details of this
calculation (for both the one- and two-qubit situations) in the
Appendix and present only the results here.

Since we aim to use the qubit to read out the properties
of the GAAH chain, the key quantity of interest is the state
of the qubit at a given time t . Working in the Heisenberg
picture, we first note that due to the nature of the coupling
between the qubit and the Boson the population of the qubit
states is unaffected under the dynamics generated by Eq. (4),
i.e., σ̂z(t ) = σ̂z(0). Thus, the qubit dynamics is completely
described by the time dependence of the spin-ladder or co-
herence operators σ̂±(t ) and is given by

σ̂ i
−(t ) = e−iωAt σ̂ i

−(0) ⊗
N∏

k=1

D̂k
(
αi

k

)
, (5)

023330-3



SAHA, AGARWALLA, AND VENKATESH PHYSICAL REVIEW A 103, 023330 (2021)

with αi
k = 2gi

k (1−eiωk t )
ωk

, and D̂k (α) = exp[αη̂
†
k (0) − α∗η̂k (0)] is

the displacement operator for the kth bosonic mode. We
choose the initial time density operator for the spin-Boson
system as the product state ρ̂(0) = ρ̂s(0) ⊗ (e−βĤ/Zβ ). Here
Zβ = Tr B[e−βĤ ] denotes the partition function corresponding
to a thermal state of the GAAH chain with inverse temperature
β = 1/T (taking kB = 1) and the trace is with respect to the
states of the GAAH chain. In addition, we choose the initial
state of the qubit as a pure state, i.e., ρ̂s(0) = |ψ0〉i i〈ψ0| with
nonzero initial coherence 〈σ̂ i

−(0)〉. With this setting we obtain

〈σ̂ i
−(t )〉 = 〈σ̂ i

−(0)〉e−iωAt−i (t ), (6)

i(t ) = 4
N∑

k=1

∣∣gi
k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (7)

Thus the interaction with site i of the bosonic GAAH chain
leads to a decay of the qubit coherence at the rate i(t ), which
we will henceforth refer to as the decoherence factor. In order
to distinguish the contribution of the thermal and quantum
excitations of the bosonic chain to the decoherence factor we
first note that coth ( βωk

2 ) = 1 + 2n̄(β, ωk ), where n̄(β, ωk ) =
(eβωk − 1)−1 is the average thermal occupation of the kth
mode. This allows us to write i(t ) = i,vac(t ) + i,th(t ), with

i,vac(t ) = ∑N
k=1

|αi
k |2
2 and i,th(t ) = ∑N

k=1 n̄(β, ωk )|αi
k|2.

As it is apparent from Eq. (7) that the decoherence fac-
tor i(t ) encodes information about the GAAH chain via
the magnitude of the coefficients |gi

k|2, the first mechanism
we would like to propose for the readout is to measure this
decoherence factor as a function of time and the coupling
site i. We will show in detail in Sec. III that while the site
dependence of the decoherence factor at a given time will
reflect the site-to-site variation of the applied potential, the
dynamics, irrespective of which site we couple to, will provide
a clear indication of the single-particle localization properties
of the chain.

C. Two qubits coupled to a quasiperiodic system

A standard way to understand the transport properties of
an isolated system is to study the diffusion dynamics of an
initial wave packet [56,84–86] Starting with a spatially lo-
calized initial wave packet, the scaling of the wave packet’s
width w as a function of evolution time t provides a clear
indicator of the transport properties to be expected. Assum-
ing a generic scaling of the form w ∼ tη, we have that for
ballistic transport η = 1, for the localized case η = 0, and for
diffusive transport η = 0.5. 0 < η < 0.5 leads to subdiffusion
and 0.5 < η < 1 leads to superdiffusion. Indeed, in the first
experimental realization of the AAH model with ultracold
atomic systems [13], the behavior of the wave packet spread-
ing was precisely used to evidence localization. Inspired by
this, in our second scheme for the readout of the GAAH
chain we consider [see Fig. 1(b)] two qubits of frequency ωA

and ωB coupled simultaneously to two different sites i and j
respectively of the quasiperiodic GAAH chain. We will show
that the dynamics of correlations between the qubits coupled
to different sites of the chain can be used to extract the scaling
coefficient η characterizing the nature of transport.

The Hamiltonian for the GAAH chain with two qubits
attached can be written in a manner similar to Eq. (4) as

ĤSB
2q = ωA

2
σ̂ i

z + ωB

2
σ̂ j

z +
N∑

k=1

ωk η̂
†
k η̂k

+
N∑

k=1

σ̂ i
z

(
gi

k η̂
†
k + gi∗

k η̂k
) +

N∑
k=1

σ̂ j
z

(
gj

k η̂
†
k + gj∗

k η̂k
)
,

(8)

which is still in the class of spin-boson models with dephasing
baths. As a result, the dynamics of this model can again be
exactly solved [62,65,66] and we present the details in the
Appendix. As before, working in the Heisenberg picture, we
note that due to the nature of the coupling we have that σ̂ i

z (t ) =
σ̂ i

z (0), σ̂ j
z (t ) = σ̂

j
z (0), and the only nontrivial dynamics is for

the ladder operators of the individual qubits and is given by

σ̂ i
±(t ) = [e±iωAt σ̂ i

±(0)] ⊗ e±i��−(t )σ̂ j
z ⊗

N∏
k=1

D̂k
( ± αi

k

)
, (9)

σ̂
j

±(t ) = e±i��+(t )σ̂ i
z ⊗ [e±iωBt σ̂

j
±(0)] ⊗

N∏
k=1

D̂k
( ± α

j
k

)
, (10)

with the Lamb-shift term given by

��±(t ) =
N∑

k=1

4

ω2
k

(
[sin(ωkt ) − ωkt] Re

[
gi

kgj∗
k

]

± [1 − cos(ωkt )] Im
[
gi

kgj∗
k

])
. (11)

As mentioned above, our interest is in calculating the equal
time correlation between the qubit observables coupled to the
GAAH chain at different sites. As a particular measure of
the correlation, we would like to examine the dynamics
of the covariance between the operators σ̂ i

−(t ) and σ̂
j

+(t ) de-
fined as Cov(σ̂ i

−σ̂
j

+) ≡ 〈σ̂ i
−(t )σ̂ j

+(t )〉 − 〈σ̂ i
−(t )〉〈σ̂ j

+(t )〉. Here
the averages are taken with respect to the initial state of the
GAAH chain and qubits which, as before, we take as the
product state ρ̂(0) = ρ̂ i

s(0) ⊗ ρ̂
j
s (0) ⊗ (e−βĤ/Zβ ). Here, ρ̂ i

s(0)
[ρ̂ j

s (0)] corresponds to the initial state of the qubit coupled to
the ith [ jth] site. Using Eqs. (9) and (10) we can write the
covariance as

Cov(σ̂ i
−σ̂

j
+) = e−i(ωA−ωB )t

(〈σ̂ i
−(0)σ̂ j

+(0)〉e−i j (t )

− 〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉〈e−i��−(t )σ̂ j
z +i��+(t )σ̂ i

z
〉
e−[i (t )+ j (t )]

)
,

(12)

with the individual decoherence factors for the two qubits
i(t ),  j (t ) given by Eq. (7) and the correlated decoherence
factor i j (t ) reads

i j (t ) = 4
N∑

k=1

∣∣gi
k − gj

k

∣∣2
coth

(
βωk

2

)
1 − cos(ωkt )

ω2
k

. (13)

From the expression for the covariance, Eq. (12), consider-
ing a situation with no initial correlation i.e. 〈σ̂ i

−(0)σ̂ j
+(0)〉 −

〈σ̂ i
−(0)〉〈σ̂ j

+(0)〉 = 0, we see that the dynamics generated by
the coupling to the GAAH chain will generate correlations.
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Moreover, since the GAAH chain has only nearest neighbor
tunneling, we can anticipate that the farther the separation is
of the two sites to which the qubits are coupled the longer
it takes for mutual correlations to develop. Indeed we will
see that there is a threshold timescale t∗, determined by the
separation between the qubits, before which the correlation
is exponentially small. Until this threshold time t∗, the two
qubits evolve independently. Moreover, we will see, from the
results presented in detail in Sec. III, that the scaling behavior
of t∗ as a function of the distance between the qubits |i − j|
will serve as a readout of the transport behavior expected
in the GAAH chain. More specifically we will see that for
ballistic transport t∗ scales as |i − j|, for the localized case t∗
goes as exp(|i − j|), and for diffusive transport t∗ scales as
|i − j|2. In this sense we can think of the distance between
the qubits |i − j| as analogous to the width of wave packet
in the transport analysis using diffusion dynamics discussed
at the beginning of this subsection. While we have chosen
here to describe the covariance of the operators σ̂ i

−, σ̂
j

+ to
read out the transport properties, we have also verified that
the behavior we describe above is generic for other operator
correlations as well. Finally, we remark that for the patho-
logical case when the initial qubit states ρ̂

i, j
s (0) have no

coherence, i.e., 〈σ̂ i
−(0)〉 = 〈σ̂ j

+(0)〉 = 0, then the covariance
remains zero for all time and the readout we propose will
not work.

III. RESULTS

Having expounded the theoretical underpinnings of our
proposed method to read out the properties of the GAAH
chain by coupling to qubit(s), we will now present the re-
sults that demonstrate our idea. We will divide our results,
following the previous section, into two parts. In the first part,
we will consider the situation of a single qubit coupled to a
given site and show how the properties of the single-particle
eigenstates of the quasiperiodic system can be obtained from
the decoherence dynamics of the qubit. In the second part, we
will present results illustrating the situation with two qubits
coupled at two different sites and extracting a readout of the
the isolated system transport properties from the dynamics
of their correlation. The results we present are independent
of the qubit frequency. While this is obvious from Eq. (7)
for the single-qubit case, in the two-qubit case our choice of
ωA = ωB ensures the same for Eq. (12). In our calculations,
we will always take μ = 6 and β = 1 unless specified oth-
erwise. The initial state of the qubit(s) is chosen as a pure
state |ψ0〉τ = (|−1〉τ + √

2|1〉τ )/
√

3 with σ̂ τ
z | ± 1〉τ = ±| ±

1〉τ , i.e., ρ̂τ
spin(0) = |ψ0〉τ τ 〈ψ0| with τ = i, j. Finally, we note

from Eqs. (7) and (13) that the parameter g, that quantifies the
coupling strength between the qubits and the GAAH chain,
enters only as a scaling factor via the coefficients gi

k = gSi,k .
As a result, we found that the value of g does not quali-
tatively affect the results we present and we set g = 1, in
what follows, for simplicity. While we chose b =

√
5−1
2 (the

inverse of the golden mean number, where golden mean =√
5+1
2 ) in our calculations throughout, we have verified that

our results will be qualitatively the same for any irrational
number b.

(a)

(b)

FIG. 2. (a) Ordered (λ = 0, blue) and quasiperiodic AAH on-site
potential (λ = 0.5, orange) [see Eq. (1)] as a function of site index.
(b) Vacuum decoherence factor for a single qubit as a function of the
site to which it is coupled reflecting the underlying on-site potential
(total number of sites = 55). Vertical lines denote the Fibbonacci
numbers at which point the potential and decoherence factors almost
repeat themselves, as expected for the irrational value b =

√
5−1
2 .

A. One qubit coupled to a quasiperiodic system

The first result we present concerns the behavior of the
decoherence function i(t ) of a single qubit coupled to
the GAAH chain as a function of the choice of the coupling
site i at a fixed time t . As we can see from Eq. (7), (t )’s site
dependence arises from the term |gi

k|2 and remains even after
the sum over different eigenstates k. In this sense, we expect
that the decoherence factor at a given time will reflect the
nature of on-site potential. For instance, in the tight-binding
model with periodic boundary condition, |gi

k|2 = 1
N is site

independent. As a result the decoherence factor will also be
site independent at all times. On the other hand, as we show
in Fig. 2 for the AAH model, the decoherence factor clearly
reveals the underlying quasiperiodicity of the potential. There
we plot only the vacuum part (zero temperature) of deco-
herence factor but we find that the behavior is insensitive to
temperature. Thus, by coupling the qubit to different sites,
one can extract the features of the quasiperiodicity in the
chain. Since in controlled experimental settings [13,45,47] the
on-site potential is exactly known this is not necessarily a very
useful readout, but nonetheless it serves as a sanity check and
sets the stage for the central results we present next.

Having described how the nature of the quasiperiodic
potential can be gleaned from the decoherence factor by cou-
pling to different sites of the lattice, our next set of results
will illustrate how the nature and properties of the single-
particle eigenstates (SPEs) is encoded into the dynamics of
the decoherence factor. Moreover, we will see that this en-
coding is present for coupling to any site in the quasiperiodic
system. To understand how the SPEs affect the decoherence
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factor, consider the expression for the vacuum decoherence
factor i,vac(t ), i.e., the zero temperature limit of Eq. (7).
Here, the dynamics in i,vac(t ) arises from the oscillatory term
1 − cos(ωkt ) in the sum over different SPEs with weights
|gi

k |2
ω2

k
. In the situation where gi

k is nonzero for many SPEs, in

the long-time limit, one can expect that due to the dispersion
in ωk the oscillating terms would damp out, i.e., i,vac(t )
would have a damped oscillatory nature and go to a constant
steady state value. This can be seen explicitly for the case
of the ordered tight-binding model [λ = 0 in Eq. (1)], when
all the SPE’s are delocalized with |gi

k|2 = 1
N and ωk,0 = μ −

2 cos(2πk/N ),−N/2 � k < N/2 (periodic boundary condi-
tions). In this case, we can in fact write down the steady state
vacuum decoherence rate analytically as

i,vac(t → ∞) = 4

N

N
2 −1∑

k=− N
2

1

ω2
k,0

N→∞= 4μ

(μ2 − 4)3/2
. (14)

At any finite time, after an initial transient, we expect that the
decoherence factor will oscillate about the steady state value
with decaying oscillation amplitude. On the other hand, when
gi

k is nonzero only for a few isolated values of k indepen-
dent of the system size N , we expect the dynamics of the
decoherence factor i(t ) to be oscillatory and nondecaying
at all times. This is precisely the case when all the SPEs
are localized, for instance when λ > 1 in the AAH model,
since in this case gi

k is nonzero only for the SPEs localized
at or near the ith site. Before we present the results from the
numerical analysis of the dynamics to back up this intuitive
picture, we would like to make some pertinent observations
on how we chose the constant on-site potential μ. In the rest
of the paper, we chose μ such that all the eigenenergies are
positive, ωk > 0. This guarantees that the average occupation
numbers in the initial thermal state are positive. Moreover,
our choice is also motivated by the fact that such a positive
energy spectrum precludes the occurrence of transitions from
purely Markovian to non-Markovian dynamics (by tuning μ)
explored in [67]. Such transitions, explored for the simple
tight-binding lattice (λ = 0) in [67], are caused by the nature
of the energy spectrum, i.e., whenever the spectrum is con-
tinuous and has a zero energy, the dynamics in the long-time
limit is entirely dominated by the zero mode leading to mono-
tonically increasing i,vac(t ) and Markovian dynamics, while
this behavior is absent when the spectrum does not contain
zero energy modes. In contrast, we would like to examine
the change in the degree of non-Markovianity of the qubit
dynamics as the nature of the SPEs is changed.

We have confirmed the above mentioned behavior of the
decoherence factor for the AAH model as shown Fig. 3(a),
where we show that the dynamics of the vacuum decoherence
factor i,vac(t ) of a qubit coupled to the ith site of the chain
goes from fast damped oscillatory behavior when λ < 1 (all
SPEs delocalized) to undamped oscillatory behavior when
λ > 1 (all SPEs localized). In this manner the decoherence dy-
namics provides a clear signature of the behavior of the SPEs.
Moreover, in order to confirm that decoherence dynamics is
governed by number of SPEs that are strongly participating
in the dynamics, we define a quantity Pi ≡ ∑N

k=1 |gi
k|4 for

each site of the GAAH chain inspired by the usual inverse

(a)

(b)

FIG. 3. (a) Vacuum decoherence factor as a function of time for
a 610-site regular AAH model (α = 0) with the qubit coupled to
site i = 72. The dynamics goes from damped to oscillatory as λ is
tuned over delocalized (λ = 0 and λ = 0.5), critical (λ = 1.0) and
localized (λ = 1.2) regimes of the AAH model. (b) Inverse partici-
pation ratio of eigenmodes at the qubit coupling site i, Pi (see text for
definition) as a function of the number of sites N . Pi scales as 1/N in
the delocalized regime, as N0 for the localized case, and as N−b with
0 < b < 1 in the critical regime.

participation ratio used in studies of localization [43,87]. The
scaling of this quantity with the system size should capture
the number and strength of of eigenmodes participating in
the coupling to the qubit at a given site i. For the delocalized
case, since |gi

k|2 ≈ 1/N for all the modes we expect that
Pi ∼ 1/N . On the other hand, for the localized case, since
only one mode will be strongly coupled to the qubit, then
Pi ∼ N0. We have confirmed this behavior in Fig. 3(b), and
in addition we see there that. for the critical case with λ = 1
in the AAH model, as expected we see intermediate behavior
with Pi ∼ N−b with 0 < b < 1.

From an open quantum systems point of view the
quasiperiodic system is essentially a bath for the qubit,
and the undamped oscillatory behavior of the decoherence
function is an indicator of highly non-Markovian dynamics
[67,88–92]. Hence, the backflow of information based mea-
sure for non-Markovianity developed in [88–91] should
clearly capture the difference between the dynamics in the
localized and delocalized cases. The essential idea of this
measure is that the rate of change of decoherence factor with
time, γ (t ) = ̇(t )/2 [67,92], will be negative whenever there
is backflow of information from the bosonic system to the
qubit. From the behavior of vac(t ) in Fig. 3(a) we can deduce
that γvac(t ) will take larger negative values in a sustained
manner for the localized regime (λ > 1) in comparison with
the delocalized regime (λ < 1), showing that the backflow
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FIG. 4. Backflow of information N measuring the non-
Markovianity in the decoherence dynamics of a qubit coupled
to different sites (see legend) of a quasiperiodic lattice (regular
AAH model α = 0) as a function of λ (number of sites N =
2584). Clearly the non-Markovianity measure is sensitive to the
localization-delocalization transition at λ = 1.

of information is larger in the former case. A quantitative
measure of the backflow of information is given by

N =
Nmax∑
p=1

(
e−(t f

p ) − e−(t i
p)
)
, (15)

where the sum is over all intervals [t i
p, t f

p ] over which
γ (t ) < 0. This measure is plotted in Fig. 4 for the AAH
model at finite temperature (β = 1) and we can clearly see
a sharp delocalization-localization transition from backflow of
information irrespective of which site the qubit is coupled. We
have also checked that this feature will be present at any finite
temperature. Furthermore, we note that in order to calculate
N at different values of λ we have tracked the dynamics of
(t ) up to t = 1200 with a time discretization of �t = 0.1
for a system size of N = 2584. In this manner the measure N
can be used to clearly evidence the localization-delocalization
transition.

So far we have discussed the AAH model where all the
states are either delocalized, localized, or critical. We now
consider the GAAH model and explore the qubit dynamics
when the quasiperiodic system has a mobility edge. In the
presence of a mobility edge, there is a coexistence of localized
and delocalized states in the spectrum. In Fig. 5(a), we show
the fraction of localized states in α-λ parameter space with
α, λ > 0. In this phase diagram, there are two lines where
mobility edge exactly matches with the lowest and highest
eigenvalues of the system respectively. These lines are known
as the “critical lines.” Below and above the two “critical lines,”
all the states are either delocalized or localized respectively,
which means there is no mobility edge. In the rest of the
regimes, there is a mobility edge with a finite fraction of local-
ized states. This leads us to the explore the following question:
how much of the “phase diagram” of the SPEs in the GAAH
model depicted in Fig. 5(a) is captured by the backflow of
information parameter N ? To answer this, we have plotted
N in Figs. 5(b) and 5(c) in the α-λ plane when the qubit is

(a) (b) (c)

FIG. 5. (a) Fraction of localized states as a function of α-λ for
the GAAH model. The critical lines in purple and black separate
the region with a mobility edge from the delocalized and localized
regimes respectively. Backflow of information N as a function of
α-λ for a GAAH lattice with number of sites N = 2584 with a qubit
coupled to site i = 1 (b) and i = 19 (c). When there is a mobility
edge, N becomes dependent on the site to which the qubit is coupled.

coupled to sites 1 and 19 respectively. We can clearly see that
in the presence of all delocalized states backflow of informa-
tion is less and in the presence of all localized states backflow
of information is large irrespective of which site the qubit is
attached to. On the other hand, in the regime where there is
a mobility edge, the backflow of information quantified by
N shows significant dependence on the site where the qubit
is attached. While we have depicted the exemplary case for
two sites, we have checked this site dependence extensively.
This dependence can be justified by appealing to the fact that,
in this regime, the dynamics of a qubit coupled to a given
site is going to depend rather strongly on whether any of
the SPEs above the mobility edge are localized at or near the
site in question. While the calculations of N in Fig. 5 were
performed for β = 1, we have checked that the qualitative
features described here are rather insensitive to temperature.

B. Two qubits coupled to a quasiperiodic system

We now consider the dynamics of the covariance factor
Cov(σ̂ i

−σ̂
j

+) [see Eq. (12)] as a measure of the correlations
between two qubits coupled to sites i and j of the quasiperi-
odic system. We begin with the AAH model [α = 0 in
Eq. (1)] and plot the dynamics in the three distinct regions
λ < 1 (delocalized), λ = 1 (critical), and λ > 1 (localized)
in Figs. 6(a), 6(c), and 7 respectively. In Figs. 6(a) and 6(c)
we can clearly see that after a threshold time t∗ correlations
develop between the two qubits, as evidenced by the nonzero
values of the covariance. Moreover, for λ < 1 when all the
SPEs are delocalized the threshold time scales as t∗ ∼ |i − j|
and when λ = 1 with SPEs critical t∗ ∼ |i − j|2, as shown in
Figs. 6(b) and 6(d) respectively. For λ > 1, all the SPEs are
exponentially localized and the localization length is given by
ξ = 1/ ln[λ] [14] (recall that λ is in units of J in our paper). In
this case, when the distance between two qubits is comparable
to the localization length, after some threshold time t∗, a small
but discernible amount of correlation builds up as shown in
Fig. 7(a) (blue curve). But as shown in Fig. 7(b) the magnitude
of this correlation, even at long times (∼104), is exponentially
suppressed as a function of the distance between the qubits
and, as a result, for distances much larger than the localiza-
tion length, correlations remain close to zero for extremely
long times [see yellow curve Fig. 7(a)]. In order to clearly
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(a)

(c)

(b)

(d)

FIG. 6. Dynamics of correlation between two qubits coupled
to sites i and j of the regular AAH model, as measured by the
magnitude of the covariance, is shown for the delocalized regime
(λ < 1) in (a) and the critical regime in (b) (λ = 1). In both cases
the correlations start building in a significant manner after a thresh-
old time t∗. While t∗ scales linearly with the separation |i − j| in
the delocalized regime as shown in (c), in the critical regime it
displays quadratic scaling; see (d). Here, we have fixed i = N/4,
j = 3N/4 and varied the system size as N = 400, 800, and 1200 to
change |i − j|.

demonstrate that the localization length implied by the expo-
nential decay of the magnitude of the long-time correlations
with separation between qubits is precisely the same as that
expected from the behavior of the SPEs given by 1/ξ = ln[λ],
we have plotted the covariance magnitude at long times as
a function of distance between two qubits for three different

(a) (b)

FIG. 7. Dynamics of correlation between two qubits coupled to
sites i and j of the open regular AAH model with system size
N = 400, as measured by the magnitude of the covariance, for the lo-
calized regime with λ = 1.2. (a) Exponentially decaying magnitude
of correlations build up when the two sites are comparable to the
localization length (blue curve). Here, we have taken i = 170 and
j = 230. When the separation is much larger than the localization
length no correlations build even after long time (yellow curve).
Here, we have chosen i = 140 and j = 260. (b) Here, we have shown
that the long-time (∼104) correlation decays exponentially with the
distance between two qubits in the localized regime.

FIG. 8. Magnitude of covariance at long times (∼104) is plotted
as a function the distance i − j between two qubits in the localized
regime of the regular AAH model with λ = 1.2 (blue dots), 1.3 (or-
ange squares), and 1.4 (green squares). Clearly the exponential decay
of the covariance agrees with the straight lines, which represent an
exponential decay of the form exp(−|i − j| ln[λ]) expected from the
behavior of localized SPEs.

values of λ in Fig. 8. In this manner we can explicitly read out
the localization length from the correlation dynamics of the
attached qubits. Thus, as we anticipated earlier, the behavior
of the correlation dynamics is completely analogous to the dif-
fusion dynamics of an initially localized wave packet with the
role of the wave-packet width played by the distance between
the qubits and the time of spread represented by the threshold
correlation time t∗. In this manner the correlation dynamics
provides a very clear signature of the transport properties in
the AAH chain.

Let us now consider the dynamics of the covariance in the
presence of a mobility edge, which is a possibility when the
qubits are coupled to the GAAH chain. In Figs. 9(a) and 9(b)
we have plotted the long-time value of the covariance of the
qubits coupled to two different pairs of sites in the α-λ plane
of GAAH model. In both Figs. 9(a) and 9(b), the region
with all SPEs localized below the critical line (with λ > 1) is
clearly distinguished with zero covariance as we have chosen
the distance between the sites much larger than the localiza-
tion length. In contrast, in the region above the critical lines
of the phase plots in Figs. 9(a) and 9(b) where there is a
finite fraction of delocalized states with a mobility edge in
the spectrum, the magnitude of the covariance depends on the
coupling sites of the qubit. Indeed the strong dependence on
the site to which the qubits are coupled is somewhat similar
to the behavior of the backflow of information parameter N
in Fig. 5. Finally, we see that below the left critical line in the
region without mobility edge the magnitude of the covariance
is significant and independent of the coupling sites. Coming to
the scaling behavior of the threshold time t∗ as a function of
the distance between the sites |i − j|, we find linear scaling
whenever there is a finite fraction of delocalized states as
shown in Fig. 9(c). Interestingly, we also see there that as
we move into regions with larger fraction of localized states
(left to right in the α-λ plane) the slope of the linear scaling
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FIG. 9. Correlation strength in the long-time limit for two qubits coupled to sites i and j of the GAAH model in the α-λ plane. In
(a) [i = 290, j = 690] and (b) [i = 233, j = 610] the correlation strength is large (small) in the fully delocalized (localized) regimes with no
mobility edge. In contrast, the correlation shows dependence on the site to which the qubits couple when there is a mobility edge. In (a) and
(b) system size N = 2584. In (c) [(d)] we show the linear [quadratic] scaling of the threshold time t∗ as a function of qubit separation for
parameters above the black critical line [on the black critical line]. Here, we have fixed i = N/4, j = 3N/4 and varied the system size as N to
change |i − j|.

t∗ ∼ |i − j| becomes larger, indicating that it takes longer for
the correlations to set in. In Fig. 9(d) we consider the scaling
for two points on the critical line with λ > 1 where there is a
mixture of critical and localized states, and we clearly see that
t∗ ∼ |i − j|2, i.e., the scaling is governed by the nature of the
states that help set up correlations at the fastest rate. More-
over, we find that the scaling behavior we observe is rather
insensitive to temperature. This can be anticipated from the
fact that the delocalized and critical states always have lower
energy than the localized states. Thus, using a combination of
the magnitude of the correlation and the scaling behavior of
the threshold time for correlation of the two qubits, we can
clearly extract the transport properties of the quasiperiodic
GAAH chain.

IV. CONCLUSIONS

In conclusion, we have presented a theoretical scheme to
read out the nature of on-site potential, single-particle states,
and isolated system transport properties of a noninteracting
quasiperiodic system by coupling it to probe qubit systems. A
single qubit coupled to any site of the system shows strikingly
different decoherence dynamics depending on the presence
of all delocalized or all localized states in the quasiperiodic
system. This difference in dynamics is quantifiable via the
backflow of information measure for the non-Markovianity
and captures the delocalization-localization transition of the
regular AAH model upon changing λ (with higher backflow
of information in the localized regime). In the GAAH model,
in the presence of a mobility edge, we find that the backflow
of information is site dependent for a given λ and α. De-
pending on the number of localized and delocalized states, the
dynamics will show high and low backflow at different sites.
Nonetheless, we see that there are multiple sites in the lattice
to which upon coupling a one qubit probe, we can read out the
phase diagram of the GAAH model in terms of the fraction
of localized states in the α-λ parameter plane. When the two

qubits are coupled at two distinct sites i and j, we were able to
show that there is a threshold time t∗ after which correlations
develop between initially uncorrelated qubits. More interest-
ingly, the scaling of this threshold time as a function of the
distance between the qubits, |i − j|, contains the signature of
the transport properties expected in the quasiperiodic system.
We have shown that in the regular AAH model when all
the states are delocalized, corresponding to ballistic transport,
we obtain t∗ ∼ |i − j|, when all the states are critical with
diffusive transport we get t∗ ∼ |i − j|2, and in the localized
regime with no transport we see the scaling t∗ ∼ exp(|i − j|).
In the presence of a mobility edge in the GAAH model with
the coexistence of SPEs of different nature, the scaling is
dominated by the fastest states. For instance, with a mixture
of delocalized and localized states, scaling is governed by
the delocalized states. In this manner we are able to again
extract a phase plot of the GAAH model in terms of the
different transport behavior expected. In general we found that
the initial temperature of the quasiperiodic system does not
qualitatively affect our results.

Finally, let us examine the prospects for experimentally
realizing the theoretical scheme we have proposed. Focusing
first on the decoherence dynamics of one qubit coupled to a
quasiperiodic chain, we note that multiple elements required
to implement this are already in place, especially in ultracold
atomic systems. This includes realizations of quasiperiodic
AAH and GAAH lattices [45,51,52] and experiments with
position controlled implantation of qubit impurities in ultra-
cold gases and studies of their decoherence [22,27]. In [27],
although the coupling between the impurity qubit and the
atomic gas was implemented via elastic collisions is expected
to cause dephasing, for their choice of the internal atomic
states for the qubit, dephasing was dominated by other exter-
nal noise factors. Nevertheless, they do comment that this can
be mitigated by choosing different sets of internal states for
the qubit. Thus, in summary we anticipate that, by adding a
quasiperiodic optical lattice potential for the BEC in [27], the
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first part of our proposal could be readily tested. In contrast
we believe that the second part of our proposal is somewhat
more challenging to implement. While the position controlled
implantation of two qubit impurities in an ultracold gas should
be feasible following [27], an experimental challenge would
be to implement, within the same setup, controlled gates
required to measure the correlations between the qubits to
read out transport properties of the chain. We hasten to add
that in general two qubit gates are routinely implemented in
quantum technology platforms such as trapped ions [93–95].
One way to address this challenge would be to consider al-
ternative platforms such as photonic waveguide arrays [48]
or cavity polaritonic devices [50] where quasiperiodic lattices
have been implemented and consider interfacing them with
qubits [96,97]. Since the degree of control needed to establish
the photonic or polaritonic lattice system is less than that for
ultracold atoms in optical lattices, it may be less challenging
to establish the control gates to measure qubit correlations.
Although the suggestions we have made above will realize an
in situ measurement, since the qubits are immersed or in-
terfaced into the chain, it may be also prudent to consider
schemes for near-field coupling of qubits to lattices, for
instance via electric or magnetic dipole interactions to imple-
ment a continuous readout. As part of future research, we will
develop a concrete experimental proposal along the above-
mentioned lines to realize the proposed theoretical scheme.

Apart from developing a detailed experimental proposal,
there are multiple interesting theoretical questions arising
from this work that would be of interest in a followup study.
While we have focused on the impact of the quasiperiodic
system on the qubit, we have not really paid attention to
the back action of the qubit on the system. This could be
especially interesting in situations where the coupling is large.
In the same manner, for the two-qubit case we began with a
product state of the qubits, but we expect that it will also be
fruitful to understand what happens to qubits that have initial
correlations and whether one can learn something more from
the dynamics of the entanglement between the qubits. Finally,
while we have focused on the exactly solvable pure dephasing
coupling between the qubits and the quasiperiodic system, it
would interesting to explore if we can obtain direct signatures
of transport such as the current by considering couplings that
allow energy exchange between the qubit and the system [80].
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APPENDIX: DEPHASING SPIN-BOSON MODEL
EXACT SOLUTION

In this Appendix, for the sake of completeness and clarity,
we adapt to the setting in this paper and present the derivation

of the spin-boson dynamics for dephasing baths presented in
previous works [61–67]. We will work out the calculation for
the situation with two qubits coupled to a bosonic bath and
obtain the one-qubit situation as a simple limiting case. Let us
begin by rewriting the two-qubit Hamiltonian (8) as [65]

ĤSB
2q = ĤS[σ̂ ] + V̂ [σ̂ ], (A1)

where

ĤS[σ̂ ] = ωA

2
σ̂ i

z + ωB

2
σ̂ j

z (A2)

is the free spin Hamiltonian and

V̂ [σ̂ ] =
N∑

k=1

ωk η̂
†
k η̂k +

N∑
k=1

( fk[σ̂ ]η̂†
k + f ∗

k [σ̂ ]η̂k ), (A3)

is the sum of free bosonic and interaction terms. In this
Appendix, we will use the notation σ̂ = (σ̂ i

z , σ̂
j

z ) and σ =
(σ i

z , σ
j

z ) for the for the z components of spin operators and
eigenvalues of the qubit respectively. Note that σ τ

z = ±1 (τ =
i, j). The coupling function fk with the kth bosonic mode is
given by

fk[σ̂ ] = gi∗
k σ̂ i

z + gj∗
k σ̂ j

z . (A4)

Our aim is to calculate the time evolution in the Heisenberg
picture for the operators σ̂ i

±(t ), σ̂ j
±(t ), since we already know

that σ̂ do not evolve with time. The time evolution of an
arbitrary spin operator Â(t ) is given by

Â(t ) = eiĤt Â(0)e−iĤt = eiV̂ [σ̂ ]t Âs(t )e−iV̂ [σ̂ ]t ,

where Âs(t ) = (eiĤS[σ̂ ]t Â(0)e−iĤS[σ̂ ] ) is just the free evolution
of the spin operator Â. We can simplify the problem by
working in the product basis of σ̂ i

z and σ̂
j

z , denoted by |σ 〉 =
|σ i

z 〉i ⊗ |σ j
z 〉 j , as

Â(t ) =
∑
σ,σ ′

|σ ′〉〈σ |eiWt (σ,σ ′ )
N∏

k=1

D̂k (μk[σ, σ ′])〈σ ′|Âs(t )|σ 〉

(A5)

with

Wt (σ, σ ′) =
∑

k

(| fk[σ ′]|2 − | fk[σ ]|2) sin(ωkt ) − ωkt

ω2
k

+ 2 Im ( f ∗
k [σ ′] fk[σ ])

1 − cos(ωkt )

ω2
k

,

μk[σ, σ ′] = fk[σ ′] − fk[σ ]

ωk
(eiωkt − 1).

With σ = (σ i
z , σ

j
z ) and σ ′ = (σ i′

z , σ
j′

z ) and using Eq. (A4) for
fk , the coefficients in the above definition simplify further as

Wt (σ, σ ′) = (
σ i′

z σ j′
z − σ i

zσ
j

z

)∑
k

2 Re
(
gi

kgj∗
k

) sin(ωkt ) − ωkt

ω2
k

+ (
σ i

zσ
j′

z −σ i′
z σ j

z

)∑
k

2 Im
(
gi

kgj∗
k

)1 − cos(ωkt )

ω2
k

,

(A6)

μk[σ, σ ′] = [
gi

k

(
σ i′

z − σ i
z

) + gj
k

(
σ j′

z − σ j
z

)]eiωkt − 1

ωk
. (A7)
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Noting that [σ̂ i
−,s(t )]† = σ̂ i

+,s(t ) = σ̂ i
+,s(0)eiωAt =

(|1〉i〈−1|eiωAt ) ⊗ Î j and [σ̂ j
−,s(t )]

† = σ̂
j

+,s(t ) = σ̂
j

+,s(0)eiωBt =
Îk ⊗ |1〉 j〈−1|eiωBt , we can use Eqs. (A5), (A6), and (A7)
to obtain Eqs. (9) and (10). Setting gj

k ≡ 0 in Eq. (9)
immediately gives Eq. (5). Finally, some standard results

from quantum optics required to derive Eqs. (12), (7),
and (13) are D̂k (α)D̂k (α′) = D̂k (α + α′)e−(αα′∗−α′α∗ )/2 and
the thermal state average of displacement operators:

Tr
[ ∏N

k=1 D̂k (αk )e−βωk η̂
†
k (0)η̂k (0)

]
Zβ

= e− ∑
k |αk |2 coth(βωk/2).
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