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Orbital variational adiabatic hyperspherical method applied to Bose-Einstein condensates
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A variational basis set motivated by mean-field theory is utilized to describe the Bose-Einstein condensate
within the adiabatic hyperspherical coordinate framework. The simplest single-orbital variant of this treatment
reproduces many of the ground-state properties predicted by the Gross-Pitaevskii equation. But a multiorbital
improvement to the basis set yields a better representation of particle correlations and of the critical number
where the condensate collapses for a negative two-body scattering length. The method also produces systematic
deviations from Bogoliubov theory for the fundamental monopole excitation frequency.
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I. INTRODUCTION

Bose-Einstein condensates provide a deep and insight-
ful laboratory for understanding the properties of quantum
many-body systems [1]. The usual theoretical method used
to describe dilute atomic systems writes a mean-field prod-
uct wave function approximation that generates a nonlinear
term which accounts for the mutual low-energy s-wave in-
teractions of the atoms. However, as far as it is assumed
valid, the underlying many-particle Schrödinger equation is
a linear equation, and it brings into question whether a di-
rect treatment of the many-body Hamiltonian can be solved
sufficiently accurately to demonstrate consistency with obser-
vations of nonlinear physics, such as bright and dark solitons.
There have been several different attempts to directly treat
the many-body Hamiltonian, most prominently Monte Carlo
calculations [2,3]. This paper applies instead the adiabatic
hyperspherical methods, which have been widely utilized with
success in describing few-body systems. Of many examples,
perhaps the greatest triumphs are the early theoretical predic-
tion [4] and experimental confirmation [5] decades later of
the Efimov spectrum of three resonantly interacting bosons.
A serious difficulty, however, is in being able to compute the
adiabatic potential curves in the first place, made exponen-
tially harder as more particles are considered.

The earliest treatment of the bosonic many-body problem
within the hyperspherical framework is given by Ref. [6].
Here, the simplifying assumption (called the K-harmonic
approximation) is that the hyperangular behavior of the in-
teracting N-boson system in its ground state is constant,
which corresponds to the lowest hyperspherical harmonic.
This leads to a radial Schrödinger equation in a single adia-
batic coordinate, the hyperradius R, which gives an intuitive
picture of the energy dependence of the atomic cloud on
its root-mean-square cloud radius. Once the adiabatic poten-
tial is known, it gives estimates of the ground-state energy
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and monopole breathing mode frequencies, both of which
show interesting differences from the numerical mean-field
results. The method also predicts the critical particle number
Nc for collapse of an attractive condensate with two-body
scattering length as < 0 to be given by Nc

|as|
lt

≈ 0.671, where

lt =
√

h̄
mω

is the trap length scale. In comparison, a varia-
tional treatment of the Gross-Pitaevskii (GP) equation using
a Gaussian ansatz results in an energy functional in terms
of the Gaussian width [7], which actually looks remarkably
close to the K-harmonic adiabatic potential U (R). Hence,
the two methods give nearly identical predictions for Nc; for
reference, numerical solution of the GP equation [8] gives
Nc

|as|
lt

≈ 0.575. The K-harmonic approximation was general-
ized to treat anisotropic traps [9,10] and was also applied to a
degenerate Fermi gas using a Slater determinantal trial wave
function composed of trap eigenstates [11,12].

Of course, though qualitative insights can be gleaned from
the simple analytic results, the K-harmonic approximation is
both restrictive and oversimplifying, so various approaches
have been formulated to better treat the many-body Hamil-
tonian. One approach is to apply a Faddeev decomposition
for the adiabatic channel function and solve an integro-
differential equation [13,14]. Another is a diffusive Monte
Carlo calculation [15] of the lowest eigenvalue for the adi-
abatic Hamiltonian (of fixed R) with modest N . Yet another
attempt is a potential harmonics expansion method [16,17],
which includes more than one hyperspherical harmonics that
effectively only accounts for two-body correlations. And, fi-
nally, one may assume a Jastrow-type ansatz for the channel
function and apply Bethe-Peierls boundary conditions [18].

This paper presents an alternative variational method for
computing the lowest adiabatic hyperspherical potential U (R)
of a spherically symmetric Bose-Einstein condensate. The
many-body wave function is assumed to be given by a
symmetric product of a chosen orbital φ(�ri), or by linear
combinations of such direct products, where φ might or might
not be the mean-field orbital. While this ansatz holds no infor-
mation whatsoever regarding the behavior of the system with
respect to interparticle distances, in a way that the methods of
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Refs. [13,18] would have, there are several clear advantages.
The numerical method works well for large and easily variable
effective particle number N0 used to find the basis orbital
from the GP equation, which does not need to coincide with
the true particle number N being treated in the Hamiltonian.
Depending on the choice of the orbital, a large family of
potential curves U (R) that varies just on a few parameters
can now be obtained to great intuitive use. Coupling between
different potential curves can be computed, and a limited diag-
onalization of the adiabatic Hamiltonian is possible. Finally,
the method is a direct, straightforward generalization of the
K-harmonic approximation and serves as an interconnecting
bridge between the adiabatic hyperspherical formalism and
the usual mean-field approach.

II. METHODS

A. Basic formalism

Consider the following many-body Hamiltonian for N
spin-less (or spin-polarized) bosons in a spherical trap. Rep-
resent the mutual two-body interactions by an s-wave Fermi
pseudopotential [19], where the low-energy scattering length
as describes the shape of the two-body wave function outside
the range of actual interaction potential, while the detailed
shape of the short-range potential is regarded as irrelevant.
g = 4π h̄2as

m is the effective interaction strength.

H = − h̄2

2m

N∑
i=1

∇2
i + 1

2
mω2

N∑
i=1

r2
i + g

∑
i< j

δ(�ri − �r j ). (1)

Recall [20,21] that the most commonly utilized approach
is to consider a simple exchange-symmetric many-body wave
function of the form � = ∏N

i=1 φ(�ri ) and variationally mini-
mize the energy E [φ], which leads to the number-conserving
form of the Gross-Pitaevskii (GP) equation:

− h̄2

2m
∇2φ + 1

2
mω2r2φ + g(N − 1)|φ|2φ = εφ. (2)

The solution φ must be normalized by the condition∫ |φ|2d3�r = 1. ε is the chemical potential (or orbital energy)
of the system, and it is related to the many-body energy E by
the relation E = Nε − 1

2 gN (N − 1)
∫ |φ|4d3�r. For the price

of reducing the many-body problem to an equation for a single
particle, the interaction is now represented by a nonlinear
mean-field term. The above equation gives the ground-state
properties of the system, and the lowest few excitations are
usually treated in terms of Bogoliubov modes [22].

Here, an alternative for the many-body problem is pre-
sented. From now on, a dimensionless system of units is
adopted, where length is in units of the trap oscillator length
lt =

√
h̄

mω
and energy is in units of h̄ω. The hyperradius is

defined as R =
√

1
N

∑N
i=1 r2

i . The 3N Cartesian coordinate
system is recast in a hyperspherical coordinate system (R,�),
with 3N − 1 hyperangles � describing the internal particle

configurations of a fixed hypersphere of radius
√

NR. The
choice of coefficient 1

N in the definition of the hyperradius
is convenient, allowing an intuitive meaning of R as the
root-mean-square of the individual particle distance from the
center of the trap, giving an overall size of the atomic gas.

The Laplacian and the many-body Hamiltonian take the
following form:

N∑
i=1

∇2
i = 1

N

(
1

R3N−1

∂

∂R

(
R3N−1 ∂

∂R

)
− 
2

R2

)
, (3)

H = − 1

2N

1

R
3N−1

2

∂2

∂R2
R

3N−1
2 + HA, (4)

HA = 1

2N

(
(3N − 1)(3N − 3)

4R2
+ 
2

R2

)
+ 1

2
NR2

+ 4πas

∑
i< j

δ(�ri − �r j ). (5)

The external trap potential takes a simple form in the hy-
perspherical coordinates, depending only on the hyperradius.
The kinetic energy operator is written in terms of a simple sec-
ond derivative in R, a repulsive centrifugal term proportional
to 1

R2 , and contributions from a grand angular-momentum
operator 
2 in terms of �. There exists [23] a complete,
orthonormal basis of hyperspherical harmonics Yλ,μ(�) that
obey the eigenvalue relation 
2Yλ,μ = λ(λ + 3N − 2)Yλ,μ,
with integer λ = 0, 1, 2, . . . and quantum numbers μ distin-
guishing the different degenerate states. For noninteracting
systems, the complete many-body wave function is a lin-
ear combination of these hyperangular eigenfunctions: � =∑

λ,μ Fλ,μ(R)Yλ,μ(�).
Now consider interacting particles. Let the bra-ket nota-

tion denote an integration in the hyperangles with a fixed
value of R, 〈ψ |φ〉 = ∫

ψ∗φ d�. The adiabatic formulation
makes a quasiseparable ansatz for the energy eigenfunctions,
based on the separation of the Hamiltonian into two parts:
a derivative term in R and an adiabatic HA for which R is
a fixed parameter. More explicitly, there exists a set of or-
thonormal channel functions 
μ(R,�) that diagonalize HA

at each R: HA
μ(R,�) = Uμ(R)
μ(R,�), μ = 0, 1, . . . with
〈
μ|
ν〉 = δμν . The complete many-body wave function is
then written as � = ∑

μ Fμ(R)
μ(R,�). Often one simply
writes � = F (R)
0(R,�) as an approximation for the many-
body ground state.

It would be highly challenging, if not impossible, to ac-
complish a full, exact diagonalization of HA at various fixed
values of R for a general many-body problem, although it is
now routinely done for three or four particles. As a reasonable
alternative, the following ansatz wave function is studied in
this paper, where C(R) = 〈B|B〉 and B(R,�) is some chosen
trial function (assume real):

� = F (R)

R
3N−1

2

B(R,�)√
C(R)

. (6)

The denominator R
3N−1

2 is inserted for convenience and
B(R,�)√

C(R)
is a variational guess for 
0. Project B onto the
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Hamiltonian to write 〈B|H |�〉 = E 〈B|�〉, which gives an
effective linear Schrödinger equation in R (let ′ denote ∂

∂R ):

− 1

2N
F ′′(R) − Q(R)

2N
F (R) + 〈B|HA|B〉

C
F (R) = EF (R), (7)

Q(R) = 〈B|B′′〉
C

+ 1

4

(
C′

C

)2

− 1

2

C′′

C
. (8)

This is a variational formulation of the adiabatic hy-
perspherical approach that is widely studied in few-body
problems [24]. U (R) = 〈B|HA|B〉

C gives an upper bound for the
true lowest eigenvalue U0(R) of HA. Q(R) is a nonadiabatic
correction to this approach: The smaller Q is, the more ac-
curate is the adiabatic treatment, provided the solutions are
accurate approximations to the true eigenfunctions of the
fixed-R Hamiltonian.

The K-harmonic approximation [6] takes B(R,�) to be
merely the lowest hyperspherical harmonic Y0,0(�), which
is in fact just a constant. It is worth noting that for non-
interacting bosons, the ground state is simply a product of
Gaussians,

∏N
i=1 e− 1

2 r2
i = e− 1

2 NR2
, also with no dependence on

the hyperangles. For that crude approximation to the adiabatic
eigenfunction, Q(R) = 0 and U (R) takes a simple analytic
form. But bearing in mind that the mean-field solutions for
typical laboratory conditions deviate largely from a Gaussian,
a generalized variational basis set is now chosen with the
form of single-orbital B(R,�) = ∏N

i=1 φ(�ri ). Notice that only
the product as(N − 1) matters in determining the shape of
the solution of the GP equation. In calculating the adiabatic
hyperspherical potential for a given set of N and as, one may
substitute N0 
= N for the GP equation and obtain a corre-
sponding set of solutions φ to be used as input variational
ansatz (or, equivalently, fixed N and different values of as).
Even an arbitrary φ that has nothing to do with the GP equa-
tion is within reach here. φ(�ri) = φ(ri ) is chosen to be a real
function of zero angular momentum, properly normalized in
all space, and the many-body wave function is assumed to
be exchange-symmetric in the simple product form. A more
general wave function of the form Ŝ[φ1( �r1) . . . φN ( �rN )], with
Ŝ a symmetrization operator, is beyond the scope of this paper.
For such a single-orbital trial wave function, only certain
hyperangular integrals need to be performed (see Appendix)
without requiring a diagonalization procedure.

B. Multiorbital extensions

Next, deviations from a simple product form for the
trial wave function are considered. This is accomplished by
choosing the following structure (given some n > 1) of mul-
tiorbital B(R,�) = ∑n

μ=1 Dμ(R) Bμ(R,�)√
Cμ(R)

, where Bμ(R,�) =∏N
i=1 φμ(�ri ) and Dμ are some expansion coefficients. �D =

(D1, . . . , Dn) is a corresponding vector denoting the partic-
ular linear combination of Bμ’s. Denote Cμν = 〈Bμ|Bν〉 and
Cμμ = Cμ, and each Cμ is different from the overall hyper-
angular normalization C. Such an ansatz is similar in spirit
to the configuration-interaction (CI) method commonly used
in quantum chemistry [25]. The idea also bears some simi-
larity to the method of eigenvector continuation [26], where
eigenstates of a set of model Hamiltonians are used to approx-
imately diagonalize a different Hamiltonian. Another analog

is in using correlated Gaussian basis to diagonalize the adia-
batic Hamiltonian for a modest number of particles [27–29].

What are needed for this treatment are the following five
n by n matrices, O, H , P, Q [not to be confused with the
quantity Q(R)], and P2 (not P x P), whose matrix elements
are as follows:

Oμν =
〈

Bμ√
Cμ

∣∣∣∣ Bν√
Cν

〉
= Cμν√

CμCν

, (9)

Hμν =
〈

Bμ√
Cμ

∣∣∣∣HA| Bν√
Cν

〉
= 〈Bμ|HA|Bν〉√

CμCν

, (10)

Pμν =
〈

Bμ√
Cμ

∣∣∣∣ ∂

∂R
| Bν√

Cν

〉
= 〈Bμ|B′

ν〉√
CμCν

− C′
ν

2Cν

Oμν, (11)

Qμν =
〈

Bμ√
Cμ

∣∣∣∣ ∂2

∂R2

∣∣∣∣ Bν√
Cν

〉
= 〈Bμ|B′′

ν〉√
CμCν

− C′
ν

Cν

〈Bμ|B′
ν〉√

CμCν

+
(

3

4

(
C′

ν

Cν

)2

− C′′
ν

2Cν

)
Oμν, (12)

P2
μν =

〈
∂

∂R

(
Bμ√
Cμ

)∣∣∣∣ ∂

∂R

(
Bν√
Cν

)〉
= 〈B′

μ|B′
ν〉√

CμCν

− C′
μ

2Cμ

〈Bμ|B′
ν〉√

CμCν

− C′
ν

2Cν

〈Bν |B′
μ〉√

CμCν

+ C′
μC′

ν

4CμCν

Oμν. (13)

One evaluates the matrix elements of the adiabatic Hamil-
tonian as follows, using the exchange-symmetric properties of
the basis:

〈Bμ|HA|Bν〉 = 〈Bμ|
2|Bν〉
2NR2

+
(

(3N − 1)(3N − 3)

8NR2
+ 1

2
NR2

)
Cμν

+ 4πas

(
N (N − 1)

2

)
〈Bμ|δ( �r2 − �r1)|Bν〉 ,

(14)

〈Bμ|
2|Bν〉 = R2

(
〈Bμ|B′′

ν〉 + 3N − 1

R
〈Bμ|B′

ν〉

− N2 〈Bμ|∇2
1 |Bν〉

)
. (15)

The matrices O, H , and P2 are symmetric, but P and
Q are not. O is the overlap matrix, with Oμμ = 1, but the
off-diagonal elements do not generally vanish since this is a
nonorthogonal basis. In principle O′ = P + PT and O′′ = Q
+ QT + 2 P2, with Pμμ = 0 and Qμμ = −P2

μμ.
The overall normalization integral is C(R) = 〈B|B〉 =

�DT O �D, and 〈B|HA|B〉 = �DT H �D. Next, the generalized eigen-
value problem is solved, namely H �D = U (R)O �D, at each
fixed value of R, and then 〈B|HA|B〉

C = U for the hyperradial
equation of F (R).

Also, one writes the radial derivative of normalization
as C′ = 2 �DT O �D′ + �DT O′ �D, C′′ = 2 �D′T O �D′ + 2 �DT O �D′′ +
4 �DT O′ �D′ + �DT O′′ �D, and 〈B|B′′〉 = �DT Q �D + 2 �DT P �D′ +
�DT O �D′′. First eliminate the term �DT O �D′′ in Q(R), and then
impose the normalization condition C(R) = �DT O �D = 1 at
each R for the eigenvector �D. The nonadiabatic correction
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Q(R) for the corresponding B(R,�) can then be calculated as

Q(R) = − �D′T O �D′ − 2 �DT PT �D′ + �DT
(

1
2 (Q − QT ) − P2

) �D.

(16)

Finally, to compute �D′, first differentiate both sides of the
generalized eigenvalue equation [30]. Next, solve the system
(H − UO) �Y = (−H ′ + U ′O + UO′) �D, where �Y = �D′ + cD �D
for some initially unknown coefficient cD. Using the condi-
tion �DT O �D = 1, then cD = �DT O �Y + 1

2
�DT O′ �D. This type of

method is also applied to find the derivative of any other vector
as arises below.

C. Treatment of linear dependence

Unfortunately, given a set of chosen orbitals φμ’s, ap-
proximate linear dependence can arise between the different
variational basis functions Bμ(R,�), which can result in
instability that can in turn produce unphysical generalized
eigenvalues U (R). Linear dependence issues also arise in
Ref. [27], for instance, given a particular choice of correlated
Gaussian basis set used to compute few-body hyperspherical
potential curves. To remedy this should such pathologies arise,
the eigenvalue problem can be stabilized by a common proce-
dure as follows. First diagonalize the overlap matrix at each
R: O �Xl = ol �Xl . Sort the eigenvalues such that o1 � . . . � on,
and define the corresponding orthogonal eigenvector matrix
X = ( �X1, . . . , �Xn).

Consider now the representation where Õ = X T OX is

diagonal. With H̃ = X T HX and �̃D = X T �D, the general-

ized eigenvalue problem in the new representation is H̃ �̃D =
U (R)Õ �̃D. So far, everything is equivalent. However, empir-
ically speaking, if at least one eigenvalue of O is smaller
than some threshold value (typically 10−4), the eigenvalues
U quickly and unphysically collapse towards −∞.

The fix is to choose some c < n and define a submatrix
Xc of X : Xc = ( �X1, . . . , �Xc). Be aware that Xc

T Xc = 1c, but
XcXc

T 
= 1n. The point is to systematically reduce the dimen-
sion of the basis set, so that B(R,�) is composed of c, not n,
basis functions, each of which is a suitable linear combination
of Bμ’s. Those linear combinations of Bμ’s with very small
corresponding eigenvalues of O are nearly 0 with mostly
cancellations amongst each other; they are irrelevant and
discarded. For concreteness, define Õc = Xc

T OXc and H̃c =
Xc

T HXc, and solve instead the problem H̃c
�̃D = Ũ (R)Õc

�̃D.
This is referred to as the reduced representation throughout
the paper. This results in c eigenvalues Ũ that are different
from the n eigenvalues U in the primitive (original) represen-
tation, obeying the Hylleraas-Undheim theorem [31] as the
dimension is reduced one-by-one. These Ũ are then taken for
〈B|HA|B〉

C in the variational formulation.
The normalization condition for the eigenvectors is now

�̃DT Õc
�̃D = 1. After a lengthy simplification, the correspond-

ing expression for Q(R) is Q(R) = −�Z ′T O �Z ′ − 2 �ZT PT �Z ′ +
�ZT ( 1

2 (Q − QT ) − P2) �Z , where �Z = Xc
�̃D. Of course, if c = n

and no linear combination of Bμ’s has been eliminated, this
is completely equivalent to the expression for Q(R) in the
primitive representation.

III. RESULTS

Prototypical examples are first considered for repulsive
atoms, setting as = 0.01 lt for values of N up to 104, to a
regime where the Thomas-Fermi approximation should be
valid. Also, the conditions of Ref. [32] are simulated, where
7Li has negative scattering length as = −27.3 a0 and the
trap is almost spherically symmetric with oscillator length
lt = 3.157 μm, thus as = −4.577 × 10−4 lt . Nc = 1257 is the
largest particle number for which Eq. (2) has a solution, while
the K-harmonic method predicts Nc = 1465 to be the largest
N that supports a local minimum in the adiabatic potential.

As for the types of orbitals used, φN0,as is the solution
of Eq. (2) with interaction term g(N0 − 1)|φ|2φ, if N0 is
different from the physical N . φGP = φN,as is the correct
Gross-Pitaevskii solution, if it exists. Furthermore, for as < 0,
one also considers for given l > 0 (different from trap lt ):

φs
l = 1√

4π

√
12

π2l3
sech

(
r

l

)
. (17)

The hyperbolic secant is the well-known bright soliton
solution to the one-dimensional GP equation [33], where the
attractive nonlinear term supports a self-bound droplet in the
absence of axial trap, and it reasonably approximates φGP

even for spherically symmetric systems. φs
l is particularly

useful for modeling situations where Eq. (2) has no solution.
Figure 1(a) shows single-φGP potential energy curves for

positive as of varying N , and Fig. 2(a) shows potentials for
negative as. As is seen in Eq. (5), the adiabatic potential
is dominated by the harmonic trap at large R. At small R,
the potential is dominated by the repulsive centrifugal term
and the interaction term from the pseudopotential; within the
K-harmonic approximation [6], the latter is strictly propor-
tional to asR−3. Since the variational treatment can only treat
the lowest few eigenstates of the system at best, only the
neighborhoods of local minima of the adiabatic potentials
have been plotted. The φGP minimizes the minimum of the
potential significantly better than the K-harmonic model does.
As N increases, the value of the minimum steadily increases
as well; the location of the minimum pushes outward for
as > 0 and draws inward for as < 0, consistent with the trend
in the shapes of the mean-field wave function. Furthermore,
Figs. 1(b) and 2(b) show that the total mean-field ground-state
energy E0 of the system [from Eq. (2)] is consistent with the
value of the potential minimum; E0 is only slightly higher
than the minimum, which accounts for the zero-point energy
of F (R). In Fig. 2(a), the barrier that temporarily protects the
metastable condensate from macroscopic collapse decreases
as N increases. There is a great difference in barrier height
between the K-harmonic (�E = 188.99 h̄ω) and single-φGP

(�E = 47.87 h̄ω) models for N = 1257, consistent with the
overestimation of Nc by a Gaussian orbital. Surprisingly, φGP

still admits a significant barrier for N = 1257, even though
one would expect the barrier to disappear since the GP equa-
tion has no solution for larger N .

Having checked that the method is reasonably consistent
with the mean-field equation in describing the ground state
of the many-N bosonic system, the collective excitations are
studied next. Given the choice of orbitals with zero angular
momentum, one may only hope to reproduce the monopole
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FIG. 1. (a) Adiabatic potentials with Q included, U (R) − Q(R)
2N ,

for as = 0.01 lt and various N . The blue dashed, red dotted, and
green solid curves come from single φGP for N = 9600, 9800, and
10 000, respectively. The black circles are the K-harmonic U for
N = 9600. (b) Here as = 0.01 lt with varying N . The black circles
are the mean-field energy E0(N ). The blue solid and red dashed
curves are the minima of U − Q

2N from φGP and from the K-harmonic
approximation, respectively.

breathing modes of the spherical system here. Figure 3 shows
the comparisons between the variational calculations, the K-
harmonic approximation, and the standard Bogoliubov results
for the first three breathing modes. In Fig. 3(a), for as > 0,
the Bogoliubov excitation energies transform as N increases
from the noninteracting limit of 2nh̄ω to the Thomas-Fermi
limit [34] of �En = h̄ω

√
2n2 + 3n. The K-harmonic model

agrees well with Bogoliubov theory for the first excited state
but gives larger energies for higher states, with a consistent
trend of increasing energy with larger N . Surprisingly, the
single-φGP calculations give even greater values for the excita-
tion energies than the K-harmonic model does. This suggests
that the adiabatic potential is too tight; in other words, a
simple ansatz of B(R,�) = ∏N

i=1 φGP(�ri ) does not accurately
capture the more complex many-body correlations and is not
sufficient for a variational minimization of U (R) away from
the minimum.

FIG. 2. (a) Adiabatic potential with Q included for as =
−4.577 × 10−4 lt and various N . The orange solid, blue dotted, and
red dashed curves come from single φGP for N = 1197, 1227, and
1257, respectively. The black circles are the K-harmonic potential U
for N = 1257. (b) Here as = −4.577 × 10−4 lt with varying N . The
black circles are the mean-field E0(N ). The blue solid and dashed
curves are the minima and maxima, respectively, of U − Q

2N from
φGP. The orange dotted and dash-dotted curves are the minima and
maxima, respectively, of the K-harmonic U .

In Fig. 3(b), for as < 0, the first Bogoliubov excitation
energy tends to rapidly collapse as N approaches Nc, while the
third and higher excited states are predicted to shoot up. The
K-harmonic model predicts instead that all the excitation ener-
gies soften, as long as the corresponding excited states can be
supported by the potential barrier. For single-φGP calculations,
a trend that is the opposite of that for positive as is seen: The
excitation energies collapse more rapidly than the K-harmonic
model predicts, consistent with the broader curvature of the
potential minimum and lower barrier in Fig. 2(a). Still, the
predicted first excitation energy is higher than the Bogoliubov
result.

These observations provide the key motivation for the cou-
pled multiorbital CI method, and its results are shown in Fig. 4
for 10 000 repulsive atoms. Within the single-orbital picture,
one sees that φGP minimizes the ground state of the system
better than any other choice of the orbital, but away from
the minimum, other choices of the orbital are superior for a
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FIG. 3. The first three excitation energies Ei − E0 with varying
N . Red, blue, and orange denote the first, second, and third excited
states. (a) Results for as = 0.01 lt . Solid, dotted, and dashed curves
are the Bogoliubov mode frequencies, while solid circles are from
the K-harmonic potentials. Open circles are the results of single-φGP

calculations. (b) Results for as = −4.577 × 10−4 lt . Dotted curves
are the Bogoliubov predictions, while solid curves are from the K-
harmonic U . Circles are from single-φGP calculations.

variational minimization of U (R). Therefore, coupling several
of these orbital results in not only an additional lowering of the
minimum, but an overall broadening of the curvature as well.
For the dashed curve of Fig. 4, the particular choice of coupled
five orbitals results in a rapid collapse of the lowest primitive
generalized eigenvalue U (R), and hence one eigenstate of O
has been removed.

On these different results for the adiabatic potential, the
hyperradial eigenstates F (R) may now be found, and Table I
summarizes the results. Compared to the single-φGP model,
significant lowering of the hyperradial state energies is now
observed from multiorbital calculations, but the excitation
frequencies are mostly still higher than what the Bogoliubov
theory gives. Actually, for (n,δ) = (5,1) and (N0,1,�N0) =
(9600.04,199.98), the first excitation energy is lower than
the corresponding Bogoliubov prediction. It is currently un-
known how the variational minimization of U (R) tends to

FIG. 4. Adiabatic potentials with Q(R) included for 104 bosons
with as = 10−2 lt . The orange triangles, black circles, and green
squares are single φN0,as results with N0 = 9600.04, 104, and
10 399.96. The red solid curve is the lowest primitive eigenvalue
from coupling three orbitals with N0 = 9800.02, 104, and 10 199.98,
with no eigenstate of O removed. The blue dashed curve is the
lowest reduced eigenvalue from coupling five orbitals with N0 =
9600.04, 9800.02, . . . , 10 399.96, with 1 eigenstate of O removed.

convergence with different B(R,�), or whether it even con-
verges at all. In Ref. [35], standard CI calculations (outside
the hyperspherical framework) using the pseudopotential have
been shown to not converge in the absolute sense. At any rate,
the hyperspherical CI method assumes that each term of the
wave function is a simple product of orbitals, which is a strong
restriction on the subspace of Hilbert space that the many-
body system occupies, possibly explaining the discrepancies
with the Bogoliubov predictions.

Now consider as < 0. Fig. 5 shows a family of single-
orbital calculations using both Gross-Pitaevskii solutions and
bright solitons. In Fig. 5(a), again it is seen that φGP performs
best in minimizing the hyperradial ground state. However,
using hyperbolic secant orbitals, one may model situations
where the system has been squeezed closer to the origin.
Intuitively, one expects that coupling several of the orbitals
in Fig. 5(a) will result in a new potential, which would have
a far lower barrier height than the single-φGP potential has.
In Fig. 5(b), φGP does not exist for N = 1300, and cou-
pling the given single-orbital curves smoothly from magenta

TABLE I. List of ground state E0 and excitation �E (units of
h̄ω) from solving Eq. (7) with different U (R) − Q(R)

2N , for N = 104

and as = 10−2 lt . n is the number of coupled orbitals, and δ = n − c
is the number of eigenstates of O thrown away. The orbitals φN0,as

are identified by values of N0 = N0,1 + (i − 1)�N0, i = 1, . . . , n.

Type (n,δ) (N0,1,�N0) E0 �E

K-harmonic (1,0) n.a. 73 346.48 2.23, 4.46, 6.69
φGP (1,0) n.a. 68 745.42 2.59, 5.19, 7.78
φN0,as (3,0) (9800.02,199.98) 68 744.71 2.32, 4.60, 6.84
φN0,as (5,0) (9500.05,249.975) 68 744.52 2.30, 4.55, 6.77
φN0,as (5,1) (9600.04,199.98) 68 744.69 2.19, 4.43, 6.68
φN0,as (5,2) (9800.02,99.99) 68 744.71 2.32, 4.59, 6.83

023325-6



ORBITAL VARIATIONAL ADIABATIC HYPERSPHERICAL … PHYSICAL REVIEW A 103, 023325 (2021)

FIG. 5. Adiabatic potentials with Q(R) included for as =
−4.577 × 10−4 lt ; all are single-orbital results. (a) Results for N =
1220. Orange dashed, blue solid, and red dotted curves are from
φN0,as with N0 = 1112.41, 1220, and 1257.1. Purple squares, ma-
genta triangles, and green circles are from φs

l with l = 0.38, 0.43,
and 0.64. (b) Results for N = 1300. Orange dashed, blue dotted,
and red solid curves are from φN0,as with N0 = 1149.27, 1203.19,
and 1257.12. Magenta triangles, green circles, and purple squares
are from φs

l with l = 0.38, 0.43, and 0.48.

triangles to orange dashed curve gives no minimum, meaning
no metastable condensate.

Figure 6 shows the results of coupling the orbitals for N =
Nc = 1257. This is the only figure where contributions from
nonadiabatic correction Q(R) are explicitly shown (compare
dashed green and dotted black curves), as they were negligi-
ble for single-orbital calculations. For the lowest generalized
eigenvalue U (R) of interest, contributions from Q(R) are still
mostly tiny, except near points where single-orbital potentials
cross. Other generalized eigenvalues have large Q(R) near
single-orbital potential crossings, exhibiting breakdown of the
adiabatic approximation. More importantly, in contrast to the
original single-φGP result as seen in Fig. 2(a), also seen as
open circles of Fig. 6, the coupled-orbital potential now has
very small barrier.

Figure 7 shows the hyperradial eigenstates from the cou-
pled potential of Fig. 6. Note that by dimensionality of the
pseudopotential, there is an attractive term proportional to
1

R3 near the origin in U (R), so unless a small-R cutoff is

FIG. 6. Adiabatic potentials for 1257 bosons with as =
−4.577 × 10−4 lt . Open brown circles and open blue triangles are
U with Q included from single φN0,as , with N0 = 1257 and 1251.51.
Red squares, purple filled circles, and orange filled triangles are
U with Q included from single φs

l with l = 0.39, 0.44, and 0.49.
The five dashed curves are the primitive generalized eigenvalues U ,
without Q, from coupling the above five orbitals; no eigenstate of O is
removed. The colors green, red, blue, orange, and purple denote the
five eigenvalues in increasing order. The dotted black curve includes
Q for the lowest eigenvalue.

introduced, the problem of Eq. (7) is ill-defined. An arbi-
trary boundary condition of F (Rc) = 0 at Rc = 0.75 lt was
chosen, resulting in collapsed states away from the local
minimum, as well as at least one metastable state of energy
E = 1468.08 h̄ω within the minimum. WKB estimate of the
macroscopic collapse tunneling lifetime of this metastable
state is 0.43 s, while a Siegert pseudostate calculation [36]
approximates the lifetime to be roughly 0.5 s.

The single-orbital method would have predicted the crit-
ical particle number Nc where collapse occurs for attractive
systems to be far greater than the largest N for which the

FIG. 7. Hyperradial eigenstates F (R) for N = 1257 and as =
−4.577 × 10−4 lt . The potential, represented by black circles here,
is the dotted black curve of Fig. 6. Boundary condition F (Rc ) = 0
at Rc = 0.75 lt is chosen. Dotted lines denote the eigenenergies;
solid and dashed curves are the corresponding wave functions F (R)
(scaled arbitrarily). Magenta denotes a collapsed state outside the
minimum well; red denotes a metastable state, while green and
orange denote rapidly decaying states.

023325-7



HYUNWOO LEE AND CHRIS H. GREENE PHYSICAL REVIEW A 103, 023325 (2021)

mean-field equation admits a solution. The coupled multi-
orbital method now shows that the criticality of adiabatic
hyperspherical potential is consistent with the mean-field
equation, but only by allowing more many-body correlations
than the simple product-symmetric form of the many-body
wave function assumed in the mean-field equation. Again,
it is unknown how the variational potential will converge,
especially since now collapse is observed at small R for
as < 0. But the important observation is that the potential
barrier has been reduced almost entirely, to the point where
it allows only one metastable state for N = 1257. Coupling
orbitals for N = 1220 in Fig. 5(a), for example, would lead
to a potential that supports many more metastable states. But
as N increases toward 1257, the barrier will decrease and the
curvature of local minimum will broaden. One by one, each
metastable excited state can no longer be supported at some
point. This brings into question the validity of the Bogoliubov
approximation for treating as < 0, as it instead predicts that
many high-lying excited states not only exist at N = 1257,
but actually increase in energy compared to the noninteracting
limit as seen in Fig. 3(b).

IV. SUMMARY AND CONCLUSION

Methods for computing the adiabatic hyperspherical po-
tential of many interacting bosons based on the variational
principle have been developed, using independent-particle or-
bitals in connection with the Gross-Pitaevskii equation. The
effort was motivated by a desire to extend the successes of
adiabatic hyperspherical formalism in few-body settings to
more particles, as well as a need to test whether predictions of
the nonlinear mean-field equation can be faithfully reproduced
by a linear theory. Both a very simple product-symmetric form
and a configuration-interaction type of variational wave func-
tion have been investigated; a large family of potential curves
associated with each choice of orbital is found and can be used
to gain intuition about the system. A single-orbital calculation
based on the Gross-Pitaevskii solution is found to agree ex-
cellently with the mean-field equation itself in computing the
ground-state energy, representing a vast improvement over the
K-harmonic approximation. However, systematic differences
with the Bogoliubov prediction for monopole excitation ener-
gies are observed, and the single-orbital result disagrees with
the mean-field equation in predicting the critical number of
particles for collapse of attractive system. By coupling several
orbitals, a drastic reduction in barrier of the adiabatic potential
for as < 0 is observed, now supporting only one metastable
state for N = Nc in agreement with the mean-field prediction.

Several questions and possible future directions remain
in describing the dilute quantum gas of many bosons. An
immediate possibility would be to generalize the formalism
to treat anisotropic traps, in order to investigate quasi-one-

dimensional and quasi-two-dimensional systems. Another
direction would be to use orbitals with nonzero angular mo-
mentum to describe quantized vortices in the condensate.
Regarding questions as to what degree the method of this
paper may be directly improved, Table I hints that relatively
little improvement is gained from coupling more and more
orbitals. The reason is that the orbitals in question are so
similar in shape, that as more orbitals are coupled, corre-
spondingly more linear combinations of these orbitals must
be discarded to avoid linear dependence issues. However,
a more complicated type of wave function, for instance,
Ŝ[φ( �r1) . . . φ(�rN−1)ψ ( �rN )], with Ŝ a symmetrization opera-
tor, where not all particles occupy the same orbital, could lead
to important improvements beyond what is presented here.

More fundamental issues remain unresolved. Convergence
properties of the variational potential are unknown, given
the singular nature of the pseudopotential. Also, as seen in
Eq. (14), the interaction term is merely proportional to the
scattering length; the variational method presented in this
paper is hence inappropriate for describing unitary Bose gas
as |as| → ∞, for the same reason that the mean-field equa-
tion fails at unitarity. Finally, the trial wave function does
not adequately describe the system as two particles approach
each other. The method here using the pseudopotential cannot
describe the possibility of clusters of N − 1 or fewer parti-
cles within the N-particle system. Therefore, a more pressing
problem to be addressed may be to employ realistic finite-
range potentials and move beyond the independent-particle
approximation, to incorporate the information of two-body
correlations into the trial wave function for a modest number
of particles.
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APPENDIX: HYPERANGULAR INTEGRATION

This section describes the calculation of the various
hyperangular integrals needed. Let spherically symmetric
φ(�ri ) = 1√

4π
u(ri). For the simplest example, consider

Cμν = ∫
d�BμBν = ∫

d�
∏N

i=1 φμ(�ri )φν (�ri). At a particular
value of the adiabatic parameter R, write

∫
d� =∫

d�dR′ δ(R − R′) = N−3N/2R−(3N−1)
∫ ∏N

i=1 d3 �ri
′δ(R −

R′), where R′ =
√

1
N

∑N
i=1 r′

i
2 . As in Ref. [28], the following

representation of the Dirac δ function is used:

δ(R − R′) = NR

π

∫ ∞

−∞
dk eikN (R′2−R2 ). (A1)

This gives after simplification:

Cμν (R) = 1

N3N/2R3N−1

∫ N∏
i=1

d3 �ri
′δ(R − R′)

N∏
j=1

φμ( �r j
′)φν ( �r j

′)

= 1

N3N/2R3N−1

(
NR

π

)∫ ∞

−∞
dk e−ikNR2

[∫ ∞

0
dr′ r′2eikr′2

uμ(r′)uν (r′)
]N

. (A2)
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The δ function allows an evaluation of the hyperangular integral in terms of the individual particle coordinates �ri, which is far
easier than trying to express φ in the hyperspherical coordinate system. For instance, for a term in Hμν coming from the Fermi
pseudopotential, dropping primes (′) for notational simplicity, one obtains

〈Bμ|δ( �r2 − �r1)|Bν〉 = 1

N3N/2R3N−1

(NR

π

) ∫ ∞

−∞
dk e−ikNR2

N∏
i=3

[∫
d3 �ri eikri

2
φμ(�ri)φν (�ri )

]

×
[ ∫

d3 �r1

∫
d3 �r2 eikr1

2
φμ( �r1)φν ( �r1)δ( �r2 − �r1)eikr2

2
φμ( �r2)φν ( �r2)

]

=
(

1

4π

)
1

N3N/2R3N−1

(NR

π

) ∫ ∞

−∞
dk e−ikNR2

[∫ ∞

0
dr r2e2ikr2

(uμ(r)uν (r))2

][∫ ∞

0
dr r2eikr2

uμ(r)uν (r)

]N−2

.

(A3)

The other integrals to be evaluated are 〈Bμ|B′
ν〉, 〈Bμ|B′′

ν〉, 〈B′
μ|B′

ν〉, and 〈Bμ|∇2
1 |Bν〉, where prime denotes ∂

∂R here. Using
∂
∂R = ∑N

i=1
∂ri
∂R

∂
∂ri

= ∑N
i=1

ri
R

∂
∂ri

and ∇2u(r) = 1
r2

∂
∂r (r2 ∂u

∂r ), one derives, for example,

〈Bμ|B′
ν〉 =

(
N

R

)
1

N3N/2R3N−1

(
NR

π

) ∫ ∞

−∞
dk e−ikNR2

[∫ ∞

0
dr r3eikr2

uμ(r)
∂uν

∂r
(r)

][∫ ∞

0
dr r2eikr2

uμ(r)uν (r)

]N−1

. (A4)

To note, the following expression can then be derived for the matrix element of 
2, proving that 〈Bμ|
2|Bν〉 = 〈Bν |
2|Bμ〉:

〈Bμ|
2|Bν〉 = N (N − 1)
1

N3N/2R3N−1

(
NR

π

)∫ ∞

−∞
dk e−ikNR2

[∫ ∞

0
dr r2eikr2

uμ(r)uν (r)

]N−2

×
([∫ ∞

0
dr r4eikr2

uμuν

]
×

[∫ ∞

0
dr r2eikr2 ∂uμ

∂r

∂uν

∂r

]
−

[∫ ∞

0
dr r3eikr2

uμ

∂uν

∂r

]
×

[∫ ∞

0
dr r3eikr2

uν

∂uμ

∂r

])
.

(A5)

Notice that all the integrals in k above are of the form
∫ ∞
−∞ dke−ikNR2

g(k)[I (k)]β . Here g(k) is not being taken to power N .

Meanwhile I (k) = ∫ ∞
0 dr r2eikr2

uμ(r)uν (r) and β is N , N − 1, or N − 2. Because a factor is being powered to large values of N ,
the integrand oscillates very rapidly on the real line of k. The way to proceed is by applying the method of steepest descent [37].

First write e−ikNR2
[I (k)]β = eN f (k), where f (k) = −ikR2 + β

N log I (k). Notice that for k = iκ , κ ∈ R, assuming that I (k)

converges, then I (k) is a real, positive quantity, and hence f (k) is real, too. For example, if u(r) = 2
π1/4 e− r2

2 , then I (k) = (1 −
ik)−3/2 if Im k > −1. As a function of R, there exists a saddle point k = iκ0 where f (k) is a minimum on the imaginary axis. By
the Cauchy-Riemann equations, with k = x + iy, the following conditions hold at k = iκ0: ∂Re ( f )

∂x = 0, ∂Im ( f )
∂x = 0, ∂2Re ( f )

∂x2 < 0,

and ∂2Im ( f )
∂x2 = 0. Therefore, on the contour � where k = x + iκ0, x ∈ (−∞,∞), the oscillations in eN f (k) are minimized as the

amplitude rapidly decreases away from the saddle point. One may deform the contour and evaluate the resulting smooth integral∫ ∞
−∞ dk g(k)eN f (k) = eN f (iκ0 )

∫
�

dk g(k)eN ( f (k)− f (iκ0 )) by standard numerical quadrature rules.
Now define the following set of even-parity off-centered Gaussian fitting functions and their corresponding integral trans-

forms, for some chosen length scale l (different from trap lt ) and distance between the neighboring peaks r0:

Bn(l, r0, r) = exp

(
−

( r − nr0

l

)2
)

+ exp

(
−

( r + nr0

l

)2
)

, (A6)

Bm(
√

2l, 2r0, r)Bn(
√

2l, 2r0, r) = exp

(
− (m − n)2r2

0

l2

)
Bm+n(l, r0, r) + exp

(
− (m + n)2r2

0

l2

)
B|m−n|(l, r0, r). (A7)

B̃n(l, r0, k) =
∫ ∞

0
dr eikr2

r2Bn(l, r0, r)

= exp

(
− (nr0)2

l2

(
1 + 1

ikl2 − 1

))[√
π

2

(
1

l2
− ik

)−3/2

+ √
π

(nr0)2

l4

(
1

l2
− ik

)−5/2
]
. (A8)

To evaluate and analytically continue I (k), one may
perform a least-squares fitting approximation with chosen
maximum basis index nm for

√
uμ(r)uν (r) (uν if μ = ν)

that is originally expressed in a discrete grid:
√

uμ(r)uν (r) =∑nm
n=0 CnBn(

√
2l, 2r0, r). Assuming such an expansion is
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accurate enough, then,

I (k) =
∫ ∞

0
dr r2eikr2(√

uμ(r)uν (r)
)2

=
nm∑

m=0

nm∑
n=0

CmCn exp

(
− (m − n)2r2

0

l2

)
B̃m+n(l, r0, k)

+
nm∑

m=0

nm∑
n=0

CmCn exp

(
− (m + n)2r2

0

l2

)
B̃|m−n|(l, r0, k).

(A9)

Expanding
√

uμ(r)uν (r) and taking its square ensures that
the resulting approximate I (k) > 0 on the imaginary axis of
k (where it converges). If, on the other hand, one expands
uμ(r)uν (r) with μ 
= ν, then least-squares fitting does not
guarantee the positiveness of I (k). The desired saddle point
k = iκ0, κ0 > − 1

l2 , should be found without unphysical diffi-
culties arising from the branch cut of log I (k). Furthermore,
l should be far smaller than the size of the orbitals uμ and
uν , not only for good fitting but to ensure that the singularity
k = − i

l2 in B̃n(l, r0, k) does not hamper the search for κ0.
Similar procedures are employed to express g(k) as

well (for Cμν , g = 1). For instance, for 〈Bμ|B′
ν〉, g(k) =∫ ∞

0 dr r3eikr2
uμ(r) ∂uν

∂r (r). Here one approximately expands√
uμ(− 1

r ) ∂uν

∂r = ∑nm
n=0 CnBn(

√
2l, 2r0, r) for a different set of

coefficients Cn. Then g(k) = − ∫ ∞
0 dr r4eikr2

(
√

uμ(− 1
r ) ∂uν

∂r )
2

,

and an analytic expression for
∫ ∞

0 dr eikr2
r4Bn(l, r0, r), not

B̃n(l, r0, k), is found and used. In the end, only the ratios of
quantities such as Cμν√

CμCν

are needed, so many factors, such as

the prefactor 1
N3N/2R3N−1 ( NR

π
), cancel out.

To illustrate and benchmark the procedure, consider the
conditions of N = 104 and as = 10−2 lt , and let the single
orbital itself be a Gaussian, uμ = uν = 2

π1/4α3/2 exp(− 1
2 ( r

α
)2).

Use α = 2.41529, which variationally minimizes the ground-
state energy of the GP equation. Then I (k) and f (k) can
be found analytically without the use of fitting functions, a
luxury not afforded to orbitals in general. In fact, all the nec-
essary hyperangular integrals can be done analytically without
knowledge of saddle point, giving, for example, C′

C = − 2NR
α2 .

Putting such terms together leads to the K-harmonic adiabatic
potential U (R) in Ref. [6]. Figure 8 shows the comparison
between exact and fitting function results for the saddle point
and C′

C .
In the neighborhood of the minimum of U (R), which is

at R = 2.958 lt for chosen parameters, excellent agreement
between exact and approximate results are seen, as well as
convergence in terms of fitting functions. It is seen that κ0 →
∞ as R → 0 and κ0 → − 1

α2 as R → ∞ for the exact result.
Interestingly, both κ0 and f (iκ0) are nearly 0 in the vicinity
of R = 2.958 lt . As is implied by the shape of f (iκ0), plotting
N3N/2R3N−1C (which integrates in R to 1) results in an ex-
tremely sharp peak at R = 2.958 lt , indicating that the system,
in a state represented by the Gaussian orbital, lies squarely at
the minimum of K-harmonic U (R). Some disagreements be-
tween exact and approximate results are observed at small R,
and a more serious deviation is observed at large R away from

FIG. 8. Benchmark results of Gaussian orbital with α =
2.41529, for N = 104 and as = 10−2 lt . Solid curves are the exact
results without least-squares fitting. Dotted curves are the results
of approximately fitting u = ∑nm

n=0 CnBn(
√

2l, 2r0, r), with nm = 25,
r0 = 0.16 lt , and l = √

2r0. Dashed curves are with nm = 50, r0 =
0.1 lt , and l = √

2r0. (a) Imaginary part of the saddle point k = iκ0.
(b) Value of f (k) = −ikR2 + lnI (k) with β = N at k = iκ0. (c) Hy-
perradial logarithmic derivative C′

C divided by N .

2.958 lt . In order to attempt to accurately compute U (R) away
from its minimum, more computational effort must be spent to
describe the far-lying tail of the orbital with fitting functions.
Even then, since the different integrands in k are of the form
eN f (iκ0 )g(k)eN ( f (k)− f (iκ0 )), serious questions remain regarding
the accuracy of the method for large values of R. However,
since the method can only be expected to describe the ground
state and perhaps a few of the lowest-lying breathing modes of
the condensate, the method appears satisfactory for the scope
of this paper.
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