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Mobility edge of Stark many-body localization
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We investigate many-body localization of interacting spinless fermions in a one-dimensional disordered and
tilted lattice. The fermions undergo energy-dependent transitions from ergodic to Stark many-body localization
driven by the tilted potential, which are manifested by the appearance of mobility edges between delocalized
states and Stark many-body localized states even when the disorder is weak. We can concretely diagnose these
transitions rather than crossovers by finite-size scaling of energy-level statistics. Moreover, in the Stark many-
body localization, the entanglement entropy obeys the area law scaling, in analogy to that in the conventional
many-body localization.
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I. INTRODUCTION

Mobility edge, a critical value separating delocalized and
localized states in energy spectrum, has been extensively stud-
ied since the seminal work of Anderson localization [1,2].
Marking a true quantum phase transition, single-particle mo-
bility edge can exist in three-dimensional random disorder and
lower-dimensional quasiperiodic potential [3–12]. Theoreti-
cally, the mobility edge can be determined by the extension
or the inverse participation ratio of the wave function of the
eigenstates [8–11]. In experiments, the mobility edge has
been measured for noninteracting ultracold atoms in a three-
dimensional disordered and a one-dimensional quasiperiodic
potential [5,6,12].

Localization of particles in disorder persists even in the
presence of interactions, now known as many-body localiza-
tion (MBL), which serves as a robust mechanism for ergodic
breaking in isolated quantum systems [13–16]. Similar to
Anderson transition, there may also exist a mobility edge sep-
arating many-body localized and ergodic states [17,18]. MBL
has significantly distinct features from ergodic phases, such
as logarithmic growth versus ballistic growth of entanglement
from nonentangled initial condition [19–22], area law versus
volume law scaling of entanglement entropy (EE) [15–17,23–
25], and Poisson distribution versus Wigner-Dyson distribu-
tion of energy level spacings [17,26–28], which can apply to
determine the mobility edge. Important experimental progress
has also been made in exploring the MBL in various platforms
involving ultracold atoms, trapped ions, nuclear spins, and
superconducting circuits [29–39].
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However, disorder is not the essential ingredient for MBL,
e.g., a static field may also provide a robust mechanism
to induce MBL, which is named as Stark MBL [40,41].
In closed systems, the Stark MBL shares analogous noner-
godic behaviors with the conventional disorder-induced MBL
[40–42], such as the Poisson statistic distribution of energy
level spacings and the logarithmic growth of entanglement.
A further study shows that the Stark MBL can be distin-
guished from the conventional MBL via the entanglement
growth when the systems are coupled to an external de-
phasing bath [43]. It is natural to ask whether the mobility
edge exists for interacting particles in a tilted and disor-
dered lattice where Stark MBL is present. Recently, the
authors of Ref. [44] found a broad crossover from the er-
godic phase to the localized phase as the tilted potential
increases. However, evidence of an energy-dependent tran-
sition from the ergodic phase to the Stark MBL is still
lacking.

In this article, we explore the ergodic-Stark MBL transition
of interacting spinless fermions in a one-dimensional optical
lattice subjected to uniform field and disorder, as depicted in
Fig. 1. We calculate the eigenspectrum and eigenstates in an
energy-resolved way by using a shift-inverse exact diagonal-
ization method. We uncover a clear mobility edge through
analyzing the statistics of the eigenspectrum and finite-size
scaling. Furthermore, we study the entanglement structure of
the eigenstates and find that the EE obeys the area law scaling
in the Stark MBL.

The rest of the article is organized as follows. In Sec. II, we
introduce the model for our physical system. In Sec. III, we
analyze the spectral properties and obtain the phase diagram.
In Sec. IV, we analyze the entanglement properties of the
Stark MBL phase. In Sec. V, we conclude and discuss our
results.
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FIG. 1. Schematic diagram of the interacting spinless fermions in
a disordered lattice subjected to a uniform field with strength F . The
fermions interact through nearest-neighbor interaction U and tunnel
between nearest sites with strength J/2.

II. DISORDERED STARK LADDER OF INTERACTING
SPINLESS FERMIONS

We consider an ensemble of interacting spinless fermions
in a one-dimensional disordered lattice in the presence of a
uniform field; see Fig. 1, which is described by the Hamilto-
nian

Ĥ =
L−1∑
j=1

[
J

2

(
ĉ†

j ĉ j+1 + ĉ†
j+1ĉ j

) + Un̂ jn̂ j+1

]
+

L∑
j=1

Vjn̂ j . (1)

Here, the system size is finite with total number of sites L.
ĉ†

j (ĉ j ) creates (annihilates) a fermion at site j and n̂ j = ĉ†
j ĉ j is

the particle number operator. J
2 and U are the nearest-neighbor

tunneling and interaction strength, respectively. Vj = h j − F j
is the position-dependent potential, where F is the strength of
the uniform field and hj ∈ [−W,W ] is uniformly distributed
with disorder strength W . The energy unit is set as J = U =
1. In the absence of disorder and at the single-particle level,
the eigenstates are the well-known Wannier-Stark states and
the energy spectrum forms an equidistant ladder, namely the
Stark ladder [45–47]. The Stark ladder causes exact many-fold
degeneracies in the many-body energy spectrum, which can
be lifted by the disorder to recover the generic localization
behaviors [41,42].

We consider half-filling of the lattice with total particle
number N = L/2 in the open boundary condition. By the
exact diagonalization method, we study such a system in
different sizes by averaging different disordered configura-
tions: L = 12 (at least 2000 samples), 14 (1000 samples),
16 (1000 samples), and 18 (600 samples). Using the shift-
invert spectral transformation (Ĥ − EÎ )−1 with Î being the
identity matrix, we can reach eigenstates at any energy density
ε = (E − Emin)/(Emax − Emin) [17], where Emin and Emax are
the minimum and maximum eigenergies for each disorder
realization, respectively. In the following studies, we consider
ε ∈ [0.15, 0.85] since the densities of states are too low at
the high- and low-energy tails of the energy spectrum. For
each parameter point and each disorder realization, we take
the closest 50 eigenpairs around each ε. The observables are
calculated from the corresponding eigenstates and averaged
over the set of eigenpairs and disorder realizations.

III. MANY-BODY MOBILITY EDGE INDUCED
BY UNIFORM FIELD

A well-known criterion to distinguish the MBL from the
ergodic phase is the statistic of the many-body eigenspectrum.

FIG. 2. (a) The disorder-averaged ratio of energy level spacings
〈r〉 as a function of (ε,W ) at F = 0. In the weak disorder region, all
the eigenstates are ergodic. (b) 〈r〉 as a function of (ε, F ) at W = 0.5.
The colors denote the values of 〈r〉 at L = 16. The numerical data
marked by red dots are the critical points extracted from the finite-
size scaling of 〈r〉 at system sizes L = 12, 14, 16, and 18. The error
bars represent the standard deviation from different fitting windows
and trials in the scaling process, see the text. The energy unit is set
as J = U = 1.

The ratio of the adjacent energy gap is defined as

rn = min (δn+1/δn, δn/δn+1), (2)

with δn = En − En−1 being the energy gap between eigen-
ergy En−1 and En. In the many-body localized system
such ratio obeys the Poisson distribution, PP(r) = 2/(1 +
r)2, while in the ergodic system it obeys the Wigner-Dyson
distribution of Gaussian orthogonal ensembles, PGOE(r) =
8(r + r2)/27(1 + r + r2)2.5 [48]. It is convenient to use 〈r〉,
the average of the adjacent gap ratio over different disorder
realizations, to distinguish the two phases. 〈r〉 changes from
〈r〉P ≈ 0.386 in the localized phase to 〈r〉GOE ≈ 0.531 in the
ergodic phase. In the absence of the field, all the eigenstates
are ergodic when W � 1.8 [17]. In Fig. 2(a), we show how
the disorder-averaged ratio 〈r〉 changes with energy density
and disorder strength at F = 0 and system size L = 16. We
numerically checked the values of 〈r〉, and find that 〈r〉 ≈
〈r〉GOE for all energy densities when 0.1 � W � 1. The small
nonergodic region in the lower-left corner in Fig. 2(a) is most
probably due to the proximity to the integral point W = 0
[26]. Without loss of generality, in the following study we fix
W = 0.5, at which all the eigenstates at F = 0 are ergodic,
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FIG. 3. The disorder-averaged ratio of the consecutive level spacings 〈r〉 as a function of the field strength at different energy densities
(a) ε = 0.2, (b) ε = 0.5, and (c) ε = 0.8. The data at system sizes L = 12, 14, 16, and 18 are denoted by red lines marked by dots, blue lines
marked by pluses, yellow lines marked by crosses, and green lines marked by circles, respectively. The two dashed gray lines correspond to
〈r〉GOE and 〈r〉P, respectively. The error bars stand for the standard error, which is smaller than the symbol size. Inset: Collapse of the corrected
data with (Fc, ν, y, g10 ) = (a) (0.74, 0.92, −2.41, 3.67); (b) (1.27, 0.94, −2.09, 3.21); (c) (0.16, 0.80, −2.18, −3.22). The energy unit is set
as J = U = 1.

and explore whether the uniform field will induce the transi-
tion from the ergodic phase to the localized phase.

In Fig. 2(b), we show the distribution of the disorder-
averaged gap ratio 〈r〉 in the plane of (F, ε) at W = 0.5 and
L = 16. It is obvious that for all the energy densities, 〈r〉
crossovers from 〈r〉GOE to 〈r〉P as the strength of the field
increases, which indicates that there may be a transition from
the ergodic phase to the Stark MBL. Moreover, there also
exists crossover from the ergodic phase to the localized phase
as energy changes, which indicates the possible existence of a
mobility edge.

To ascertain the energy-dependent ergodic-Stark MBL
transition and the critical points, we perform finite-size scal-
ings of 〈r〉 for different energy densities, and the system sizes
are chosen as L = 12, 14, 16, and 18. In Fig. 3, we plot 〈r〉 as a
function of F at energy densities ε = 0.2, 0.5, and 0.8. As the
strength of the field increases, the values of 〈r〉 for different
system sizes cross around a critical value Fc between the two
limiting values 〈r〉GOE and 〈r〉P. The critical points Fc can be
extracted via rescaling F by (F − Fc)L1/ν , so that the data of
〈r〉 collapse into a single universal function of (F − Fc)L1/ν .
However, the finite system size causes the crossing point shift
with the system size, which is rather obvious in Fig. 3(b).

To estimate the values of the critical uniform field strength
Fc under the condition of limited system sizes, we express the
scaling function of the averaged gap ratio 〈r〉 as

r = g(χL1/ν, φLy), (3)

where χ is the relevant scaling variable, ν is the critical expo-
nent, and φLy is the irrelevant correction term to the scaling,
which accounts for the shift of the critical point Fc with system
size. The relevant and irrelevant variables χ and φ can be
expanded in terms of F as

χ = (F − Fc) +
mR∑
k=2

χk (F − Fc)k,

φ = 1 +
mI∑

k=1

φk (F − Fc)k .

(4)

Expanding in a Taylor series of the irrelevant variable [49,50],
the scaling function reads as

r=
nI∑

k=0

(φLy)kgk (χL1/ν ) = g0(χL1/ν ) + φLyg1(χL1/ν ) + · · · ,

(5)
where gk>0 are the correction functions due to the irrelevant
variable. Each gk (χL1/ν ) can be a Taylor series of χL1/ν :

gk (χL1/ν ) =
nk∑

l=0

gkl (χL1/ν )l , (6)

where gkl are the variables of different orders. The order of
expansions in Eqs. (4) and (6) should be restricted by mR � mI

and n0 � n1 � · · · since the irrelevant term is less important
than the relevant one in the scaling function and it should
be less important as the order of correction increases [50].
The correction should vanish in large L, thus the irrelevant
exponent y < 0. The scaling of 〈r〉 is exhibited by subtracting
the correction terms such that the corrected data

rcorrected = 〈r〉 −
nI∑

k=1

(φLy)kgk (χL1/ν ) (7)

collapse into a single universal function g0(χL1/ν ). Here, we
suppose nonlinearity is absent in the expansion of χ and only
the constant term is kept in the expansion of φ, that is, mR = 1
and mI = 0.

There are totally Np = (mR − 1) + mI + ∑nI
k=1(nk + 1) +

3 free fitting parameters when the correction is present and
Np = (mR − 1) + 2 free parameters when the correction is
absent. We consider corrections up to the first order (with
nI = 1 and n1 = 0). The details of our finite-size scaling pro-
cedure are referred to the Appendix. We find that comparing
to that without correction, including the first-order correction
improves the degree of data collapse by reducing the differ-
ence of the rescaled curves D (see Fig. 6) and eliminates the
shift of the critical field strength (see Fig. 7). The collapse
of the corrected data is respectively shown in the insets of
Fig. 3, where 〈r〉corrected for all system sizes collapse into
a single function g0[(F − Fc)L1/ν]. Proceeding with higher
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FIG. 4. (a) The critical exponents ν and (b) the irrelevant expo-
nents at different ε. The error bars represent the standard deviation.

orders of correction is straightforward, but we do not perform
them further since D is reduced less than one order for the
first-order correction.

The critical values for different energy densities after the
first order of correction are plotted in Fig. 2(b) (see the red
dots with error bars), which shows a clear mobility edge
induced by the uniform field. We notice that this mobility edge
is asymmetric about the center of the energy spectrum: it is
slightly shifted towards the ground energy, which resembles
that in the disordered many-body systems [17,18]. The critical
exponent and the irrelevant exponent are shown in Fig. 4.
The results give a consistent value of the critical exponent for
all the ε with ν = 0.86 ± 0.12, and a consistent value of the
irrelevant exponent with y = −2.64 ± 0.43. We notice that
the error bars of y are relatively large at the boundaries of ε,
which may be attributed to the lower density of states at the
tails of the energy spectrum.

IV. AREA LAW OF ENTANGLEMENT ENTROPY

At last, we study the entanglement properties of the many-
body eigenstates in the ergodic phase and the Stark MBL. The
bipartite entanglement between a subsystem A and the rest of
the system B can be quantified by the von Neuman EE

S = −Tr(ρ̂A ln ρ̂A), (8)

where ρ̂A is the reduced density matrix of the subsystem
A. We consider the half-chain EE, i.e., the subsystem A is
chosen to be a block of L

2 contiguous sites. In our calculation,
the eigenstates are expressed in the Fock bases as |ψ〉 =∑

n1... nL
Cn1... nL |n1 . . . nL〉, where ni = 0, 1 is the number of

particles on site i and Cn1...nL is the complex amplitude. The
reduced density matrix of the subsystem A then reads

ρ̂A =
∑
�nL,�n′

L

|�nL〉〈�n′
L|

∑
�nR

C[�nL,�nR]C
∗
[�n′

L,�nR], (9)

where �nL = {n1 . . . nL/2} and �nR = {nL/2+1 . . . nL} are shorted
for the sequence of occupation numbers of the left and right
parts of the chain. According to the above reduced density
matrix, we can calculate the von Neuman EE for different
parameters and disorder realizations. In the ergodic phase, the
eigenstates are thermal, thus the von Neuman EE equals to
the thermodynamic entropy, which is extensive. This leads
to the volume law scaling of the von Neuman EE, that is,
S is proportional to the volume of the subsystem A [15,16].
In the disorder-induced MBL, the eigenstates can be written
as product states by quasilocal unitary transformations, which

implies that the von Neuman EE is proportional to the area of
the surface between the two subsystems, that is, it obeys the
area law scaling [15–17,23–25].

EE has been calculated in tilting systems [51,52], but the
analysis of the scaling of EE with system size is still lacking.
We now test the volume law and area law scalings of the
EE in the ergodic phase and the Stark MBL, respectively.
The disorder-averaged 〈S〉 is shown in Fig. 5, as a function
of F at energy densities ε = 0.2, 0.5, and 0.8 and different
system sizes. In the ergodic phase at weak field strength, 〈S〉 is
size-dependent and behaves as L fε (F ) + cε (F ), signifying the
volume law scaling. The maximum EE at each energy density
approaches L

2 ln 2 + cε , as shown by the dashed gray lines in
Fig. 5. On the other hand, in the localized phase at strong field,
the averaged EE is much lower than that in the ergodic phase
and collapses into a single curve for all system sizes, meaning
that the EE obeys the area law scaling in the Stark MBL.

In the insets of Fig. 5, we plot the variance of the EE
σ 2 = 〈S2〉 − 〈S〉2 as a function of the field strength at energy
densities ε = 0.2, 0.5, and 0.8. It is well known that for the
ergodic-MBL transition, the variances of the EE in finite sys-
tems show peaks near the transition points, originating from
the coexistence of the delocalized and localized regime [25],
and can be used to locate the transition points [17,25]. We find
that this scenario is also valid in the ergodic-Stark MBL tran-
sition, as can be seen in the insets of Fig. 5, where the peaks of
the variance become sharper and the corresponding locations
tend to the transition points as the system size increases.

V. CONCLUSION AND DISCUSSION

We revealed the existence of a mobility edge between er-
godic and Stark MBL states of interacting spinless fermions in
a disordered Stark ladder. We find that the spectral properties
of the Stark MBL are in common with that of the conventional
disorder-induced MBL. Specifically, the statistic of the adja-
cent gap ratio of the eigenspectrum is of Poisson type and the
EE obeys the area-law scaling in the Stark MBL. Through a
finite-size scaling of the adjacent gap ratio, we give the phase
diagram of the mobility edge in the eigenspectrum.

Based on the present techniques of manipulating and de-
tecting ultracold atoms in optical lattices, it is possible to
verify the mobility edge of interacting fermions in the dis-
ordered Stark ladder. As a dynamical phase transition, the
MBL transition is commonly detected via monitoring the
quench dynamics from an initial low entropy product state,
usually the charge density wave state with even lattice sites
occupied [32–34]. Distinction between the ergodic and lo-
calized phases is drawn by checking the stationary value of
the imbalance between the atom numbers on the even and
odd lattice sites, which is zero for the ergodic phase and
nonzero for the localized phase. Although previous experi-
ments do not consider the energy dependence of the MBL
transition, extension to detect the mobility edge is feasible
as long as the Hamiltonian parameters and the initial states
are well known [53]. In the same spirit of Ref. [53], the
Stark many-body mobility edge in this paper can be probed
by monitoring the quench dynamics of different initial Fock
states with different energies, which are conserved during the
time evolution. Our model (1) can be realized by loading
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FIG. 5. The disorder-averaged von Neuman EE 〈S〉 as a function of the field strength F at different energy densities (a) ε = 0.2, (b) ε = 0.5,
and (c) ε = 0.8. The data at system sizes L = 12, 14, 16, and 18 are denoted by red lines marked by dots, blue lines marked by pluses, yellow
lines marked by crosses, and green lines marked by circles, respectively. The dashed gray lines correspond to the maximal values of EE:
(a) L

2 ln 2 − 1.76, (b) L
2 ln 2 − 0.838, and (c) L

2 ln 2 − 1.445. Insets: The disorder-averaged variance σ 2 of the von Neuman EE as a function
of the field strength. The peaks become sharper as the system size increases and the peak locations indicate the ergodic-Stark MBL transition
points. The energy unit is set as J = U = 1.

fermions in one-dimensional disordered and tilting optical lat-
tices, with disorder created by an optical speckle field [54,55]
and the tilt induced by a well-controlled magnetic field gradi-
ent. The disordered potential can be precisely measured and
the localized single-particle wave function in the disordered
lattice can be calculated [54,55]. Thereby, the Hamiltonian
parameters can be determined with high precision. A generic
initial Fock state with total particle number L/2 could be

precisely prepared with addressing technique [56]. The
quench dynamics can be monitored via single-site and
single-atom resolved fluorescence imaging [56–60]. All these
techniques provide the possibility to probe the Stark many-
body mobility edge.

Note added. Recently, we became aware of the related
work of studying Stark MBL of bosons and the coexistence
of localized and ergodic states in harmonic trap [61].

FIG. 6. (a, b) The global minima Dmin(Fc, ν ) of D(Fc, ν ) for different fitting windows at ε = 0.5, when not considering corrections.
The global minima for each w overlap in the space (Fc, ν ), such that each mark represents multiple sets of data. (c)–(f) The minima of
D(Fc, ν, y, g10 ) for different fitting windows at ε = 0.5, when considering the simplest first-order correction (nI = 1, n1 = 0). The data sets in
the dashed red box represent the local minima for each w, which correspond to the global minima in (a) and (b). The data sets in the solid
blue box represent the global minima for each w, which are used to estimate the critical points. The global minima in (e) and (f) are clustered
tightly, such that the data in the blue box overlap with each other. (g) The global minima Dmin at different ε without correction (dashed red
line) and with the simplest first-order correction (solid blue line). The lines are guide to eyes. The error bars represent the standard deviation
from different fitting windows and fitting trials.
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FIG. 7. The corresponding data in Fig. 3 after substraction of the corrections for scaling [see Eq. (7)], with (Fc, ν, y, g10) given by
(a) (0.74, 0.92, −2.41, 3.67); (b) (1.27, 0.94, −2.09, 3.21); (c) (0.16, 0.80, −2.18, −3.22). The energy unit is set as J = U = 1.
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APPENDIX: DETAILS OF FINITE-SIZE SCALING

To perform the collapse procedure, we define the difference
of the rescaled curves between different system sizes as

D = 1

wR

∑
Li<L j

∫ wR
2

− wR
2

[rcorrected(x, Li ) − rcorrected(x, Lj )]
2dx.

(A1)

Here, Li =12, 14, 16, 18, rcorrected(x, Li ) represents the
spline-interpolated data of the corrected curve for each
Li after transforming F to x = (F − Fc)L1/ν , R is set as
max [(F − Fc)121/ν] − min [(F − Fc)121/ν], and w defines
the width of the fitting window used for the collapse pro-
cess. Thus, after setting w and the orders of expansion in
Eqs. (5) and (6), D is only a function of Fc, ν, y and other
expansion coefficients �g as a combination of all gkl for k > 0.
Note that when not including the correction, D only depends
on Fc and ν. The critical values are obtained by minimiz-
ing D. The fitting windows are tested from 0.3 to 1. For
each fitting window, more than 3000 fitting trials are per-
formed, starting with different initial fitting parameters. We

extract (Fc, ν, y, �g) by averaging over all the obtained global
minima for all w and give the error bars by the standard
deviation.

We mainly consider two situations, without correction and
with the simplest first-order correction. When the correction
is absent, i.e., nI = 0, there are only two fitting parameters
(Fc, ν). The global minima of D(Fc, ν) for all the fitting
windows at ε = 0.5 are shown in Figs. 6(a) and 6(b). The
loca of the minima for different fitting windows are tied to-
gether, thus the fluctuations of the critical points are quiet
small.

When considering the simplest first-order correction by
setting nI = 1 and n1 = 0, there are four free fitting param-
eters (Fc, ν, y, g10). We note that small fluctuation in y would
cause large fluctuation in g10. The fitting regime of g10 is re-
stricted to [−10, 10]. This restriction hardly influences (Fc, ν),
with (Fc, ν) changed within the error bars when magnify-
ing this regime for ten times. Figures 6(c) to 6(f) show the
minima for all the fitting windows at ε = 0.5. We can see
that the minima are bunched into two clusters, with the local
minima framed in the dashed red box and global minima in
the solid blue box. The locations of the local minima (Fc, ν)
are consistent with those of the global minima in Figs. 6(a)
and 6(b) where the correction is absent. This can be explained
by the large values of the corresponding |y|, which makes
the correction far less important. This correspondence also
means that including the first-order correction will improve
the degree of collapse by reducing D. The global minima Dmin

at all ε with and without correction are shown in Fig. 6(g). For
all ε, Dmin is reduced with a magnitude less than one order
when the simplest first-order correction is considered. The
corrected data after substraction of the correction are shown
in Fig. 7, which corresponds to Fig. 3 without correction. We
can see that after correction these curves for different system
sizes now cross at fixed Fc.
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