
PHYSICAL REVIEW A 103, 023317 (2021)

Criticality-enhanced quantum sensing in ferromagnetic Bose-Einstein condensates:
Role of readout measurement and detection noise
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We theoretically investigate estimation of the control parameter in a ferromagnetic Bose-Einstein condensate
near second-order quantum phase transitions. We quantify sensitivity by quantum and classical Fisher infor-
mation and use the error-propagation formula. For these different metrics, we find the same beyond standard
quantum limit (SQL) scaling with atom number near critical points and SQL scaling away from critical points.
We find that both depletion of the mf = 0 Zeeman sublevel and transverse magnetization provide signals of
sufficient quality to saturate the sensitivity scaling. To explore the effect of experimental imperfections, we study
the scaling around criticality at nonzero temperature and with nonzero detection noise. Our results suggest the
feasibility of sub-SQL sensing in ferromagnetic condensates with current experimental capabilities.
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I. INTRODUCTION

In quantum sensing and metrology [1,2], a classical pa-
rameter such as an externally applied field, an energy level
separation, or the elapsed time is estimated from measure-
ments on a quantum system consisting of N > 1 particles. The
precision of the estimation is closely related to the sensitivity
of the quantum state to the parameter. It is well known, for
example, that entangled states of N two-state particles can
estimate a single-particle phase φ with variance δφ−2 = N2,
known as the Heisenberg limit (HL), while nonentangled
states in the same scenario can at best achieve δφ−2 = N ,
known as the standard quantum limit (SQL). This difference
is due to the extreme phase sensitivity of entangled states, for
example, NOON states, which become self-orthogonal under
a phase shift of φ = π/N , when a single particle would be-
come self-orthogonal after a phase shift of π [3,4]. Such states
are very sensitive to decoherence, and while it is possible to
achieve sensitivities beyond the SQL with large N [5], the
scaling with N returns to the SQL scaling in the presence of
very small decoherence [6,7].

A less-studied scenario, of relevance especially to atomic
quantum sensing, is when the quantum state being measured
is the result of interactions that act at the same time as the pa-
rameter to be measured. This is the scenario, for example, in a
nonlinear interferometer, in which the particles interact while
experiencing a phase shift [8]. Such system can show counter-
intuitive behaviors. For example, if the unknown parameter is
itself the strength κ of a particular k-body interaction, estima-
tion without entanglement yields δκ−2 ∝ N2k−1, which shows
better scaling than the HL already with the simplest two-body
interactions [9–11] and without entanglement.

Arguably the most natural scenario in which one finds
high sensitivity to external parameters is in critical systems,

e.g., near a quantum phase transition. These are by nature
interacting many-body systems, and we may expect to find
advantageous scaling even without entanglement [12–14]. In
the case of second-order (continuous) phase transition, the
sensitivity in the estimation of control parameter q scales
as δq−2 ∝ N2/dν , where d is the spatial dimension and ν

is the critical exponent of the correlation length [15–17]. It
has already been reported that several many-body models are
characterized by 2/dν > 1 [16,18–21], and therefore have
advantageous scaling relative to uncorrelated particles. In the
case of first-order phase transition, to the best of our knowl-
edge there is no known bound on δq−2 [21].

In this paper, we theoretically estimate the sensitivity of
measurement of the coupling constant which is determined
by the strength of the quadratic Zeeman energy in a spin-1
Bose-Einstein condensate system with ferromagnetic interac-
tion [22–24]. We take into account the effect of experimental
imperfections to verify the feasibility of sub-SQL sens-
ing in ferromagnetic condensates with current experimental
capabilities. To this end, we make use of the underlying con-
tinuous phase transitions and apply the approach mentioned
above. In particular, we concentrate on the zero longitudi-
nal magnetization case when the phase diagram of ground
states exhibits two second-order phase transitions, namely
between broken-axisymmetry–antiferromagnetic and longitu-
dinal polar–broken-axisymmetry phases [23,25]. In order to
quantify the sensitivity, we make use of the quantum and
classical Fisher information as well as the error-propagation
formula. The quantum Fisher information (QFI) is known as
a pivotal parameter of quantum metrology which is linked
to the ultimate HL. However, it is not always easy to find
the optimal measurement to saturate the upper bound and
extract it in practice. This concerns the fact that in order to
find the QFI in an experiment, one needs to make a full-state
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tomography of the density matrix, which is difficult for large
systems. In this case, it is more convenient to use the classical
Fisher information (CFI) or error-propagation formula, which
are more easily accessible by making measurements on the
appropriate signals.

For our ferromagnetic spin-1 BEC system with finite size
N , we derive the QFI and find the best sensitivity in estima-
tion of order parameter as N−4/3 (implying the sub-shot-noise
limit) around the critical points. However, away from the criti-
cal regions, the sensitivity scales as N−1, referring to the SQL.
This is expected since with no criticality, the neighbor states
are indistinguishable with respect to the control parameter
and the sensitivity decreases to the classical limit. We con-
firm this result using the quantum perturbation approach for
small values of coupling constant. In addition, we numerically
calculate the classical Fisher information as well as the error-
propagation formula for two particular signals: (i) the number
of atoms in the m f = 0 Zeeman state and (ii) transverse mag-
netization. Both quantities can be used as the order parameter
of our system, and we prove that they are both optimal choices
of measurement observables in the critical system [17]. We
show that these sensitivity tools lead to the same power-law
scaling versus N as the quantum Fisher information which
confirms the results in Ref. [17]. In particular, our scaling of
the sensitivity of coupling constant around criticality ∼N−4/3

gives the same value as for Lipkin-Meshkow-Glick [19],
Dicke [26], and bosonic Josephson junction [17] models as
well as the antiferromagnetic spin-1 condensates [21] around
continuous quantum phase transitions. In this sense, our re-
sults suggest that the universal behavior of the QFI belongs to
the same class as aforementioned critical systems.

From the experimental point of view, we propose different
types of measurements with respect to our signals, namely the
population counting of particles (using absorption imaging
or fluorescence imaging) and paramagnetic Faraday rotation
[27–29]. In addition, in order to model the realistic condi-
tions, we include the thermal and Gaussian detection noises
in our work. We show that a sufficiently large thermal noise
(compared to the quantum gap) suppresses the sensitivity as
expected. Moreover, for the case of finite temperature, our re-
sults indicate significant decrease of sensitivity by considering
either of the signals. In particular, for a finite system of 500
atoms, we show that atom number counting procedure would
require detection noise of �6 atoms to keep the sub-SQL
sensitivity. This is a hard task in practice but still accessible
with current experimental techniques [30–33]. On the other
hand, regarding the Faraday measurement, the detection noise
up to the level of σ � 103 would not affect the sensitivity.
Consequently, our results suggest that the evaluation of the
control parameter is possible in a real experiment with sub-
SQL sensitivity using the current state of the art capabilities.

The paper is organized as follows. We start with the in-
troduction to the system, model Hamiltonian, and numerical
methods in Sec. II. We review the basis of estimation theory
in Sec. III. Next, in Sec. IV, we show how the theory can
be applied to ferromagnetic condensate at zero temperature.
Finally, in Sec. V, we carefully analyze the effects of nonzero
temperature and detection noise with respect to the relevant
experimental realization of the method. The summary and
conclusion are given in Sec. VI.

II. SYSTEM, MODEL, AND NUMERICAL METHOD

We consider the spin-1 Bose-Einstein condensate (atoms
in the F = 1 manifold) in the presence of a homogeneous
transverse magnetic field B. The system is described by the
field vector �̂ = [�̂1, �̂0, �̂−1]T in which components de-
scribe atoms in the m f = 0,±1 Zeeman states. We assume
the total atoms number to be of the order up to a few thousand
when the generation of spin domains are energetically costly.
We use the single-mode approximation (SMA) for the system
description [24]. In the SMA, the external and internal spin
degrees of freedom can be decoupled and the components
of the field vector transform to �̂m f = φ(r)âm f , where âm f

is the bosonic annihilation operator of an atom in the m f th
Zeeman state. In this case, the system Hamiltonian is cast in
the following form [22–24],

Ĥ (q)

c
= sgn(c2)

2N
Ĵ2 − qN̂0, (1)

which is composed of two terms: The first term resulting from
the contact interaction between atoms and the second term in-
dicating the effect of a quadratic Zeeman shifts on the energy
levels. We set the energy unit to c = N |c2|

∫
dr|φ(r)|4, which

is proportional to the density c ∝ ρ = N/V for homogeneous
systems, and the spin-dependent interaction coefficient c2,
which is defined in terms of the s-wave scattering lengths.1

In the following, the negative value of c2 is considered, which
stands for the ferromagnetic interaction [24,25]. In Eq. (1),
the total pseudospin operator squared Ĵ2 = Ĵ2

x + Ĵ2
y + Ĵ2

z can
be expressed in terms of annihilation (creation) operators
âm f (â†

m f
) of an atom in the m f th Zeeman component, namely

Ĵx = 1√
2

(â†
−1â0 + â†

0 â−1 + â†
0 â+1 + â†

+1â0 ), (2)

Ĵy = i√
2

(â†
−1â0 − â†

0 â−1 + â†
0 â+1 − â†

+1â0 ), (3)

Ĵz = â†
+1â+1 − â†

−1â−1. (4)

In addition, N̂m f = â†
m f

âm f is the number operator of atoms in
the m f = 0,±1 Zeeman state, N is the total number of atoms
being the eigenvalue of N̂ = ∑

m f
N̂m f , and the coupling con-

stant q is the strength of the quadratic Zeeman energy. In the
literature, the symbol q is used for the per-atom quadratic
Zeeman shift energy; see, e.g., Ref. [23]. Here, q is a di-
mensionless parameter which equals the quadratic Zeeman
energy shift in units of c.2 In practice, the parameter q can
be expressed as a sum of two terms, q = qB + qM, as it can
be tuned using an applied magnetic field or an off-resonant
microwave dressing field [25]. Therefore, the value of q can

1The explicit form of c2 is given by c2 = 4π h̄2(a0 − a2)/3m, where
m is the mass of each particle and a0(a2) is the s-wave scattering
length for spin-1 atoms colliding in symmetric channels of total spin
J = 0 (J = 2).

2The phase transition happens at a certain value for the ratio q of
the per-atom quadratic Zeeman shift energy and c. In the context of
our work, the measurement of q can be seen as a measurement of
the quadratic Zeeman energy (if c is known) or of c (if the quadratic
Zeeman energy is known) or of the ratio if neither is known.
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be controlled experimentally from negative to positive values
[34,35]. The model can be realized with ultracold 87Rb atoms
populating the three magnetic sublevels of the F = 1 ground
state manifold [36,37].

The z component of pseudospin Ĵz is a constant of motion,
as [Ĥ, Ĵz] = 0. The eigenvalues of Ĵz correspond to the longi-
tudinal magnetization of the system M = N+1 − N−1, which
is conserved and therefore can be used to label the Hamilto-
nian eigenstates.3 In this case, the system Hamiltonian has the
block diagonal structure, while eigenstates can be considered
in the subspace of fixed magnetization. This is also justified
based on the fact that the spin-dependent interaction has rota-
tional symmetry as long as the spin-1 system is isolated from
its environment and dipolar interactions are neglected [38].
Therefore, the linear Zeeman energy acts as a constant shift on
the energy levels. In this paper, we consider even values of the
total number of atoms N and zero longitudinal magnetization
〈Ĵz〉 ≡ M = 0.

In order to describe numerically the system Hamilto-
nian and extract its eigenstates, we employ the Fock basis
constituted by all eigenstates of the atomic number opera-
tors N̂m f . We use the parametrization |n〉 = |N1, N0, N−1〉 =
|n, N + M − 2n, n − M〉, with n ∈ [nmin, nmax] where nmin =
max[0, M/2, M] and nmax = min[N, (M + N )/2, N + M].
Subsequently, we build up the Hamiltonian (1) in this ba-
sis and numerically diagonalize it to obtain the respective
eigenenergies Eα and eigenstates |ψα〉. The ground state (GS)
|ψ0〉 is used to estimate the sensitivity at zero temperature.
When the temperature value is nonzero, the quantum state is
represented by the canonical Gibbs density matrix

ρ̂(q, T ) =
∑

α

e−Eα (q)/kBT

Z
|ψα〉〈ψα|, (5)

where the αth eigenstate is weighted by wα = e−Eα (q)/kBT /Z
and Z = ∑

n e−Eα/kBT is the partition function with the Boltz-
mann constant kB. Note that in the zero-temperature limit,
the quantum state of the system approaches GS while in the
high-temperature limit the quantum state is maximally mixed
with equally populated eigenstates; i.e., they have the same
weight wα .

The phase diagram of ground states of the Hamiltonian
(1) is presented in Fig. 1. The three phases can be distin-
guished: The longitudinal polar, broken axisymmetry (BA),
and antiferromagnetic (AFM) ones [23,25]. In particular, for
the zero magnetization case, M = 0, two phase transitions
occur between BA-AFM and longitudinal polar-BA phases
at the values of control parameter qc = −2 (the left critical
point) and qc = 2 (the right critical point), respectively. These
two critical points are our central interest in this work.

In the next section, we give a brief review of the basics of
the quantum estimation theory, which we use to estimate the
sensitivity of measurement of q around criticality.

3It is worth noting that Ĵ2 is also an additional conserved quantity
and its eigenvalues, in addition to M, can also be used to label the
Hamiltonian eigenstates. We use this fact for the analytical descrip-
tion of sensitivity around q = 0; see Appendix B.

FIG. 1. The mean-field phase diagram of the ground states of the
ferromagnetic spin-1 Bose-Einstein condensate [24,25]. The AFM
phase: Atoms coexist in the mF = ±1 Zeeman components. The
BA phase: Atoms occupy all three Zeeman components. The po-
lar phase: All atoms are in the mF = 0 Zeeman component. In
general, the ground state is a superposition of Fock states. How-
ever, when q 
 −2 the ground state of AFM phase simplifies as
|(N + M )/2, 0, (N − M )/2〉, while for q � 2 the ground state of
the polar phase is |0, N, 0〉. The position of the left critical point
within the mean-field description is given by the formula qc = −1 −√

1 − (M/N )2.

III. QUANTUM ESTIMATION THEORY

When a physical system crosses a critical point by vary-
ing a control parameter, the ground state of the system
changes abruptly, indicating the presence of a quantum phase
transition. A direct consequence of this fact is significant dis-
tinguishability of the lowest energy eigenstates of the system
around criticality. It has been reported that this distinguisha-
bility can be used to enhance the precision in estimation of
the control parameter around criticality [16,39–41]. In the
following, we recall the building blocks of the estimation
theory used in the paper.

Let us start with the generic Hamiltonian

Ĥ = Ĥ0 + qĤq, (6)

for which a corresponding state ρ̂ exhibits a quantum phase
transition around the critical value of q = qc. This means
that a change of the control parameter q around qc by in-
finitesimally small amount δq leads to a magnificent change
between the respective ground states, say ρ̂(q) and ρ̂(q + δq).
The amount of distinguishability between these two states is
quantified by the fidelity [42],

Fq = tr[
√

ρ̂(q)ρ̂(q + δq)
√

ρ̂(q)]1/2. (7)

In the special case of the pure state |ψ (q)〉, the fidelity simpli-
fies to Fq = |〈ψ (q)|ψ (q + δq)〉|.

In the estimation theory, the notion of fidelity is used to
evaluate the best precision in estimation of the q parameter
and is set by the quantum Fisher information [43–46]

Fq = −4
∂2Fq

∂δq
2

|δq→0 . (8)

More precisely, the precision is determined by the inverse
of the QFI, i.e., the larger the value of the QFI, the better
the precision. The QFI value increases around criticality be-
cause of the abrupt change of ground states of the system
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around the critical points. Therefore, the QFI can be used as
a criterion for distinguishability of the quantum states around
phase transitions. Subsequently, the pivotal role of QFI in the
theory is precise evaluation of the best possible sensitivity
for evaluation of q [2,43]. The QFI determines the upper
bound on the sensitivity in the parameter estimation, which is
the quantum Cramer-Rao bound (QCRB) [43]. The usage of
quantum resources might overcome the ultimate limit for the
precision reachable with the uncorrelated particles, namely
the so-called SQL.

In practice, the measurement of the QFI is a complex task
and it requires a full quantum state tomography, which is not
very feasible for large systems using the current experimental
techniques. In this case, it is more convenient to consider the
classical Fisher information introduced based on the proba-
bility distributions of being ρ̂ in eigenstates of observable Ŝ ,
namely P(s|q) = 〈s|ρ̂(q)|s〉 (here, |s〉 and s are eigenstates and
eigenvalues of Ŝ , respectively). The CFI is defined as

Fc = −4
∂2Fc

∂δ2
q

, (9)

where the fidelity between two neighbor probability distribu-
tions in statistical space is

Fc =
∑

s

√
P(s|q)P(s|q + δq). (10)

In order to evaluate the probability distribution P(s|q), one
requires the knowledge of the whole basis of Ŝ . In real
experiments, the CFI can be indirectly evaluated based on
measurements of the Hellinger distance between probability
distributions of the measured observable Ŝ for neighboring
states ρ̂(q) and ρ̂(q + δq) [47,48]. The QFI is defined as the
maximization of the CFI over all possible Ŝ [2]. In the case of
single parameter estimation, it is proved that there is always
one measurement basis which saturated the QCRB. However,
since the optimal measurement basis is not always evident,
choosing the best one is a nontrivial task on its own [2].
In addition, the precision in the estimation of an unknown
parameter q can also be evaluated using the standard error-
propagation formula

δq2 = 2Ŝ
|∂q〈Ŝ〉|2 , (11)

with 2Ŝ = 〈Ŝ2〉 − 〈Ŝ〉2 representing the variance of Ŝ .
In this work, we consider the two different observables:

(i) the atomic population in the mF = 0 Zeeman component
Ŝ = N̂0 and (ii) the transverse magnetization Ĵ2

⊥ = Ĵ2
x + Ĵ2

y .
An average value of both the observables,

n0 = 〈N̂0〉
N

, j =
√

〈Ĵ2
⊥〉

N
≡

√
〈Ĵ2〉
N

, (12)

has already been recognized as the order parameters to charac-
terize the respective two phase transitions at q = ±2 [49–52].
Note the equivalence of 〈Ĵ2

⊥〉 with 〈Ĵ2〉 which arises due to
the fact that we are considering 〈Ĵz〉 = 0 and the assumption

FIG. 2. An average value of the fraction of atoms n0 in the mF =
0 Zeeman component (upper panel) and the transverse magnetization
squared j2 (lower panel) for M = 0. The black solid lines show
analytical results, (A7) and (A9), obtained in the mean-field limit.
The dashed blue and dash-dotted red lines represent numerical results
obtained using the exact diagonalization method for N = 500 and
N = 1500, respectively.

of fixed magnetization.4 In Fig. 2, we show the change of
both order parameters with respect to the coupling constant q.
The first order parameter n0 can be measured experimentally
by measuring the atomic population in the m f = 0 Zeeman
state. The transverse magnetization j can be obtained using
paramagnetic Faraday rotation measurements (we discuss the
details in Sec. V).

In general, the imprecision δq satisfies the inequalities

δq−2 � Fc � Fq. (13)

As mentioned before, the QFI gives the highest possible sensi-
tivity to q (QCRB) at the expense of experimental difficulties
of state tomography. On the other hand, the error-propagation
formula gives the lowest sensitivity while it needs only mea-
surement of the first and second moments of the observable Ŝ ,
which is a bonus from the experimental point of view. Mean-
while, evaluating the CFI relies on the extracting the higher
moments of S , which leads to higher sensitivity than the
signal-to-noise ratio evaluation. In the following, we discuss
the enhancement in the estimation of the control parameter q
using the quantum estimation theory around criticality.

IV. PRECISE ESTIMATION OF COUPLING
CONSTANT AROUND CRITICAL POINTS

In this section, we employ the QFI, CFI, and error-
propagation formula to discuss characteristic features of
precision in the estimation of q around two critical regions for
zero temperature. In Fig. 3, we present the numerical value
of these quantities for Ŝ = N̂0 and Ŝ = Ĵ2

⊥ as a function of q

4By fixed magnetization, we mean 2Ĵz = 0.
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FIG. 3. (a) Variations of the QFI (black solid line), CFI with Ŝ = N̂0 (red squares), and Ŝ = Ĵ2
⊥ (blue crosses), and δq−2 with Ŝ = N̂0 (the

dot-dashed red line) and Ŝ = Ĵ2
⊥ (the turquoise dashed line) for the total number of atoms N = 500, M = 0, and zero temperature. The SQL

is marked by the thick solid gray line. All quantities are divided by N . The panels (b) and (c) show the same but for the values of q closely
around the left and right critical points, respectively. A scaling of the best sensitivity (quantified by the maxima of QFI, CFI and δ−2q) versus
the total atoms number is presented in insets of panels (b) and (c). Note, we plot logarithms of these quantities to demonstrate the power-law
dependence. Specifically, we observe that F max

q = F max
c ∝ 0.22N1.33 and δq−2,max ∝ 0.21N1.33 around both critical points.

for N = 500. The significant increase of all three quantities
at the two critical points around q = ±2 is observed. The
appearance of peaks reflects the significant distinguishability
of the ground states around each critical point. The heights
of peaks are different because ground states on both sides of
critical points have various character: BA-AFM for the left
and polar-BA for the right critical points.

The almost ideal overlap among all curves can be noticed
in Fig. 2, and it demonstrates that the CFI saturates the QCRB
while δq−2 is slightly reduced by the same amount for both
signals. Still, results presented in Fig. 3 show that the mea-
surement of both order parameters leads to the estimation of
q with sub-SQL sensitivity around the critical points (more
details in the following). Interestingly, both signals give the
same value for the CFI and δq−2. Specifically, for the error-
propagation formula

2N̂0

|∂q〈N̂0〉|2
≈ 2Ĵ2

⊥
|∂q〈Ĵ2

⊥〉|2 (14)

can be explained analytically. This is shown in Appendix A
using the fact that variation of the Hamiltonian (1) tends to
zero and estimating the first and second moments of Ŝ by
using mean-field approximation. Although theoretically the
choice of order parameter seems neutral for both N̂0 and
Ĵ2
⊥, the respective measurements are inherently different from

an experimental point of view. This has implications when
considering the effect of the noise in the detection process.
This point will be discussed in Sec. V.

On the other hand, it is expected that the maximum value
of the Fisher information with respect to number of particles
N is subject to a power-law scaling [16,17,39],

F max
q ∝ Nμ (15)

with μ = 2/dν, where ν is the critical exponent describing
the divergence of correlation length and d is the effective
spatial dimension, as explained in Refs. [16,17]. In order
to demonstrate how the sensitivity changes by varying the
total number of atoms, in insets of Figs. 3(b) and 3(c), we
show the logarithmic values for F max

q , F max
c , and (δq−2)max

versus ln N . Indeed, we observe the power-law scaling of
the QFI with μ = 4/3. The same scaling exponent for the
QFI (or equivalently fidelity susceptibility) is used in the
Lipkin-Meshkov-Glick [19], Dicke [26], bosonic Josephson
junction [17], and antiferromagnetic spinor condensate [21]
models. Moreover, we have extracted the same scaling law
for the other estimating tools in vicinity of the criticality, say
F max

q ∼ F max
c ∼ (δq−2)max ∼ N4/3. This result confirms the

findings in Ref. [17] that the scaling of the maxima for CFI
and signal-to-noise ratio with N coincides with the scaling for
QFI provided that the signal is chosen as the order parameter
of corresponding continuous phase transition. In this sense,
the order parameter gives the optimal measurement basis for
evaluating CFI or error-propagation formula.

We would like to stress that the scaling of the sensitivity
around critical points with either of these metrological tools
beats the scaling of SQL. On the other hand, we can show
that the sensitivity is of the order of SQL in between the two
critical points. In particular, using perturbation theory around
q = 0, we can prove that Fq ∼ Fc ∼ δq−2 = N/4, which is
in agreement with the numerical predictions presented in
Fig. 3 (the details of analytical calculations are discussed in
Appendix B). Consequently, by tuning the coupling constant
from positive to negative values [34,35], the sensitivity of
estimating q around the critical point is enhanced.

Up to now, we have considered the theoretical q-estimation
protocol under ideal conditions, that is, the zero-temperature
regime and perfect measurements of the signals. In the fol-
lowing, we will carefully address the effect of detection noise
and finite temperature. These are real experimental constraints
that can reduce the signal-to-noise ratio and thus reduce the
sensitivity.

V. EXPERIMENTAL PROTOCOL
AND SOURCES OF NOISE

The experimental protocol to measure Ŝ ∈ {N̂0, Ĵ2
⊥}, and

estimate q in the spinor BEC would follow these steps:
(i) State preparation. A sample of atoms is cooled down
through forced evaporation to reach the BEC phase in its
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polar state, i.e., |0, N, 0〉 and q(t = 0) > 2. (ii) Adiabatic
evolution. An external field such as microwave dressing field
is used to adiabatically change the control parameter to a
final value q(t f ). This change needs to be slow enough to
fulfill the adiabaticity condition Ĥ 
 h̄/τ , and specifically
at the quantum phase transition t 
 h̄/min [34,35]. (iii)
Detection. Perform a measurement of Ŝ, to find the specific
realization Si. (iv) Estimation. Apply a suitable estimator,
e.g., the maximum-likelihood estimator, to find the estimate
qi = q̂(Si ). The measurement can be repeated to obtain a
collection of estimates {qi}, from which the variance δq2 can
be estimated. A similar protocol has been used to demonstrate
sub-shot-noise sensitivity in interferometric measurements
[53].

This experimental protocol, even if performed with ex-
treme care and by a skilled experimentalist, will suffer from
several limitations. First, no real experiment works in the
zero-temperature limit. Second, the inevitable detection noise
can also diminish the sensitivity of the measurements. Thus,
it is compelling to address the effects of these constrains
theoretically.

Although we have considered the average value of both
signals Ŝ = N̂0, Ĵ2

⊥ as the order parameters of the system,
there are fundamental differences between the two. In fact,
taking N̂0 as our observable leads to a detection process based
on the population counting of particles, typically done in
ultracold quantum gas experiments using absorption imaging
or fluorescence imaging. On the other hand, measurements of
Ĵ2
⊥ can be performed using paramagnetic Faraday rotation.

In the following, we show how the finite temperature and
detection noise affect the measurement of both observables
and discuss which detection method could be more resilient
against these sources of noise.

A. Effect of nonzero temperature

The effect of finite temperature is assessed using the den-
sity matrix formalism within the canonical Gibbs ensemble
(5). The overall behavior of Fq, Fc, and δq−2 as a function
of the control parameter q for kBT/c = 0.5 is presented in
Fig. 4. In general, we observe that the nonzero temperature
introduces two characteristic features: (i) reduction of the QFI,
CFI, and δq−2 values and (ii) appearance of a dip for the
CFI and δq−2 when Ŝ = Ĵ2

⊥ around q ≈ 0 as compared to the
zero-temperature case shown in Fig. 3 (both for N = 500).
Since we are mostly interested in the estimation of q with
sub-SQL sensitivity, which takes place around critical points,
we skip more details about the properties of the dip at q ≈ 0
in the main text. Its origin as well as characteristics at nonzero
temperature is explained in Appendix B 2 using perturbation
theory.

In Fig. 5, we show the temperature dependence of the
maxima of the QFI, CFI, and δq−2 around the left (a) and
right (b) critical points. Clearly, the finite temperature dimin-
ishes the sensitivity for either of the signals due to the fact
that the pure ground-state transfers to the classical mixture
(5). The three different regimes can be distinguished [16,21]
depending on the ratio between temperature and the energy
gap between the ground and first excited states min: (i)
the quantum regime for kBT/c 
 min, (ii) the intermediate

FIG. 4. The sensitivity quantified by the QFI, CFI, and δq−2 at
nonzero temperature kBT/c = 0.5, with both Ŝ = N̂0, Ĵ2

⊥, around the
left critical point (a), q = 0 (b), and the right critical point (c). All
quantities are divided by N . Note the appearance of a dip for the
CFI and δq−2 when Ŝ = Ĵ2

⊥ around q ≈ 0 as compared to the zero-
temperature case, Fig. 3. We observe a shift of critical points (defined
as maxima of the QFI) due to nonzero temperature.

when kBT/c ≈ min, and (iii) the classical one for kBT/c �
min. In the quantum regime, the QFI, CFI, and δq−2 are
robust against thermal fluctuations, while by increasing the
temperature, the QFI, CFI, and δq−2 decrease. We observe that
the rate of change with temperature is similar at both critical
points.

In the high-temperature limit, all the three quantities show
similar behaviors. This is illustrated in the left upper in-
sets where the logarithms of maxima of Fq, Fc, and δq−2

versus logarithm of temperature are plotted for different val-
ues of the total atom numbers N = 500, 1500, and 3500.
In fact, the maxima are supposed to be subject to the scal-
ing law F max

q /N ∼ F max
c /N ∼ (δq−2)max/N ∼ T η, with η =

(dν − 2)/(zν), in terms of ν and z as the correlation and
dynamical critical exponents and d as the effective spatial
dimension [16]. In the case of the ferromagnetic system, one
has dν = 3/2 and zν = 1/2 [51,52], which leads to T −1 as
demonstrated in the insets of Fig. 5. The maxima of Fc and
δq−2 are insignificantly smaller than Fq (not noticeable in
insets of Fig. 5) and are subject to the same scaling laws
but with slightly smaller prefactors. It is worth noting that
antiferromagnetic spinor condensates exhibit the same scaling
laws as reported in Ref. [21].

To investigate the classical high-temperature limits, in
Fig. 5 we present the logarithmic values of F max

q , F max
c , and

(δq−2)max versus ln N in the bottom left insets for kBT/c =
0.5 and N = 500. As compared to the quantum limit shown in
the subsets of Figs. 3, our numerical results confirm that in the
classical limit the finite-size scaling of sensitivity decreases
from N4/3 (sub-SQL) to N (SQL).
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FIG. 5. Effect of nonzero temperature on the best sensitivity
around the left (a) and right (b) critical points. The values of the
maxima of the QFI, CFI, and δq−2 with Ŝ = N̂0, Ĵ2

⊥ versus temper-
ature kBT/c for N = 500 and M/N = 0. All quantities are divided
by N . The same markings as in Fig. 4 is used. We have removed the
superscript max for the case of simplicity. The SQL is marked by the
horizontal solid gray line. The values of energy gap min/c = 0.36
(a) and min/c = 0.48 (b) are marked by the vertical dashed lines.
The upper right insets demonstrate scaling of the best sensitivity vs
T in the high-temperature limit, when kBT � min. The power-law
scaling T η is expected [16,52]. We observe η ≈ 0.93 for N = 500,
η ≈ 0.95 for N = 1500, and η ≈ 0.97 for N = 3500 at the left criti-
cal point (a). Similarly, we obtained η ≈ 0.88 (N = 500), 0.92 (N =
1500), and 0.95 (N = 3500) at the right critical point (b). The dif-
ference between the scaling of left and right peaks seems to be
consequence of the depth of high-temperature limit with respect to
the respective gaps. The lower left insets gives the scaling with the
total atoms number N in the classical high-temperature limit for
kT/c = 0.5. We observe the scaling approaches SQL, Fq ∼ N1.02, as
for uncorrelated particles.

B. Effect of detection noise

In addition to the temperature, we also consider the effect
of detection noise σ . This noise can have several origins. Here
we will assume that it is strictly related to the imperfection
detection process, and we do not take into account the shot
to shot noise in typical experimental repetitions. In order to
include the effect in our theory, we consider the Gaussian
blurring of the probability distribution P(s|q) = 〈s|ρ̂|s〉 as
[2,54]

P̃(s|q) = 1

N
∑

s′
e− (s−s′ )2

2σ2 P(s′|q) (16)

with N = ∑
s e

(s−s′ )2

2σ2 being the normalization factor.5 In order
to include Gaussian detection noise in the CFI, one has to
replace the probability distribution P(s|q) with P̃(s|q) in the
fidelity (10). Moreover, in the error-propagation formula (11),
we change 〈Ŝ2〉 and 〈Ŝ〉, making use of (16). It means that the
kth moment of Ŝ under the detection noise reads

〈Ŝk〉dn =
∑

s

skP̃(s|q). (17)

Note that the effect of detection noise on moments of the
operator Ŝ in thermodynamic limit is the same as if it was

replaced by ˆ̃S = Ŝ + δ̂S , where δ̂S is an independent Gaus-
sian operator satisfying 〈δ̂2k+1

S 〉 = 0 and 〈δ̂2k
S 〉 = σ 2k (2k −

1)!! [55]. However, in our calculations, we employ (17) since
the ensemble is of finite size and not necessarily in the ther-
modynamic limit.

In Fig. 6, we show how the maxima of the CFI and δq−2

vary with the strength of the noise σ for both signals Ŝ =
N̂0 and Ŝ = Ĵ2

⊥, when N = 500 and kBT/c = 0.02 (quantum
regime) and kBT/c = 0.5 (classical regime). The sensitivity
decreases by increasing the detection noise, as expected. In
the limit of totally imperfect detectors (σ � 1), the sub-SQL
enhancement is lost. In this case, we see that the detection
noise dominates the temperature effect and different curves
for a fixed signal Ŝ overlap. However, for both of the left
[Fig. 6(a)] and right [Fig. 6(b)] critical points, the depth of
change strongly depends on the chosen signal. Assuming the
same value of σ in both scenarios, this could imply that the
Ŝ = Ĵ2

⊥ is more robust against the presence of detection noise
than N̂0. However, this is a false analogy due to different
nature of signals. In the next subsection, we discuss this point
in more detail.

C. Analysis of the noise effect

From an experimental point of view, our results suggest
that one needs to achieve both a sufficiently cold initial sam-
ple, and a low detection noise in order to get the sub-SQL
sensitivity. In the following, we discuss these limits and their
implications in real experiments.

Regarding the temperature of the sample, thermometry in
trapped bosonic quantum gases well below the condensa-
tion point is a difficult task. This occurs when the fraction

5This arises due to the general normalization condition over proba-
bility distributions

∑
s Ps = 1.
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FIG. 6. Effect of detection noise on the best sensitivity at
kBT/c = 0.02 and kBT/c = 0.1 around the left (a) and right (b) crit-
ical points. The maximum values of the QFI, CFI, and δq−2 versus
detection noise σ are given when Ŝ = Ĵ2

⊥ and N̂0. Here, the total
number of atoms is N = 500 and for the sake of simplicity we have
removed the superscript max in the legend.

of thermal atoms is negligible and therefore impossible to
be distinguished from the condensate part. Some record
low-temperature measurements have been achieved by dif-
ferent techniques [56,57] relying on the thermal fraction
of the system components. However, a reliable and sim-
ple experimental way of measuring temperatures of trapped
Bose-Einstein condensates is still missing. Despite that, the
proposed protocol gives rise to collisional-induced entangle-
ment [58], which is easier to detect and is a clear indication
that the phase transition is crossed adiabatically implying that
kBT/c < min [59].

Additionally, Fig. 6 suggests that an experiment based on
atom number counting, i.e., measuring N̂0, would require the

detection noise N � 6 atoms. Single-atom imaging resolu-
tion has been achieved in the context of single trapped atoms
and optical lattices using fluorescence imaging [30,31], and
also in the context of mesoscopic ensembles in a cavity, where
the number of atoms is determined from shifts in the cavity
frequency [32]. More recently, near single-atom resolution has
been achieved in trapped quantum gases [33]. Nevertheless,
this measurement resolution requires very careful calibrations
and postprocessing of images in order to filter the background
noise, and at best it is restricted to very low atom numbers (up
to �1000).

In contrast, measurements of Ĵ2
⊥ would require less

demanding experimental conditions, and they have been
demonstrated in ultracold quantum gases experiments us-
ing nondemolition paramagnetic Faraday rotation [27–29].
In this text, we propose to examine the technique used in
Refs. [29,60,61]. This type of measurement is remarkably
different from the fluorescence imaging method, since our
observable does not belong to the system under study, but
is coupled to it. In Faraday probing, the observable is the
Stokes parameter Ŝy of the probe laser beam that changes
due to an induced birefringence effect caused by the atomic
ensemble. This change corresponds to the rotation of the
linear polarization, and it is proportional to the projection of
the collective spin of the ensemble Ĵ along the propagation
direction of the beam (see Appendix C for a detailed anal-
ysis). Measuring along one of the perpendicular directions,
for instance, ŷ, will allow us to measure the amplitude of Ĵ⊥.
Under the appropriate experimental conditions of detection
and input state of the probe beam, the detection noise can
be expressed as Ĵ⊥ =

√
2/G2

1NL , where G1 is an experi-
mental calibration factor that depends on the geometry of
the probing beam, NL is the number of photons in the pulse,
and

√
2/NL is the readout shot noise in the photodetector.

For recent works in the literature, using about 106 photons,
and calibrated coupling factor G1 ≈ 5 × 10−7, the reported
uncertainties are ≈103. Although we measure Ĵ⊥, we are
considering Ĵ2

⊥ as our theoretical observable. The variance of a
function of a random variable can be approximated as 2Ĵ2

⊥ ≈
(2Ĵ⊥)22Ĵ⊥. Now, we have to consider that this quantity in
our experimental realization will be zero for |q| > 2, and at
the two critical points q ∼ 2,−2 → |Ĵ⊥| � O(1) as shown
in Fig. 2. Therefore, at the phase transition 2(Ĵ2

⊥) ∼ 2Ĵ⊥.
According to Fig. 6, detection noise at this level σ � 103

would result in negligible effect in the measurements of CFI
and δq−2.

All in all, achievable detection noise limits still allow the
successful realization of such an experiment using both ob-
servables. However, in the case of measuring N̂0, it requires
a lot of effort to achieve such a resolution, and increasing
the total number of atoms in the sample beyond ≈103 will
make it even more complex. On the other hand, measuring
Ĵ2
⊥ using Faraday imaging would allow for a more robust

scheme, which, in addition, can support samples of ≈105–106

atoms. Another possible advantage of Faraday imaging is its
nondestructive nature, which allows us to probe the system
continuously, measuring within the same experimental real-
ization the continuous change in the observable as a function
of the control parameter [62].
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FIG. 7. Scaling of the QFI around the left (a) and right (b) critical points for different number of atoms as indicated in the legend. We
observe that Fq = F max

q g(Nγ ε), where g(Nγ ε) is an universal function and ε = q − qmax is a distance from the critical point. The results
confirm F max

q ∼ N1.33 and γ = 2/3. Insets demonstrate scaling of the energy gap min. (c) The QFI for various magnetizations as indicated in
the legend. The right maximum of the QFI disappears because there is no phase transition around q = 2 for macroscopic magnetization; see
Fig. 1.

VI. SUMMARY AND CONCLUSION

In this work, we showed how the sensitivity in measur-
ing the control parameter q can be enhanced around critical
points in the ferromagnetic spin-1 Bose-Einstein condensate.
In order to quantify the sensitivity in the estimation of the
coupling constant, we used the quantum and classical Fisher
information and the error-propagation formula. We explored
two different measurement observables, namely the atomic
population in |F = 1, m f = 0〉 Zeeman substate and the total
spin Ĵ2

⊥ when the longitudinal magnetization is fixed to zero.
We paid special attention to the scaling properties of

sensitivity close to the critical points, where the maximum
value of the QFI is expected to scale with the total atom
number as F max

q ∼ Nμ. Our results confirm this property by
numerically extracting the maxima of the QFI and obtaining
F max

q ∼ N4/3. Away from criticality, however, we recover the
classical SQL scaling F max

q ∼ N . It is worth noting that the
overall variation of the QFI versus q is subject to a scaling
law Fq/F max

q = g(Nγ ε), where g(x) is the scaling function,
ε = q − qmax is a distance from critical point, and γ is a
scaling exponent [19,63]. This is demonstrated in Fig. 7 using
γ = 2/3. Similar value of scaling exponent is found for other
systems belonging to the same universality class, e.g., Lipkin-
Meshkow-Glick [19], Dicke [26], bosonic Josephson junction
[17], and Hamiltonian of the antiferromagnetic condensate
[21] around second-order phase transitions. All of these sys-
tems are fully connected models with no spatial degrees of
freedom [23]. Our system has the same properties, and this
could suggest that our system belongs to the same universal-
ity class as the ones mentioned above. Moreover, the same
scaling laws exponents are valid also for CFI and δq−2 [17],
which we have proved analytically for q ≈ 0, making use of
perturbation theory.

Furthermore, we investigated the effects of temperature
and detection noise on the sensitivity. In particular, we dis-
cussed that the effect of finite temperature gives rise to
different regimes of sensitivity depending on the value of
the energy gap compared to the temperature. In the low-
temperature limit kBT/c 
 min, the sensitivity given by the
QFI (and similarly the CFI and signal-to-noise ratio) is quite

robust against thermal noise. By increasing the temperature,
the sensitivity diminishes and eventually approaches the SQL.
At finite temperature, we also noticed the appearance of a dip
around q ≈ 0 for Ŝ = Ĵ2

⊥, which is explained analytically us-
ing perturbation theory. On the other hand, we have included
the effect of detection noise and evaluated the sensitivity re-
spective to the two different observables. Our results indicate
that measurements of the total spin operator Ĵ2

⊥ are more ro-
bust than measurements of the N̂0 population for samples with
the same number of particles. Let us remember that while we
concentrate our work on the zero-magnetization case, samples
with finite magnetization can also be used. In this case, the
underlying phase diagram restricts to the left critical point for
the BA/AFM transition. This behavior can be reflected in the
behavior of the QFI for different macroscopic magnetizations,
which is presented in Fig. 7. Note that the right peak only
appears in the case of M = 0, while the left peak moves
rightward in equivalence to the phase diagram given in Fig. 1.

Last but not least, our work suggests the feasibility of
experiments with sensitivities beyond the SQL exploiting crit-
icality. In this sense, a direct application could be the precise
estimation of the critical point qc with sub-SQL sensitivity or
indirect evaluation of quantities that determine it. Moreover,
the criticality of the system can lead to an atomic amplification
process that boosts a weak signal which is not be detectable
because of the noise [64–66]. In addition, this work can pro-
vide a way for potential applications in the context of quantum
thermometry [66–68] in spinor BEC systems.
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APPENDIX A: ANALYTICAL PROOF
OF EQ. (14) FOR M = 0

In this Appendix, we prove that when the system (1) is
in the ground state, the error-propagation formula (11) for
both N̂0 and Ĵ2

⊥ signals leads to the same result (14). Here,
we consider the system in the subspace of zero magnetization
(〈Ĵz〉 = 0 and 〈Ĵ2

z 〉 = 0), which implies 〈Ĵ2
⊥〉 = 〈Ĵ2〉.

Let us start with the variance of the Hamiltonian

2Ĥ = 〈Ĥ2〉 − 〈Ĥ〉2, (A1)

which is zero for the system in the ground state. It can be
expressed as

2Ĥ

c2
= 2Ĵ2

⊥
(2N )2

+ q22N̂0 + q

2N
(〈{Ĵ2

⊥, N̂0}〉 − 2〈Ĵ2
⊥〉〈N̂0〉).

(A2)

The expression on the right-hand side can be shown to be

q(〈{Ĵ2
⊥, N̂0}〉 − 2〈Ĵ2

⊥〉〈N̂0〉) = − 1

N
2Ĵ2

⊥, (A3)

when using qN̂0 = − Ĵ2
⊥

2N − Ĥ
c , and 〈Ĵ2

⊥Ĥ〉 = 〈Ĵ2
⊥〉〈Ĥ〉. The

latter can be extracted using the identity operator, Î =
|ψ0〉〈ψ0| + ∑

α �=0 |ψα〉〈ψα|, where |ψ0〉 and |ψα �=0〉 refer to
the ground and excited states respectively. Therefore, one has

2Ĥ

c2
= q22N̂0 − 2Ĵ2

⊥
(2N )2

, (A4)

which in the limit 2Ĥ → 0 reads

2Ĵ2
⊥

(2N )2
= q22N̂0 (A5)

in agreement with numerical results given in Fig. 8.
On the other hand, the average values of the two signals

Ŝ = N̂0 and Ĵ2
⊥ in the denominator of (14) can be approx-

imated on the mean-field level, which is expected to be
valid for large N . The mean-field approach can be performed
by expressing annihilation and creation operators in (1) ac-
cording to âm f → √

Nm f e
iθm f , where Nm f is the number of

atoms in the m f Zeeman component and θm f is the phase.
It was shown that θ1 + θ1 − 2θ1 = 0 [69]. In this case, the
operator Ĵ2

⊥ = N + Ĵ2
z + N̂0(2N + 1 − 2N̂0) + 2(â†2

0 â1â−1 +
â2

0â†
1â†

−1) transforms to Ĵ2
⊥ → N + N0 + 2N0(

√
N1 + √

N−1)2

while Ĥ/(cN ) → F with the energy functional

F (n0, q) = −2n0(1 − n0) − qn0. (A6)

FIG. 8. Numerical verification of various relations used in Ap-
pendix A. (a) Numerical demonstration of (A5), (b) the first
derivative of n0 obtained with exact calculations (red dashed lines)
and the mean-field analysis (A7), and (c) the first derivative of j2

from exact numerical simulations and compared to the analytical
mean-field expression (A9), all for N = 500.

To obtain the above form, we have introduced fractional
population of m f th Zeeman level nm f = Nm f /N and im-
posed the condition M/N = n1 − n−1 = 0, such that n1 = n−1

and consequently 2n1 = 1 − n0 due to n1 + n0 + n−1 = 1.
Minimization of the energy functional with respect to n0 ap-
proximates the mean value of the atoms number in the mF = 0
Zeeman component. It gives

n0(q) =

⎧⎪⎨
⎪⎩

0, q < −2,

q
4 + 1

2 , q ∈ [−2, 2],

1, q > 2.

(A7)

On the other hand, the energy functional can be expressed in
terms of the mean-field value of 〈Ĵ2

⊥/N2〉 → j2, which gives
j2 = 4n0(1 − n0) and sets n0 = (1 +

√
1 − j2)/2. Therefore,

it is enough to use the latter in (A7) to obtain variation of j2

versus q. More formally, the energy functional F can also be
expressed in terms of j2 to cast in the following form:

F ( j2, q) = − j2

2
− q

2
(1 +

√
1 − j2). (A8)

Minimization of the above expression with respect to j2 leads
to

j2 =
{

0, |q| > 2,

1 − q2

4 , q ∈ [−2, 2].
(A9)

In Fig. 2, we compare the mean-field expressions (A7) and
(A9) to exact quantum numerical results for N = 500, 1500.
The excellent agreement can be noticed.

All in all, the derivatives of 〈N̂0〉/N and 〈Ĵ2
⊥〉/(N2), which

are present in the denominator of (14), proved to fulfill the
relation ∣∣∣∣∂q〈Ĵ2

⊥〉
2N

∣∣∣∣
2

≈ |q ∂q〈N̂0〉|2 (A10)
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when the mean-field results for the average values of both
signals, 〈N̂0〉/N ≈ n0 and 〈Ĵ2

⊥〉/(N2) ≈ j2, are used. Conse-
quently, the relation between signal-to-noise ratio for both
signals considered here (14) is proved taking into account
(A10) and (A5).

The derivation we presented here is performed for the
system ground state, but we can expect that it also holds in
the low-temperature limit at the canonical ensemble.

APPENDIX B: SENSITIVITY AT q → 0:
PERTURBATIVE APPROACH

In this Appendix, we provide eigenstates and eigenvalues
of the Hamiltonian (1) around q = 0 using perturbation the-
ory. Next, we use them to analytically extract the sensitivity
in the same vicinity.

It is convenient to consider the BEC spinor system in the
Dicke state basis, which are equivalent to the eigenstates of to-
tal spin operator Ĵ2|N,J , M〉 = J (J + 1)|N,J , M〉, and its
z projection Ĵz|N,J , M〉 = M|N,J , M〉, with J ∈ [M, N].
Equivalently, one could use the Fock basis, which uses the
eigenstates of atomic number operators N̂m f , namely |n〉 =
|N+1, N0, N−1〉 = |n, N + M − 2n, n − M〉. The Dicke states
are defined as [38,70]

|N,J , M〉 = 1

N 1/2
(Ĵ−)P(Â†)Q(â†

+1)J |vac〉, (B1)

where P = J − M, 2Q = N − J , while Ĵ− = √
2(â†

−1â0 +
â†

0â1) is the spin lowering operator, Â† = â†
0 − 2â†

−1â†
+1 is the

singlet spin operator, and |vac〉 refers to the vacuum Fock
state. The respective normalization factor is given by

N = J !(N − J )!!(N + J + 1)!!(J − M )!(2J )!

(2J + 1)!!(J + M )!
,

(B2)

where !! represents the double fractional.
In order to analyze the sensitivity around q = 0, we set q

as a small parameter of the perturbation theory. Consequently,
Ĥ0 = −Ĵ2/(2N ) is the unperturbed Hamiltonian while Ĥq =
−N̂0 represents the perturbation. Then, the eigenstates of
the unperturbed Hamiltonian can be considered as the Dicke
states corresponding to eigenvalues EJ = −J (J + 1)/2N .
The lowest energy state is when J = N , which can be ex-
pressed in terms of the Fock state basis as [70]

|N,J = N, M = 0〉 =
N/2∑
n=0

cn|n, N − 2n, n〉, (B3)

with

cn = 2
N
2 −nN!

n!
√

(N − 2n)!

√
N!

(2N )!
. (B4)

Consequently, the eigenstates |ψJ 〉 of the system Hamiltonian
approximated by the perturbation theory up to the second-
order correction of q as

|ψJ 〉 =
[

1 − q2

2

(
C−(J )2 + C+(J )2

)]|J 〉

− qC−(J )[1 + qF (J )]|J − 2〉

− qC+(J )[1 + qF (J + 2)]|J + 2〉
+ q2C−(J )C−(J − 2)

EJ−2 − EJ−4

EJ − EJ−4
|J − 4〉

+ q2C+(J )C+(J + 2)
EJ+2 − EJ+4

EJ − EJ+4
|J + 4〉,

(B5)

for the case of M = 0. Here, we introduced the notation
|J 〉 = |N,J , M = 0〉. Moreover, the respective eigenvalues
E�J read

EψJ = EJ − q〈J |N̂0|J 〉 + q2(EJ − EJ−2)|C−(J )|2

+ q2(EJ − EJ+2)|C+(J )|2. (B6)

In the above equations, we introduced the notations

C−(J ) = 〈J − 2|N̂0|J 〉
EJ − EJ−2

,

C+(J ) = 〈J + 2|N̂0|J 〉
EJ − EJ+2

,

F (J ) = 〈J |N̂0|J 〉 − 〈J − 2|N̂0|J − 2〉
EJ − EJ−2

,

in terms of

〈J |N̂0|J 〉 = A+(J ) + A−(J ), (B7)

〈J + 2|N̂0|J 〉 =
√

A−(J + 2)A+(J ), (B8)

〈J − 2|N̂0|J 〉 =
√

A+(J − 2)A−(J ), (B9)

and

A−(J ) = (J 2 − M2)(N + J + 1)

(2J − 1)(2J + 1)
,

A+(J ) = [(J + 1)2 − M2](N − J )

(2J + 1)(2J + 3)
.

Note that 〈J |N̂0|J ± 2〉 = 〈J ± 2|N̂0|J 〉 [70].
In our calculations, we have also used the expression in-

volving an average of N̂2
0

〈J |N̂2
0 |J 〉 = [A+(J ) + A−(J )]2 + A−(J + 2)A+(J )

+ A−(J )A+(J − 2). (B10)

In the following, we use these perturbative terms to derive
the sensitivity of measurement q around 0.

1. Zero temperature

In this subsection, we give the analytical results for the
sensitivity around q = 0 when the system is in the ground
state, i.e., T = 0. We employ perturbation theory and consider
QFI, CFI, and error propagation formula with Ŝ = N̂0, Ĵ2. In
this case, the ground-state energy of the system is for J = N
(B5) and we explicitly get

EψN = −N

2
− q

N

2
− q2 N

8
. (B11)
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FIG. 9. Validity of the perturbation theory for N = 500. (a) The
ground-state energy. (b) An average value of N̂0 over GS. The exact
numerical result is marked by the black solid line and analytical one
from perturbation theory by the dashed red line.

Correspondingly, the ground state (B6) is evaluated as

|ψN 〉 =
(

1 − q2 N

32

)
|N〉 + q

√
N

4
|N − 2〉 + q2 N

16
√

2
|N − 4〉,

(B12)

in the large atom number limit (N � 1). In Fig. 9, we
demonstrate validity of the above approximated results for the
ground state by comparing them to the exact numerical results
for energy and an average value of N̂0. Clearly, an agreement
between the numerical and approximated results in the limit
of q ≈ 0 can be noticed.

In order to analyze the sensitivity around q = 0, it is more
straightforward to consider an alternative expression for the
QFI valid for pure states6:

Fq = 4(〈∂qψ |∂qψ〉 − |〈ψ |∂qψ〉|2). (B13)

Subsequently, by replacing (B12) and its derivative, one easily
obtains

Fq|q→0 = N

4
. (B14)

On the other hand, in order to get CFI, it is convenient to use
the following definition:

Fc(Ŝ ) =
∑

s

1

P(s|q)

(
∂P(s|q)

∂q

)2

. (B15)

The CFI value depends on the particular choice of the operator
Ŝ as mentioned before. Let us start with Ŝ = Ĵ2. Using (B12),
probability P(J |q) = |〈J |ψN 〉|2 reads

P(J |q) =
(

1 − q2 N

32

)2

δJ ,N + q2 N

42
δJ ,N−2

+
(

q2N

16
√

8

)2

δJ ,N−4, (B16)

where δJ ,J ′ refers to the Kronecker δ function. By inserting
(B16) and its derivative with respect to q into Eq. (B15), one
gets

Fc(Ĵ2)|q→0 = N

4
. (B17)

6It can be derived from (8) using the Taylor expansion as shown, in
e.g., Refs. [2,39].

On the other hand, when the measurement signal is taken as
the operator of number of atoms in the mF = 0 Zeeman com-
ponent, Ŝ = N̂0, it is easier to work using the Fock state basis
which is the eigenbasis of atomic number operators N̂mF =
â†

mF
âmF [71], as we show in Eq. (B3). Note that the coefficients

of decomposition are normalized to one, i.e.,
∑

n |cn|2 = 1.
The probability can be treated as

P(n|q) = |〈n|ψN 〉|2

=
∣∣∣∣(1−q2 N

32
)cn,N +q

√
N

4
cn,N−2 + q2 N

16
√

2
cn,N−4

∣∣∣∣
2

.

(B18)

After computing the derivative of P(n|q) with respect to q,
one can compute the CFI by using (B15) and normalization
condition for coefficients cn. This leads to

Fc(N̂0)|q→0 =
∑

n

1

c2
n,N

(√
N

2
cn,N cn,N−2

)2

= N

4
. (B19)

Consequently, putting all results together (B14), (B19), and
(B17), we get FQ = Fc(N̂0) = Fc(Ĵ2) when q → 0. It is in an
agreement with the numerical results presented in Fig. 3. Note
that while the sensitivity around q → 0 is of the order of SQL
∼N , the scaling around critical points exceeds this limit, i.e.,
∼N4/3. This is due to the fact that the neighbor states differ
significantly when varying q around critical points, while they
do not change much around q ≈ 0.

Finally, for the sake of completeness, we also derive the
sensitivity considering error-propagation formula (11). Let us
start with Ŝ = Ĵ2. Using the perturbative states (B12), we
calculate the first 〈ψN |Ĵ2|ψN 〉 and the second 〈ψN |Ĵ4|ψN 〉
moments of the signal Ŝ = Ĵ2. By keeping the leading terms
in q, we obtain the variance as 2Ĵ2 = q2N3 and the sig-
nal derivative as |∂q〈Ĵ2〉|2 = q2N4/4. The two latter result
in δq−2 = N/4 for signal-to-noise ratio. In the case of the
operator Ŝ = N̂0, the calculations can also be performed
using (B7) and (B10) to obtain the first and second mo-
ments. The calculations are quite tedious while finally one
finds that the leading terms in q are the same as previously,
namely 2N̂0 = q2N3 and |∂q〈N̂0〉|2 = q2N4/4, which gives
δq−2 = N/4.

2. Finite temperature

Here, we explain the appearance of the dip around
q = 0 for Fc(Ĵ2

⊥) and δq−2(Ĵ2
⊥) in the case of finite tem-

perature. In the Dicke basis, a thermal equilibrium state
of the system described by the density matrix (5) is
given by

ρ̂ =
∑
J

ωJ |ψJ 〉〈ψJ |, (B20)

where ωJ = e−E�J (q)c/kBT /Z . We take the high-temperature
limit, kBT/c → ∞.
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FIG. 10. The sensitivity around q ≈ 0 vs temperature for N =
500. The analytical results for Fq,ana (solid black), δq−2(N̂0)ana

(dashed red), and δq−2(Ĵ2
⊥)ana (dash-dotted blue) are compared to the

exact results for Fq,num (black crosses), δq−2(N̂0)num (red diamonds),
and δq−2(Ĵ2

⊥)num (blue squares). The abrupt drop of the sensitivity
is observed when Ŝ = Ĵ2

⊥ as explained in the text. Note the log-log
scale.

In finite temperature, it is useful to employ the following
definition of the QFI [2,41,43]:

Fq =
∑
J

(∂qωJ )2

ωJ
+ 2

∑
J ,J ′

ωJ +ωJ ′ >0

(ωJ − ωJ ′ )2

ωJ + ωJ ′
|〈ψJ ′ |∂qψJ 〉|2,

(B21)

which is valid for mixed states. Making use of the above
definition, we obtain

Fq|q→0 =
∑
J

ω̃J c

kBT

(
〈J |N̂0|J 〉 −

∑
J ′

〈J ′|N̂0|J ′〉ω̃J ′

)2

+ 2
∑
J

[
(ω̃J − ω̃J−2)2

ω̃J + ω̃J−2
C2

−(J )

+ (ω̃J − ω̃J+2)2

ω̃J + ω̃J+2
C2

+(J )

]
, (B22)

where ω̃J := ωJ |q→0. The above expression shows that Fq is
finite around q = 0 when the temperature is nonzero, even if
it is very small. This is because the coefficient in the first line
is finite since both of ω̃J and T are nonzero. The expression
inside parentheses is nonzero because J �= J ′ and ω̃J < 1.
On the other hand, one can observe that the QFI tends to zero
in the high-temperature limit, i.e., kBT/c → ∞. This is due
to ∂qω̃J | q→0

T →∞
= 0 while ω̃J − ω̃J ′ | q→0

T →∞
→ 0 as a result of

of having a totally mixed state. In Fig. 10, we present the
analytical and numerical result for the QFI value around q = 0
versus the temperature value. The perfect agreement can be
noticed.

Moreover, in order to get the sensitivity when Ŝ = Ĵ2
⊥

(q = 0), we use the signal-to-noise ratio (11). We start with
the variance 2Ĵ2 = 〈Ĵ4〉 − 〈Ĵ2〉2 with 〈Ĵ2l〉 = tr(ρ̂Ĵ2l ) (l =
1, 2). Using (B22), it is quite easy to show that the variance
reads

2Ĵ2|q→0 =
∑
J

ω̃JJ 2(J + 1)2−
[∑

J
ω̃JJ (J + 1),

]2

,

(B23)

which tends to zero for the pure state when J = N (see
previous subsection). However, any mixed state makes the
variance nonzero, although it can be very small. One can also
show that the derivative of an average value of Ĵ with respect
to q is equal to

∂q〈Ĵ〉|q→0 =
∑
J

ω̃J c

kBT

(
〈J |N̂0|J 〉 −

∑
J ′

〈J ′|N̂0|J ′〉ω̃J ′

)
.

(B24)

Consequently, for any nonzero temperature, we get
∂q〈Ĵ2〉|q→0 → 0 due to

∑
J ω̃J = 1. Therefore, the inverse

of signal-to-noise ratio (11) gives

δq−2|q→0 = |∂q〈Ĵ2〉|2
2Ĵ2

|q→0 → 0. (B25)

In addition, we derive the CFI (B15) for Ĵ2
⊥ in the vicinity

of q ≈ 0. Using Eqs. (B12), (B11), and (B20), one finds the
following probability distribution:

P(J |q) = 〈J |ρ̂|J 〉

=
∑
J

ωJ

[
1 − q2

2
(C2

−(J ) + C2
+(J ))

]
, (B26)

in which P(J , q)|q→0 = 1 and the respective derivative is
∂qP(J |q)|q→0 = 0. Therefore, the above analysis shows that
the CFI reads

Fc(Ĵ2)|q→0 → 0 (B27)

for any nonzero temperature.
Lastly, we show that the inverse of signal-to-noise ratio and

the CFI for N̂0 gives a nonzero value. The first one can be
shown to be nonzero, because the derivative in the perturba-
tion theory reads

|∂q〈ψN |N0|ψN 〉|q→0 = 2
∑
J

ω̃J [C+(J )(EJ − EJ+2)

+C−(J )(EJ − EJ−2))], (B28)

which is a nonzero value since EJ �= EJ±2. Therefore, the
variance is 2N̂0|q→0 = 〈J |N̂2

0 |J 〉 − 〈J |N̂0|J 〉2 �= 0 using
(B7) and (B10). We have not brought the final expression
here because they are lengthy, but instead in Fig. 10 we
demonstrate δq−2(N̂0) depending on temperature when q ≈ 0.
Clearly, at any temperature δq−2(N̂0) is equal to the QFI value.
Consequently due to the inequality relation (13), we conclude
that the CFI for Ŝ = N̂0 equals to the QFI as well, at q = 0
and for any temperature.
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APPENDIX C: MATHEMATICAL DESCRIPTION
OF FARADAY MEASUREMENTS

As usual, we describe the system using the collective spin
operators Ĵx, Ĵy, Ĵz and the light using the Stoke operators,

Ŝμ = 1
2 (â†

+â†
−)σμ(â+â−)T , (C1)

where σμ are the Pauli matrices, and â± are anihilation
operators of photons in σ± polarization states. The inter-
action Hamiltonian describing atom-light interaction under
dipole approximation can be decomposed into three parts
proportional to the scalar, vector, and tensor parts of the
polarizability tensor Ĥint = Ĥ0 + Ĥ1 + Ĥ2; see Refs. [72,73]
for mode details. The relevant interaction term is the vector
part Ĥ1 (because Ĥ0 commutes with all Stokes parameters
and the small magnitude of the Ĥ2 under certain experimental
conditions, i.e., off-resonant interaction and appropriate input
polarization state):

Ĥ1 = h̄G1

τp
ŜzĴy, (C2)

where τp is the probing time and G1 is a calibrated factor that
takes into account the polarizability and the geometry of the
beam (i.e., it is like an effective coupling factor between the

atoms and the probe beam). A pulse of off-resonant polar-
ized light will experience a rotation of its polarization vector,
compared to its quantum components. The evolution of the
Stokes operators under the given Hamiltonian can be calcu-
lated using the evolution operator Û (t ) = e−iĤ1t/h̄ following
the usual prescription Ŝi(t ) = Û T Ŝi(0)Û . When the input light
is polarized along the x axis, one has 〈Ŝy(0)〉 = 〈Ŝz(0)〉 = 0,
〈Ŝx(0)〉 = NL/2, where NL is the total number of photons at
the input. The small change in the rotation angle φ can be
defined as φ ≈ 〈Ŝy〉/〈Ŝx〉. On the other hand, the evolution of
Ŝy for a time τp can be written as

Ŝy(t ) = Ŝx(0) sin G1Ĵy. (C3)

When one assume an initial atomic state fully polarized
along the z direction, perpendicular to the quantization axis x,
then the following relation can be obtained,

〈Ĵy〉 = 1

G1

〈Ŝy〉
〈Ŝx〉

, (C4)

in the small-angle approximation. This links the small ro-
tation angle with an average value of atomic pseudospin
component.
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