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Spin squeezing of a Bose-Einstein condensate via a quantum nondemolition measurement
for quantum-enhanced atom interferometry

Michail Kritsotakis,1,* Jacob A. Dunningham ,1 and Simon A. Haine2

1Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom
2Department of Quantum Science, Research School of Physics and Engineering, The Australian National University,

Canberra, Australian Capital Territory 2601, Australia

(Received 12 May 2020; revised 16 January 2021; accepted 19 January 2021; published 16 February 2021)

We theoretically investigate the use of quantum nondemolition measurement to enhance the sensitivity of
atom interferometry with Bose-condensed atoms. In particular, we are concerned with enhancing existing high-
precision atom interferometry apparatuses, and so restrict ourselves to dilute atomic samples and the use of
free-propagating light or optical cavities in the weak-coupling regime. We find the optimum parameter regime
that balances between spin squeezing and atomic loss and find that significant improvements in sensitivity are
possible. Finally, we consider the use of squeezed light and show that this can provide further boosts to sensitivity.
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I. INTRODUCTION

Atom interferometers are powerful tools for making pre-
cision measurements particularly in the realm of inertial
navigation since they can provide sensitive measurements of
accelerations and rotations with very low baseline drift [1,2].
A lot of interest has therefore developed in finding ways of
improving their performance to gain advantage in different
applications. It has been shown that Bose-condensed atomic
sources can outperform thermal sources due to their narrow
momentum linewidth, despite their reduced atomic flux [3–7].
The use of nonclassical atomic states such as spin-squeezed
states can offset this reduction in flux even further by allowing
for sensitivities beyond the shot-noise limit (SNL) [8–11]. In
this paper, we investigate the use of quantum nondemolition
(QND) measurements in collections of Bose-condensed atoms
to generate quantum states that could be used to enhance
their precision in a range of metrology schemes. The mech-
anism for generating quantum enhanced many-atom states
can be broadly classified into two categories: Those that use
atom-atom interactions [9,12–19] and those that use atom-
light interactions [20–38]. While several experiments have
demonstrated nonclassical states generated through atom-
atom interactions [39–48], so far these have been restricted
to small numbers of atoms and have not been applied to
atom interferometry capable of inertial measurements. This
is partly because the atom-atom interactions required for the
generation of the entanglement create unavoidable multimode
dynamics which inhibit mode matching [18,49–52] and phase
diffusion [53,54]. Quantum entanglement through atom-light
interactions, which are free to operate in regimes where the
effects of atom-atom interactions are negligible, have also
been successfully demonstrated. In particular, the use of light
to perform QND measurements of the collective atomic spin
has shown significant spin squeezing [55–63]. So far, these
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experimental demonstrations have been restricted to cold ther-
mal atoms. In this work, we focus on Bose-condensed sources,
with the motivation of implementing this quantum enhance-
ment technique on existing high-precision, large space-time
area atomic gravimetry setups, such as in Ref. [64]. In partic-
ular, the requirement that the Bose-Einstein condensate (BEC)
is expanded before the atomic beam-splitting process dictates
a minimum spatial size of the source and prevents excessively
elongated samples, such as in Ref. [61]. Furthermore, we
restrict ourselves to freely propagating light and find the opti-
mum parameter regime which balances the spin squeezing and
atomic loss caused by spontaneous emission. We also consider
the use of optical cavities but restrict ourselves to cavities
that are assembled outside the vacuum chamber, which are
inherently low finesse with weak atom-light coupling due to
the large cavity volume. We also consider the use of squeezed
light to further enhance the sensitivity.

This paper is structured as follows. In Sec. II, we review
atom interferometry and quantify how spin squeezing via
QND measurements improves the sensitivity. In Sec. III, we
introduce a simple model of QND squeezing which allows us
to make some simple analytic scaling predictions. In Sec. IV
we present our full model including a freely propagating
multimode optical field and decoherence due to spontaneous
emission. In Sec. V, we derive approximate analytic solutions
to this model, and in Sec. VI we analyze the system numeri-
cally. In Sec. VII, we examine the effect of BEC interactions
on the level of spin squeezing. In Sec. VIII, we investigate
how the use of squeezed light affects the behavior. In Sec. IX,
we investigate the use of an optical cavity.

II. USING QND MEASUREMENTS TO ENHANCE THE
SENSITIVITY OF A MACH-ZEHNDER

INTERFEROMETER

Atom interferometers used to measure accelerations and
rotations are usually based on the Mach-Zehnder (MZ) con-
figuration [65,66]. Starting with an ensemble of atoms with
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two stable ground states, labeled |1〉 and |2〉, a π
2 pulse, or

beam splitter, implemented by a two-photon Raman transi-
tion is used to place each atom in an equal superposition of
these states, while transferring momentum h̄k0 to the state
|2〉 component, where k0 is determined by the difference in
wave vectors of the two Raman lasers. The atoms then evolve
for a period of time T before a second Raman transition
implements a π pulse, or “mirror.” After a second period of
time T , a second π

2 beam-splitter pulse is implemented, and
the number difference is read out. Such a system is conve-
niently described by introducing the pseudospin operators Ĵk

defined by

Ĵk = 1

2
(â†, b̂†)σk

(
â
b̂

)
, (1)

with k = x, y, z, where σk is the kth Pauli matrix and â, b̂ are
the annihilation operators of a particle from |a〉 and |b〉 modes
respectively. These operators obey the SU(2) commutation
relations

[Ĵx, Ĵy] = iĴz, [Ĵy, Ĵz] = iĴx, [Ĵz, Ĵx] = iĴy . (2)

It can be shown that the MZ interferometer described above
performs the operation

Ĵk = eiĴyθ Ĵk (0)e−iĴyθ , (3)

where θ is the phase difference that has accumulated between
the two arms of the interferometer and Ĵk (0) are the opera-
tors before the pulse sequence [7,67–69]. For a gravimeter,
θ = g · k0T 2, where g is the gravitational field. The task of
estimating g, the magnitude of the gravitational field parallel
to k0, then comes down to our ability to estimate θ . That is,
�g = �θ/|k0|T 2.

For a particular measurement signal Ŝ, the sensitivity is
given by

�θ =
√

Var(Ŝ)

(∂θ 〈Ŝ〉)2
. (4)

Choosing Ŝ1 = Ĵz for Ŝ, the number difference at the output of
the interferometer, we find

Ĵz = Ĵz(0) cos(θ ) − Ĵx(0) sin(θ ) . (5)

Operating around θ ≈ 0, we find

�θ =
√

Var(Ĵz )

(〈Ĵx〉)2
. (6)

Choosing an initial state as Na uncorrelated atoms in an equal
superposition of |1〉 and |2〉, i.e., a coherent spin state [70],

|�〉 =
[

1√
2

(â† + b̂†)

]⊗Na

|0, 0〉 , (7)

we find

�θ = 1√
Na

, (8)

which is the shot-noise limit (SNL). This is the best possible
sensitivity for any uncorrelated state. That is, any state of

the form |�〉 = (c1|1〉 + c2|2〉)⊗Na . Equation (8) motivates the
introduction of the spin-squeezing parameter ξs, defined by

ξs = √
Na

√
Var(Ŝ)

|∂θ 〈Ŝ〉| (9)

such that

�θ = ξs√
Na

. (10)

The use of input states with quantum correlations such that
ξs < 1 gives sensitivities better than the SNL. We should point
out here that we consider a scheme where the preparation
of the entanglement-enhanced state and the interferometer
sequence are two completely separate stages of the whole
procedure. Essentially, we first prepare a spin-squeezed state,
which would be used as the input state of the interferome-
ter. This is the reason why we will explicitly denote in the
following that θ = 0 in the atomic variables, which is the
point of interest, since in practice the interferometer is biased
to operate around the most sensitive point, which is θ = 0.
A state with ξs < 1 can be achieved by creating atom-atom
entanglement and also by creating entanglement between the
atoms and some auxiliary field, such as an optical beam. By
measuring both fields together, it is possible to create a signal
with reduced fluctuations and therefore increased sensitivity,
specifically, by measuring the combined signal

Ŝ2 = Ĵz(0) − Ĵ inf
z , (11)

where Ĵ inf
z = GŜb represents an inference of the population

difference, based on measurements of some optical observable
Ŝb. The constant G is a proportionality factor, which is found
by minimizing the variance of the total signal Var(Ŝ2) with
respect to G,

G = Cov(Ĵz(0), Ŝb)

Var(Ŝb)
, (12)

which gives

Var(Ŝ2) = Var(Ĵz(0)) − Cov2(Ĵz, Ŝb)

Var(Ŝb)
. (13)

Hence, creating atom-light entanglement and measur-
ing the appropriate light observable in such a way that
Cov2(Ĵz (0),Ŝb)

Var(Ŝb)
> 0 yields a reduced signal variance Var(Ŝ2) <

Var(Ĵz(0)) = Var(Ŝ1), increasing the sensitivity over purely
measuring the population difference between the two inter-
ferometer modes. As the optical observables are unaffected
by the MZ sequence, which only acts on atomic degrees of
freedom, at θ = 0 we have �θ = ξs2/

√
Na, where

ξs2 =
√

Na

√
Var(Ŝ2)

|〈Ĵx〉|
. (14)

Hence, if we use an atomic state with ξs2 < 1 as the input state
of the interferometer it would result in a performance surpass-
ing the SNL (�θ < 1/

√
N). If the Hamiltonian responsible

for the atom-light entanglement commutes with Ĵz, then this
is an example of a QND measurement, as there is no mea-
surement backaction on the observable being measured. In the
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FIG. 1. Simplified scheme showing QND entanglement via an
atom-light interaction. An optical mode represented by annihilation
operator b̂1(2) interacts with an ensemble of Bose-condensed atoms
(annihilation operator â1(2)).

next section, we model the atom-light interaction and quantify
how the appropriate choice of Ŝb improves the sensitivity.

III. SIMPLE MODEL: SINGLE-MODE LIGHT FIELDS

In order to demonstrate how QND squeezing affects the
sensitivity, we begin with a simplified model where we make
the single-mode approximation for both the atomic fields and
optical fields, sssuming an ensemble of two-level atoms in
the ground motional state of a trapped BEC, with each level
interacting with a far-detuned laser beam, as described in
Fig. 1.

The simplified Hamiltonian for the system is

Ĥint = −h̄χsm(â†
1â1b̂†

1b̂1 + â†
2â2b̂†

2b̂2) , (15)

where χsm indicates the interaction strength between the
atoms and the light in our simple model. Also, â j =∫

u∗
0(r)ψ̂ j (r) d3r annihilates an atom from the ground mo-

tional state of the BEC [spatial wave function u0(r)], and
b̂ j annihilates a photon from the optical mode interacting
with atomic state | j〉. The atomic and light operators sat-
isfy [âi, â†

j ] = δi j and [b̂i, b̂†
j] = δi j respectively. As both â†

j â j

and b̂†
j b̂ j commute with the Hamiltonian, the solution to the

Heisenberg equations of motion for the system are

â j (t ) = â j (0)eiχsm b̂†
j (0)b̂ j (0)t , (16a)

b̂ j (t ) = b̂ j (0)eiχsm â†
j (0)â j (0)t . (16b)

Examining the form of Eq. (16b), we see that the phase
of the optical mode is correlated with the population of
the corresponding atomic mode. This motivates us to exam-
ine Ŷb j , where Ŷb j = i(b̂ j − b̂†

j ) is the phase quadrature of
the light field. After making the small angle approximation
χsmt â†

j â j � 1 we find

Ŷj (t ) ≈ Ŷj0 − χsmt â†
j â j X̂ j0 (17)

where Ŷj0 = i(b̂ j (0) − b̂†
j (0)) and X̂ j0 = b̂ j (0) + b̂†

j (0), and

notice that Ŷj (t ) ∝ N̂a j . Hence we can make an inference
about the atomic population difference by measuring the dif-
ference of the two phase quadratures. In order to calculate the
strength of these correlations, we choose Glauber coherent
states |α j〉 and |β j〉, with Im(α j ) = Im(β j ) = 0 as the ini-
tial state for the atomic and optical modes respectively. This
corresponds to an atomic state with the expectation value of
the spin aligned to the x-axis, but with a fluctuating total
number. The choice of a Glauber coherent state rather than a
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FIG. 2. Simple model: Analytical (red solid line) and numerical
calculation (blue dots) of ξs2 with respect to the collective parameter
χ 2

smNpht2. The black dashed and dotted lines represent the SNL and
the Heisenberg limit respectively. The error bars were calculated by
taking the standard deviation over many different iterations of the
system dynamics.

coherent spin state was for computational convenience. It has
previously been shown that for large atom number, this state
provides almost identical spin-squeezing predictions [71]. As
there is no physical process that couples parts of the Hilbert
space corresponding to different values of the total atom num-
ber, whether this state is a true number superposition, or an
incoherent mixture of total atom number has no observable
consequence [49]. This state can be obtained by beginning
with all the atoms in one state, and applying a rotation around
the y-axis (i.e. and atomic beamsplitter). Setting Ŝb = Ŷ2 − Ŷ1

we find

Var(Ŝb(t )) ≈ 2 + 4χ2
smNphNat2 , (18)

and

Var(Ŝ2(t )) = Na

4

(
1 − 2χ2

smNaNpht2

1 + 2χ2
smNaNpht2

)
(19)

where Nph = |β1|2 = |β2|2 is the expectation value of the
number of photons. Using this in Eq. (14) we find

ξs2 = eχ2
smNpht2

(
1 − 2χ2

smNaNpht2

1 + 2χ2
smNaNpht2

)1/2

. (20)

We notice in Fig. 2 that we obtain better sensitivities for our
signal compared to the SNL, indicating that we have created
a spin squeezed state. We find the optimum value for the
number of photons Nopt

ph = 1
2χ2

smt2 which gives the minimum

value (ξ sm
s2

)
min

=
√

e
Na

.
This section demonstrates that this kind of atom-light inter-

action creates an atomic spin squeezed state and consequently
boosts the interferometer’s performance. In the following sec-
tion, we model the system more rigorously, using the freely
propagating light field and including the effects of atomic
spontaneous emission.
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Local Oscillator

Homodyne detection

FIG. 3. Schematic of the free-space QND scheme. After interact-
ing with the atomic ensemble, the freely propagating optical field is
measured via homodyne detection.

IV. DETAILED MODEL DESCRIBING ATOM-LIGHT
INTERACTION

We now consider a more detailed model that more accu-
rately captures the relevant physics. In particular, in order
to model propagating laser beams, we require a multimode
model for the optical fields (see Fig. 3). We also include
spontaneous emission from the excited atomic states, which
will limit the amount of QND squeezing in practice.

A. Equations of motion describing atom-light interaction

We assume an ensemble of Bose-condensed atoms with
two electronic states |1〉 and |2〉, coupled to excited states
|3〉 and |4〉 respectively (Fig. 4). The coupling is achieved
by far-detuned lasers, which are described by annihilation
operators b̂1(z, t ) and b̂2(z, t ), satisfying the commutation
relations [b̂i(z, t ), b̂†

j (z
′, t )] = δi jδ(z − z′) for i, j = 1, 2. We

assume both optical fields have narrow linewidths compared
to the natural linewidths of the atomic transitions, with central
frequencies given by ωL1 = ω13 − �1 and ωL2 = ω24 − �2,
where �1 and �2 are the detunings from the |1〉 → |3〉 and
|2〉 → |4〉 transitions, respectively. The Hamiltonian for the
total system after making the rotational-wave approximation

FIG. 4. Atomic energy diagram of the two two-level systems.
Each atom is placed in a superposition of electronic states |1〉 and |2〉,
with excited states |3〉 and |4〉. Two independent lasers (annihilation
operators b̂1 and b̂2) are detuned from the |1〉 → |3〉 and |2〉 → |4〉
transitions by detuning �1 and �2, respectively.

(RWA) is

Ĥtot = h̄
∫ ∞

−∞
dz(ω13ψ̂

†
3 (z, t )ψ̂3(z, t ) + ω24ψ̂

†
4 (z, t )ψ̂4(z, t ))

− ih̄c
∫ ∞

−∞
b̂†

1(z, t )∂zb̂1(z, t )dz

− ih̄c
∫ ∞

−∞
b̂†

2(z, t )∂zb̂2(z, t )dz

+ h̄g13

∫ ∞

−∞
(ψ̂†

1 (z, t )ψ̂3(z, t )b̂†
1(z, t ) + H.c.)dz

+ h̄g24

∫ ∞

−∞
(ψ̂†

2 (z, t )ψ̂4(z, t )b̂†
2(z, t ) + H.c.)dz,

(21)

where ψ̂i(z, t ) is the field operator which annihilates an atom

from atomic state |i〉 at position z, and g13 = d13
h̄ (

h̄ωL1
2ε0A )

1/2

and g24 = d24
h̄ (

h̄ωL2
2ε0A )

1/2
are the atom-light coupling constant,

where d13 = −e〈3|r̂|1〉 and d24 = −e〈4|r̂|2〉 are the dipole
moment matrix elements for the atomic transitions |1〉 → |3〉
and |2〉 → |4〉 respectively, A is the transverse quantization
area of the light beam, and c is the speed of light.

For simplicity, in the following we will present the Heisen-
berg equations of motion just for one two-level system {|1〉 →
|3〉, b̂1(z, t )}, since the two systems are decoupled in the
sense that the Heisenberg equations of motion for |1〉 → |3〉
and |2〉 → |4〉 are independent. The corresponding equations
hold for the second two-level system {|2〉 → |4〉, b̂2(z, t )} as
well.

We incorporate spontaneous emission as a Langevin term
in our Heisenberg equation of motion by coupling the atoms
being in their excited state to a reservoir of vacuum elec-
tromagnetic modes, which is then traced over, described by
the Hamiltonian Ĥbath = h̄

∫ ∞
−∞ dz

∫ ∞
−∞ dω ω d̂†(ω, z)d̂ (ω, z),

where d̂ (ω, z) is the continuous in space and frequency anni-
hilation operator of the bath satisfying [d̂ (ω, z), d̂†(ω′, z′)] =
δ(ω − ω′)δ(z − z′). Hence, the equation of motion for ψ̂3(z, t )
in the presence of this Langevin term [72] is

∂t ψ̂3(z, t ) = − i

h̄
[ψ̂3(z, t ), Ĥtot]

−
[
γ3

2
ψ̂3(z, t ) + √

γ3d̂1in (z, t )

]
, (22)

where γ3 is the spontaneous emission rate from the excited
state and d̂1in (z, t ) = 1√

2π

∫ ∞
−∞ dωe−iω(t−t0 )d̂0(ω, z) is the stan-

dard Langevin noise term depending on the value of the bath
operator at the initial time point t0, d̂ (ω, z, t = t0) = d̂0(ω, z).
After moving to a rotating reference frame, with respect to
the central frequency of the light field, ωL1 , we adiabatically
eliminate the excited-state field operator ψ̂3 [73]. Thus, the
Heisenberg equations of motion for ψ̂1(z, t ) and b̂1(z, t ) are

∂t ψ̂1(z, t ) = ig2
13

�1 + i γ3

2

�2
1 + γ 2

3
4

b̂†
1(z, t )b̂1(z, t )ψ̂1(z, t )

+g13

√
γ3

�1 − i γ3

2

b̂†
1(z, t )d̂1in (z, t ), (23a)
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(
1

c
∂t + ∂z

)
b̂1(z, t ) = i

g2
13

c

�1 + i γ3

2

�2
1 + γ 2

3
4

ψ̂
†
1 (z, t )ψ̂1(z, t )b̂1(z, t )

+g13

c

√
γ3

�1 − i γ3

2

ψ̂
†
1 (z, t )d̂1in (z, t ),

(23b)

where �1 is the detuning of the transition from the ground
to the excited state. We solve the equation for the light field
by making the substitution z → z + ct . As the timescale for
the atomic dynamics is much slower than the timescale for
the light to cross the atomic sample, we make the approxi-
mation that the light moves between two arbitrary points zB

to zC instantaneously, i.e., b̂†(zB, t )b̂(zB, t ) = b̂†(zC, t )b̂(zC, t ),
as long as there is no atom-light interaction in [zB, zC]. In
addition, as our system is a Bose-Einstein condensate, we as-
sume that all the atoms are in the ground motional state of the
trap, which allows us to make the single-mode approximation
ψ̂1(z, t ) = u0(z)â1(t ). Assuming

∫ zR

zL
|u0(z)|2dz ≈ 1 for points

zL and zR sufficiently far to the left and right of the atomic
sample, respectively, we can write

b̂1(zR, t ) = b̂01(t )ei
g2

13
c (�+i�)â†

1 (t )â1(t )

+ g13

c

√
γ3

�1 − iγ3/2
â†

1(t )q̂1in (t ), (24)

where we have considered the same motional function for
the Langevin noise d̂1in (z, t ) = u0(z)q̂1in (t ). We have also de-
fined b̂01(t ) = b̂1(zL, t ) and � ≡ �1

�2
1+γ 2

3 /4
, �3 ≡ γ3/2

�2
1+γ 2

3 /4
for

notation simplicity. In order to find a simpler form for the
atomic equation, Eq. (23a), we make the approximation that
b̂†

1(z, t )b̂1(z, t ) ≈ b̂†
1(zL, t )b̂1(zL, t ); i.e., the number of pho-

tons in the mode does not change to a good approximation.
Hence, after making the single-mode approximation again, we
obtain

∂t â1(t ) = ig2
13(� + i�)b̂†

01(t )b̂01(t )â1(t )

+ g13

√
γ3

�1 − i γ3

2

b̂†
01(t )q̂1in (t ) . (25)

B. Measurement of the optical observables

As in Sec. III, we notice that Eq. (24) indicates correlations
between the atomic number and the phase of the light. We
can define the phase quadrature for our multimode light field
by selecting one specific mode. Specifically, we define Ŷ�1

=
i(�̂1 − �̂†

1) where

�̂1 =
∫ τ

0
u∗

LO(t )b̂1(zD, t )dt, (26)

where zD is the position of the photodetector. Also, uLO(t )
corresponds to the temporal mode shape of the local oscillator
used in the homodyne detection [74], satisfying∫ τ

0
|uLO(t )|2dt = c, (27)

which ensures [�̂1, �̂†
1] = 1 and consequently [X̂�1

, Ŷ�1
] =

−2i, where X̂�1
= �̂1 + �̂†

1 is the corresponding amplitude

quadrature of �̂1. The most appropriate choice of local os-
cillator for this scheme is one with constant intensity with
the frequency matched to the carrier frequency of our optical
field, i.e.,

uLO(t ) =
√

c

τ
. (28)

V. APPROXIMATE ANALYTIC SOLUTIONS

We can obtain an analytical estimate of the quantum-
enhancement parameter, ξs2 , after making some approxima-
tions. Here we briefly present the basic intermediate steps
we made in order to find out ξs2 , with and without sponta-
neous emission. A much more detailed presentation of these
calculations can be found in the Appendixes A–C 4. For
simplicity, we assume that the atom-light interaction strengths
as well as the detunings are the same for the two atomic tran-
sitions, i.e., g13 = g24 = g and �1 = �2 = � respectively.
We also consider that initially the atoms and the light fields
are in coherent states with the same amplitudes for the two
atomic levels â1(2)(0)|α1(2)〉 =

√
Na
2 |α1(2)〉 and for the light

b̂01(t )|β1〉 = β0|β1〉, b̂02(t )|β2〉 = β0|β2〉, where we also as-
sume that β0 = β∗

0 .

A. No spontaneous emission

Ignoring the effect of spontaneous emission (i.e., γ3 = 0)
vastly simplifies the problem and allows easy comparison with
the simple single-mode model of Sec. III. In this case, the
calculation of the atomic expectation values we are interested
in is quite straightforward:

〈
N̂a1 (t )

〉 = Na

2
,

〈
N̂2

a1
(t )

〉 = Na

2

(
1 + Na

2

)
. (29)

We can also find the phase quadrature operator by making the
small-angle approximation g2

c� â†
1(t )â1(t ) � 1:

Ŷ1(τ ) ≈ Ŷ1in (τ ) − g2

√
cτ�

â†
1(τ )â1(τ )

∫ τ

0
[b̂01(t ) + b̂†

01(t )]dt,

(30)

where Ŷ1in (τ ) = i
√

c√
τ

∫ τ

0 [b̂01(t ) − b̂†
01(t )]dt .

Here we clearly notice that Ŷ1 ∝ N̂a1 . That supports our
choice for the light signal to be Ĵ inf

z ∝ Ŝb = Ŷ2 − Ŷ1. Now,
using Eqs. (29) and (30), we can calculate

Var(Ŝb) ≈ 2Var(Ŷ1(τ )) ≈ 2 + 4χ2
nsNaNph, (31)

Cov(Ĵz(τ ), Ŝb(τ )) = Cov(Ŝb(τ ), Ĵz(τ )) ≈ χnsNa

√
Nph, (32)

Var(Ŝ2(τ )) ≈ Na

4

(
1 − χ2

nsNphNa

χ2
nsNphNa + 1/2

)
, (33)

where here Nph = β2
0τ . Also, we have defined χns ≡ g2

c� ,
where the subscript denotes no spontaneous emission. We
finally find the quantum-enhancement parameter,

ξ ns
s2

(τ ) ≈ eχ2
nsNph

(
1 − χ2

nsNphNa

χ2
nsNphNa + 1/2

)1/2

, (34)
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FIG. 5. (a) 〈Jx〉/〈Na1〉, (b) Var(S2), and (c) ξs2 with respect to the
collective parameter ν = χ 2

nsNph. (a) The decay is due to oversqueez-
ing the state, since we do not consider spontaneous emission here.
This causes the squeezing parameter to reach a minimum value (c).
The dashed line in panel (b) points to zero, just to assure the Var(S2)
is always positive. In panel (c), the dotted line represents the Heisen-
berg limit. The parameter values are A = 10−10 m2, � = 102 GHz,
Na = 106. The error bars are barely distinguishable from all lines.

where we used that 〈Ĵx (t )〉 ≈ Na
2 e−χ2

nsNph for χ2
nsNph � 1. By

inspection of Eq. (34), we see that the parameters that affect
the sensitivity of our signal are the total number of photons
Nph, the quantization area of the light field A (through g), the
detuning �, and the total number of atoms Na. We also notice
that we can always increase the sensitivity of our signal by
just increasing χnsNphNa up to a point that the increase of
eχ2

nsNph becomes dominant. This is essentially the point that
〈Jx〉 [denominator of Eq. (14)] has decreased so much that
the sensitivity starts decaying. Following that strategy, we can
always achieve better sensitivity than the standard quantum
limit (SQL), as seen in Fig. 5. Here, we find the minimum
of ξ ns

s2
by taking the derivative with respect to the collective

parameter ν = χ2
nsNph:

(ξ ns
s2

)min =
√

e

Na
. (35)

We see that the minimum depends on the inverse of the num-
ber of atoms, while the optimum number of photons for which
we take that minimum is

Nopt
ph = 1

2χ2
ns

. (36)

B. Spontaneous emission

With the inclusion of spontaneous emission (γ3 > 0), the
calculation of the atomic expectation values is much more
complicated. We begin by ignoring the effect that quantum
fluctuation in the optical field has on the spontaneous emis-
sion. That is,

e−g2�
∫ t

0 b̂†(z,t ′ )b̂(z,t ′ )dt ′ ≈ e−g2�β2
0 t (37)

such that 〈
N̂a1 (t )

〉 ≈ Na

2
ε(t ), (38)

where ε(t ) ≡ e−2g2�β2
0 t indicates how quickly we lose atoms

from our system. Following the same strategy as before, we
find

Var(Ŝb(τ )) ≈ 2 + 4χ2
1 NphNaε(τ ), (39)

Cov(Ĵz(τ ), Ŝb(τ )) = Cov(Ŝb(τ ), Ĵz(τ ))

≈ χ1

√
NphNaε(τ ), (40)

and

Var(Ŝ2(τ )) ≈ Na

4
ε(τ )

(
1 − χ2

1 NphNaε(τ )

χ2
1 NphNaε(τ ) + 1/2

)
, (41)

where we have defined χ1 ≡ g2�

c and ε(τ ) = 1
τ

∫ τ

0 ε(t )dt,
which is the time average of the decay. Note that χ1 = χns

in the no spontaneous emission case (γ3 = 0). By comparing
Eq. (33) with (41), we realize that, other than the apparent
effect of particle loss that the atomic spontaneous emission
has on the dynamics of the system, there is an additional
effect on the variance of the signal, caused by the emer-
gence of the time-averaged decay rate in the denominator
of Eq. (41), which cannot be reproduced from Eq. (33),
by simply making the substitution Na → Naε(t ). Using that
〈Ĵx(t )〉 ≈ Na

2 e−(χ2
1 +2χ2 )Nph for (χ2

1 + 2χ2)Nph � 1, the spin-
squeezing parameter is

ξs2 ≈ e(χ2
1 +χ2 )Nph

(
1 − χ2

1 NphNaε(τ )

χ2
1 NphNaε(τ ) + 1/2

)1/2

, (42)

where we have defined χ2 ≡ g2�

c and now the decay factor
can be expressed as ε(τ ) = e−2χ2Nph . We also find for the time
average of the decay factor that ε(τ ) = 1−ε(τ )

2χ2Nph
.

By inspecting Eq. (42), it is clear that the case with
spontaneous emission is more complicated. We notice again
that we can increase the sensitivity by increasing the term
χ2

1 NphNa ∝ NphNa

A2�2 (for � � γ3), but now we are restricted

by the atomic loss rate ε = exp (−2χ2Nph ) ∝ exp ( Nph

A�2 ) (for
� � γ3). Hence, we have to find the appropriate parameter
regime that balances between spin squeezing and atomic loss.

We present simulations of our analytical results for ξs2

[Figs. 6(c)–8(c)], for three different quantization area values,
A = (10−3 m)2, A = (10−4 m)2, and A = (10−5 m)

2
. For each

different area value, we essentially change the number of
photons and detuning appropriately in order to obtain best
sensitivities. For A = (10−3 m)2, we notice that we never ob-
tain enhanced sensitivity (compared to SQL) since the loss
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FIG. 6. (a) 〈Na1〉, (b) Var(S1) (green dashed line) and Var(S2)
(blue solid line), and (c) ξs2 numerical (blue squares) and analytical
(red asterisks) with respect to number of photons. In panel (a), the
black dotted line shows the initial atomic population, while the black
dashed line in panel (c) represents the SNL. The parameter values
are A = 10−6 m2, � = 102 GHz, Na = 106.

of atoms exceeds the resulting squeezing [Fig. 6(c)]. As we
decrease A, the atom-light interaction strengthens, increasing
the sensitivity of our signal (Figs. 7 and 8).

In order to find the minimum of ξs2 , we express Eq. (42)

in terms of the dimensionless parameters μ ≡ χ2
1

χ2
= g2�2

c� , λ ≡
χ2Nph, and ζ ≡ Naμ. Hence, we can now write ξs2 as

ξs2 = eλ(1+μ)

(
1 − ζ ε(τ )

ζ − ζ ε(τ ) + 1

)1/2

, (43)

where the decay can now be expressed as ε(τ ) = e−2λ. We
work in a parameter regime where μ � 1, such that

ξs2 ≈ eλ

(
1 − 2ζλe−2λ

1 + ζ − ζe−2λ

)1/2

. (44)

In order to simplify things further, we consider the case
where � � γe. In that case, � → 1

�
and � → γ3

2�2 , and thus

μ → 2g2

cγ3
. That means that μ only depends on the atomic prop-

erties and the quantization area of the light A (through g) and
consequently ζ → 2g2

cγ3
Na. On the other hand, λ → g2γ3

2c
Nph

�2 for
� � γ3. Hence, if we fix the value of ζ by choosing a specific
value for the number of atoms Na and the area A, we only
need to optimize ξs2 with respect to λ, which is proportional
to Nph/�

2 in the regime � � γ3. In Fig. 9, we followed that
procedure for several different values of ζ and found the min-
imum of ξs2 with respect to λ using Eq. (44). We notice that
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FIG. 7. (a) 〈Na1 〉, (b) Var(S1) (green dashed line) and Var(S2)
(blue solid line), and (c) ξs2 numerical (blue solid line) and analytical
(red dashed line) with respect to number of photons. In panel (a), the
black dotted line shows the initial atomic population, while the black
dotted line in panel (c) represents the SNL. The parameter values are
A = 10−8 m2, � = 102 GHz, and Na = 106.

the sensitivity increases as we increase ζ , which means either
increasing Na or decreasing the area. Just to clarify here that
by decreasing the area we also increase the atomic loss rate,
which leads to loss of sensitivity. In that case, we should also
change the other parameters (Nph/�

2) in order to counteract
that effect, resulting at the end in better sensitivities. On the
other hand, the increase of Na does not affect the loss rate of
atoms and it solely improves the sensitivity.

We should mention here that there are similar analytical
calculations available in the literature [75,76], but they are
limited in the small atomic loss and Gaussian state regime,
while our calculations go beyond these assumptions. In the
following, we are going to present analytical and numerical
results in the case of a phase squeezed light field, as well
as numerical calculations including interactions amongst the
atoms and the introduction of a cavity, which to our knowl-
edge have not been examined before.

VI. NUMERICAL SOLUTIONS

We can solve for the dynamics of the system numerically
by using the truncated Wigner (TW) method [77]. From the
Heisenberg equations of motion, we can move to Fokker-
Plank equations (FPEs) by using correspondences between
quantum operators and Wigner variables. After truncating
third and higher order terms, we can map the FPEs into
stochastic differential equations (SDE) which can be solved
numerically with respect to the Wigner variables. We make
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FIG. 8. (a) 〈Na1〉, (b) Var(S1) (green dashed line) and Var(S2)
(blue solid line), and (c) ξs2 numerical (blue solid line) and analytical
(red dashed line) with respect to number of photons. In panel (a), the
black dotted line shows the initial atomic population, while the black
dotted line in panel (c) represents the SNL. The parameter values are
A = 10−10 m2, � = 102 GHz, and Na = 106.

the following correspondences â1(t ) → α1(t ), b̂1(z, t ) →
β1(z, t ), and q̂1in (t ) → qin(t ). We also consider the initial con-
ditions α1(0) = α10 + η1, β01(t ) = β0 + wb1 (t ), and qin(t ) =
wq1 (t ). η1 is complex Gaussian noise satisfying η1 = 0 and
η∗

1η1 = 1
2 ; wx(t ) is a complex Wiener noise satisfying wx(t ) =

0, where x = b1, q1. Also, wb1 (t )wb1 (t ′) = 1
2c δ(t − t ′) and

wq1 (t )wq1 (t ′) = 1
2δ(t − t ′), where the bar represents averag-

ing with respect to a large number of stochastic trajectories.
We consider the D2 transition line of 87Rb (52S1/2 →

52P3/2) for both atomic transitions, where the transition fre-
quency is ω13 = ω24 = ωa = 2πc/λ and λ = 780 nm. The
spontaneous emission rate of the exited state is γ3 = γ4 =
38.11 MHz [78].

More particularly, we numerically examine the SDEs com-
ing from Eqs. (24) and (25) for the light and the atoms
respectively. For the atomic ensemble of each two-level sys-
tem, we consider a single-mode field, while for the two light
fields we make multimode simulations. Our numerical cal-
culations give us the ability to examine the true dynamics
of the system; namely, we consider the atomic spontaneous
emission taking place during the unitary dynamics, which
generates the spin squeezing. Most importantly, our numer-
ical method enable us to introduce the new features in our
system, considering the particle interactions of the two BECs
(Sec. VII), examine the cavity case (Sec. IX), and explore how
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FIG. 9. (a) Minimum value of ξs2 with respect to ζ (bottom x
axis) and A (top horizontal axis), (b) optimum λ (left vertical axis)
and optimum number of photons Nopt

ph (right y axis) with respect to ζ .
In panel (a), the dashed line represents the SNL.

they affect the final sensitivity, by numerically examining the
more complicated dynamics.

In Figs. 6–9, we present the numerical simulations cor-
responding to the analytical results analyzed in the previous
section. We notice that our analytical and numerical results
have almost perfect agreement, indicating that the approxi-
mations we made through the derivations do not have any
significant effect in the final results.

VII. BEC INTERACTIONS

So far the formalism we have developed could be applied
equivalently to both BECs and cold thermal atoms homoge-
neously coupled to the light field, since essentially the only
assumption we have made is that we work under the simple-
mode approximation for the atomic ensembles of the two two-
level systems. In this section, we examine how interactions
among the particles of two BECs could affect the dynamics
of the QND measurement scheme and how that could change
the results we have already presented. We consider that these
interactions are described by a Hamiltonian of the form

Ĥ int
BEC =

∑
i, j=1,2

Ui j

2

∫ ∞

−∞
ψ̂

†
i (r)ψ̂†

j (r)ψ̂i(r)ψ̂ j (r) dz, (45)

where Ui j = 4π h̄2

m ai j is the nonlinear interaction potential and
ai j is the s-wave scattering length between |i〉 and | j〉, with
i, j = 1, 2. In the previous sections, we worked under the
assumption that the light field propagates only toward the z
axis and hence we could analyze the dynamics of the atom-
light interactions in the one-dimensional (1-D) case. However,
here we focus on the interactions among the atoms of the two
BECs, and we develop a three-dimensional (3-D) analysis,
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since we consider that each atomic ensemble forms a sphere
of radius rBEC. We make the single-mode approximation for
both BECs, as we did previously:

ψ̂1(z, t ) = u01(r)â1(t ), ψ̂2(z, t ) = u02(r)â2(t ). (46)

Substituting that back in Eq. (45), we obtain

Ĥ int
BEC = h̄χ11â†

1(t )â†
1(t )â1(t )â1(t ) + h̄χ22â†

2(t )â†
2(t )â2(t )â2(t )

+ 2h̄χ12â†
1(t )â1(t )â†

2(t )â2(t ), (47)

where we defined

χi j = Ui j

2h̄

∫ ∞

−∞
|u0i(r)|2|u0 j (r)|2 d3r. (48)

Alternatively, we can use the number density of atoms in order
to write∫ ∞

−∞
|u0i(r)|2|u0 j (r)|2 d3r = 1

NiNj

∫ ∞

−∞
ni(r)n j (r) d3r. (49)

Assuming constant number density, we finally find

χ11 = 2π h̄

mV
a11, χ22 = 2π h̄

mV
a22, (50)

which represents the strength of the intraparticle interactions
in each BEC. If we consider that there are no interparticle
interactions, namely the two BECs are separate, then χ12 = 0,
while if we assume that they are perfectly overlapping, then
χ12 = 2π h̄

mV a12. The Hamiltonian in Eq. (47) would add the
following terms in the atomic equations of motion for the two
two-level systems,

∂t â1(t ) = −2i(χ11â†
1(t )â1(t ) + χ12â†

2(t )â2(t ))â1(t ), (51)

∂t â2(t ) = −2i(χ22â†
2(t )â2(t ) + χ12â†

1(t )â1(t ))â2(t ). (52)

Hence, now we can numerically examine the full dynamics
of the system, with the BEC interactions incorporated, us-
ing again the TW method. We can essentially do that by
transforming the above operator equations of motion into a
FPE and map the result to a SDE, as we did earlier. We add
the resulted terms in the SDEs of the previous sections, in
order to examine the full dynamics. In our simulations, we
considered the same scattering lengths as in Refs. [52,79],
namely a11 = 100.4 a0, a22 = 95.00 a0, and a12 = 97.66 a0,
where a0 is the Bohr radius. We also assumed that the area
of the atomic ensemble should be smaller or equal than the
transverse area of the light field. In our numerical calcula-
tions, we used ABEC = 10−11 m2, corresponding to a radius
rBEC = 2 μm for the BEC.

In the previous sections, in the absence of BEC interac-
tions, we noticed that for fixed values of the area (A), the
detuning (�), and the number of atoms (Na), we can find
the minimum of the squeezing parameter by adjusting the
number of photons. That means that the change of the total
time of interaction was equivalent with the change of the
light intensity. However, now that we consider interactions
among the atoms, the time would play a more crucial role
in the dynamics, since after some time the atom interactions
would become significant, resulting in a decrease of the final
sensitivity. This is shown in Fig. 10(a), where we notice that
considering intraparticle interactions in two separate BECs
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FIG. 10. ξs2 with respect to time considering three different
cases, (i) no atom interactions (blue solid line with open circles), (ii)
atom interactions where the two BECs perfectly overlap (red dashed
line with asterisks) and (iii) atom interactions, where the two BECs
are separate (black dash-dotted line with squares). In panel (a), we
consider smaller light intensity and larger total interaction time com-
pared to panel (b); i.e., in panel (a) we have β2

0 = 1012 photons/s and
τ = 1ms, while in panel (b) β2

0 = 1014 photons/s and τ = 0.01 ms.
The other parameter values are: Na = 106, � = 1011, A = 10−10 m2,
and ABEC = 10−11m2. The black dotted lines denote the SNL.

degrades the sensitivity, while the case of two overlapping
BECs perfectly coincides with the no-interaction case, since
the total interaction strength among the atoms is smaller com-
pared to the two separate BECs case. As aforementioned, the
number of photons interacting with the atomic ensemble is
what really matters, since it determines the level of squeez-
ing we obtain in the QND measurement scheme. Hence, we
can easily find an appropriate regime, in order to avoid the
deleterious effects of atom interactions to the final sensitivity,
by increasing the light intensity and appropriately decreasing
the total interaction time. In that way, we consider the same
number of photons, offering the same level of spin squeezing,
while everything happens more quickly, which means that
there is not enough time for the atom interactions to damage
the final sensitivity, as shown in Fig. 10(b).

VIII. SQUEEZED LIGHT

Up to this point, we have only considered classical light
sources. That is, we have assumed that the incoming light is
a coherent state, with Var(Ŷ1in ) = 1. It is possible to increase
the sensitivity of our final signal by considering a squeezed
incoming light, where Var(Ŷ1in )sq = e−2r and r is the squeez-
ing factor [74]. In that case, our analytical calculation for the
spontaneous emission case results in

Var(Ŝb)sq ≈ 2Var(Ŷ1(τ ))sq ≈ 2e−2r + 4χ2
nsNaNph, (53)

023318-9



KRITSOTAKIS, DUNNINGHAM, AND HAINE PHYSICAL REVIEW A 103, 023318 (2021)

2 4 6 8 10 12 14 16 18

1012

0.4

0.6

0.8

1

s 2

A = 10-6m2

(a)

numerical analytical

0.5 1 1.5 2 2.5

1010

0

0.5

1

s 2

A = 10-8m2

(b)

numerical analytical

0.5 1 1.5 2 2.5

N
ph

107

10-1

100

s 2

A = 10-10m2

(c)

numerical analytical

FIG. 11. We consider squeezed incoming light and we exam-
ine the numerical (blue solid line) and analytical (red dashed line)
evolution of ξs2 with respect to the number of photons for all three
area values. The brown squares in panel (a) and brown dash-dotted
lines in panels (b) and (c) show the min(ξs2 ) of the corresponding
cases in Figs. 6–8. The black dotted lines denote the SNL. The other
parameter values are r = ln 10, � = 102 GHz, and Na = 106.

while the covariances remain the same. Hence, the quantum
enhancement parameter becomes

ξs2 ≈ e(χ2
1 +χ2 )Nph

(
1 − χ2

1 NphNaε(τ )

χ2
1 NphNaε(τ ) + e−2r/2

)1/2

. (54)

In Fig. 11, we notice that we obtain better sensitivity for
all three area values compared to the coherent incident light
(Figs. 6–8). In Fig. 12, we show the numerical and analytical
min(ξs2 ) for the three different area values, with respect to
the degree of optical squeezing in the incoming light, S ,
defined by

S = 10 log

⎛
⎝

√
Var

(
Ỹb1

)
√

Var
(
Yb1

)
⎞
⎠ dB , (55)

where Var(Yb1 ) = 1 is the variance for a coherent state,
and Var(Ỹb1 ) = e−2r , where r is the squeezing factor. Using
squeezed incoming light gives an exponential rate of decrease
for ξs for all cases (for A = 10−6 that holds for �5 dB). In
addition, for a light field with improvement �5 dB, we see
that we can surpass the SNL even for the A = 10−6 m2 case,
while that was impossible when we used a coherent initial
state for the light field [Fig. 6(c)]. Finally, we notice in Fig. 12
that our analytical approximative model (red stars) given by
Eq. (54) agrees well with our numerical results (blue circles).

510150
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FIG. 12. Analytical (dotted lines with markers) and numerical
(markers) calculation of the minimum value of ξs2 with respect to the
improvement in dB of the incoming light field, for the three different
area values. The dashed line represents the SNL. The other parameter
values are � = 102 GHz, Na = 106.

IX. CAVITY DYNAMICS

We can further boost the sensitivity of our signal with the
addition of an optical cavity, as it essentially increases the
atom-light coupling (Fig. 13). We consider a dual-frequency
cavity with resonant frequencies ωc1 and ωc2 detuned from the
two atomic transitions |1〉 → |3〉 and |2〉 → |4〉 by detunings
�1 and �2 respectively. In the Hamiltonian of our system,
Eq. (21), we interchange the continuous light field annihi-
lation operators b̂1(z, t ) and b̂2(z, t ) with the cavity mode
annihilation operator ĉ1 and ĉ2, giving

Ĥc
tot = h̄ωc1 ĉ†

1ĉ1 + h̄ωc2 ĉ†
2ĉ2

+ h̄
∫ ∞

−∞
dz(ω13ψ̂

†
3 (z, t )ψ̂3(z, t )

+ ω24ψ̂
†
4 (z, t )ψ̂4(z, t ))

Local Oscillator

Homodyne detection

FIG. 13. QND interaction boosted by an optical cavity. After
interacting with the atomic ensemble, the light exiting the cavity
b̂1(2)out is measured via homodyne detection.
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+ h̄gc1

∫ ∞

−∞
(ψ̂†

1 (z, t )ψ̂3(z, t )ĉ†
1(t ) + H.c.)dz

+ h̄gc2

∫ ∞

−∞
(ψ̂†

2 (z, t )ψ̂4(z, t )ĉ†
2(t ) + H.c.)dz. (56)

The coupling strength constants are defined as gc1 =
d13
h̄ (

h̄ωc1
2ε0V )

1/2
and gc2 = d24

h̄ (
h̄ωc2
2ε0V )

1/2
, where V = AL is the vol-

ume of the cavity, A is the light quantization transverse area,
and L is the cavity length. Using the standard input output
formalism [80], we obtain the equation of motion for ĉ1,

∂t ĉ1 = − i

h̄

[
ĉ1, Ĥc

tot

] − κ

2
ĉ1 + √

κ b̂1in (t ) , (57)

where κ is the cavity photon decay rate, and b̂1in (t ) =√
cb̂1(zL, t ), where c is the speed of light and b̂1(zL, t )

is the continuous in space annihilation operator of the in-
coming light field used in the previous sections, satisfying
[b̂1in (t ), b̂1in (t ′)] = δ(t − t ′). Another important quantity is the
light field leaking out of the cavity:

b̂1out (t ) = √
κ ĉ1(t ) − b̂1in (t ) . (58)

In this case, b̂1in (t ) is an input light field that coherently drives
the dynamics of the cavity, but now the mode of the cavity, ĉ1,
is the one that interacts with the atomic ensemble and is entan-
gled with the atomic ground-state number operator. Again, we
incorporate spontaneous emission following the same method
as in Sec. IV; i.e., we use Eq. (22) in order to eliminate
ψ̂3(z, t ) from the equations of motion for ψ̂1(z, t ) and ĉ1.
After making the single-mode approximation for ψ̂1(z, t ) and
d̂1in (z, t ) using again the same mode functions for both of
them and moving to a rotating frame with respect to the cavity
resonance frequency, we obtain

∂t â1(t ) = ig2(� + i�)c̃†
1(t )c̃1(t )â1(t )

+ gc

√
γ3

�1 − iγ3/2
c̃†

1(t )q̃1in (t ), (59a)

∂t c̃1(t ) =
[
ig2(� + i�)â†

1â1 − κ

2

]
c̃1(t )

+ gc

√
γ3

�1 − iγ3/2
â†

1(t )q̃1in (t ) + √
κ b̃1in (t ), (59b)

where c̃1(t ) = ĉ(t )eiωc1 t , b̃1in (t ) = b̂1in (t )eiωc1 t , and q̃1in (t ) =
q̂1in (t )eiωc1 t .

To investigate the dynamics, we use the TW method, again
making the appropriate correspondences, in order to numeri-
cally examine the dynamics of our system. In Fig. 14, we plot
the time evolution of the number of atoms and the number of
cavity photons as well as the intensity of the input and output
fields. We see that the cavity comes into its steady state after
time t � 1/κ . As such, the rate of incoming photons should
be larger than the rate of loss, i.e., 〈b̂†

1in
b̂1in〉 � κ , to ensure

〈N̂c1〉 = 〈ĉ†
1ĉ1〉 � 1. In our numerical simulations, we have

fixed the total interaction time τ = 10−4 � 1/κ = 10−6 and
we change the number of cavity photons, which is the param-
eter affecting the dynamics of our system, by just changing
the intensity of the incoming light field 〈b̂†

1in
b̂1in〉.

We measure a combined signal of the same form as in the
free space case, but now we measure an observable of the
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FIG. 14. Cavity dynamics: time evolution of (a) mean number of
atoms in state |1〉, 〈Na1 〉, (b) mean number of cavity photons 〈Nc1 〉,
(c) intensity of input light (red solid line with asterisks) and intensity
of the leaking output light field from the cavity (blue solid line).
The vertical black dashed line is drawn at the time point 1/κ . We
notice that we need τ � 1/κ , in order to reach the cavity steady state.
Other parameter values are A = 10−8 m2, � = 102 GHz, Na = 106,
and κ = 1 MHz.

output field, b̂1out (t ), since we do not have any direct access to
the cavity mode. The output field contains information about
atomic observables through Eq. (58). Like in Sec. (IV B),
we use as our light observable the difference of the phase
quadratures of a specific mode of the output fields.

We plot ξs2 for the same area values as for Figs. 6–8 with
κ = 106 Hz. Here, we noticed that for � = 102 GHz and area
values smaller than A = 10−8 m2 we have to decrease the
incoming light intensity at a level that we tend to a regime
where 〈N̂c1〉 → 1. We can avoid that by just appropriately
increasing the detuning � = 104 GHz, in order to obtain the
same interaction strength. Assuming a cavity of length L =
10 cm, this corresponds to a finesse of ≈104. Our choice of
cavity parameters is similar to those reported in Ref. [81], and
is motivated by a cavity that could be added to an existing
atom interferometry setup and can be installed outside the
vacuum system. We use a range of different intensities for the
incoming light field to determine the best sensitivity. Compar-
ing Figs. 6–8 with Fig. 15, it is apparent that we achieve better
sensitivities by adding a cavity than just by using free space
light fields. Although we do not have any analytical results
for the case of the cavity, due to the complexity of that model,
we examined numerically if the dynamics of the system has
the same behavior as in the free space case. We concluded
that we can find the optimum of the sensitivity using the same
procedure as in Sec. VI. Namely, for particular values of A
(or equivalently V = AL) and Na, we can find the minimum
of ξs2 with respect to the remaining parameters Nc1/�

2
1. Here

we have one parameter more, the photon decay rate from
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FIG. 15. Cavity: ξs with respect to N inp
b1

for different values of A.
The brown dotted lines show the min(ξs2 ) of the corresponding cases
in Figs. 6–8. The black dashed lines represent the SNL. The param-
eter values are Na = 106, κ = 1 MHz, and � = 102 GHz, except in
panel (c), where we used � = 104 GHz, for the reasons discussed in
the main text.

the cavity, κ . We notice that we have better sensitivities for
smaller values of κ and thus for larger cavity quality factors
(see Fig. 16). However, in the cavity case, we are more con-
strained on the parameter values we could use, as they should
satisfy 〈b̂†

1in
b̂1in〉 > κ and τ > 1/κ as we discussed earlier.

X. CONCLUSION

We have analyzed the creation of spin squeezing in an en-
semble of Bose-condensed atoms via quantum nondemolition
measurement, considering both freely propagating light and
optical cavities. We found that the determining factor in the
quality of spin squeezing produced was the cross-sectional
area of the optical beam used to probe the spin of the atomic
system, with small areas leading to higher atom-light coupling
and a larger phase shift on the light for a given level of sponta-
neous emission. Of course, varying the intensity, detuning, or
duration of the incoming light also affects the level of spin
squeezing. However, for a given area, fixing two of these
parameters while adjusting the remaining one would always
lead to the same optimum. For the D2 transition in 87Rb
atoms, we found that for the case of freely propagating light,
no squeezing was possible when the cross-sectional area of
the atom-light interaction was larger than ≈10−6 m2 because
of the loss of atoms due to spontaneous emission, regardless of
the intensity or detuning of the incoming light. For areas less
than this, we found significant spin squeezing was possible,

10-10 10-9 10-8 10-7 10-6

A(m2)

10-2

10-1

100

m
in

(
s 2

)

1
 = 1 MHz

2
 = 10 MHz

3
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Free case

FIG. 16. Minimum value of ξs2 with respect to the area, for three
different values of κ for the cavity case. We also plot the free space
case (black dashed line). The black dotted line represents the SNL.
The other parameter values are Na = 106 and � = 102 GHz, except
for the area values A = 10−9 m2 and A = 10−10 m2 in all cavity lines
where we used � = 104 GHz, for the reasons we mentioned in the
main text.

with an area of 10−11 m2 leading to a spin-squeezing value of
≈3 × 10−2, which corresponds to a potential improvement of
atom interferometric sensitivity of ≈33, which is equivalent to
increasing the number of atoms by a factor of 1000. The use of
optical squeezing improved the level of quantum enhancement
further and relaxed the restrictions on the area of the light.
Finally, we considered the use of an optical cavity. For reason-
ably achievable cavity parameters, we found approximately an
order of magnitude increase over what was achievable in the
free space case.
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APPENDIX A: INTRODUCTION

We consider the combined signal

Ŝ2(τ ) = Ĵz(τ ) − Ĵ inf
z (τ ), (A1)

where

Ĵ inf
z (τ ) = GŜb(τ ), Ŝb(τ ) = Ŷ2(τ ) − Ŷ1(τ ). (A2)

For simplicity, in the following we will present the time
dependence explicitly only in our final results or when it is
considered necessary. The variance of Ŝ2 would be given by

Var(Ŝ2) = Var(Ĵz ) + G2Var(Ŝb) − 2GCov(Ĵz, Ŝb), (A3)
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since Cov(Ĵz, Ŝb) = Cov(Ŝb, Ĵz ). We minimize Var(Ŝ2) with
respect to G:

G = Cov(Ĵz, Ŝb)

Var(Ŝb)
. (A4)

Inserting that back in Eq. (A3), we get

Var(Ŝ2) = Var(Ĵz ) − Cov2(Ĵz, Ŝb)

Var(Ŝb)
. (A5)

So, in order to calculate Var(Ŝ2), we need the covariance
between Ĵz and Ŝb, Cov(Ĵz, Ŝb), and the variance of the phase
quadrature of the light field Var(Ŷ1), since Var(Ŷ1) = Var(Ŷ2)
and Cov(Ŷ2, Ŷ1) = 0; thus, Var(Ŝb) = 2Var(Ŷ1). At the end,
we calculate the squeezing parameter, which in our case (θ =
0) is given by

ξs2 = √
Na

√
Var(Ŝ2)

〈Ĵx〉
. (A6)

APPENDIX B: NO SPONTANEOUS EMISSION

1. Atomic expectation values

The atomic equations with no spontaneous emission are
given by

â1(t ) = â1(0)ei g2

�

∫ t
0 b̂†

01(t ′ )b̂01(t ′ )dt ′
, (B1)

â†
1(t ) = â†

1(0)e−i g2

�

∫ t
0 b̂†

01(t ′ )b̂01(t ′ )dt ′
. (B2)

Hence, the atomic population operator is independent of time:

N̂a1 (t ) = â†
1(t )â1(t ) = â†

1(0)â1(0). (B3)

We consider that our total state initially is given by the product

|�〉 = |α1〉 ⊗ |α2〉 ⊗ |β1〉 ⊗ |β2〉 ⊗ |0〉, (B4)

meaning that the atomic ensemble, as well as the two light
fields, are in coherent states while the bath is described by the
vacuum state, giving the following expectation values:

â1(0)|α1〉 =
√

Na

2
|α1〉, b̂01(t )|β1〉 = β0|β1〉,

q̂1in (t )|0〉 = 0|0〉,

â2(0)|α2〉 =
√

Na

2
|α2〉

b̂02(t )|β2〉 = β0|β2〉 q̂2in (t )|0〉 = 0|0〉, (B5)

where we have used again b̂0 j (t ) = b̂ j (zL, t ) with j = 1, 2
for simplicity, and we have considered that α1(0) = α2(0) =√

Na/2 and b̂01(t ) = b̂02(t ) = β0. Now it is really simple to
calculate the atomic expectation values in that case:

〈
N̂a1 (t )

〉 = Na

2
,

〈
N̂2

a1
(t )

〉 = 〈
N̂2

a1
(t ′)

〉 = 〈
N̂2

a1
(0)

〉 = Na

2
+ N2

a

4
. (B6)

2. Phase quadrature

The light equation in the case of no spontaneous emis-
sion is

b̂1(zR, t ) = b̂01(t )ei g2

c� â†
1(t )â1(t ). (B7)

We select a specific mode of the light field:

�̂1(τ ) =
√

c√
τ

∫ τ

0
b̂1(zR, t )dt . (B8)

Here the atomic population is constant, and thus

�̂1(τ ) =
√

c√
τ

ei g2

c� â†
1 (t )â1(t )

∫ τ

0
b̂01(t )dt . (B9)

We know that the incident light field obeys the following
commutation relation: [b̂01(t ), b̂†

01(t ′)] = 1
c δ(t − t ′). We find

the phase quadrature of the specific mode

Ŷ1(τ ) ≡ i(�̂1(τ ) − �̂†
1(τ ))

= i

√
c√
τ

(
ei g2

c� â†
1(t )â1(t )

∫ τ

0
b̂01(t )dt

− e−i g2

c� â†
1(t )â1(t )

∫ τ

0
b̂†

01(t )dt

)
. (B10)

We make the small angle approximation

g2

c�
â†

1(t )â1(t ) � 1, (B11)

and we get

Ŷ1(τ ) ≈ Ŷ1in (τ ) − g2

√
cτ�

â†
1(τ )â1(τ )

∫ τ

0
(b̂01(t ) + b̂†

01(t ))dt,

(B12)

where

Ŷ1in (τ ) = i

√
c√
τ

∫ τ

0
(b̂01(t ) − b̂†

01(t ))dt . (B13)

We calculate the expectation value of the phase quadrature

〈Ŷ1(τ )〉 ≈ −g2Naβ0τ

�
√

cτ
, (B14)

where we have used that 〈Ŷ1in (τ )〉 = 0 and assumed that β0 =
β∗

0 . We calculate the square of the phase quadrature

Ŷ1
2
(τ ) ≈ Ŷ 2

1in
(τ ) + g4

cτ�2
â†

1(τ )â1(τ )â†
1(τ )â1(τ )

∫ τ

0

∫ τ

0
dtdt ′

× [b̂01(t ) + b̂†
01(t )][b̂01(t ′) + b̂†

01(t ′)]. (B15)

For simplicity we calculate separately

Q1 =
∫ τ

0

∫ τ

0
dtdt ′ [b̂01(t )b̂01(t ′) + b̂01(t )b̂†

01(t ′)

+ b̂†
01(t )b̂01(t ′) + b̂†

01(t )b̂†
01(t ′)]. (B16)

After using the commutation relation [b̂01(t ), b̂†
01(t ′)] =

1
c δ(t − t ′) and the delta function property

∫ τ

0 δ(t − t ′)dt ′ = 1,
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we obtain

〈Q1〉 = 4β2
0τ 2 + τ

c
. (B17)

Making use of the same commutation relation and the same
property of the delta function, we find that 〈Ŷ 2

1in
(τ )〉 = 1. Thus,

〈
Ŷ 2

1 (τ )
〉 ≈ 1 + g4

cτ�2

(
Na

2
+ N2

a

4

)(
4β2

0τ 2 + τ

2c

)
, (B18)

where we have used Eq. (B6). For simplicity, we can ignore
the last term of Eq. (B18) since 4β2

0τ 2 � τ/2c:

〈
Ŷ 2

1 (τ )
〉 ≈ 1 + 4g4β2

0τ 2

cτ�2

(
Na

2
+ N2

a

4

)
. (B19)

From Eq. (B14), we have

〈Ŷ1(τ )〉2 ≈ g4β2
0 N2

a τ 2

cτ�2
. (B20)

Hence, we finally have

Var(Ŷ1(τ )) ≈ 1 + 2χ2
nsNaNph (B21)

and

Var(Ŝb) = 2Var(Ŷ1(τ )) ≈ 2 + 4χ2
nsNaNph, (B22)

where we have defined

χns ≡ g2

c�
, Nph ≡ β2

0τ. (B23)

3. Covariances

The covariance of Ĵz(τ ) and Ŝb(τ ) is defined as

Cov(Ĵz(τ ), Ŝb(τ )) = 〈Ĵz(τ )Ŝb(τ )〉 − 〈Ĵz(τ )〉〈Ŝb(τ )〉. (B24)

We know that 〈Ŝb(τ )〉 = 0, since Ŝb = Ŷ2 − Ŷ1. Hence,

Cov(Ĵz(τ ), Ŝb(τ )) = 〈Ĵz(τ )Ŷ2(τ )〉 − 〈Ĵz(τ )Ŷ1(τ )〉. (B25)

Using Ĵz(τ ) = (N̂a1 (τ ) − N̂a2 (τ ))/2, Eq. (B12) and the atomic
expectation values from Appendix B 1, we obtain

Cov(Ĵz(τ ), Ŝb(τ )) ≈ χnsNa

√
Nph. (B26)

4. Quantum enhancement parameter ξs

Inserting Eqs. (B26) and (B22) into (A5), we obtain

Var(Ŝ2(τ )) ≈ Na

4

(
1 − χ2

nsNphNa

χ2
nsNphNa + 1/2

)
. (B27)

Using the atomic equations of motion, we find for small ex-
ponents χ2

nsNph � 1

〈Ĵx(τ )〉 ≈ Na

2
e−χ2

nsNph . (B28)

Finally, from Eq. (A6) we obtain

ξ ns
s2

(τ ) ≈ eχ2
nsNph

(
1 − χ2

nsNphNa

χ2
nsNphNa + 1/2

)1/2

. (B29)

APPENDIX C: SPONTANEOUS EMISSION

1. Atomic expectation values

In the case where we have incorporated spontaneous emis-
sion, the calculation of the atomic expectation values is more
complicated, since we use the following atomic equations:

â1(t ) = â1(0)eig2(�+i�)
∫ t

0 b̂†
01(t ′ )b̂01(t ′ )dt ′

+ g
√

γ3

� − iγ3/2
eig2(�+i�)

∫ t
0 b̂†

01(t ′ )b̂01(t ′ )dt ′
∫ t

0
dt ′b̂†

01(t ′)q̂1in (t ′)e−ig2(�+i�)
∫ t ′

0 b̂†
01(t ′′ )b̂01(t ′′ )dt ′′

(C1a)

â†
1(t ) = â†

1(0)e−ig2(�−i�)
∫ t

0 b̂†
01(t ′ )b̂01(t ′ )dt ′

+ g
√

γ3

� + iγ3/2
e−ig2(�−i�)

∫ t
0 b̂†

01(t ′ )b̂01(t ′ )dt ′
∫ t

0
dt ′b̂01(t ′)q̂†

1in
(t ′)eig2(�−i�)

∫ t ′
0 b̂†

01(t ′′ )b̂01(t ′′ )dt ′′
. (C1b)

For simplicity, we assume that the intensity operator in the exponentials does not depend on time; namely, it is a constant
number b̂†

01(t )b̂01(t ) ≈ β2
0 . We essentially assume here that the atomic loss is due to the average field intensity. We also ignore

the unitary part of the exponentials, since they would cancel out during the calculation of the atomic expectation values. So, we
finally have

â1(t ) =
√

ε(t )â1(0)︸ ︷︷ ︸
Â1(t )

+ g
√

γ3

� − iγ3/2

√
ε(t )

∫ t

0

√
ε−1(t ′)b̂†

01(t ′)q̂1in (t ′)dt ′

︸ ︷︷ ︸
Â2(t )

, (C2)

â†
1(t ) =

√
ε(t )â†

1(0)︸ ︷︷ ︸
Â†

1(t )

+ g
√

γ3

� + iγ3/2

√
ε(t )

∫ t

0

√
ε−1(t ′)b̂01(t ′)q̂†

1in
(t ′)dt ′

︸ ︷︷ ︸
Â†

2(t )

, (C3)

where we have defined

ε(t ) ≡ e−2g2�β2
0 t . (C4)

023318-14



SPIN SQUEEZING OF A BOSE-EINSTEIN CONDENSATE … PHYSICAL REVIEW A 103, 023318 (2021)

We calculate the expectation value of atoms in state |1〉,〈
N̂a1 (t )

〉 = 〈â†
1(t )â1(t )〉 = Na

2
ε(t ), (C5)

where ε(t ) indicates the atomic rate of loss in our system at time t . Now we are going to calculate the more complicated
expectation value 〈N̂a1 (t )N̂a1 (t ′)〉. We have named all terms of Eqs. (C2) and (C3) for simplicity, in order to clearly show which
terms finally survive: 〈

N̂a1 (t )N̂a1 (t ′)
〉 = 〈Â†

1(t )Â1(t )Â†
1(t ′)Â1(t ′)〉 + 〈Â†

1(t )Â2(t )Â†
2(t ′)Â1(t ′)〉, (C6)

where all the other terms in this product are zero since 〈q̂1in〉 = 〈q̂†
1in

〉 = 〈q̂†
1in

q̂1in〉 = 0. The first term of the above equation is
easily calculated:

〈Â†
1(t )Â1(t )Â†

1(t ′)Â1(t ′)〉 =
(

Na

2
+ N2

a

4

)
ε(t )ε(t ′). (C7)

However, the second term is more complicated:

〈Â†
1(t )Â2(t )Â†

2(t ′)Â1(t ′)〉 = 2g2�ε(t )ε(t ′)〈â†
1(0)â1(0)〉

×
∫ t

0

∫ t ′

0
dξds

√
ε−1(s)

√
ε−1(ξ )〈b̂†

01(s)b̂01(ξ )〉〈q̂1in (s)q̂†
1in

(ξ )
〉
. (C8)

We use the commutation relation for the temporal part of the
Langevin noise: [

q̂1in (s), q̂†
1in

(ξ )
] = δ(ξ − s). (C9)

We also make use of the following property of the delta
function, ∫ t ′

0
dξ f (ξ )δ(ξ − s) = f (s)�(t ′ − s), (C10)

where �(t ′ − s) is the Heaviside step function, and using
〈b̂†

01(s)b̂01(s)〉 = β2
0 we obtain

〈Â†
1(t )Â2(t )Â†

2(t ′)Â1(t ′)〉

= g2�Naβ
2
0ε(t )ε(t ′)

∫ t

0
ds ε−1(s)�(t ′ − s). (C11)

For t � t ′, we have

〈Â†
1(t )Â2(t )Â†

2(t ′)Â1(t ′)〉 = Na

2
ε(t )[1 − ε(t ′)], (C12)

and using Eqs. (C6), (C7) and (C12) we get

〈
N̂a1 (t )N̂a1 (t ′)

〉 = N2
a

4
ε(t )ε(t ′) + Na

2
ε(t ), (C13)

while for t < t ′ we have

〈Â†
1(t )Â2(t )Â†

2(t ′)Â1(t ′)〉 = Na

2
ε(t ′)[1 − ε(t )] (C14)

and

〈
N̂a1 (t )N̂a1 (t ′)

〉 = N2
a

4
ε(t )ε(t ′) + Na

2
ε(t ′). (C15)

We notice that we obtain the same result for the double in-
tegral with respect to t and t ′ for both cases, t � t ′ and for

t < t ′,∫ τ

0

∫ τ

0
dt dt ′ 〈

N̂a1 (t )N̂a1 (t ′)
〉 = N2

a

4
I2
1 + Na

2
I1τ, (C16)

but distinguishing between the two cases would be important
when we calculate the covariance of Ĵz(τ ) and Ŝb(τ ). For
simplicity, we have also defined

I1(τ ) ≡
∫ τ

0
dt ε(t ) = 1 − ε(τ )

2g2�β2
0

. (C17)

We can now calculate∫ τ

0
dt

〈
N̂a1 (t )

〉 = Na

2
I1. (C18)

2. Phase quadrature

In the case of spontaneous emission, the photon operator is
given by the following equation:

b̂1(zR, t ) = b̂01(t )ei g2

c (�+i�)â†
1 (t )â1(t )

+ g

c

√
γ3

� − iγ3/2
â†

1(t )q̂1in (t ). (C19)

Again, we define the phase quadrature operator of a specific
mode of the light field

Ŷ1(τ ) = i(�̂1(τ ) − �̂†
1(τ )), (C20)

where

�̂1(t ) =
√

c√
τ

∫ τ

0
b̂01(t )dt . (C21)

Making the small angle approximation g2(� + i�)â†
1â1/c �

1, we obtain

Ŷ1 ≈ Ŷ1in − g2�√
cτ

∫ τ

0
(b̂01(t ) + b̂†

01(t ))â†
1(t )â1(t )dt

− g2�√
cτ

∫ τ

0
(b̂01(t ) − b̂†

01(t ))â†
1(t )â1(t )dt
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+ i
g�

√
γ3√

cτ

∫ τ

0
dt

(
q̂1in (t )â†

1(t ) − q̂†
1in

(t )â1(t )
)

− i
g�

√
γ3√

cτ

∫ τ

0
dt

(
q̂1in (t )â†

1(t ) + q̂†
1in

(t )â1(t )
)
, (C22)

where

Ŷ1in (τ ) ≡ i

√
c√
τ

∫ τ

0
dt (b̂01(t ) − b̂†

01(t )). (C23)

We calculate the expectation value of Ŷ1(τ )

〈Ŷ1(τ )〉 ≈ −2β0�g2

√
cτ

∫ τ

0
dt

〈
N̂a1 (t )

〉
. (C24)

From Eq. (C18), we get

〈Ŷ1〉2 ≈ g4�2β2
0 N2

a I2
1

cτ
. (C25)

Now we are going to calculate 〈Ŷ 2
1 〉, where for simplicity we

keep only the terms coming from the the first two terms of
Eq. (C22), since they are the dominant terms:

〈
Ŷ 2

1

〉 ≈ 1 + 4g4�2

cτ
β2

0

∫ τ

0

∫ τ

0
dtdt ′〈N̂a1 (t ′)N̂a1 (t )

〉
. (C26)

Substituting Eq. (C16) in (C26) and using (C25), we obtain

Var(Ŷ1(τ )) ≈ 1 + 2χ2
1 NphNaε(τ ), (C27)

where we have defined χ1 ≡ g2�

c and ε(τ ) = 1
τ

∫ τ

0 ε(t )dt ,
which is the time average of the decay. We notice that χ1 =
χns in the no spontaneous emission case (γ3 = 0). As we
mentioned before, Var(Ŝb) = 2Var(Ŷ1), and thus

Var(Ŝb(τ )) ≈ 2 + 4χ2
1 NphNaε(τ ). (C28)

3. Covariances

The covariance of Ĵz and Ŝb is again given by
Cov(Ĵz(τ ), Ŝb(τ )) = 〈Ĵz(τ )Ŷ2(τ )〉 − 〈Ĵz(τ )Ŷ1(τ )〉, which
gives

Cov(Ĵz(τ ), Ŝb(τ ))

= 2g2�β0√
cτ

∫ τ

0
dt

(〈
N̂a1 (τ )N̂a1 (t )

〉 − 〈
N̂a1 (τ )N̂a2 (t )

〉)
,

(C29)

since 〈
N̂a1 (τ )N̂a1 (t )

〉 = 〈
N̂a2 (τ )N̂a2 (t )

〉
,〈

N̂a1 (τ )N̂a2 (t )
〉 = 〈

N̂a2 (τ )N̂a1 (t )
〉
. (C30)

Now we have to be a bit more careful, compared to the no
spontaneous emission case, because we have two different
expressions for 〈N̂a1 (t )N̂a1 (t ′)〉 depending on whether t � t ′ or
t < t ′. That is why we are going to calculate Cov(Ŝb(τ ), Ĵz(τ ))
as well:

Cov(Ŝb(τ ), Ĵz(τ ))

= 2g2�β0√
cτ

∫ τ

0
dt

(〈
N̂a1 (t )N̂a1 (τ )

〉 − 〈
N̂a1 (t )N̂a2 (τ )

〉)
.

(C31)

For the first covariance, where τ � t , we use Eq. (C13), and
hence∫ τ

0
dt

〈
N̂a1 (τ )N̂a1 (t )

〉 = N2
a

4
ε(τ )I1 + Na

2
ε(τ )τ. (C32)

We calculate the simpler term

〈
N̂a1 (τ )N̂a2 (t )

〉 = N2
a

4
ε(τ )ε(t ), (C33)

since â1(t ) commutes with â2(t ′) for all t and t ′. Thus,∫ τ

0
dt

〈
N̂a1 (τ )N̂a2 (t )

〉 = N2
a

4
ε(τ )I1. (C34)

We finally have

Cov(Ĵz(τ ), Ŝb(τ )) = χ1

√
NphNaε(τ ), (C35)

where we used again χ = g2�

c . For the second covariance, we
use Eq. (C15) for t < t ′ and we obtain∫ τ

0
dt

〈
N̂a1 (t )N̂a1 (τ )

〉 = N2
a

4
ε(τ )I1 + Na

2
ε(τ )τ, (C36)∫ τ

0
dt

〈
N̂a1 (t )N̂a2 (τ )

〉 = N2
a

4
ε(τ )I1. (C37)

Hence, we finally get the same result for both covariances as
we expected:

Cov(Ĵz(τ ), Ŝb(τ )) = Cov(Ŝb(τ ), Ĵz(τ )) = χ1

√
NphNaε(τ ).

(C38)

4. Quantum enhancement parameter ξs

Substituting Eqs. (C28) and (C38) into Eq. (A5), we get

Var(Ŝ2(τ )) ≈ Na

4
ε(τ )

(
1 − χ2

1 NphNaε(τ )

χ2
1 NphNaε(τ ) + 1/2

)
. (C39)

Using the atomic equations, we find the expectation value of
Ĵx for (χ2

1 + 2χ2)Nph � 1,

〈Ĵx(t )〉 ≈ Na

2
e−(χ2

1 +2χ2 )Nph , (C40)

where we have defined χ2 ≡ g2�/c. Now we can express
ε(τ ) in a more convenient way: ε(τ ) = e−2χ2Nph . Finally, the
squeezing parameter is given by

ξs2 ≈ e(χ2
1 +χ2 )Nph

(
1 − χ2

1 NphNaε(τ )

χ2
1 NphNaε(τ ) + 1/2

)1/2

, (C41)

where for convenience we present again all the parameter
definitions we made throughout this calculation:

χ1 ≡ g2�

c
, χ2 ≡ g2�

c
,

ε(τ ) ≡ 1

τ

∫ τ

0
ε(t )dt, ε(τ ) = e−2χ2Nph . (C42)
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Momentum States for Atom Interferometry, Phys. Rev. Lett.
120, 033601 (2018).

[39] J. Esteve, C. Gross, A. Weller, S. Giovanazzi, and M. K.
Oberthaler, Squeezing and entanglement in a Bose-Einstein
condensate, Nature (London) 455, 1216 (2008).

023318-17

https://doi.org/10.1103/RevModPhys.81.1051
https://doi.org/10.1016/j.physrep.2013.03.006
https://doi.org/10.1103/PhysRevA.75.043618
https://doi.org/10.1103/PhysRevA.84.033610
https://doi.org/10.1088/1367-2630/14/2/023009
https://doi.org/10.1103/PhysRevA.88.053620
https://doi.org/10.1103/PhysRevA.98.023629
https://doi.org/10.1103/PhysRevA.46.R6797
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevLett.86.4431
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/PhysRevLett.85.3991
https://doi.org/10.1103/PhysRevLett.85.3987
https://doi.org/10.1103/PhysRevA.65.043610
https://doi.org/10.1103/PhysRevA.67.013607
https://doi.org/10.1103/PhysRevLett.95.150405
https://doi.org/10.1103/PhysRevLett.99.010401
https://doi.org/10.1140/epjb/e2008-00472-6
https://doi.org/10.1103/PhysRevA.97.053618
https://doi.org/10.1103/PhysRevLett.79.4782
https://doi.org/10.1209/epl/i1998-00277-9
https://doi.org/10.1103/PhysRevA.60.1491
https://doi.org/10.1103/PhysRevLett.85.1594
https://doi.org/10.1103/PhysRevA.63.015601
https://doi.org/10.1103/PhysRevLett.88.070404
https://doi.org/10.1103/PhysRevA.72.033601
https://doi.org/10.1002/lapl.200510052
https://doi.org/10.1088/1464-4266/7/12/016
https://doi.org/10.1103/PhysRevLett.96.133601
https://doi.org/10.1103/RevModPhys.82.1041
https://doi.org/10.1103/PhysRevLett.110.053002
https://doi.org/10.1088/1367-2630/15/10/103031
https://doi.org/10.1103/PhysRevA.90.063630
https://doi.org/10.1103/PhysRevA.91.033616
https://doi.org/10.1103/PhysRevA.91.041802
https://doi.org/10.1103/PhysRevA.92.032317
https://doi.org/10.1103/PhysRevA.93.023607
https://doi.org/10.1103/PhysRevLett.120.033601
https://doi.org/10.1038/nature07332


KRITSOTAKIS, DUNNINGHAM, AND HAINE PHYSICAL REVIEW A 103, 023318 (2021)

[40] C. Gross, T. Zibold, E. Nicklas, J. Esteve, and M. K. Oberthaler,
Nonlinear atom interferometer surpasses classical precision
limit, Nature (London) 464, 1165 (2010).

[41] M. F. Riedel, P. Böhi, Y. Li, T. W. Hänsch, A. Sinatra, and
P. Treutlein, Atom-chip-based generation of entanglement for
quantum metrology, Nature (London) 464, 1170 (2010).

[42] B. Lücke, M. Scherer, J. Kruse, L. Pezze, F. Deuretzbacher, P.
Hyllus, O. Topic, J. Peise, W. Ertmer, J. Arlt, L. Santos, A.
Smerzi, and C. Klempt, Twin matter waves for interferometry
beyond the classical limit, Science 334, 773 (2011).

[43] C. D. Hamley, C. S. Gerving, T. M. Hoang, E. M. Bookjans, and
M. S. Chapman, Spin-nematic squeezed vacuum in a quantum
gas, Nat. Phys. 8, 305 (2012).

[44] H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D. B. Hume,
L. Pezzè, A. Smerzi, and M. K. Oberthaler, Fisher information
and entanglement of non-Gaussian spin states, Science 345, 424
(2014).

[45] W. Muessel, H. Strobel, D. Linnemann, D. B. Hume, and M. K.
Oberthaler, Scalable Spin Squeezing for Quantum-Enhanced
Magnetometry with Bose-Einstein Condensates, Phys. Rev.
Lett. 113, 103004 (2014).

[46] I. Kruse, K. Lange, J. Peise, B. Lücke, L. Pezzè, J. Arlt, W.
Ertmer, C. Lisdat, L. Santos, A. Smerzi, and C. Klempt, Im-
provement of an Atomic Clock Using Squeezed Vacuum, Phys.
Rev. Lett. 117, 143004 (2016).

[47] D. Linnemann, H. Strobel, W. Muessel, J. Schulz, R. J.
Lewis-Swan, K. V. Kheruntsyan, and M. K. Oberthaler,
Quantum-Enhanced Sensing Based on Time Reversal of Non-
linear Dynamics, Phys. Rev. Lett. 117, 013001 (2016).

[48] Y.-Q. Zou, L.-N. Wu, Q. Liu, X.-Y. Luo, S.-F. Guo, J.-H. Cao,
M. K. Tey, and L. You, Beating the classical precision limit
with spin-1 Dicke states of more than 10,000 atoms, Proc. Natl.
Acad. Sci. U.S.A. 115, 6381 (2018).

[49] S. A. Haine and M. T. Johnsson, Dynamic scheme for
generating number squeezing in Bose-Einstein condensates
through nonlinear interactions, Phys. Rev. A 80, 023611
(2009).

[50] S. A. Haine and A. J. Ferris, Surpassing the standard quantum
limit in an atom interferometer with four-mode entanglement
produced from four-wave mixing, Phys. Rev. A 84, 043624
(2011).

[51] B. Opanchuk, M. Egorov, S. Hoffmann, A. I. Sidorov, and
P. D. Drummond, Quantum noise in three-dimensional BEC
interferometry, EPL 97, 50003 (2012).

[52] S. A. Haine, J. Lau, R. P. Anderson, and M. T. Johnsson,
Self-induced spatial dynamics to enhance spin squeezing via
one-axis twisting in a two-component Bose-Einstein conden-
sate, Phys. Rev. A 90, 023613 (2014).

[53] S. P. Nolan, J. Sabbatini, M. W. J. Bromley, M. J. Davis, and
S. A. Haine, Quantum enhanced measurement of rotations with
a spin-1 Bose-Einstein condensate in a ring trap, Phys. Rev. A
93, 023616 (2016).

[54] S. A. Haine, Quantum noise in bright soliton matter-wave inter-
ferometry, New J. Phys. 20, 033009 (2018).

[55] J. Appel, P. J. Windpassinger, D. Oblak, U. B. Hoff, N.
Kjaergaard, and E. S. Polzik, Mesoscopic atomic entanglement
for precision measurements beyond the standard quantum limit,
Proc. Natl. Acad. Sci. U.S.A. 106, 10960 (2009).

[56] A. Louchet-Chauvet, J. Appel, J. J. Renema, D. Oblak, N.
Kjaergaard, and E. S. Polzik, Entanglement-assisted atomic

clock beyond the projection noise limit, New J. Phys. 12,
065032 (2010).

[57] M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, Squeezing
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