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Quantum reactive scattering in the long-range ion-dipole potential
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An ion and a polar molecule interact by an anisotropic ion-dipole potential scaling as −α cos(θ )/r2 at large
distances. Due to its long-range character, it modifies the properties of angular wave functions, which are no
longer given by spherical harmonics. In addition, an effective centrifugal potential in the radial equation can
become attractive for low angular momenta. In this paper, we develop a general framework for an ion-dipole
reactive scattering, focusing on the regime of large α. We introduce modified spherical harmonics as solutions of
the angular part of the Schrödinger equation and derive several useful approximations in the limit of large α. We
present a formula for the scattering amplitude expressed in terms of the modified spherical harmonics and we
derive expressions for the elastic and reactive collision rates. The solutions of the radial equation are given by
Bessel functions, and we analyze their behavior in two distinct regimes corresponding, basically, to attractive and
repulsive long-range centrifugal potentials. Finally, we study reactive collisions in the universal regime, where
the short-range probability of loss or reaction is equal to unity.
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I. INTRODUCTION

Hybrid systems involving cold atoms and ions are gaining
increasing attention both in theory and experiment [1]. On one
hand, recent experiments have succeeded in combining ions
confined in radio-frequency traps with ultracold atomic gases
stored in optical potentials [2–9], or producing charged parti-
cles directly in the ultracold gas via Rydberg excitations [10].
On the other hand, theoretical proposals have shown the rel-
evance of such systems for a number of applications, ranging
from implementation of quantum gates [11–13] and quantum
simulations [14–16], realization of new mesoscopic quantum
states [17,18], probing quantum gases [19–22] to fundamental
studies of low-energy collisions and molecular states [23–34].
Much recent work has been focused on studying controlled
chemical reactions at low temperatures in such systems
[6,35–38].

Another powerful platform for fundamental research in
quantum physics are ultracold gases of molecules [39,40].
Trapping of ultracold polar molecules in optical lattices
leads to a variety of novel quantum phases or can be ap-
plied to perform quantum computations [39,40]. So far, the
quantum degenerate regime has been achieved only for bial-
kali dimers [41–48]. Bialkali molecules in the rovibrational
ground state can be classified into reactive and nonreactive
ones [49]. While reactive collisions can be explained by
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relatively simple quantum scattering models based on the
properties of the long-range potential [50,51], collisions of
nonreactive molecules are far more complicated, as the scat-
tering is affected by the presence of a dense spectrum of
overlapping resonances, leading to the so-called sticky col-
lisions [52]. Their theoretical treatment is based on methods
derived from random-matrix theory [53,54]. Ultracold chem-
ical reactions of molecules can be controlled by external
fields [55], internal spin states [56], or by aligning them in
optical lattice structures of reduced dimensions [57–62]. So
far, they have been studied experimentally in KRb [55,56,63],
NaLi [48], and triplet Rb2 [64]. Modern techniques in ma-
nipulation of single atoms in optical tweezers, have allowed
to assembly ultracold molecules directly from two atoms in a
single, controlled chemical reaction [65].

Recently, first steps have been done towards combining
cold polar molecules with cold molecular ions in a single
experimental setup [66,67]. Motivated by these attempts, in
this work we study quantum scattering of an ion with a polar
molecule in the low-energy regime. Here, we consider only
collisions in the long-range part of the interaction given by
the ion-dipole potential and assume fixed orientation of the
electric dipole moment in the course of the collision. We note
that in general spatial orientation of a molecule varies in time,
and even ultracold polar molecules in the ground state of
rotational motion rotate having no net electric dipole moment.
In this sense, our study is a necessary prerequisite before per-
forming more elaborated analysis including rotational degrees
of freedom, and the effects of molecule polarization by the
ion’s charge or an external electric field. Hence, the full de-
scription of the scattering problem would require solving a set
of close-coupled equations expanded in the basis of rotational
states of a molecule. In this context, our solutions derived in
this paper can be useful as an expansion basis of the relative
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motion, describing long-range behavior of the wave-function
components.

Another situation when our treatment is directly applicable
is the collision of a very light charged particle, like an electron
or a positron, with a heavy molecule. In such collisions, the
electron (positron) energy is much higher than the rotational
constant, and the scattering calculations can be done for a
fixed orientation of the polar molecule. For such systems,
ion-dipole collisions have been systematically studied, in par-
ticular, in the low-energy regime [68–74]. In this context, it is
known that the long-range ion-dipole potential −α cos(θ )/r2

modifies the properties of the angular momentum wave func-
tions introducing corrections to the centrifugal potential in the
radial equation [75]. It was shown that for dipole moments
larger than the critical value αcr = 1.279, the potential be-
comes too attractive (at least in some directions) [76], and the
collapse to the center takes place [69].

In collisions of atomic or molecular ions and polar
molecules, typical values of the parameter α are very large,
and such a regime requires a separate analysis. So far, ion-
molecule collisions have been studied by means of a classical
dynamics, semiclassical approximations, or variational meth-
ods [77–81]. In this paper, we study the scattering problem
for the ion-dipole potential focusing on the regime of very
large α. In such a case, the wave functions at r → 0 are
singular, and one needs to impose some supplemental bound-
ary conditions, defining the short-range behavior of the wave
function. This could be done, for instance, in the spirit of the
quantum-defect theory (QDT) [82–86], where one introduces
some short-range parameters, that weakly depend both on the
collision energy and on the angular momentum of the relative
motion [87].

In general, such a treatment can be extended to the case of
the reactive scattering, where apart from the phase parameters,
one additionally introduces amplitude of the short-range reac-
tion processes [50,51]. For realistic collisions, the short-range
QDT parameters depend on the details of the short-range
potential of the specific system. In this paper, we perform
the analysis of the reactive scattering in the universal regime,
when the reaction probability is equal to unity at short range.
In this very special case, there is no outgoing probability flux
at small distances, and the phase of the short-range wave
function is not important, hence, there is no need to include
any additional QDT parameters.

It is worth to emphasize that due to the 1/r2 dependence,
the ion-dipole potential exhibits a very peculiar features. First,
for such a potential one cannot define any kind of charac-
teristic length scale or the energy scale, as can be done for
other power-law potentials [88]. Therefore, the only charac-
teristic parameter, that can be associated with this potential,
is a dimensionless α parameter. Second, the local de Broglie
wavelength is λ(r)/(2π ) ∼ r/

√
α, and, therefore, for large

α the condition for the quasiclassical approximation, i.e.,
λ′(r)/(2π ) � 1 [89], is fulfilled at all distances. In this case,
there is no quantum reflection process at the intermediate
distances, as happens for most power-law potentials at low en-
ergies [88]. Hence, the relative amplitude of the incoming and
outgoing fluxes will be the same at short and large distances
for all collision energies. This means that for α � 1, reactive
scattering can be very accurately described in the quasiclas-

sical approximation. By summing all the contributions from
different partial waves, it turns out that in the limit of large α

the total reactive cross section is identical to the cross section
calculated in the framework of the classical physics.

The paper is organized as follows. In Sec. II we show
how the Schrödinger equation separates into the radial and
angular parts. In Sec. III we derive some useful properties of
modified spherical harmonics, which are later used in Sec. IV
to calculate the scattering amplitude. The general formulas
for elastic and reactive collision rates are derived in Secs. V
and VI, respectively. In Sec. VII we investigate properties
of modified spherical harmonics, while Sec. VIII is devoted
to analysis of the radial solutions. Reactive scattering in the
universal limit is discussed in Sec. IX. We conclude in Sec. X
presenting some final remarks. In the Appendices we present
technical details of the calculations.

II. SEPARATION OF THE SCHRöDINGER EQUATION

We consider the scattering of a molecule with a permanent
electric dipole moment, and a charged particle, which could
be for instance a monoatomic ion as well as an electron or
a positron. We assume that the dipole moment orientation is
fixed in space, which is equivalent to solving the equations of
motion in a body-fixed frame related to the polar molecule.
The Schrödinger equation describing the wave function of the
relative motion in the ion-dipole potential reads as

h̄2

2μ

(
− 1

r2

∂

∂r
r2 ∂

∂r
+ l̂2

r2

)
ψ (r) + Vid(r)ψ (r) = Eψ (r), (1)

where μ is the reduced mass of the particles, Vid is the inter-
action potential between the ion with a charge q and a polar
molecule with a dipole moment d. The square of the angular
momentum operator is given by

l̂2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
. (2)

The interaction potential is given by the scalar product of the
dipole moment d and the electric field E of the ion:

Vid(r) = −d · E = − qd · r
4πε0r3

. (3)

Denoting the angle between the vectors d and E by θ , we have

Vid (r) = −qd cos θ

4πε0r2
. (4)

Introducing E = h̄2k2/2μ, the Schrödinger equation can be
rewritten as(

− 1

r2

∂

∂r
r2 ∂

∂r
+ l̂2

r2
− α cos θ

r2

)
ψ (r) = k2ψ (r), (5)

where we defined the dimensionless parameter α as

α ≡ qd

4πε0

2μ

h̄2 . (6)

In physical systems composed of a polar molecule and a
monoatomic ion, a permanent dipole moment is of the or-
der of 1D (Debye). For such systems, α is usually a large
number. From the point of view of recent experiments on
ultracold systems, the most relevant are polar molecules of
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two-alkali-metal atoms and alkaline-earth-metal ions. In such
a case, α ranges from α = 4.43 × 103 for LiNa-9Be+ up to
α = 6.07 × 105 for LiCs-174Yb+. In contrast, for electron and
positron scattering on a molecule with a permanent dipole
moment, α is typically of the order of one.

The system possesses the cylindrical symmetry, so the
quantum number m associated with the z component of the
angular momentum is conserved. In general, the wave func-
tion ψ (r) can be decomposed into a radial R(r) and an angular
Ỹm(θ, φ) parts

ψ (r) = Rm(r)Ỹm(θ, φ). (7)

The centrifugal barrier and the dipole-ion potential fall off
with the distance according to the same power law. Therefore,
the radial and angular parts of the wave functions can be
solved independently. We introduce the operator

Û ≡ l̂2 − α cos θ (8)

that describes the angular part of the stationary states
Ỹ
,m(θ, φ), where 
 numbers the eigenvalues of Û . The so-
lution of the eigenvalue problem

(l̂2 − α cos θ )Ỹ
, m(θ, φ) = λ
,mỸ
,m(θ, φ) (9)

gives the spectrum λ
,m and the corresponding eigenfunctions
Ỹ
,m(θ, φ), which in the rest of the paper will be referred to as
the modified spherical harmonics. We choose the numbering
of the eigenvalues as 
 = |m|, |m| + 1, |m| + 2, . . . to recover
the standard spherical harmonics Y
,m(θ, φ) from Ỹ
,m(θ, φ)
in the limit of vanishing α. Similarly to the standard spherical
harmonics, we impose the normalization condition∫

d� Ỹ ∗

,m(θ, φ)Ỹ
′,m′ (θ, φ) = δ
′,
δm,m′ . (10)

The next step is to solve the radial part of the Schrödinger
equation given by(

− 1

r2

∂

∂r
r2 ∂

∂r
+ λ
,m

r2

)
R
,m(r) = k2R
,m(r). (11)

At sufficiently large distances, when the short-range potential
can be entirely neglected and only the dipole-ion interaction
is present, the radial part can be expressed in terms of spher-
ical Bessel functions of the order given by a real or purely
imaginary number.

Below we investigate the angular and radial solutions. But
first, we reconsider the scattering problem in terms of the
modified spherical harmonics.

III. RESOLUTION OF PLANE WAVE IN MODIFIED
SPHERICAL HARMONICS

Before we analyze the scattering problem, we present two
formulas that are used in derivation of the scattering ampli-
tude. The first is the resolution of the angular identity operator:

∞∑

=0


∑
m=−


Y ∗

,m(n1)Y
,m(n2) =

∞∑

=0


∑
m=−


Ỹ ∗

,m(n1)Ỹ
,m(n2)

= 1

sin θ1
δ(θ1 − θ2)δ(φ1 − φ2), (12)

where ni are unit vectors along θi and φi (i = 1, 2). The
vectors n1 and n2 can be interchanged on each side without
affecting the sums. Also, the position of the complex con-
jugate is unimportant. This formula represents the fact that
eigenvectors of operator Û form a complete orthogonal basis
(for fixed value of α).

The second formula is the expansion of the plane wave eik·r
in the basis of the modified spherical harmonics Ỹ
,m. We start
from the familiar expansion (see, e.g., [76])

eik·r = 4π

∞∑

=0


∑
m=−


i
 j
(kr)Y ∗

,m(k̂)Y
,m(r̂), (13)

where j
(x) is the spherical Bessel function of the first kind, k̂
and r̂ are unit vectors (denoted by hat) directed along k and r,
respectively. For large values of r = |r| this expansion takes
the following form:

eik·r −−−→
kr�1

4π
∑

,m

sin
(
kr − 
π

2

)
kr

ilY ∗

,m(k̂)Y
,m(r̂). (14)

This can be rewritten as

eik·r −−−→
kr�1

4π

2ikr

∑

,m

[eikr −(−1)
e−ikr]Y ∗

,m(k̂)Y
,m(r̂)

= 4π

2ikr

∑

,m

(eikrY ∗

,m(k̂)Y
,m(r̂)−e−ikrY ∗


,m(−k̂)Y
,m(r̂)).

(15)

Here, we have used the parity of the spherical harmonics
(−1)
Y
,m(k̂) = Y
,m(−k̂). Employing Eq. (12) in the second
line in the above formula, we arrive at

eik·r

−−−→
kr�1

2π

ikr

∑

,m

(eikrỸ ∗

,m(k̂)Ỹ
,m(r̂) − e−ikrỸ ∗


,m(−k̂)Ỹ
,m(r̂)).

(16)

In the second term, the minus sign in front of k̂ could be
equivalently put in front of r̂. This formula cannot be further
simplified because modified spherical harmonics Ỹ
,m(r̂) in
general do not have specified parity.

IV. SCATTERING PROBLEM

In the scattering problem we solve the Schrödinger equa-
tion (1) with the boundary conditions

ψ (r) −−−−→
|r| →∞

eiki ·r + f (ki → k)
eikr

r
, (17)

where ki is the initial wave vector of the incident particle,
k = kr̂, and f (ki → k) is the scattering amplitude describing
the scattering process. Note that the above wave function is
normalized such that the probability current of the incident
particle (plane wave eiki ·r) is h̄ki/μ, which is its velocity.

Below, we express the amplitude f in terms of the modified
spherical harmonics Ỹ
,m and the elements S
,m of the scatter-
ing S matrix defined as follows. After solving the radial part
of the Schrödinger equation (11), we find its asymptotic form
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for large r:

R
,m(r) −−−−→
|r| →∞

i

2kr

(
e−i(kr− 
π

2 ) − S
,mei(kr− 
π
2 ))A
,m, (18)

where A
,m is given by the boundary conditions of the con-
sidered physical problem, and S
,m are the elements of the
scattering S matrix.

To find the scattering amplitude, we write the wave func-
tion of the particles as follows:

ψ (r) =
∑

,m

R
,m(r)i
Ỹ
,m(r̂), (19)

where R
,m(r) is given by (18). Setting the coefficients A
,m =
4π (−1)
Ỹ ∗


,m(−k̂i ) and employing Eq. (16), we find the rela-
tion (17), where the scattering amplitude is given by

f (ki→k)=4π

2ik

∑

,m

(eiπ
S
,mỸ ∗

,m(−k̂i ) − Ỹ ∗


,m(k̂i ))Ỹ
,m(k̂).

(20)

In the following sections we present the formulas for the
elastic and reactive collision rate constants Kel and K re.

V. ELASTIC COLLISION RATE Kel

The radial coordinate jr of the probability current for
the term f eikr/r, describing the scattering wave, is given
by jr = h̄k| f |2/(μr2). The differential elastic cross section
dσel/d� is defined by the following relation: dσel(ki → k) =
(dσel/d�)d�, where dσel(ki → k) is the differential part of
the total cross section, that contributes to the scattering into
the solid angle d�. By equating the number of particles scat-
tered into the solid angle d� per unit time: jrd� r2, with
the number of particles in the incident particle probability
flux dσelvi, we obtain dσel(ki → k) = jr/vir2d�, where vi =
h̄ki/μ = h̄k/μ is the velocity of incident particles, and we
assume that probability density in the incident wave function
is normalized to unity: ρ = |ψ |2 = 1, in accordance with
normalization of the wave function assumed in (17). Hence,
dσel(ki → k) = | f |2d�. The total elastic cross section is
obtained by integrating dσel(ki → k)/d� over all possible
directions k̂ of the scattered particle, σel(ki ) = ∫

[dσel(ki →
k)/d�] d�. Inserting here the formula (20), we arrive at

σel(ki ) = (2π )2

k2

∑

,m

|eiπ
S
,mỸ ∗

,m(−k̂i ) − Ỹ ∗


,m(k̂i )|2. (21)

This final expression for the total cross section depends on
the direction of the incident particle k̂i. It is thus natural to
consider the cross section averaged over all possible directions
of incidence. Therefore, the averaged elastic cross section is
given by σel(ki ) averaged over direction of ki:

σ̄el = 1

4π

∫
σel(ki )d�i. (22)

Note that the σ̄el does not depend only on S
,m but
also on the form of Ỹ
,m. This comes from the fact that
the potential Vid(r) is not spherically symmetric. This
is mathematically expressed by the fact that the scalar
product

∫
Ỹ ∗


,m(−k̂i )Ỹ
,m(k̂i )d�i in general depends on α,
whereas in the case of spherical harmonics we have

∫
Y ∗


,m(−k̂i )Y
,m(k̂i )d�i = (−1)
. Nevertheless, an important
simplification comes from the presence of the cylindrical sym-
metry. Namely, the function σel(ki ) depends only on angle
θi between the dipole moment d and ki. This can be seen
from (21), where the phase φ enters only as a phase eimφi

which is unimportant after taking the modulus squared. Con-
sequently, in Eq. (22) only the integration over one variable θi

has to be performed.
Here, we will give an expression for the elastic collision

rate constant Kel, which is by definition given by the averaged
elastic cross section and the velocity of the incident particle:

Kel = viσ̄el. (23)

An alternative formulation involves the probability flux jscatt
r

of the scattered particle. It is given by

Kel = 1

4π

∫
d�i

∫
d� jrr2, (24)

taken at the limit r → ∞. Following the normalization as-
sumed in (17), we have assumed that the flux of the incident
particles is equal to the velocity vi = h̄ki/μ, i.e., one particle
per unit area per unit time.

It can be shown that for a pure ion-dipole potential, the total
scattering cross section is infinite, which is a consequence of
its long-range character and the anisotropy. Mathematically, it
is related to the fact that in the expression for the cross section,
given by Eq. (21), a mixed term Ỹ
,m(−k̂i )Ỹ ∗


,m(k̂i ) appears.
Without the anisotropy, the modified spherical harmonics are
equal to the standard ones, and this term is exactly (−1)


after integration over directions of k̂i. With the anisotropy, the
term approaches the standard value, but not sufficiently fast,
to make the sum convergent in Eq. (21) (see the details in
Appendix D).

VI. REACTIVE COLLISION RATE Kre

The reactive rate constant Kre is most easily obtained by
formulating it as a lost probability flux averaged over all
directions. We rewrite Eq. (17) in terms of the amplitudes
fout (r) and fin(r):

eiki ·r + f (ki → k)
eikr

r

−−−−→
|r| →∞

fout (θ, φ)
eikr

r
+ fin(θ, φ)

e−ikr

r
. (25)

The radial components of probability flux corresponding to
the outgoing and incoming particles are given by j out

r =
h̄k| fout|2/(μr2) and j in

r = h̄k| fin|2/(μr2), respectively. The
difference between these currents integrated over all possible
directions of the scattered particle describes the rate of the
probability loss due to the reactions during the scattering pro-
cess. The reactive rate is given by that loss of the probability
averaged over all directions of incidence (calculated at the
limit r → ∞):

Kre = 1

4π

∫
d�i

∫
d�

(
j out
r − j in

r

)
r2. (26)

It should be noted that the above formula resembles Eq. (24).
Using the formula for the scattering amplitude found above
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[see Eq. (20)], the reactive rate can be expressed in terms of
the scattering matrix elements S
,m according to the formula

Kre = h̄ki

μ

π

k2
i

∑

,m

(1 − |S
,m|2). (27)

Unlike the elastic rate, this equation is similar to the usual
relation for the reactive rate expressed in spherical harmonics.

VII. SOLUTION OF THE ANGULAR PART

Below, we present general features of the solutions for
the angular part of the wave functions. The equation that we
consider is expressed by Eq. (9). To proceed, we decompose
Û in the basis of spherical harmonics. We express Ỹ
,m as a
linear combination of spherical harmonics Yl,m:

Ỹ
,m =
∞∑


′=|m|
c(m)

, 
′Y
′,m. (28)

Since the cylindrical symmetry is preserved, all the harmon-
ics have the same quantum number m. The coefficients c(m)


, 
′

follow from the diagonalization of the operator Û .
In order to solve the eigenvalue problem, we need to eval-

uate the matrix elements of this operator. The operator l̂2 is
diagonal in the basis of Y
,m. The matrix elements of the cos θ

are given by∫ 2π

0
dφ

∫ π

0
dθ Y ∗


′m′ (θ, φ) cos θ Y
m(θ, φ) sin θ (29)

= δm,m′ (δ
′, 
−1βm, 
 + δ
′, 
+1βm, 
+1), (30)

with βm, 
 =
√

(
2 − m2)/(4
2 − 1), whereas they are zero if
l � |m|. The eigenproblem for the matrix Û with 
 � |m| is
expressed then by the equation


′(
′ + 1)c(m)

, 
′ − α

(
βm, 
′c(m)


, 
′−1 + βm, 
′+1c(m)

, 
′+1

) = λ
, mc(m)

, 
′ .

(31)

Below, we show the results of the numerical calculations of
the modified spherical harmonics Ỹ
, m in the regimes α ∼ 1
and α � 1. We also present various approximation schemes
for this equation in the latter limit. The details of the methods
and derivations are presented in Appendix A.

A. Angular orbitals for intermediate values of α

In this section we investigate the properties of the angular
wave functions numerically. To this end, we solve Eq. (31)
by writing it in the matrix form [see also Eq. (A1) in Ap-
pendix A], truncating the matrix dimension of Û for final

max = 4000 and evaluate the modified spherical harmonics
for α = 1 and 10, assuming m = 0.

The results are plotted in Figs. 1 and 2, where we display
three-dimensional plots of |Ỹ
,m(θ, φ)|2 as a function of θ and
φ for 
 = 0, 1, 2, 3. Since all the functions Ỹ
,m are propor-
tional to eimφ , the shown plots are cylindrically symmetric
with respect to rotations about the z axis.

We observe that for α = 1 the modified spherical harmon-
ics are similar to the standard spherical harmonics, but they
are slightly shifted towards the upper half-plane, which is
due to the attractive part of the ion-dipole potential. However,

x
y

y
x

y
x

m
=

0,
=

0

m
=

0,
=

1

m
=

0,
=

2

m
=

0,
=

3

y
x

FIG. 1. Modified spherical harmonics |Ỹ
,m|2 as a function of
spherical coordinates for α = 1, m = 0, and different values of 
 =
0, 1, 2, 3 (from upper left to lower right panel).

for α = 10 the orbitals are highly anisotropic, and they are
no longer symmetric with respect to reflections z → −z. In
the figure, the gray XY surface marks z = 0 plane, and the
intersection of the orbital with that plane is shown with a white
contour. In particular, the orbitals 
 = 0, m = 0 for both α = 1
and 10 are strongly shifted to the upper half-space.

x
y y

x

y
x

yx

m
=

0,
=

0

m
=

0,
=

1

m
=

0,
=

2

m
=

0,
=

3

FIG. 2. Modified spherical harmonics |Ỹ
,m|2 as a function of
spherical coordinates for α = 10, m = 0, and different values of

 = 0, 1, 2, 3 (from upper left to lower right panel).
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x

z
FIG. 3. The cut of the modified spherical harmonic |Ỹ0,0|2 along

XZ surface for different α = 0, 1, 2, . . . , 10; the dimensionless coor-
dinates are x = |Ỹ0,0(θ, φ)|2 sin θ cos φ and z = |Ỹ0,0(θ, φ)|2 cos θ as
a function of θ ∈ [0, π ] and φ ∈ {0, π}. For α = 0 the angular wave
function is isotropic. For α > 0 the symmetry is broken, and as α

increases the orbital is more elongated.

In Fig. 3 we present the dependence of the orbital 
 = 0
and m = 0 on α. We note that for increasing value of α,
the orbitals become more anisotropic. Even for relatively low
values α ≈ 1, the displacement of the orbital is significant
compared to the isotropic case α = 0.

B. Low-lying states for large α

To solve the eigenproblem, as given by Eq. (31), for large
α � 1 it is better to return to Eq. (9), and write Ỹ
,m in the
following form:

Ỹ
,m(θ, φ) = �
,m(θ )
e−imφ

√
2π

. (32)

The problem of finding eigenvalues and eigenvectors of Û
reduces then to finding a solution for �
,m(θ ) of the following
equation:[

m2

sin2 θ
− 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− α cos θ

]
�
,m =λ
,m�
,m.

(33)

Note that m enters only as m2, so λ
,m and �
,m(θ ) depend
only on |m|.

First, we note that for large α, the solutions �
,m(θ ) are
localized around θ ≈ 0. This observation can be used to derive
the low-lying states (see Appendix A 1 for details), which are
given by

λ
,m = −α +
√

2α(2
 − |m| + 1). (34)

The spectrum of Û starts at −α + √
2α(|m| + 1) and in-

creases with 
. The lowest-lying eigenvalues are evenly
distributed with interval 2

√
2α. The eigenvalues increase with

growing |m|. We remark that the necessary condition for the
validity of the presented approximation is (2/α)1/4 � 1 and
2
 � √

α/2 + |m|. These conditions are derived by analyzing
the localization of the wave functions around θ ≈ 0.

The low-lying part of the spectrum, as indicated by
Eq. (34), is linear in 
. In Fig. 4 we present the spectrum
of Û for α = 3.65 × 104 for different values of m calculated

FIG. 4. The spectrum λ
, m of Û in units of α calculated nu-
merically (solid lines) for α = 3.65 × 104: m = 0 (black), m = 50
(green), and m = 100 (red). The dashed lines are the linear part of
spectrum given by Eq. (34). The dotted “U” shape (independent of
m) is the asymptotic behavior given by the quasiclassical approxima-
tion (39).

numerically by solving Eq. (31). This value of α roughly
corresponds to collisions of KRb polar molecule with 86Sr+

or 87Rb+ ions. We observe at small values of 
, that the
spectrum exhibits linear behavior, which is well described by
Eq. (34) for m = 0 and 50. For m = 100 the slope of the linear
dependence at small 
 is slightly different than predicted by
Eq. (34). At large values of m, the spectrum is no longer linear
with 
, and interestingly it becomes universal, not depending
on the value of m.

Finally, we remark that the low-lying spectrum from
Eq. (34) can be rederived in a complementary way, by assum-
ing that the coefficient c(m)


,
′ are slowly varying functions of 
′.
For details, see Appendices A 2 and B.

C. Quasiclassical approximation for large α

To understand the behavior of the higher-lying states of
the angular part of the Schrödinger equation for α � 1, we
employ the quasiclassical approximation. Our starting point
is Eq. (33), which we rewrite with the function χ (θ ) defined
by

χ
, m(θ ) ≡ �
, m(θ )
√

sin θ, (35)

with the normalization
∫ π

0 |χ
, m(θ )|2dθ = 1. This new func-
tion χ satisfies the following exact equation:

−χ ′′

, m(θ )+ṽ(θ )χ
, m = ε
, mχ
, m(θ ), (36)

with the effective potential

ṽ(θ ) = α(1 − cos θ ) + m2 − 1
4

sin2 θ
, (37)

where the eigenvalue ε
, m = λ
, m + α + 1
4 . In this form,

Eq. (36) is the stationary Schrödinger equation for a particle
moving in m-dependent potential ṽ(θ ) with energy ε
,m.

In Fig. 5 we plot the angular parts of the wave function
|χ
, m|2 as a function of θ for m = 20 and 100, and differ-
ent 
 = 35, 115, 120, 200. These functions were calculated
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FIG. 5. The angular part of the wave function |χ
, m|2 for different
values of m and 
. Each wave function |χ
, m|2 is shifted by its eigen-
value ε
, m. The dotted line is the effective potential v(θ ) calculated at
given m. The upper (lower) panel is calculated for m = 20 (m = 100)
and shows two wave functions indexed by 
 = 35 and 120 (
 = 115
and 200). On both panels, the lower and upper wave functions have
n = 15 and 100 nodes, respectively.

numerically from Eq. (28), with the expansion coefficients
c(m)

,
′ obtained by numerically solving the recurrence rela-

tion (31). The solutions are rescaled and shifted in order to
fit into the quasiclassical potential.

As we show in Appendix A 3, the behavior of χ
,m can be
understood with help of the quasiclassical approximation, in
which the wave function is expressed as a superposition of the
functions

χ ∼ kcl(θ )−1/2e±i
∫ θ kcl (θ ′ )dθ ′

, (38)

where kcl(θ ) = √
ε − v(θ ) is the quasiclassical wave vector

and v(θ ) is given by ṽ(θ ) after applying the Langer correction
(see Appendix A 3).

The detailed analysis of these wave functions, as presented
in Appendices A 3 and C, shows that for small 
 we can
recover the spectrum given by Eq. (34). We also obtain a
closed formula for large 
 � √

α, that is independent of m:

ε
,m −−−→

→∞

α +
(


 + 1

2

)2

+ α2

8(
 + 1/2)2
. (39)

This formula is depicted in Fig. 4 with a dotted line. We
observe that for large 
 the eigenvalues corresponding to dif-
ferent m indeed reduce to a single m-independent curve given
with a good approximation by Eq. (39).

Finally, we mention that the wave functions, as shown in
Fig. 5, can be very accurately described in the quasiclassical
approximation. For a detailed analysis, we refer the reader to
Appendix A 3.

VIII. SOLUTION OF THE RADIAL PART

We turn now to the analysis of the radial part of the
Schrödinger equation

(
− 1

r2

∂2

∂r2
− 2

r

∂

∂r
+ λ
,m

r2

)
R
,m(r) = k2R
,m(r). (40)

For the standard scattering problems, where the interaction
potentials decay faster than r−2, the centrifugal potential for
all the partial waves except s wave is always repulsive. How-
ever, this is not the case for the ion-dipole potential, where
some of the eigenvalues λ
,m can be negative. Such nega-
tive values lead to the attractive potential, which completely
changes the properties of the wave functions at short dis-
tances.

The radial equation (40) can be solved with Bessel func-
tions of the first kind:

R±
k,
, m(r) =

√
π

2kr
J±κ (kr), (41)

where κ = √
λ
, m + 1/4 depends on the indices 
 and m. For

large distances kr � 1 we have

R±
k,
, m(r) −−−→

kr→∞
1

kr
cos

(
kr ∓ κπ

2
− π

4

)
, (42)

whereas for small kr � 1 we have

R±
k,
, m(r) −−−→

kr→0

√
π

2kr

1

�(1 ± κ )

(
kr

2

)±κ

. (43)

The spectrum of the angular part of the wave function splits
into two branches, which have different consequences in the
radial part. We shift the eigenvalues as in the previous section,
introducing ε
, m = λ
, m + α + 1

4 . For large α, the spectrum of
λ
,m starts at −α [cf. Eq. (34)], hence, ε
,m � 1

4 . The important
parameter κ that determines index of the Bessel function is

κ
, m = √
ε
, m − α. (44)

For ε
, m � α, κ
, m is real and positive, so we may write
κ
, m = |κ
, m|. Therefore, for large kr � 1, the two solutions
R±(r) are decaying as cos(kr − φ±


,m)/kr, with the phase
φ±


,m = (1 ± 2κ
,m)π/4. In this regime the radial solutions
decay at large distances as in the standard scattering prob-
lems, where the angular part is given by the usual spherical
harmonics. For small kr � 1, we have two solutions that have
asymptotic behavior R±(r) ∝ (kr)±|κ|−1/2.

It is instructive to analyze properties of the radial solutions
in the limit of large angular momenta, which are equivalent
to 
 → ∞. Making use of the asymptotic formula (39), we
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obtain

κ
, m −−−→

→∞


 + 1

2
+ α2

16(
 + 1/2)3
. (45)

The second term can be neglected for 
 � α, and in this case
the radial solutions are identical as for standard scattering
problem with short-range potentials

R±
k,
, m(r) −−−→


→∞

√
π

2kr
J±
± 1

2
(kr). (46)

A different situation occurs for ε
, m < α. In that
case κ
,m is purely imaginary, so κ
, m = i|κ
, m|. For
small kr � 1 we have an oscillating solution R±(r) ∝
(kr)−1/2 exp[±i|κ
,m| log(kr)]. For large kr � 1 we have the
following asymptotic behavior:

R±
k,
, m(r) −−−→

kr→∞
ei(kr−π

4 )e± |κ
, m |π
2

2kr

+ e−i(kr−π
4 )e∓ |κ
, m |π

2

2kr
. (47a)

IX. REACTIVE COLLISIONS IN THE
UNIVERSAL REGIME

In this section we employ the solutions of the ra-
dial equation to analyze reactive collisions in the universal
regime [50,51]. To this end, we adopt the approach within
QDT, which is based on the parametrization of the wave func-
tion at small distances, where, with a good approximation,
it does not depend either on the energy or on the angular
momentum of the collision. Specifically, for the solution with
imaginary κ , i.e., when λ
,m + 1

4 < 0, the short-distance wave
function oscillates for r → 0, and

R(r) ≈ c1√
r

e+i|κ|ln kr
2 + c2√

r
e−i|κ|ln kr

2 . (48)

The parts of the wave function with + and − describe the out-
going and incoming probability currents, respectively. Within
QDT we parametrize

c1 = 1 − y

1 + y
eiφ, c2 = e−iφ. (49)

In general, both the short-range phase φ and the parameter y,
which describes the probability of the short-distance reaction,
can depend on 
 and m. Below, we analyze the simplest pos-
sible case, i.e., we assume that y = 1. In this universal limit,
the scattering properties do not depend on the short-distance
phase φ. The scattering matrix is given by

S
,m = i(−1)
e−π |κ
,m|, (50)

and is valid for λ
,m + 1/4 < 0.
In the other regime, if λ
,m + 1/4 > 0, κ is real and pos-

itive, and then the wave function at short distances takes the
form

R(r) ≈ d1
(kr)+κ

√
r

+ d2
(kr)−κ

√
r

. (51)

Physically meaningful solution is obtained when assuming
d2 = 0, which, after a straightforward calculation, leads to the

following S matrix:

S
,m = i(−1)
e−iπκ
,m . (52)

Taking into account (45), in the limit of large 
 we obtain

S
, m −−−→

→∞

exp

(
−i

πα2

16(
 + 1/2)3

)
. (53)

Now, we can proceed to the evaluation of the reactive
collision rate given by Eq. (27). The partial waves for λ
,m >

− 1
4 do not contribute to Kre since |S
,m| = 1 [cf. Eq. (52)].

Physically, this corresponds to the scattering on the repulsive
potential, where the particles do not approach the core region
r = 0, where the reaction takes place. Correspondingly, the
only contribution to Kre comes from the partial waves with
λ
,m < − 1

4 .
If α � 1 we can get an estimate of the reactive collision

rate since most of the contributing κ are large, and according
to Eq. (50), S
,m ≈ 0. The reactive rate is then given by

Kre ≈ π h̄

μki

∑
|m|�m∗

∑
|m|�
�
∗

m

1, (54)

where 
∗
m is the maximum 
 for which λ
,m < 0, and m∗ > 0

is the largest m for which negative λ
,m do exist. In the first
approximation, as can be inferred from Eq. (34), m∗ = √

α/2
and 
∗

m = (m∗ + |m|)/2. This leads to

Kre ≈ π h̄

μki

α

4
. (55)

Since the number of states, for which the particles can col-
lide and react, is proportional to α, the reactive rate is also
proportional to α. We note that the reactive rate depends on
the energy as 1/k ∼ 1/

√
E . This behavior agrees with the

prediction for the power-law potentials V (r) = −Cn/rn [88],
i.e.,

Kre E→∞−→ g
h

2μk
Pre n

2

(
E/En
n
2 − 1

)(n−2)/n

, (56)

where in the limit of n → 2 we obtain

Kre E→∞−→ π h̄

μk

2μC2

h̄2 , (57)

substituting for probability of reaction Pre = 1 and g = 1 for
distinguishable particles.

Alternatively, the formula from Eq. (55) can be derived
based on classical considerations. To be specific, one should
solve the classical equations of motion and count only the
contribution to the reactive rate from the trajectories that fall
to the scattering center. By calculating contribution from such
trajectories, one can reproduce exactly the formula (55).

In general, the universal collisional rate will have the form

Kre = h̄

μki
F (α), (58)

where F is a universal function depending only on the dipole-
ion interaction strength α. In Fig. 6 we plot the function F (α)
that we calculate numerically. The function exhibits steps,
when new states enter below the threshold λ
,m < − 1

4 . Since a
finite value of α is needed to generate such a state, the function
F is nonzero for α � αcr = 1.279. The threshold αcr is the
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FIG. 6. The function F that determines the universal collisional
rate K re in the universal reactive case [see Eq. (58)]. The solid
black curve with steps is the quantum mechanical rate determined
numerically with Eq. (27), where the S matrix is taken from Eq. (50).
The dashed blue straight line is the classical case given by Eq. (55).
Dashed vertical line displays αcr = 1.279 for which the first state
enters into the regime where λ
,m < − 1

4 .

maximal value of α for which the radial Schrödinger equation
has at least one solution that is finite at r → 0 [69]. For large
values of α, the function F approaches the classical limit given
by πα/4. In particular, for α � 200, the error is smaller than
2%.

X. CONCLUSIONS

In this work, we have investigated a reactive scattering in
the ion-dipole potential. First, we have introduced the modi-
fied spherical harmonics, describing angular wave functions in
the presence of an anisotropic ion-dipole interaction, and their
corresponding eigenvalues. For large values of α, which quan-
tify the strength of the potential, we have derived a number
of analytical approximations based on an expansion at small
angles, continuous-
 quantum number approximation, and the
semiclassical method.

We have shown that the introduction of the modified
spherical harmonics requires some modifications of the
formulas for the elastic and reactive total cross sections
and collision rates. We have investigated the properties of
the radial solutions, which are given in terms of Bessel
functions, analyzing two different regimes, corresponding
basically to attractive and repulsive long-range interaction
potentials.

Finally, we have calculated the collision rates for the reac-
tive scattering in the universal regime, where the short-range
reaction probability is equal to unity. In such a case, it is

not necessary to introduce any other phase parameters de-
scribing the short-range behavior of the wave function. We
have shown that this rate scales inversely proportional to the
square root of the energy times a function F (α) that depends
only on the strength of the potential. This universal function
F (α) is nonzero only beyond the threshold αcr ≈ 1.279. It
exhibits quantum steplike dependence for α ∼ 1 and it ap-
proaches the classical limit for large α. It would be interesting
to see that the inclusion of a short-range potential might
lead to a quantum reflection at intermediate distances and
to shape resonances manifested as additional structures in
Kre.

In the ultracold regime, the knowledge of the long-range
part of the potential is not sufficient to determine the phase
shift of the wave function at large distances and the scattering
properties crucially depend on the short-range interaction. The
ion-dipole potential does not possess any characteristic energy
nor length scale. Moreover, in the regime of large parameter
α, there is no quantum reflection process, and the collision
dynamics is semiclassical to a large degree. In that sense, the
ion-dipole potential is transparent for inelastic or reactive scat-
tering, modifying only the long-range angular properties of
the wave function. Therefore, it is crucial to include the short-
range part in potential in the considerations. In the case very
relevant to the current experiments, i.e., collisions of ground-
state polar molecules buildup of two-alkali-metal atoms with
alkaline-earth-metal ions, the next-order dispersion term in
the expansion of the long-range potential originates from the
off-resonant ion-induced-dipole interaction, neglecting ion-
quadrupole interaction, which for the considered systems is
rather weak. At large distances, in the second-order perturba-
tion theory, the next-order term behaves as −C4/r4 with C4 =
d2/(6B) [24], where d is a permanent dipole moment of the
molecule, and B is its rotational constant. With this long-range
polarization potential one can associate characteristic range
R∗ = (2μC4)1/2/h̄ and the energy E∗ = h̄2/(2μ(R∗)2) [87].
For the considered systems the characteristic energy ranges
from about 50 nK for LiNa-9Be+ to 5 pK for LiCs-174Yb+

system, setting the height of the p-wave centrifugal barrier.
In that sense, going to the quantum regime of the scattering
dominated only by the lowest partial wave collisions could be
extremely difficult in comparison to neutral or hybrid atom-
ion systems. At the same time, characteristic range of this
potential is relatively large, ranging from 0.8 μm (LiNa-Be+)
up to 27 μm (LiCs-Yb+).
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APPENDIX A: APPROXIMATION SCHEMES FOR THE ANGULAR PART FOR α � 1

In this Appendix we present details on the approximate methods of evaluating the angular part of the Schrödinger equation
in the limit α � 1. Our starting point is the equation for c(m)


,
′ (or equivalently on Ỹ
,m) in the form of Eq. (31). Denoting now the

eigenvalues of l̂2 by V
 = 
(
 + 1), and the contribution from the dipole by D
 = −αβm,
, the matrix Û in the basis of standard
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spherical harmonics Y
,m takes the following form:

Û =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Vm Dm+1 . . . . . . . . . . . . . . . . . . . . . . . .

Dm+1 Vm+1 Dm+2 · . . . . . . . . . . . . . . . . . .

. . . Dm+2 Vm+2 Dm+3 . . . . . . . . . . . . . . . . . .

. . . . . .
. . .

. . .
. . . . . . . . . . . . . . . . . .

. . . . . . . . . D
−1 V
−1 D
 . . . . . . . . . . . .

. . . . . . . . . . . . D
 V
 D
+1 . . . . . . . . .

. . . . . . . . . . . . . . . D
+1 V
+1 D
+2 . . . . . .

. . . . . . . . . . . . . . . . . .
. . .

. . .
. . . ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A1)

This form of the matrix is used in numerical simulations, where we additionally impose a cutoff 
max.

1. Expansion for small θ

The numerical calculations show that for large values of α,
the lowest orbitals Ỹ
, m are localized around θ ≈ 0. In such
a case one can expand Eq. (9) around that point, and obtain
approximate form of angular orbitals analytically.

To this end, we expand Eq. (33) for small θ substituting:
cos θ ≈ 1 − 1

2α2 and sin θ ≈ θ . This leads to[
− ∂2

∂θ2
− 1

θ

∂

∂θ
+ m2

θ2
−α + 1

2
αθ2

]
�
,m(θ )=λ
,m�
,m(θ ).

(A2)

The solutions that satisfy appropriate boundary conditions,
i.e., are finite for θ = 0 and vanish for large θ , are given in
terms of confluent hypergeometric function:

�
,m(θ ) = N
1
2


,mθ |m|e− 1
2

√
α
2 θ2

1F1

(
−n, |m| + 1,

√
α

2
θ2

)
,

(A3)

where the quantum number n = 
 − |m| = 0, 1, 2, ...indexes
the number of nodes of the angular wave function. The result-
ing eigenvalues are given by Eq. (34). For completeness, we
give here the normalization constant, which is given by

N
,m = 2(α/2)(|m|+1)/2

(|m|)!
(




|m|
)

. (A4)

From the form of solution (A3) it can be seen that the
function �
,m(θ ) is negligible for θ � (2/α)1/4, and com-
bining this with the condition θ � 1 we obtain the necessary
condition for the validity of the presented approximation

(2/α)1/4 � 1. (A5)

If this parameter is small, the approximation that led to (A3)
and (34) is applicable. This condition, however, is not suf-
ficient because for large 
, the wave function extends to
larger θ , and we violate the condition θ � 1. From quasi-
classical considerations (see Sec. VII C) we obtain that the
region of nonvanishing wave function is of the order of θ �√

(1 + λ
, m/α). This gives the required condition for 
:

2
 �
√

α/2 + |m|. (A6)

2. Continuous-l approximation

In this section we exploit the fact that for large α � 1
the coefficients c(m)


,
′ in Eq. (28), which enter the recurrence
relation (31), change smoothly with 
. The details of the

derivation can be found in Appendix B; here, we merely state
the final results.

First, we introduce the small parameter of the expansion,
which is ε = α−1/4. Then, we drop indices 
 and m, rename
λ
, m to λ, and write c(m)


, l as c(l ). Next, we introduce new
variable x = εl and define c̃(x) = c̃(εl ) ≡ c(l ), and new pa-
rameter λ̃ by the relation λ̃ = λε4, where λ̃ is of the order of
unity. After expanding in small parameter ε, Eq. (31) takes the
following form (with higher-order terms being neglected):

−1

2
c̃′′(x) +

(
m2 − 1/4

2x2
+ x2

)
c̃(x) = λ̃ + 1

ε2
c̃(x). (A7)

The solution that is finite both at x → 0 and for large x is given
in terms of the confluent hypergeometric function

c̃(n)(x) ∝ e− x2√
2 x|m|+1/2

1F1(−n, |m| + 1,
√

2x2), (A8)

where n = 0, 1, 2, 3, . . . is the quantum number labeling the
solutions, and the eigenvalues are given by

λn = −α +
√

2α(2n + |m| + 1). (A9)

We notice that eigenvalues in Eq. (A9) are identical as in
Eq. (34).

3. Quasiclassical approximation

In the quasiclassical treatment of Eq. (36) we introduce left
and right classical turning points, denoted further by θL and
θR, respectively, defined by kcl(θL ) = kcl(θR) = 0, and θL <

θR. The classical wave vector kcl is given by

kcl(θ ) =
√

ε − v(θ ). (A10)

Applying the quasiclassical method to the radial Schrödinger
equation requires inclusion of the so-called Langer correc-
tion [90], which basically boils down to dropping of 1

4 in the
second term of Eq. (37):

v(θ ) = α(1 − cos θ ) + m2

sin2 θ
. (A11)

Within the quasiclassical approximation, the wave func-
tions for the eigenstates in the classically accessible region
are given by

χ (θ ) = C√
kcl(θ )

cos

(∫ θR

θ

kcl(θ
′)dθ ′ − π

4

)
(A12)
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for θL < θ < θR, and far from the ends of that interval. In the
classically inaccessible region, the wave functions are given
by

χ (θ ) = C

2
√|kcl(θ )| exp

(
−

∫ θ

θR

|kcl(θ
′)|dθ ′

)
(A13)

for θ > θR, and

χ (θ ) = (−1)nC

2
√|kcl(θ )| exp

(
−

∫ θL

θ

|kcl(θ
′)|dθ ′

)
(A14)

for θ < θL. For completeness we give the expression for the
normalization constant C = ( 1

2

∫ θR

θL
k−1

cl (θ ′)dθ ′)−1/2
.

The eigenvalues ε can be obtained from the Bohr-
Sommerfeld quantization rule, given by∫ θR

θL

kcl(θ
′)dθ ′ =

(
n + 1

2

)
π, (A15)

where n is a positive integer number indexing the nth eigen-
value in the potential v(θ ). Note that n = 
 − |m| and from
the method we obtain ε
,m. We have checked numerically that
inclusion of the correction − 1

4 in the definition of λ
,m signif-
icantly improves the accuracy of the approximate solutions.

The procedure of solving the eigenproblem for the angular
part, defined by Eq. (33), is now straightforward. We first
find the shifted eigenvalues εn indexed by a non-negative
integer n by solving the Born-Sommerfeld quantization con-
ditions (A15). The wave functions are then given by Eq. (A12)
(classically accessible region), (A13) (right classically in-
accessible region), and (A14) (left classically inaccessible
region).

In Appendix C we derive formulas for the eigenvalues
that are obtained from the Bohr-Sommerfeld quantization
rule (A15) for small |m|. For 0 � ε < 2α we obtain the fol-
lowing equation determining the eigenvalues ε:∫ θR

0

√
ε − α(1 − cos θ ′)dθ ′ =

(
2n + |m| + 1

)
π

2
, (A16)

with θR = arccos(1 − ε/α). In the other regime, for the eigen-
values ε � 2α we arrive at the following formula:∫ π

0

√
ε−α(1−cos θ ′)dθ ′ =

(
n+|m|+ 1

2

)
π =

(

 + 1

2

)
π.

(A17)

In Fig. 7 we display the spectrum λ
, m for m = 20 and α =
3.65 × 104. We compare the numerically calculated values
from Eq. (31) to the ones obtained by solving the quasiclassi-
cal quantization rule, Eq. (A15). We also display eigenvalues
obtained by approximate quasiclassical quantization condi-
tions (A16) and (A17). All the solutions are in very good
agreement with the exact numerical result. The relative error,
which is shown in the inset, remains below 10−3% for the
full quasiclassical formula and is larger for the quasiclassical
solution without inclusion of the Langer correction, and for
asymptotic formula (39).

In Fig. 8 we show the spectrum and relative errors in the
case m = 100. Here, the condition |m| � α is not satisfied,
and the potential v(θ ) is strongly affected by the presence
of the term m2/ sin2 θ in Eq. (A11). As a consequence it

FIG. 7. The spectrum λ
, m of Û for m = 20 in units of α

calculated numerically for α = 3.65 × 104 (dashed blue line).
Dotted-dashed black line (coincides with full numerical dashed blue
line) is the spectrum obtained within quasiclassical approximation
[see Eq. (A15)]. Dotted blue lines (coinciding with the previous
two) represent solutions given by Eqs. (A16) and (A17). The inset
shows the absolute relative error between solutions given by nu-
merical diagonalization and blue dots [quasiclassical approximation
given by Eq. (A15) (smallest relative error)], dotted-dashed line
[quasiclassical approximation with omitted shift 1

4 , i.e., λ = ε − α

(medium relative error)], and dotted line [the asymptotic form given
by Eq. (39) (largest relative error)].

cannot be neglected, and so the formulas given by Eqs. (A16)
and (A17) are not as accurate as for m = 20.

Figures 9 and 10 compare the wave functions |χ
, m|2 ob-
tained from Eqs. (28) and (35), with expansion coefficients

FIG. 8. The spectrum λ
, m of Û for m = 100 in units of α

calculated numerically for α = 3.65 × 104 (dashed red line). Dotted-
dashed black line (coincides with full numerical dashed red line)
is the spectrum obtained within quasiclassical approximation [see
Eq. (A15)]. Dotted blue lines represent solutions given by Eqs. (A16)
and (A17), below λ < α and above λ > α, respectively. The inset
shows the absolute relative error between solutions given by nu-
merical diagonalization and red dots [quasiclassical approximation
given by Eq. (A15) (smallest relative error)], red dotted-dashed line
[quasiclassical approximation with omitted shift 1

4 , i.e., λ = ε − α

(medium relative error)], and red dotted line [the asymptotic form
given by Eq. (39) (largest relative error)].
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FIG. 9. A comparison of the angular part of the wave function
|χ
, m|2 for m = 20 and 
 = 35 (upper panel) and 120 (lower panel),
which have n = 15 and 100 nodes, respectively. The black line is the
solution numerically calculated from Eq. (28), with the expansion co-
efficients c(m)


,
′ obtained by direct numerical diagonalization of (A1).
The blue line is obtained within quasiclassical approximation using
formulas (A12), (A13), and (A14).

calculated numerically from Eq. (31) and the quasiclassical
wave functions (A12)–(A14). Both approaches agree in the
whole region except the neighborhood of the classical turning
points, where the quasiclassical approximation breaks down.
The eigenvalues ε
,m for the quasiclassical wave functions
were obtained from the Bohr-Sommerfeld quantization rule,
Eq. (A15), which works remarkably well, with relative errors
smaller than 10−3% (see Figs. 7 and 8).

Finally, we remark that the case m = 0 should be treated
with care. In the quasiclassical approximation, for m = 0 the
potential v(θ ) has no classical turning points around θ = 0
and π . This can be traced back to dropping the contribution
from − 1

4 sin−2 θ term in the Schrödinger equation. In partic-
ular, the quasiclassical approximation that would be required
to vanish for θ = 0, where the potential v(θ ) is finite, would
have wrong phase in the classically allowed regime. Since for
α � 1 the contribution to collision rates comes typically from
several partial waves with different values of m, here, we omit
the quasiclassical analysis for m = 0 and, when needed, refer
to numerical calculations.

FIG. 10. The comparison of the angular part of the wave func-
tion |χ
, m|2 for m = 100 and 
 = 115 (upper panel) and 200 (lower
panel), which have n = 15 and 100 nodes, respectively. The black
line is the solution numerically calculated from Eq. (28), with the
expansion coefficients c(m)


,
′ obtained by direct numerical diagonal-
ization of (A1). The blue line is obtained within quasiclassical
approximation using formulas (A12), (A13), and (A14).

APPENDIX B: DERIVATION OF
CONTINUOUS-l APPROXIMATION

To understand the roles played by different terms in
Eq. (31), we first discuss the behavior of c(m)


, l in the absence
of the centrifugal barrier l (l + 1) on the left-hand side in
Eq. (31). It will then turn out that l̂2 introduces an effective
cutoff in the l domain. To start, we write the equation for the
eigenvalues without the term l̂2 in Û . Equation (31) for large
l � 1 then becomes

− 1
2α

(
c(m)

, l−1 + c(m)


, l+1

) = λ
, mc(m)

, l (B1)

because βm,l ≈ 1
2 in this limit. This can be solved taking

c(m)

, l ∼ eil θ̃ with λ
, m = −α cos θ̃ . The wave functions are

then double degenerate in this limit because cl with the change
θ̃ → −θ̃ have the same energy. Thus, two real solutions are
sin l θ̃ and cos l θ̃ . We reach the conclusion that in the absence
of centrifugal barrier |cl | do not converge for large l , which
means that all partial waves contribute to the solution.

Another way to understand the effect is that the operator Û
contains −α cos θ only with l̂2 neglected. The solution of the

023324-12
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eigenproblem −α cos θỸ (θ, φ) = λỸ (θ, φ) is given by eigen-
vectors Ỹ (θ, φ) ∝ δ(θ − θ̃ ) with eigenvalues λ = −α cos θ̃ ;
the spectrum is continuously indexed with θ̃ . The lowest-lying
eigenvalue is λ = −α with Ỹ ∼ δ(θ ), a function that is peaked
around θ = 0.

The centrifugal barrier gives an effective cutoff for possible
values of l in c(m)


, l . Having this in mind, we now proceed to
solve Eq. (31) systematically in the limit of l � q. We start
with the initial equation (31) with β ≈ 1

2 . Assuming now that
c(m)

, l is a function c(l ) (we drop indices 
 and m and rename

λ
, m to λ) we can expand c(l ± 1) up to second order for l �
|m|. We therefore obtain the equation

−α

2
c′′(l ) + [l (l + 1) − α]c(l ) = λc(l ). (B2)

This is the Schrödinger equation for a shifted one-dimensional
harmonic oscillator in which the position is given by l and the
wave function is c(l ). The solution that converges for large l

is given by

c(l ) ∝ Dν

(
2l + 1

(2α)1/4

)
, (B3)

where Dν (x) is the parabolic cylinder function with ν =
− 1

2 + (1 + 4α + 4λ)/(4
√

2
√

α). The value of λ and thus of
ν is determined by the boundary conditions for c(l ) for small
values of l where βm,l deviates from 1

2 . For large x, Dν (x) falls
off exponentially, so c(l ) becomes negligible for l � √

α.
Also, from the obtained solution it is clear that c(l ) changes
smoothly when incrementing l by a unit. These observations
are the starting point for the following discussion.

Below, we expand Eq. (31) in the small parameter ε =
α−1/4. As in Appendix A 2, we drop here the indices 
 and
m, rename λ
, m to λ, and write c(m)


, l as c(l ). We change the
variables x = εl and c(l ) = c̃(εl ) ≡ c̃(x). We notice that for
lowest levels λ ≈ −α = −1/ε4. Thus, we write λ = λ̃/ε4,
where λ̃ is of the order of unity. Now, we rewrite (31) in the
following form:

− 1

ε2

(√
x2 − ε2m2

4x2 − ε2
c̃(x − ε) +

√
(x + ε)2 − ε2m2

(2x + ε)(2x + 3ε)
c̃(x + ε)

)
+ x(x + ε)c̃(x) = λ̃

ε2
c̃(x). (B4)

We expand the equation in the powers of ε, which leads to
Eq. (A7).

APPENDIX C: QUASICLASSICAL ANALYSIS OF
THE ANGULAR PART

In this Appendix we derive formulas for the eigenvalues
that are obtained from the Bohr-Sommerfeld quantization rule
[see Eq. (A15)] for small |m|. We show that for small 
 we
recover the spectrum given by Eq. (34). We also derive a
closed formula for large 
 � √

α that is independent of m,
Eq. (39).

If |m| is not too large, the point θ0 where α(1 − cos θ ) is
equal to m2/ sin2 θ is much less than 1. If this is the case, then
approximately θ0 ≈ (2m2/α)1/4 � 1. The following discus-
sion is valid if m2 � α.

We first assume that 0 � ε < 2α. Here, the position of the
right turning point is mainly determined by the α(1 − cos θ )
term in v(θ ), whereas m2/ sin2 θ term gives only a small
correction which we neglect, i.e., θR = arccos(1 − ε/α). The
position of the left turning point is mainly determined by
the m2/ sin2 θ term in v(θ ). Approximating sin θ ≈ θ we find
θL ≈ (m2/ε)1/2. We see that if ε � |m|√α/2, the left turning
point is separated from the point where the two parts of the
potential are of the same order, i.e., θL � θ0. We can use this
separation to effectively evaluate the dependence on m2 from
the integral. To see this, we notice that the Born-Sommerfeld
quantization rules given by Eq. (A15) can be rewritten in the
following form:

∫ θ ′
L

θL

kcl(θ
′)dθ ′ +

∫ θR

θ ′
L

kcl(θ
′)dθ ′ =

(
n + 1

2

)
π. (C1)

Because of the mentioned separation, we choose θ ′
L such

that θL � θ ′
L � θ0. In this regime in the first integral on the

left-hand side we can neglect α(1 − cos θ ) and approximate
m2/ sin2 θ with m2/θ2. Assuming that θ ′2

L � m2/ε, we can
evaluate the first integral to θ ′

L

√
ε − |m|π/2. Now, in the sec-

ond integral we can neglect the part m2/ sin2 θ of the potential,
and write

∫ θR

θ ′
L
kcl = ∫ θR

0 kcl − ∫ θ ′
L

0 kcl. Here, the second integral

cancels the θ ′
L

√
ε term from the first integral in (C1). Finally,

for 0 � ε < 2ε we obtain∫ θR

0

√
ε − α(1 − cos θ ′)dθ ′ =

(
2n + |m| + 1

)
π

2
, (C2)

with θR = arccos(1 − ε/α).
As an application of formula (A16), we evaluate the low-

lying eigenvalues. For small θ ′, we expand 1 − cos θ ′ ≈ 1
2θ ′2

in the integrand. The right turning point θR = √
2ε/α. Evalu-

ation of the integral (A16) is now straightforward. As a result,
we obtain the spectrum (neglecting the constant shift − 1

4 ) that
is the same as the one given in Eq. (34).

For the eigenvalues ε � 2α we have to take care of the right
turning point appropriately. Using the same reasoning to the
right region that is accessible to the particle, as we described
in the paragraph above, we arrive at the following formula:∫ π

0

√
ε−α(1−cos θ ′)dθ ′ =

(
n+|m|+ 1

2

)
π =

(

 + 1

2

)
π.

(C3)

We see that the eigenvalues here depend only on the quantum
number 
. We emphasize that these results are correct, if |m|
is not too large, i.e., m2 � α. Note that in the special case
α = 0, we obtain ε = (
 + 1/2)2, which gives exactly the
correct value 
(
 + 1) if we reintroduce the − 1

4 shift to the
eigenvalues of the angular part.
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Using formula (A17) we find the asymptotic form for the
eigenvalues for large 
. We start by introducing a small param-
eter α/ε. Expansion of the integrand on the left-hand side up
to the second power in this parameter leads to

√
ε(1 − 1

2
α
ε

−
3

16
α2

ε2 ) = (
 + 1
2 ). Squaring and retaining on the left-hand side

only terms up to the second order in α/ε leads to

ε
 = α +
(


 + 1

2

)2

+ α2

8(
 + 1/2)2
. (C4)

This equation is valid if the parameter α/ε
 is small, which is
the case for 
 � √

α.

APPENDIX D: THE INTEGRAL
∫

Ỹ ∗
�,m(−n)Ỹ�,m(+n)d�

Here, we find the scalar product between the angular wave
functions Ỹ
,m(−n) and Ỹ
,m(n) within the quasiclassical ap-
proximation. We denote the integral by

I
,m =
∫

Ỹ ∗

,m(−n)Ỹ
,m(+n)d�. (D1)

The modified spherical harmonics are given by

Ỹ
,m(n) ≡ Ỹ
,m(θ, φ) = �
, m(θ )
eimφ

√
2π

, (D2)

where �
, m(θ ) fulfills Eq. (33). The reflection from n to −n
corresponds to change θ → π − θ and φ → π + φ, so that

Ỹ
,m(−n) ≡ Ỹ
,m(π − θ, π + φ) = (−1)m�
, m(π − θ )
eimφ

√
2π

.

(D3)

The integral is therefore

I
,m = (−1)m
∫ π

0
dθ �
, m(θ )�
, m(π − θ ), (D4)

where we used fact that �
, m is real.
Now we make first approximation that the integration

spans over the region that is classically accessible, neglecting
the regions where the function decays exponentially. There-
fore, the left turning point is θ ′

L = max(θL, π − θR) and the
right is θ ′

R = min(θR, π − θL ).
We may note that always θL < π/2, and so if θR < π/2,

the integral is negligible and we have I = 0. At least for small
values of m, the condition θR = π/2 is reached for ε ≈ α.
Therefore, the integral is significantly nonzero only when
ε > α. In this regime, θ ′

L = π − θR and θ ′
R = θR.

In the quasiclassical approximation, the integral is given by

I = (−1)mC2
∫ θ ′

R

θ ′
L

dθ ′ cos[�1(θ ′)] cos[�2(θ ′)]√
kcl(θ ′)kcl(π − θ ′)

, (D5)

where the normalization constant C−2 = 1
2

∫ θR

θL
1/kcl(θ ′). The

phase is given by

�1(θ ′) =
∫ θR

θ ′
kcl(θ

′′)dθ ′′ − π

4
, (D6)

and �2(θ ′) = �1(π − θ ′).
This oscillatory integral is of the form∫

dθ ′ f (θ ′) cos[�1] cos[�2], where the phases �1 and
�2 are large. Here, f (θ ′) = (−1)mC2 [kcl(θ ′)kcl(π − θ ′)]−1/2.

We use the method of stationary point (steepest descent) to
evaluate the integral. The integral can be written as

I = 1

4

∫
dθ f (θ )(ei� + e−i� + ei(�1−�2 ) + e−i(�1−�2 ) ),

(D7)

where �(θ ) = �1(θ ) + �2(θ ). The last two terms do not
contribute, and we will neglect them. The stationary points
can be only found for the first two. In order to find them, we
equate the derivative of the total phase to zero, i.e.,

�′(θ0) = −kcl(θ0) + kcl(π − θ0) = 0. (D8)

The stationary point is θ0 = π/2. Around this point, we may
expand

�(θ ) = 2�1

(π

2

)
+ �′′

1

(π

2

)(
θ − π

2

)2

+ 1

12
�′′′′

1

(π

2

)(
θ − π

2

)4
. (D9)

The constant term is equal to

2�1

(π

2

)
= 2

∫ θR

π/2
kcl(θ

′′)dθ ′′ − π

2
. (D10)

The second term contains

�′′
1

(π

2

)
= −k′

cl(π/2) = α

2
√

ε − α − m2
. (D11)

Note that the dependence on the quantum numbers 
 and m is
also contained in ε = ε
, m.

The third term contains

�′′′′
1

(π

2

)
= − α

2(ε − α − m2)1/2
(D12)

+ 3αm2

2(ε − α − m2)3/2
+ 3α3

8(ε − α − m2)5/2
.

(D13)

The integral I
,m in the approximation is given by

I
,m = 1

2
f (θ0)Re

( ∫
dθ ei�(θ )

)
, (D14)

which gives

I
,m = (−1)mC2

2kcl(π/2)
Re

(∫ θ ′
R

θ ′
L

dθ ei�(θ )

)
, (D15)

with kcl(π/2) = √
ε − α − m2. Inserting here the expansion,

we obtain

I = (−1)mC2

2kcl(π/2)
Re

{
e2i�1(π/2) (D16)

×
∫ θ ′

R

θ ′
L

dθ e−ik′
cl (π/2)(θ−θ0 )2+ i

12 �′′′′
1 (θ0 )(θ−θ0 )4

}
. .(D17)

Now, we assume that we can neglect the fourth-order term in θ

in the exponent, and extend the integral to infinity. Using the
formula

∫
dx eiax2 = √

π/aeiπ/4, valid for a > 0, we obtain
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the results∫
Ỹ ∗


,m(−n)Ỹ
,m(+n)d�

=
√

π

2α

[
1

2

∫ θR

θL

dθ ′

kcl(θ ′)

]−1

× (−1)m

(ε
,m−α−m2)1/4
cos

(
2

∫ θR

π/2
kcl(θ

′)dθ ′− π

4

)

(D18)

for ε
, m > α; for ε
, m < α the integral vanishes exponentially
and we approximate it by zero. This formula is valid as long
as the integration region can be extended to the real domain,
which happens provided [|k′

cl(π/2)|]−1/2 � π/2 ≈ 1.
It is also possible to find the asymptotic expansion for large


, that is for large ε
, m, when it takes the limiting form given
by Eq. (39). We start by writing the integral I
,m in the form

I
,m = (−1)m

{
C2π

2
√

ε − α − m2

}
Re[e2i�1(π/2)M], (D19)

where

M = 1

π

∫ +π/2

−π/2
eiax2+ibx4

dx, (D20)

with a = α/[2(ε − α − m2)1/2] and b ≈ −α/[24(ε − α −
m2)1/2]. The factor in curly brackets rapidly approaches 1,
as ε → ∞, and consequently we drop it. For large 
 we
may approximate ε − α − m2 ≈ (
 + 1/2)2 in the following
discussion. The small parameter in the expansion is set then
by ε = α/(
 + 1/2). Using the same line of reasoning, which
led to Eq. (39), we evaluate

2�1(π/2) = π (
 − |m|) − ε. (D21)

The parameters a and b are given by a ≈ ε/2 and b ≈ −ε/24.
Now, we expand the exponent under the integral in M up
to the second order in ε and expand the exponential term
e2i�1(π/2) Then, collecting terms up to the second power of
ε, and, finally, taking the real part, yields

I
,m −−−→

→∞

(−1)

[

1 − ζ0

(
α


 + 1/2

)2]
, (D22)

where the number ζ0 = 1/2 − π2/24 + π4/480 −
π6/21 504 + π8/2 654 208 ≈ 0.250 57. We note that in
the limit of large 
, integral I
,m tends to the value
(−1)
, identical as for standard spherical harmonics:∫

Y ∗

,m(−k̂i )Y
,m(k̂i )d�i = (−1)
.
Figure 11 shows the values of integral I
,m multiplied by

the factor (−1)
 for simplicity. It compares exact values cal-
culated numerically, with quasiclassical formula (D18) and
with large-
 expansion (D22). We observe that quasiclassical
formula (D18) is very accurate up to n = 
 − |m| � α, when
it starts to deviate from the exact values. In that regime,
however, the asymptotic expansion (D22) can be already used.
From this last result we infer that σ̄el = ∞. This is the conse-
quence of the slow decay of I
,m with 
, which is compensated
by the sums over m and 
 in the elastic collision rate Kel.

FIG. 11. The scalar product (−1)
I
,m =
(−1)


∫
Ỹ ∗


,m(−n)Ỹ
,m(+n)d� as a function of the quantum
number n = 
 − |m| = 0, 1, 2, . . . . In this example, α = 400,
m = 21. The black dots represent full numerical calculation, the blue
solid line the quasiclassical approximation given by Eq. (D18), and
the red dashed line the asymptotic expansion given by Eq. (D22).

APPENDIX E: RADIAL PART:
QUASICLASSICAL APPROXIMATION

The radial Schrödinger equation can be solved within the
quasiclassical approximation. We define the local wave vector
as

qcl(r) =
√

k2 − ε − α

r2
, (E1)

where ε is one of the eigenvalues ε
, m. Here, we neglected
the − 1

4 term in λ = ε − α − 1
4 , as is usual in quasiclassical

approximation. Now, the radial solutions can be written as a
superposition of the wave functions

R±
cl (r) = e±i

[ ∫
qcl (r)dr+|κ| log[|κ|k]− π

4

]
e

|κ|π
2

2r
√

kqcl(r)
. (E2)

We will now investigate the behavior of this solution for
large and small distances. We start with the case ε < α (attrac-
tive potential), then we can write ε − α = −|κ|2. The integral
in the exponents can be evaluated and reads as∫ √

k2 + |κ|2
r2

dr =
√

(kr)2 + |κ|2 (E3)

+ |κ| log

(
r

|κ|[|κ| +
√

(kr)2 + |κ|2]

)
,

(E4)

where the constant of integration was omitted because it
can be incorporated into normalization. For small values of
r � |κ|/k, the r-dependent term in the integral is |κ| log(kr).
Therefore, the quasiclassical solution R±

cl (r) corresponds1 to
exact solution R±(r). To see that the correspondence holds

1To show that normalization constant is correct it is use-
ful to exploit the asymptotic Stirling relation �(1 + ix) ≈
eiπ/4e− x

2 (2i+π )
√

2πx
1
2 +ix , which is valid for x � 1.
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also for large r, it is easy to verify that the quasiclassical
approximation holds if |κ|2/[(kr)2 + |κ|2] � 1. The quasi-
classical approximation is always valid for large r � |κ|2/3/k.
However, if the approximation is valid for small r, which is
equivalent to |κ| � 1, due to inequality |κ|2/[(kr)2 + |κ|2] �
1/|κ|, it is also valid at large distances. In the latter case, the
parameter |κ| � 1, and for large distances, the term e∓ikr is
exponentially smaller than the term e±ikr in the exact R±.

Now, we will consider the second branch of the angu-
lar spectrum, i.e., ε � α, for which ε − α = |κ|2. In this
regime, we have classically accessible and inaccessible re-
gions separated by the classical turning point rtp = |κ|/k. The
quasiclassical wave function R+

cl (r), away from the turning
point, now reads as

R+
cl (r) = e− ∫ rtp

r |qcl (r′ )|dr′

2r
√

k|qcl(r)| (E5)

for r < rtp, and

R+
cl (r) =

cos
( ∫ r

rtp
qcl(r′)dr′ − π

4

)
r
√

kqcl(r)
(E6)

for r > rtp. The wave function R+
cl (r) corresponds to exact

solution R+
k,
,m(r). The second solution R−

cl (r) for r > rcl is

R−
cl (r) =

cos
( ∫ r

rtp
qcl(r′)dr′ − π

4 + |κ|π
2

)
r
√

kqcl(r)
, (E7)

while for r < rcl is

R−
cl (r) = e+ ∫ rtp

r |qcl (r′ )|dr′

r
√

k|qcl(r)| A(−), (E8)

where the amplitude, which matches the wave function in the
classically allowed region, is given by

A(−) =
√

π

4

1

�(1 − |κ|)
( |κ|

e

)−|κ|
21/2

√
|κ|. (E9)

This wave function corresponds to R−
k,
,m(r).
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