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Pattern formation of correlated impurities subjected to an impurity-medium interaction pulse
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We study the correlated dynamics of few interacting bosonic impurities immersed in a one-dimensional
harmonically trapped bosonic environment. The mixture is exposed to a time-dependent impurity-medium
interaction pulse moving it across the relevant phase-separation boundary. For modulation frequencies smaller
than the trapping one, the system successively transits through the miscible and immiscible phases according
to the driving of the impurity-medium interactions. For strong modulations, and driving from the miscible to
the immiscible regime, a significant fraction of the impurities is expelled to the edges of the bath. They exhibit
a strong localization behavior and tend to equilibrate. Following the reverse driving protocol, the impurities
perform a breathing motion while featuring a two-body clustering and the bath is split into two incoherent
parts. Interestingly, in both driving scenarios, dark-bright solitons are nucleated in the absence of correlations.
A localization of the impurities around the trap center for weak impurity-impurity repulsions is revealed, which
subsequently disperse into the bath for increasing interactions.
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I. INTRODUCTION

Ultracold atoms serve as an excellent platform to monitor
the nonequilibrium dynamics of quantum many-body (MB)
systems [1], due to the extraordinary experimental tunability
of their intrinsic parameters. For instance, the interparticle
interactions can be adjusted by means of Feshbach [2,3] or
confinement induced resonances [4–6], and it is possible to
realize systems of different dimensionality with arbitrarily
shaped trapping potentials [7]. Moreover, remarkable progress
has been achieved in realizing multicomponent quantum gases
[8–12]. A particular focus has been placed on mobile impuri-
ties immersed in a MB environment which are consecutively
dressed with the collective excitations of the latter thereby
forming quasiparticles [13–17]. The stationary properties of
impurity atoms in a Bose or a Fermi medium [18–23], such as
their effective mass [21,23,24], lifetime [14,17], and induced
interactions [25–27], have been extensively studied. Recently
the emergent dynamics of these settings has been investigated
[28–34], e.g., by dragging impurities in a MB environment
[35,36], quenching the impurity-medium interaction strength
[33,37], and modifying the external potential experienced
by the impurities [38,39]. The aforementioned quench pro-
tocols have led to dynamical phenomena such as entropy
exchange processes between the impurity and the bath [38],
dissipative motion of impurities inside Bose-Einstein con-
densates (BECs) [31,36], slow relaxation dynamics [35,40],
the breakdown of the quasiparticle picture for near resonant
impurity-bath interactions [41], and the emergence of tempo-
ral orthogonality catastrophe phenomena [33,34].

Independently and in a completely different context,
nonequilibrium periodic driving protocols of the involved

scattering lengths or the trapping potential have been uti-
lized in order to generate and stabilize nonlinear excitations
such as solitons in one-dimensional (1D) single [42–45], and
two-component BECs [46–48], as well as higher-dimensional
settings [49,50], and also unravel their collisions in a control-
lable manner [46,48]. Interestingly, it has been showcased that
the periodic modulation of the interatomic interactions leads
to parametrically excited resonant modes and pattern forma-
tion in BECs, such as Faraday waves [51–57], resembling
the response of fluids subjected to a vertical oscillatory force.
Moreover, a plethora of additional intriguing phenomena have
been exemplified, including the ejection of matter-wave jets
in a two-dimensional (2D) cesium BEC [58–60], which carry
information regarding the phase of the condensate [60], and
the emission of correlated atom jets from a bright soliton [61].

Motivated by the above-described phenomena the periodic
driving of the impurity-medium interactions provides an in-
teresting avenue to unravel the dynamical response of both
subsystems. Given the advances that have been put forward
with time-periodic quench protocols, we expect to identify
a variety of dynamical response regimes depending on the
characteristics of the driving, where for instance spatial local-
ization of the impurities might occur [62], phase-separation
phenomena can be manifested, and specific patterns can be
imprinted in the bath, being inherently related to its coherence
properties [63]. For instance, it has been shown that shaking
the impurities harmonic trap and depending on the driving fre-
quency leads to intriguing collisional aspects with their host
such as a distorted collective dipole motion, their effective
trapping, or escape from the medium [39]. In this sense, non-
linear structures can be spontaneously generated [23,64], with
the time-periodic driving favoring pattern formation in both
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components of the system [54]. Additionally the response of
few instead of one or two impurities during the dynamics is
certainly an interesting aspect. In the present paper a pulse
of the impurity-medium interactions is employed in order to
study the nonequilibrium correlated dynamics of few inter-
acting bosonic impurities embedded in a MB bosonic gas,
driving the mixture across its miscibility-immiscibility phase
boundary. We track the correlated dynamics of the bosonic
mixture by utilizing a variational approach, namely, the mul-
tilayer multiconfiguration time-dependent Hartree method for
atomic mixtures (ML-MCTDHX) [65–67].

First, the particle imbalanced system is driven from the
miscible to the immiscible phase and two distinct response
regimes are identified. For modulation frequencies smaller
than the trapping one, the impurities and the bath successively
transit in time through the miscible and immiscible phases
according to the temporal driving of their mutual interactions.
Turning to larger modulation frequencies, dark-bright (DB)
soliton pairs emerge in the absence of correlations forming
after half an oscillation period an almost steady bound state
around the trap center [43,64]. Taking correlations into ac-
count, these pairs travel towards the edges of the cloud of their
environment, where they remain while oscillating [33,36,37].
Simultaneously they feature a spatial localization tendency
and are two-body correlated between each other. Moreover
a density dip (hump) around the trap center is formed for
the bath (impurities). Two-body correlations develop for bath
particles residing between the two distinct spatial regions sep-
arated by the central hump. Employing an effective potential
picture [33,36], it is found that the impurities reside in a
superposition of its lowest-lying eigenstates. In the opposite
modulation scenario, where the system is driven to its misci-
ble phase, the two previously mentioned regimes can still be
captured. For modulation frequencies larger than the trapping
one, oscillating DB solitons emerge within the mean-field
(MF) framework [64], which at long evolution times gradually
fade away. In sharp contrast within the MB scenario a splitting
of the quantum DB soliton pair [68] into two fragments occurs
at the initial stages of the dynamics which subsequently fluc-
tuate near the trap center. Accordingly, coherence is almost
completely lost for the MB environment. The impurities ex-
hibit a breathing motion, the frequency of which is in good
agreement with the predictions of the effective potential, and
for longer times they exhibit a two-body clustering [15,25,33].

Moreover, we inspect the role of impurity-impurity inter-
actions for the cases of two and ten impurity atoms following
an impurity-bath interaction pulse from the immiscible to
the miscible phase and vice versa. For weak repulsions, the
impurities majorly reside in both cases around the trap center,
occupying predominantly the ground state of their effective
potential [39]. Outer density branches become pronounced
only when the particle number or the impurity-impurity re-
pulsion increases.

This paper unfolds as follows. Section II introduces our
system, and describes the employed driving protocol, the used
MB Ansatz, and the observables which will be employed to
track the dynamics. Subsequently, in Sec. III the nonequilib-
rium dynamics of the bath-impurity system is explored for
a driving from the miscible to the immiscible phase and the
reverse scenario is deployed in Sec. IV. Section V elaborates

on the dynamical response of the impurities for different
particle numbers and impurity-impurity interactions, in both
driving scenarios. Finally, in Sec. VI we summarize our main
results and suggest possible future extensions of our paper.
In Appendix A we briefly discuss the energy exchange pro-
cesses taking place between the two components, while in
Appendix B, the breathing frequency of the impurities is in-
vestigated as a function of the modulation frequency within
the MF approach for a driving to the miscible phase.

II. THEORETICAL FRAMEWORK

A. Hamiltonian and driving protocol

We consider a particle imbalanced bosonic mixture con-
taining NA = 100 atoms forming the environment and NB =
10 impurities. The system is mass balanced, i.e., MA = MB =
M, and it is confined within an elongated harmonic trap
of frequency ωA = ωB = ω. Such a mixture can be real-
ized experimentally, by employing two hyperfine states of
87Rb, e.g., the |F = 1, mF = −1〉 for the environment and
|F = 2, mF = 1〉 for the impurities [10]. The MB Hamilto-
nian of this system reads

H =
∑

σ=A,B

Nσ∑
i=1

[
− h̄2

2Mσ

∂2

∂
(
xσ

i

)2 + 1

2
Mσω2

σ

(
xσ

i

)2

]

+
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gσσ
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δ
(
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i − xσ
j

)

+ gAB(t )
NA∑
i=1

NB∑
j=1

δ
(
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i − xB
j

)
, (1)

where gσσ denotes the two involved intraspecies interac-
tion strengths, gAB(t ) is the impurity-medium coupling, and
xσ = (xσ

1 , . . . , xσ
Nσ

) are the spatial coordinates of the σ = A, B
species. The mixture consists of ultracold 87Rb atoms, and
hence its interparticle interactions occur predominantly via
s-wave scattering [2]. All the involved effective coupling
strengths can be expressed in terms of the corresponding
three-dimensional s-wave scattering lengths, aσσ ′ , and the
harmonic oscillator length in the transverse direction a⊥ =√

h̄/μω⊥ [4,5]. Namely, gσσ ′ = 2h̄2aσσ ′
μa2

⊥
[1 − |ζ (1/2)| aσσ ′

a⊥
]−1,

where μ = M/2 is the two-body reduced mass and ζ is the
Riemann zeta function. It is convenient to recast the MB
Hamiltonian of Eq. (1) in terms of h̄ω⊥, and in what fol-
lows we express all the relevant length, time, and coupling
strength scales in units of

√
h̄/Mω⊥, ω−1

⊥ , and
√

h̄3ω⊥/M,
respectively. The trapping frequency is ωA = ωB = ω = 0.1
and the involved intraspecies coupling constants gAA = 1.004
and gBB = 0.9544 are kept fixed to mimic the experimentally
relevant interactions of the above-mentioned 87Rb, unless it is
stated otherwise. To limit the spatial extent of our system, we
impose hard-wall boundary conditions at x = ±40, thereby
ensuring that their location does not affect the emergent dy-
namics. It is also worth commenting that experimentally using
for instance ω � 2π × 100 Hz the 1D description holds for
ω⊥ � 2π × 5 kHz whereas temperature effects are negligible
for kBT � 1.5μK.

023313-2



PATTERN FORMATION OF CORRELATED IMPURITIES … PHYSICAL REVIEW A 103, 023313 (2021)

FIG. 1. Time-periodic modulation protocol of the impurity-
medium interaction strength gAB(t ) [Eq. (2)] for the two relevant
driving scenarios across the phase-separation boundary, namely,
starting from gin

AB = 0.2 to gf
AB = 1.2 and from gin

AB = 1.4 to gf
AB =

0.6.

The employed time-periodic pulse protocol involves solely
gAB(t ), which is sinusoidally modulated in time (for t � 0),
according to

gAB(t ) = [
gin

AB + (
gf

AB − gin
AB

)
sin2(�t )

]
θ

(
5π

2�
− t

)

+ gf
ABθ

(
t − 5π

2�

)
, (2)

for a time span of T = 5π/(2�), with an amplitude of |gf
AB −

gin
AB| and frequency � starting from gAB(0) = gin

AB. Subse-
quently gAB(t ) is held constant at gAB(t ) = gf

AB, for t > T ,
while θ (x) is the Heaviside function. For T → 0, the driving
of gAB(t ) occurs only at small time scales, and the protocol
effectively reduces to a simple interaction quench, whereas in
the limit T → ∞, the bosonic system is subjected to a contin-
uous driving of a small frequency. Furthermore, if � > ω the
system is strongly driven, whereas for � < ω, the pulse lies
in the weak driving regime.

The considered interaction pulse is schematically shown in
Fig. 1 when crossing the miscible to the immiscible phase and
vice versa. In the following, we will consider two interaction
pulse scenarios, both of them driving the impurity-medium
interaction strength across the phase-separation boundary. For
this reason we choose a fixed driving amplitude, namely,
|gf

AB − gin
AB|=1. Naturally, a larger driving amplitude crossing

the phase-separation boundary leads to the same behavior as
below, while a smaller amplitude which does not cross the
relevant threshold is another interesting case which we do
not address in the present paper. Recall that phase separation
occurs whenever gAB >

√
gAAgBB, a condition that is also ad-

equate in the trapped scenario, and then the wave functions of
the two species have minimal spatial overlap [69,70]. In our
case, the threshold takes place at gAB = 0.9789. In Sec. III,
the dynamics is explored as the impurity-medium coupling
strength is driven according to Eq. (2) to the immiscible phase
(gf

AB = 1.2) starting from the system’s ground state in the
miscible regime, characterized by gin

AB = 0.2. Subsequently,
in Sec. IV the reverse driving scenario is investigated, and
in particular gin

AB = 1.4 with the system being initialized in

its ground state is modulated to gf
AB = 0.6, i.e., towards the

miscible regime. More precisely, we aim to understand the
driven phase-separation process and associated pattern forma-
tion in both species depending on the initial phase and the
related driving frequency. We shall also briefly comment on
the impact of different pulse durations and large modulation
frequencies on the driven dynamics. However, a more thor-
ough analysis on this issue, leading possibly to the control
of the participating correlations of the emergent patterns, is
desirable, and is left for future investigations.

B. Many-body wave-function Ansatz

In order to simulate the nonequilibrium driven dynamics
of the bosonic mixture, as the impurity-medium interaction
strength is sinusoidally modulated, the wave function is ex-
panded in a time-dependent and variationally optimized basis,
deploying the ML-MCTDHX variational method [65–67].
Importantly, this wave-function Ansatz involves two major
stages in order to adequately capture the system’s correlations.
The full wave function residing in the composite Hilbert space
HAB = HA ⊗ HB, with HA and HB being the Hilbert spaces of
the environment and the impurities, respectively, is expressed
in the form of a truncated Schmidt decomposition of rank D
[71]:


MB(xA, xB; t ) =
D∑

k=1

√
λk (t )
A

k (xA; t )
B
k (xB; t ). (3)

Here D � min (dim(HA), dim(HB)) and λk (t ) are the well-
known time-dependent Schmidt coefficients. The species
functions 
σ

k (xσ ; t ) serve as an orthonormal basis for the
σ = A, B species and signify the kth mode of entanglement
between the two subsystems. If at least two distinct Schmidt
coefficients λk (t ) are nonzero, then the two species are en-
tangled since the MB wave function 
MB of Eq. (3) cannot
be expressed as a direct product of two states [71,72] as for
instance in the MF case (see below).

At a next step each species function is accordingly ex-
panded in terms of the permanents of dσ time-dependent
single-particle functions (SPFs) ϕi, as follows:


σ
k (xσ ; t )

=
∑

n1, . . . , ndσ∑
ni = Nσ

Ck,(n1,...,ndσ )(t )

×
Nσ !∑
i=1

Pi

[
n1∏

j=1

ϕ1
(
xσ

j ; t
) · · ·

ndσ∏
j=1

ϕdσ

(
xσ

n1+...ndσ−1 + j ; t
)]

.

(4)

Here Ck,(n1,...,ndσ )(t ) denotes the time-dependent expansion
coefficients, with ni being the population of particles occu-
pying the ith SPF, ϕi. The species function, 
σ

k (xσ ; t ), is
thus expanded over all

(Nσ +dσ −1
dσ −1

)
permanents, subject to the

constraint
∑dσ

i=1 ni = Nσ . P is the permutation operator, ex-
changing two particles among the SPFs. The above-described
variational Ansatz captures the presence of interspecies
[Eq. (3)] and intraspecies [Eq. (4)] correlations, thus testifying
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the appearance of MB effects that are naturally absent, e.g., in
a MF treatment.

Employing the Dirac-Frenkel variational principle [73,74]
for the above-described MB variational Ansatz [see Eqs. (3)
and (4)], the ML-MCTDHX equations of motion are de-
rived [67]. These equations consist of D2 linear differential
equations for λk (t ), which are coupled to D[

∑
σ ( Nσ +dσ −1

dσ −1 )]
nonlinear integrodifferential equations for the coefficients
Ck,(n1,...,ndσ )(t ), and (mA + mB) nonlinear integrodifferential
equations for the SPFs. For further details regarding the
derivation of the ML-MCTDHX equations of motion, we refer
the reader to Refs. [65–67]. We should note that employing
only a single Schmidt coefficient, λ1(t ) = 1, i.e., using D = 1,
and one SPF per species, i.e., dσ = 1, results in a product MF
state among the two species [68,72]. In this sense all particles
of a particular species occupy solely a single wave function,
namely,


MF(xA, xB; t ) = 
A
MF(xA; t )
B

MF(xB; t )

=
NA∏
j=1

ϕA
(
xA

j ; t
) NB∏

k=1

ϕB
(
xB

k ; t
)
. (5)

This yields a set of coupled Gross-Pitaevskii equations for
the bosonic mixture [72]. Evidently, within this framework
all particle correlations are ignored. Therefore, the compar-
ison of the dynamics of the mixture between the above MF
state and the variational Ansatz as described by Eqs. (3) and
(4) sheds light onto the impact of interparticle correlations.
Herein we explicate their role in the different driving regions
defined with respect to the trap frequency. Note that since the
bosonic bath consists of NA = 100 atoms its initial (ground
state) density profile has a Thomas-Fermi (TF) shape, which
is well captured by the MF product state. In this way, at least
for the used interaction parameters, the dominant effect of
correlations is expected to manifest during the dynamics due
to their buildup.

C. Relevant correlation measures

In order to monitor the overall dynamical response of the
impurities and their environment as well as to identify their
emergent pattern formation, we employ the σ -species one-
body reduced density matrix [75]:

ρ (1),σ (x, x′; t ) = Nσ

∫ Nσ −1∏
j=1

dx̃σ
j

Nσ̄∏
k=1

dxσ̄
k 
∗

MB(x, x̃σ , xσ̄ ; t )

×
MB(x′, x̃σ , xσ̄ ; t ), (6)

where σ = A, B and x̃σ = (xσ
1 , . . . , xσ

Nσ −1), and σ �= σ̄ . Ac-
cordingly, the one-body density of the σ species is the diago-
nal of the one-body reduced density matrix, i.e., ρ (1),σ (x; t ) =
ρ (1),σ (x, x′ = x; t ), and herein it is normalized such that∫

dx ρ (1),σ (x; t ) = Nσ . This observable is experimentally ac-
cessible via averaging over several single-shot realizations
[76,77]. The eigenfunctions of ρ (1),σ (x, x′; t ), φσ

j (x; t ), j =
1, . . . , dσ , are termed natural orbitals [67], and they are
normalized to their corresponding eigenvalues dubbed natu-
ral populations nσ

j , i.e.,
∫

dx |φσ
j (x; t )|2 = nσ

j . Recall that in
the MF case nA

1 = nB
1 = 1, nA

j>1 = nB
j>1 = 0, and hence the

population of more than a single natural orbital manifests the
existence of intraspecies correlations [72].

To evince the occurrence of intraspecies correlations of the
bath and the impurities we invoke the first-order coherence
function [72,75,78]:

g(1),σ (x, x′; t ) = ρ (1),σ (x, x′; t )√
ρ (1),σ (x; t )ρ (1),σ (x′; t )

. (7)

It takes values in the interval [0,1], and provides a measure
of the proximity of the MB state to a MF product state, for a
specific set of spatial coordinates, x and x′. Two distinct spatial
regions are dubbed fully coherent or perfectly incoherent if
|g(1),σ (x, x′; t )| = 1 or 0, respectively. When 0 < g(1),σ < 1,
we can infer the presence of intraspecies correlations [72,78].
Recall that for a MF product state [Eq. (5)] g(1),σ (x, x′; t ) =
1, ∀ x, x′ and ∀ t .

To capture the appearance of two-body impurity-impurity
and bath correlations in a time-resolved manner, we inspect
the second-order noise correlation function, g(2),σσ (x, x′; t )
[78–80], defined as

g(2),σσ (x, x′; t ) = ρ (2),σσ (x, x′; t )

− ρ (1),σ (x; t )ρ (1),σ (x′; t ). (8)

Here, in second quantization ρ (2),σσ (x, x′; t ) =
〈
MB(t )|
̂†,σ (x′)
̂†,σ (x)
̂σ (x)
̂σ (x′)|
MB(t )〉 is the
diagonal two-body density matrix, and 
̂σ (x)[
̂†σ (x)] is
the bosonic operator that annihilates [creates] one particle of
species σ at position x. The diagonal two-body density matrix
ρ (2),σσ (x, x′; t ) provides the probability of simultaneously
finding two particles of species σ at positions x and x′,
respectively. Accordingly, the noise correlation function
quantifies the presence of two-body correlations between two
particles of species σ at positions x and x′, respectively. The
σ -species MB state is termed two-body correlated [anticor-
related], when g(2),σσ (x, x′; t ) > 0, [g(2),σσ (x, x′; t ) < 0]. If
g(2),σσ (x, x′; t ) = 0, then perfect second-order coherence can
be inferred. We remark that g(2),σσ (x, x′; t ) is experimentally
probed via in situ density-density fluctuation measurements
[81]. Moreover, let us note that a MF product state ensures
that g(2),σσ (x, x′; t ) = 0 ∀ x, x′ and ∀ t .

Another important observable, which yields information
regarding the spatial extent of each species cloud and thus for
its breathing motion, is the position variance [82]:

〈(xσ )2〉 =
∫ Nσ∏

j=1

dxσ
j

Nσ̄∏
k=1

dxσ̄
k (xσ )2 |
MB(xσ , xσ̄ ; t )|2, (9)

where σ̄ �= σ . This quantity is experimentally accessible via
time-of-flight imaging [83].

III. DRIVEN DYNAMICS TO THE IMMISCIBLE PHASE

Below, we discuss the nonequilibrium periodically driven
dynamics of the bosonic mixture consisting of a bath with
NA = 100 atoms and NB = 10 impurities. The mixture is
initialized in its ground state characterized by gAA = 1.004,
gBB = 0.9544, and gin

AB = 0.2. Then, the impurity-medium in-
teraction strength is sinusoidally modulated with frequency
� for a time span of T = 5π

2�
according to the protocol
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FIG. 2. Spatiotemporal evolution of the one-body density
ρ (1),σ (x; t ) of the impurities (B) and the bosonic bath (A) consid-
ering a time-periodic modulation of the impurity-medium coupling
[depicted with the solid line in (b), (d), (f), and (g)] from gin

AB = 0.2
to gf

AB = 1.2 for driving frequencies (a–d) � = 0.05 and (e–h) � =
0.5. The driven dynamics is showcased in the MF approximation in
(a), (b), (e), and (f) and in the MB approach in (c), (d), (g), and (h).
The mixture consists of NA = 100 and NB = 10 particles while it is
initialized in its ground state with gAA = 1.004, gBB = 0.9544, and
gin

AB = 1.2.

introduced in Eq. (2). The modulation drives the mixture into
its immiscible phase since the final interaction is gf

AB = 1.2.
To unveil the correlated character of the dynamics we utilize
the variational Ansätze of Eqs. (3) and (4), and compare with
the MF approximation within the ML-MCTDHX framework.

A. One-body density evolution for a pulse with � < ω

The dynamical response of the bosonic bath and the im-
purities as captured by the corresponding density evolution
is shown in Figs. 2 and 3 for some exemplary modulation
frequencies of the impurity-medium pulse protocol of Eq. (2).
As we shall argue below the systems’ response is significantly
altered for modulation frequencies above (� > ω) and below
(� < ω) the trapping frequency. First, we focus on the weak
pulse case with � = 0.05 < ω, presented in Figs. 2(a)–2(d).
The dynamics within the MF approach [Figs. 2(a) and 2(b)]
can be divided into two temporal regimes: one where gAB(t )
is modulated across the miscibility threshold (which occurs
here at gAB = 0.9789) for t � 157 and the other for t > 157,
where gf

AB = 1.2 is constant and the mixture lies in its im-
miscible phase. In the first regime the impurities and the bath
develop simultaneously density humps and dips, respectively,
when gAB(t ) > 1, i.e., within the immiscible phase [see, e.g.,
Fig. 2(b) at 85 < t < 108]. In contrast, the impurities feature a
diffusive behavior when the bosonic mixture lies in its misci-
ble phase [e.g., at 117 < t < 138 in Fig. 2(b)]. As long as the

FIG. 3. Temporal evolution of the density ρ (1),σ (x; t ) of the
bath (A) and the impurities (B) following a modulation of the
impurity-medium interaction strength from gin

AB = 0.2 to gf
AB = 1.2

with driving frequency � = 1.5. The dynamics is compared between
(a, b) the MF approach and (c, d) the MB method. The inset of
(a) illustrates the phase of the bath in the course of the dynamics.
The long-time evolution of the impurities for the same modulation
and within the MF approximation is presented in (b).

modulation is terminated, i.e., t > 5π
2�

, we observe the emis-
sion of two counterpropagating impurity density branches,
which travel towards the edges of the bath cloud. At later
evolution times t > 300 (not shown here), these branches turn
back and collide, forming a density dip at the trap center.
Accordingly, since gf

AB = 1.2, the bath density exhibits dips
at the locations of the impurities branches as a result of the
impurity-medium phase separation [72] [see Fig. 2(a)].

In the presence of correlations [Figs. 2(c) and 2(d)], the
density of both components exhibits the same qualitative be-
havior as for the MF evolution, but with some differences
which are mainly manifested at later evolution times (t > 40).
Density humps and dips form on top of the density profiles
of the impurities and the bath, respectively. These structures
differ in their number, position, and amplitude from the ones
identified within the MF approach as can be seen by compar-
ing Figs. 2(a) and 2(c) as well as Figs. 2(b) and 2(d), e.g., at
t � 100.

More precisely the aforementioned dips and humps present
in the MF scenario [see, e.g., Figs. 2(a) and 2(b) at t = 98] re-
semble the formation of DB solitons in binary mixtures, where
the bright solitons are effectively trapped by the dark ones
building upon the bath density [84–89]. To further support this
argument, we perform a fit on the densities of both species at
t = 98 with � = 0.05, i.e., in the immiscible phase, using the
exact single DB soliton wave function in the limit where all
interactions among and within the species are equal, i.e., the
so-called Manakov limit [89,90]. The corresponding Ansatz
for the dark soliton reads


±
DS (x, t ) = cos ϕ tanh {d[x ± x0(t )]} + i sin ϕ, (10)

while for the bright component it has the following form:


±
BS (x, t ) = Bsech{d[x ± x0(t )]}eikx+iθ (t ). (11)

In these expressions ±x0(t ) are the positions of the dark and
bright solitons; cos ϕ and B denote the amplitudes of dark
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and bright entities, respectively; whereas d is their common
inverse width. Moreover, sin ϕ denotes the dark soliton’s ve-
locity, k = d tan ϕ is the constant wave number of the bright
soliton, and θ (t ) is its phase. For the fitting of these wave-
forms to our data we employ ρ (1),A(x; t ) = Q(R2 − x2)θ (R2 −
x2)|
+

DS (x, t )|2|
−
DS (x, t )|2 for the bosonic medium, where we

assume that the dark solitons are formed on top of a TF profile
and ρ (1),B(x; t ) = |
+

BS (x; t )|2 + |
−
BS (x, t )|2 for the impurity

subsystem. The agreement between the theoretical Ansatz and
the MF calculations at t = 98 is adequate, having a standard
deviation of the order of 0.038 42 for the dark soliton fit and
0.0847 for the bright component. At later evolution times
t > 150 [Figs. 2(a) and 2(b)], the density profiles are again
reminiscent of DB solitons, however on top of a distorted TF
background.

Interestingly, after the termination of the modulation, the
density humps (dips) building on top of the density of the
impurities (bath) in the MB case [Figs. 2(c) and 2(d)] are
less pronounced than the corresponding ones within the MF
approach [Figs. 2(a) and 2(b)]. A similar effect, induced by
MB correlations, has been reported in the case of quantum
DB solitons imprinted on BECs, where depleted atoms fill the
notch of the dark soliton [91–96].

B. Density evolution for modulations characterized by � > ω

As the modulation frequency becomes larger than the trap-
ping one, the patterns appearing in the one-body density of
each component are significantly altered compared to the
� � ω case. Characteristic case examples are showcased in
Figs. 2(e)–2(h) and Fig. 3 for � = 0.5 and 1.5, respectively.
This difference to the � � ω scenario is in part due to the fact
that the modulation of gAB(t ) occurs at very short timescales
and the system cannot adjust to its very fast external pertur-
bation. Indeed, during the modulation, e.g., until t � 15 in
Figs. 2(e)–2(h) and t � 5 in Fig. 3, ρ (1),σ (x; t ) exhibits a weak
amplitude expansion compared to ρ (1),σ (x; 0). The magnitude
of this expansion is of the order of 3 and 9% for the bath
and the impurities, respectively, for � = 1.5 which is in sharp
contrast to the � = 0.05 case [Figs. 2(a)–2(d)].

In particular, within the MF approach and for � = 0.5
[Figs. 2(e) and 2(f)] a central density hump forms on top of
ρ (1),B at the initial stages of the dynamics (0 < t < 20) and
subsequently (t > 34) splits into two density branches, which
later on (t > 66) merge into a central branch propagating
undistorted for long evolution times. During the latter process
small density portions are emitted traveling towards the edges
of the cloud of the bath and back to the trap center. As a
consequence of the underlying phase-separation mechanism,
ρ (1),A displays density dips at the very same positions where
the impurities density branches appear [Fig. 2(e)]. Turning
to a larger driving frequency [Fig. 3(b), � = 1.5], the im-
purities density exhibits a two hump structure after t � 12,
the humps of which subsequently collide around t ≈ 33, and
afterwards again split moving towards the edges of the bath.
These branches collide again at a much later time instant
[t � 180 in Figs. 3(b) and 4(c)]. In this case a significant
portion of energy is pumped into the system and thus both
species gain more energy from the modulation compared
to the � = 0.5 scenario, resulting in a larger amount of

FIG. 4. Profile snapshots of the one-body density of the impu-
rities (B) and the bath (A) following a time-periodic modulation of
the impurity-bath coupling with frequency � = 1.5 within the (a–c)
MF and (d–f) MB approach (see legend). The dashed green lines in
(a) and (b) represent fittings of the DB soliton Ansatz [Eqs. (10) and
(11)] on ρ (1),σ (x; t ).

excitations (see also Appendix A). As a consequence, for
instance, the impurities have enough energy to reach the edges
of the bath before colliding again at the trap center. It is
also worth mentioning that in the long-time dynamics [see
Fig. 3(b)] the impurities density branches merge after t � 180
into a single central hump, which stays unperturbed through-
out evolution. This hump comes along with small fluctuating
emitted density branches, which diffuse within the back-
ground density of the medium [hardly visible in Fig. 3(b)].
We note that the aforementioned merger of the impurities den-
sity branches occurs at earlier times accompanied by a larger
amount of excitations in the BEC background as the pulse du-
ration increases since more energy is pumped into the system.

The above-described density dips (peaks) displayed in the
bath cloud (impurities) [see Figs. 3(a) and 3(b)] are once
more reminiscent of the dynamical formation of DB solitons.
Indeed, the DB soliton waveform [Eqs. (10) and (11)] serves
as a good candidate to the density profiles of both components
[see the dashed green lines in Figs. 4(a) and 4(b)] with the cor-
responding fit exhibiting a standard deviation of the order of
0.07. Moreover, the spatiotemporal evolution of the phase
of the MF bath wave function displays jumps being multiples
of π , as can be seen in the inset of Fig. 3(a) at t > 100, which
is a characteristic feature of dark solitons.

The inclusion of correlations leads to a drastically differ-
ent time evolution of both the impurities and the medium
than in the MF approach [see Figs. 2(g), 2(h), 3(c), and 3(d)
for t > 5]. Indeed the impurities density branches formed
after the modulation move to the edges of the bath cloud,
where they perform a weak amplitude oscillatory motion
having an equilibration tendency. We remark that an anal-
ogous response of the impurities has been demonstrated in
the impurity-medium interaction quench dynamics of two
spin-polarized fermions inside a Bose gas [64]. Also simi-
lar dynamical phase-separation phenomena have been shown
to occur for strong impurity-medium interactions signifying
temporal orthogonality catastrophe phenomena of the Bose
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polaron [33,36,37]. Moreover, there is a central density hump
(dip) in the density of the impurities (bath). The major differ-
ence between � = 0.5 and 1.5 within the MB framework is
that the density branches in the former case [Fig. 2(h)] reach
the edges of the bosonic medium, their amplitude decreases,
and they undergo smaller amplitude oscillations than the ones
for � = 1.5 [Fig. 3(d)]. Inspecting the instantaneous MB den-
sity profiles ρ (1),σ (x; t ) [Figs. 4(d)–4(f)] when � = 1.5, we
observe that the side humps (dips) for the impurities (bath)
appearing around x � 16 have a smaller amplitude and are
displaced with respect to the ones emerging within the MF
approach. Another difference occurring between the MF and
the MB evolution is the formation of a central density hump
(dip) for the impurities (bath), in addition to the side humps
and dips when correlations are present, as can be seen in
Figs. 4(d)–4(f). We should note that as we increase the modu-
lation frequency � and thus tend to the abrupt quench scenario
[Eq. (2)], a similar dynamics to the one illustrated in Figs. 3(c)
and 3(d) for � = 1.5 takes place for both components. The
most notable difference is that the separation of the outer
ρ (1),B(x; t ) branches becomes slightly larger.

An intuitive understanding of the response of the impuri-
ties is provided by constructing an effective potential picture
[33,97]. The latter is derived from the impurities external
trapping potential, and the one-body density of their bosonic
medium [33,97,98], namely,

Veff(x; t ) = 1
2 Mω2x2 + gAB(t )ρ (1),A(x; t ). (12)

Evidently Veff(x; t ) is a time-dependent single-particle poten-
tial, which is in general different from the external harmonic
trap due to its second contribution accounting for the bath
and the impurity-medium interactions. Before proceeding we
should clarify that Veff(x; t ) is not able to account for impurity-
medium correlations and as a consequence it does not provide
insights into, e.g., two-body mechanisms such as the emergent
impurity-impurity induced correlations as has been argued
in Refs. [33,37]. Of course, all these processes are naturally
included within our MB treatment performed within the ML-
MCTDHX approach.

For instance, Veff(x; t ) for � = 1.5 features a deep central
well, present throughout the evolution, and additional shal-
lower side wells the depths and positions of which change
with time [Figs. 5(a) and 5(c)]. These potential wells are
a manifestation of the density dips of the bath displayed
for instance in Fig. 3(c). Even though the effective poten-
tial yields a single-particle picture, one can readily see that
ρ (1),B(x; t = 182) in Fig. 3(d) mainly resides in a superposi-
tion of the ground and the first two excited states of Veff(x; t ),
with corresponding participation weights 41, 23.6, and 23.6%,
respectively. There are also additional density modulations
[hardly visible in Fig. 3(d)], which suggest the occupation
of higher-lying excited states as well, with a small nonva-
nishing population up to the 18th excited state. At other
time instants [Fig. 5(c)], the depth of the central well of
Veff(x; t ) changes slightly with time and the outer wells are
displaced, accounting thus for the oscillations of the outer
density branches shown in Fig. 3(d). Apart from the afore-
mentioned undulations during the time evolution, the effective
potential changes also with respect to the driving frequency
�, since the density profile of the medium is accordingly

FIG. 5. (a) Instantaneous effective potential at t = 182 for a
modulation frequency � = 1.5. On top of Veff(x; t ) its single-particle
eigenstates are depicted together with their energies. (b) The effec-
tive potential for other driving frequencies (see legends) at t = 182.
(c) Veff(x; t ) at distinct time instants for � = 1.5. The effective po-
tential is measured in units of h̄ω⊥.

modified. For instance, the central potential dip is absent in
the case of � = 0.05 [Fig. 5(b)] and the effective potential
displays a double-well structure accounting for the impurities
density peaks [Fig. 2(d)]. For � = 0.5, the central density dip
of ρ (1),A forms, which mainly attracts the impurity atoms since
its depth is larger than the one of the outer wells.

C. Correlation dynamics and impurities antibunching

Having explicated the imprint of correlations in the density
evolution of both the impurities and the bath we subsequently
inspect the first- and second-order correlation functions as
introduced in Eqs. (7) and (8), respectively. In this way, we
will be able to demonstrate from g(1),σ the possibly emergent
coherence losses of each species when g(1),σ < 1. Along the
same lines, utilizing g(2),σσ the two-body correlation prop-
erties of the impurities and the bath can be identified for
g(2),σσ �= 0. Initially, the first-order coherence g(1),σ (x, x′; t ) is
examined [Eq. (7)], from which one can infer the proximity
of a MB to a MF product state for a specific set of spatial
coordinates x and x′ at time t . Instantaneous profile snapshots
of g(1),A(x, x′; t ) and g(1),B(x, x′; t ) are shown in Fig. 6 exem-
plarily for � = 0.5.

At early evolution times (t � 40), where the two impu-
rity density branches travel to the edges of the bath cloud
[Figs. 2(g) and 2(h)], the BEC background exhibits rela-
tively small coherence losses; see the off-diagonal of g(1),A

[Fig. 6(a)]. Indeed, it appears that the two separate spatial
intervals of the medium enclosed by the central and the
outer density dips [see Fig. 2(g)], namely, D+ = (0,+10.56)
and D− = (−10.56, 0), are slightly off-coherent between
each other as well as with the regions from the outer
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FIG. 6. Snapshots of the first-order coherence function of the (a–
c) bath g(1),A and the (d–f) impurities g(1),B for a driving frequency
� = 0.5. Other system parameters are the same as in Figs. 2(g) and
2(h).

density dips until the edges of the bath cloud; see, e.g.,
g(1),A(6.02,−6.02; t = 40) � 0.8 [Fig. 6(a)]. At later times
[see for instance Figs. 6(b) and 6(c)], the spatial domains
separated by the central dip at x = 0, namely, D+ = (0, 19)
and D− = (−19, 0), become less coherent with respect to one
another and, e.g., g(1),A(12.17,−12.17; t = 160) � 0.75. On
the other hand, the two density branches of the impurities
[Fig. 2(h)] are entirely noncoherent throughout the time evolu-
tion [see in particular Figs. 6(d)–6(f) where gB(x, x′ �= x; t >

40) is vanishing]. Therefore, the impurities develop Mott-like
correlations, suggesting their spatial localization tendency in
the two separate density branches [72,99]. When the impurity
density branches lie at the edges of their background for
t � 62 and are weakly oscillating, a small amount of co-
herence is restored, e.g., g(1),B(12.17,−12.17; t = 100) � 0.4
between the emitted faint density peaks located in the spatial
regions x ∈ [9, 13], x′ ∈ [−13,−9] [Fig. 2(h)]. We remark
that a similar coherence behavior occurs also for other mod-
ulation frequencies larger than the trapping one. For � < ω

the medium remains almost perfectly coherent throughout the
time evolution and the impurities are localized either in x > 0
or x < 0.

Next, we discuss the two-body correlation characteristics
of the impurities and their BEC background, by monitoring
g(2),AA and g(2),BB, respectively (Fig. 7), for � = 0.5. Fo-
cusing on the BEC medium, we observe that for t � 100
where the impurities density humps travel to the edges of
the medium cloud [Figs. 7(a) and 7(b)], two particles of
the environment tend to avoid each other within the two
spatial intervals enclosed by the central and outer density
dips of ρ (1),A(x; t ), i.e., D+ � (0, 20) and D− � (−20, 0)
[Fig. 2(g)], since g(2),AA(x, x′ = x; t � 100) < 0. However,
there is an increased probability of finding one of the par-
ticles in one of those intervals, e.g., in D+, and the other
particle being symmetrically placed with respect to the trap
center, e.g., in D−. This behavior persists at later evolu-
tion times, as can be seen in Figs. 7(b) and 7(c), where
two-body correlations build up for particles residing in op-
posite spatial regions with respect to the trap center; see
the antidiagonal of g(2),AA(x; t ). Moreover, a two-body an-
ticorrelation tendency occurs between D+ and D− since
g(2),AA(x, x′ �= x; t ) < 0.

FIG. 7. Instantaneous profiles of the second-order noise correla-
tion of (a–c) the bath particles g(2),AA(x, x′; t ) and (d–f) the impurities
g(2),BB(x, x′; t ). In all cases the modulation frequency is � = 0.5,
while other system parameters are the same as in Figs. 2(g) and 2(h).

Turning to the impurities, anticorrelations appear for par-
ticles occupying the same position for t � 100 where the
impurities move to the edges of the background cloud
[Figs. 7(d) and 7(e)]. However, two particles residing
in different density branches [Fig. 7(d)] display a corre-
lated character, e.g., g(2),BB(−10.84,−10.84; 40) � −0.0345
and g(2),BB(−10.84, 10.84; 40) � 0.012. For longer evolution
times [Fig. 7(f)] two-body correlations build among particles
occupying the three distinct density branches; see for in-
stance g(2),BB(22.61, 22.61; t = 160) � 0.01 [72,82,100]. In
contrast, two particles are anticorrelated when they both lie
in the same density hump, e.g., the one close to the trap center
where g(2),BB(−0.94,−0.94; 160) � −0.05.

IV. DRIVEN DYNAMICS TO THE MISCIBLE PHASE

We proceed by analyzing the reverse pulse driving sce-
nario, namely, the one where the mixture is driven from
the immiscible to the miscible phase, according to the time-
dependent protocol of Eq. (2). More specifically, the mixture
is initially prepared in its ground state, characterized by gAA =
1.004, gBB = 0.9544, and gin

AB = 1.4. The final impurity-
medium interaction strength is gf

AB = 0.6. As before, the
nonequilibrium dynamics is investigated, while it is compared
and contrasted between the MF and the MB framework.

A. Dynamical response for � < ω

As explicated in Sec. III, monitoring the one-body den-
sity evolution of the participating components, it is possible
to distinguish two driving related response regimes, namely,
� < ω and � > ω (see Figs. 8 and 9, respectively). First, let
us focus on the case of � = 0.05 < ω [Figs. 8(a) and 8(b)],
and inspect the dynamical behavior of the bath and the impu-
rities within the MF framework. As it can be readily seen in
Fig. 8(b), ρ (1),B(x; t ) exhibits density humps filling the dips of
the bosonic medium, within the time intervals where gAB > 1,
and diffusive patterns as the system is driven to its miscible
phase [39], i.e., gAB < 1. To facilitate this observation, a white
solid line indicating the modulation of the impurity-medium
coupling is depicted in Fig. 8(b). The inclusion of correla-
tions results in a similar dynamical response of the mixture
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FIG. 8. Time evolution of the one-body density of (a, c, e, g) the
bosonic bath and (b, d, f, h) the impurities following a modulation of
the impurities-medium coupling from gin

AB = 1.4 to gf
AB = 0.6. The

modulation is exemplarily depicted with the white solid line in (b),
(d), (f), and (h). The dynamics is tracked for two driving frequencies
(a–d) � = 0.05 and (e–h) � = 0.5 within the (a, b, e, f) MF ap-
proach and (c, d, g, h) the MB method. The mixture is composed of
NA = 100 bath and NB = 10 impurity atoms, characterized initially
(ground state) by gAA = 1.004, gBB = 0.9544, and gin

AB = 1.4.

at early evolution times (t < 40) but subsequently significant
alterations take place [Figs. 8(c) and 8(d)].

Concretely, in the MB approach [Figs. 8(c) and 8(d)]
a smaller number of generated density dips and humps in

FIG. 9. Spatiotemporal evolution of the one-body density of (a,
c) the bosonic environment and (b, d) the impurities applying a mod-
ulation of the impurity-medium interaction from gin

AB = 1.4 to gf
AB =

0.6 with frequency � = 1. The dynamics is displayed both within
the (a, b) MF and (c, d) MB approaches. The inset of (a) showcases
the phase of the bath throughout the time evolution. The long-time
evolution of the impurities within the MF approach is presented in
(b).

FIG. 10. (a) Instantaneous effective potential at t = 60 and mod-
ulation frequency � = 0.05. On top of Veff(x; t ), its eigenstates are
displayed together with their energy. (b) The effective potential for
other driving frequencies (see legends) at t = 150. (c) Veff(x; t ) at
other time instants for � = 0.05. The effective potential is measured
in units of h̄ω⊥.

ρ (1),A(x; t ) and ρ (1),B(x; t ), respectively, is observed compared
to the MF case [72,100,101]; see, e.g., ρ (1),B(x; t ) at t � 97.
Later on, the diffusive character of ρ (1),B(x; t ) is more pro-
nounced than within the MF treatment; compare for instance
Figs. 8(b) and 8(d) around t � 157. When correlations are
present, the impurities are effectively trapped at the density
dips developed in the bosonic bath [Fig. 8(d)]. The medium
thus provides an effective potential experienced by the impu-
rities, and their density profile can be understood by resorting
to the potential defined in Eq. (12). As shown in Fig. 10(a),
the underlying Veff(x; t = 60) features four deep wells, caused
by the density profile of the medium. Inspecting the density
profile of the impurities [Fig. 8(d)] and the form of the effec-
tive potential [Fig. 10(a)], one can infer that ρ (1),B(x; t = 60)
mainly resides in a superposition of the four lowest-lying
eigenstates, E1, . . . E4 of Veff(x; t ) [33]. At later time instants
ρ (1),B(x; t = 150) presents a diffusive behavior throughout the
environment, with a small portion of its density lying outside
of the cloud of the bath [Fig. 8(d)]. The density of the latter
resembles a distorted TF profile, in sharp contrast to the MF
case [Fig. 8(a)], where ρ (1),A develops a three-dip structure
which suggests a significantly more excited background than
the MB case. The distorted TF profile then provides an effec-
tive potential for the impurities, which resembles a harmonic
trap, as can be seen in Fig. 10(c) at later times t = 170. The
absence of any potential wells is a signature of the miscible
character of the impurity-medium interactions. In that case
a superposition of many excited states is needed in order
to properly account for the density profiles similar to those
displayed in Fig. 8(d) [37,97].
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FIG. 11. Profile snapshots of the one-body density of the bath
(A) and the impurities (B) following a modulation of the impurity-
medium coupling with � = 0.5 within the (a–c) MF and (d–f) MB
frameworks. The dashed green lines in (a) and (b) present DB soliton
fits on the density of both components.

B. Dynamical response for � > ω

Turning to larger modulation frequencies, the dynamical
response of both components is substantially different from
the previous case where � < ω. More precisely, the spon-
taneously generated patterns emerging in the course of the
MF evolution clearly resemble DB solitons, as is presented
in Figs. 8(e) and 8(f) for � = 0.5. Recall that similar struc-
tures have been shown to be nucleated in the reverse driving
scenario for strong driving frequencies, however they were
shown to be not as robust as here and to form a bound pair
(Sec. III). Moreover, the oscillation frequency of these struc-
tures is much larger than the one associated to the entities in
the reverse driving scenario [see Figs. 3(a) and 3(b)], and im-
portantly it crucially depends on �, as can be easily deduced
by inspecting Figs. 8(e) and 8(f) (� = 0.5) and Figs. 9(a) and
9(b) (� = 1). Also, their oscillation amplitude changes with
respect to � and in particular it increases from � = 0.5 to 1
by approximately 59%. Another difference that occurs with
the respective structure formation within the MF approach
for � > ω compared to the reverse modulation discussed in
Sec. III [Figs. 3(a) and 3(b)] is the existence of a larger
amount of excitations, which consequently alter the shape of
the pronounced oscillating humps during the time evolution
[Fig. 9(b)]. For sufficiently long evolution times (t > 300),
these oscillating density humps increase in amplitude and
gradually fade away, as a result of the prominent interference
processes caused by the miscible nature of the bosonic mix-
ture, as can be seen in Fig. 9(b).

To further support our argument regarding the character
of these structures, we employ the known DB soliton wave-
forms [Eqs. (10) and (11)], denoted by dashed green lines in
Figs. 11(a) and 11(b). As already mentioned, however, there
are excitations on top of ρ (1),B(x; t ), which render the fitting
of the bright soliton waveform not so accurate. Regarding
the bath, the spatiotemporal evolution of its phase [inset of
Fig. 9(a)] displays phase jumps at the positions of the density
dips. These jumps, being multiples or less than π , are of

course indicative of the presence of moving dark (i.e., gray)
solitons [43,89,90]. Moreover, the oscillation period of the DB
structures that we obtain for � = 1 is T osc = 112.4, whereas
the theoretical prediction yields T DB = 108.7154 [85,89].
This discrepancy is predominantly attributed to the interac-
tions among the solitons and the background excitations of the
impurities [43]. Let us finally mention that for a larger pulse
duration the period and amplitude of the above-described
DB solitons remain almost unaffected while the background
becomes more excited because a larger amount of energy is
introduced into the system.

Incorporating correlations, the behavior of the density of
the bath and the impurities for � = 0.5 and 1 [Figs. 8(g)
and 8(h) and Figs. 9(c) and 9(d)], is evidently altered from
the respective MF time evolution for t > 5. Focusing on the
impurities, ρ (1),B(x; t ) displays initially a density hump for
both modulation frequencies close to the trap center, which
reflects the immiscible character of the system since at t =
0 gin

AB = 1.4, and later on it diffuses within the medium suf-
fering enhanced interference phenomena due to the miscible
character of the system. The initial density hump subsequently
splits, a process which is more prominent in the case of the
initial density dip of the bath, as we shall discuss later on
[Figs. 8(g) and 9(c)]. The impurities cloud undergoes a large
amplitude breathing motion with frequency ωbr � 0.157 for
both � = 0.5 and 1. This frequency is extracted by calculating
the impurities position variance, 〈(xB)2〉 [25,31]. To explain
such a breathing frequency, we resort to the effective potential
experienced by the impurities due to the presence of the bath
[Eq. (12)]. By inspecting the density snapshots of the bosonic
environment in Figs. 11(d)–11(f), the time-averaged profile
ρ̄ (1),A(x) = 1

T

∫ T
0 gAB(t )ρ (1),A(x; t ) smears out small density

fluctuations and resembles a TF profile, ρ̄ (1),A(x) = Q(R2 −
x2)θ (R2 − x2), with θ (x) being the Heaviside function and
T = 200. Therefore, the small density undulations caused by
the impurity motion, present in the instantaneous profiles of
ρ (1),A(x; t ), are now eliminated. We remark that in the case
of � = 0.5 (� = 1) ρ̄ (1),A saturates for T > 195 (T > 180).
On top of the time-averaged density of the medium there
are small density humps at x = ±5, which will be discussed
later on. The effective potential is a deformed harmonic trap

with a renormalized frequency ωeff =
√

ω2 − 2Q
M [37,98,101].

Therefore, the corresponding effective breathing frequency is
ωbr

eff = 2ωeff = 0.1328 for � = 1, with a 1% relative deviation
for � = 0.5. The discrepancy between ωbr and ωbr

eff arises due
to the presence of correlations [68], which alter the TF profile
and are imprinted as small density humps on top of ρ (1),A(x; t )
at x = ±5 [Figs. 8(g) and 9(c)].

Turning to the dynamical response of the bath, ρ (1),A(x; t )
features structural changes compared to its MF analog
[Figs. 8(e) and 9(a)] especially right after the termination of
the impurities-bath interaction modulation, namely, at t � 15
for � = 0.5 and at t � 7 for � = 1. Initially (0 < t < 2.5)
there is a density dip localized at x = 0, which splits into two
repelling density branches; see the black-dashed ellipses in
Figs. 8(g) and 9(c). Subsequently each of these branches splits
further into two shallower density dips, with one traveling
towards the edges of the medium and the other one having
a significantly smaller amplitude, and remaining almost un-
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FIG. 12. Snapshots of the first-order coherence of (a–c) the bath,
g(1),A(x, x′; t ), and (d–f) the impurities, g(1),B(x, x′; t ). The modulation
frequency is � = 0.5 and all other system parameters are the same
as in Figs. 8(g) and 8(h).

affected throughout time evolution. The amplitude of these
dips increases slightly in time but their position stays the
same at x � ±5, as can be seen in Figs. 11(d)–11(f). This
process together with the splitting of the bright component
is reminiscent of the splitting of a quantum DB soliton pair
in the presence of correlations, into a fast and a slower mov-
ing solitary wave, as reported in Ref. [68]. A similar to the
above-described phenomenology occurs for larger modulation
frequencies � and therefore also for the case of an impurity-
medium interaction quench; see Eq. (2). However, in the latter
case the outer ρ (1),A shallow dips when reaching the trap edges
are reflected back and robustly propagate within the medium
displaced from the trap center while the inner ρ (1),A dips
collide at t ≈ 80 and merge into a single one. Moreover, the
impurities exhibit a somewhat larger spatial extent.

The small density dips which remain almost unaffected in
the course of the time evolution manifest themselves in the
effective potential [Eq. (12)] for both modulation frequencies
[Fig. 10(b)]. They form shallow potential wells, and in their
positions the impurities showcase small amplitude humps; see
for instance Fig. 11(f). Apart from these dips, the density of
the bosonic medium resembles a TF profile as we have dis-
cussed before, and therefore Veff(x; t ) is similar to a harmonic
trap. Hence a multitude of its eigenstates is needed in order to
at least qualitatively account for the impurities density profiles
in the course of the evolution [Fig. 11(f)].

C. Correlation patterns and the bunching of impurities

To expose the role of correlations for the bath and the
impurities subsystems, in the driven dynamics to the mis-
cible regime, we employ the first-order coherence function
[Eq. (7)], measuring the underlying coherence losses, and
the second-order noise correlation function [Eq. (8)], cap-
turing the emergent two-body correlation processes. Initially,
the first-order coherence g(1),σ (x, x′; t ) is exemplarily studied
during the time evolution for � = 0.5 (Fig. 12). At the early
stages of the dynamics (0 < t < 10) the two narrow density
dips at x � ±3 [see Fig. 8(g)] experience a localization trend;
see for instance g(1),A(3.3,−3.6; t = 7) � 0.47 [Fig. 12(a)].

FIG. 13. Instantaneous profiles of the second-order coherence of
(a–c) the bath particles and (d–f) the impurities. In all cases the
modulation frequency is � = 0.5, while all other parameters are the
same as in Figs. 8(g) and 8(h).

At later evolution times [Figs. 12(b) and 12(c)], coherence
is almost completely lost for the two symmetric spatial in-
tervals D+ = (5, 22) and D− = (−22,−5) delimited by the
mainly stationary density dips, located at x � ±5 and the
outer edges of the medium cloud, with g(1),A(−15.9, 14.6; t =
160) � 0.1. The aforementioned behavior signals the appear-
ance of Mott correlations meaning that the bath particles tend
to be localized in either one of those spatial intervals. Turning
to the impurities, we observe that at short evolution times,
similarly to the bosonic medium, coherence is significantly
reduced between the spatial regions corresponding to the den-
sity humps [Fig. 8(h) at t � 7], with g(1),B(2.54,−3; t = 7) �
0.53 [Fig. 12(d)]. Later on, the impurities undergo a breathing
motion. Upon contraction of the impurity cloud, e.g., at t = 65
[Fig. 8(h)], the impurity particles are localized in either of the
two spatial intervals D+ � (0, 12) and D− � (−12, 0), with
g(1),B(5,−5.5; t = 65) � 0.01 [Fig. 12(e)]. However, when
the impurity cloud expands, e.g., at t = 160, there is still a
loss of coherence between the spatial regions away from the
trap center, with g(1),B(−8.7, 7.6; t = 160) � 0.15. It is also
worth mentioning that for � < ω the same qualitative picture
holds and there is loss of coherence between the outer spatial
regions delimited by the small density dips of the bosonic
medium cloud.

Moving to the investigation of two-body correlations,
we invoke the second-order noise correlation function
g(2)(x, x′; t ) [Eq. (8)], for the same driving frequency, namely,
� = 0.5. Initially, e.g., at t = 7, there is a probability for two
particles of the environment to cluster together in the den-
sity dips located at x � ±3; see, e.g., g(2),AA(2.5,−2.8; t =
7) � 0.65 [Fig. 13(a)]. Moreover, anticorrelations build up
for particles occupying the same spatial regions enclosed by
the density dips and the edges of the cloud of the bath, e.g.,
g(2),AA(−6.56,−6.56; t = 7) � −0.17. Later on, two particles
of the bath residing in the two shallow and almost stationary
density dips of ρ (1),A located at x � ±5 exhibit two-body cor-
relations since g(2),AA(−5.217,−5.217; t = 65) � 0.58 and
g(2),AA(−5.8 − 5.8; t = 160) � 0.64 [Figs. 13(b) and 13(c),
respectively], while opposite spatial regions between the den-
sity dips at x � ±5 and the edges of the medium cloud
are anticorrelated [Fig. 12(c), g(2),AA(−9, 8.7; t = 160) �
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−0.12]. Turning to the impurity atoms, we observe that
initially two-body correlations build up for particles lying on
top of the ρ (1),B density humps at x � ±3, similarly to the
case of the bosonic medium, with g(2),BB(−3.08,−3.08; t =
7) � 0.15 [Fig. 13(d)]. Moreover, anticorrelations develop
among impurity atoms occupying each of the two distinct den-
sity humps, for instance g(2),BB(−2.54, 2.54; t = 7) � −0.21.
At later time instants, impurities cluster [25,26,37] and
tend to occupy the same position inside the impurity cloud
[Figs. 13(e) and 13(f), g(2),BB(−0.14,−0.14; t = 65) � 0.21].
The second-order noise correlation acquires small negative
values (anticorrelations), when the impurities do not reside
in the same position, for instance g(2),BB(1.74,−6.29; t =
160) � −0.01.

V. IMPACT OF THE IMPURITIES INTERACTIONS
AND CONCENTRATION

Having addressed the impurity-medium pulse dynamics we
now demonstrate its dependence on the number of impurities
and the impurity-impurity interaction strength. The remaining
system parameters are considered to be the same as in the
two previous sections (Secs. III and IV), i.e., NA = 100 while
gAA = 1.004. The impurity-bath interaction strength gAB is
driven first from gin

AB = 0.2 to gf
AB = 1.2, with modulation fre-

quency � = 1.5, and subsequently from gin
AB = 1.4 to gf

AB =
0.6 with � = 1, according to the pulse protocol introduced in
Eq. (2).

Initially, we explore the impurities dynamical response
by considering NB = 2 noninteracting (gBB = 0) ones while
driving the impurities-bath interaction strength to the immis-
cible phase, i.e., from gin

AB = 0.2 to gf
AB = 1.2 exemplarily

with � = 1.5. The two impurities display mainly a Gaus-
sian profile during the time evolution and reside around the
trap center [Fig. 14(a)], where a density dip is present in
ρ (1),A(x; t ) of the bosonic medium. Moreover, faint density
branches of ρ (1),B(x; t ) are emitted and subsequently disperse
within the medium [39]. Employing the effective potential
picture [Eq. (12)], we deduce that the two particles occupy
its ground state with a probability of 93%. For an increasing
number of impurities, the time-evolved density of NB = 10
noninteracting ones [Fig. 14(b)] is different from the density
of NB = 10 interacting impurity atoms [Fig. 3(d)]. Indeed, for
gBB = 0 there are no prominent outer density humps but rather
fragmented faint ones, which after their emission from the
central branch oscillate back and forth from the trap center
to the edges of the bosonic medium diffusing within the lat-
ter. Recall that in the case of NB = 10 interacting impurities
[Fig. 3(d)], the corresponding humps, possessing a significant
population, travel away from the trap center and remain at
the edges of the environment while oscillating with a small
amplitude. This distinct behavior is due to the the presence of
repulsive impurity-impurity interactions. The central density
hump, which corresponds to the ground state of the effective
potential, is present both in the interacting and the noninter-
acting case. The outer faint humps when gBB = 0 [Fig. 14(b)]
refer to higher-lying excited states of Veff(x; t ), localized in
its respective outer potential wells, which are shallower com-

FIG. 14. Time evolution of the one-body density for (a) NB = 2
and (b) NB = 10 noninteracting impurity atoms, and density evo-
lution for NB = 10 impurities with (c) gBB = 0.2 and (d) gBB =
0.5 impurity-impurity interactions. The impurity-bath interaction
strength is driven from gin

AB = 0.2 to gf
AB = 1.2 with frequency � =

1.5 according to Eq. (2).

pared to the ones of Veff(x; t ) in the interacting case due to the
different shape of ρ (1),A(x; t ) [Fig. 5(a)].

We then move on to study the effect of impurity-impurity
interactions on the dynamics in the presence of the pulse [39].
The cases of gBB = 0.2 [Fig. 14(c)] and gBB = 0.5 [Fig. 14(d)]
with NB = 10 feature a similar dynamical behavior to the non-
interacting (gBB = 0) scenario [Fig. 14(b)]. Upon increasing
gBB, the ground state of ρ (1),B(x; t ) exhibits a larger spatial
extent due to the stronger repulsion [see, e.g., Fig. 14(d)
with gBB = 0.5 and Fig. 3(d) with gBB = 0.9544] and the
impurities ground state displays a TF profile. The dynamical
response of the impurities as quantified by ρ (1),B(x; t ) is very
similar for gBB = 0 and 0.2 in the sense that there exist faint
emitted density branches that oscillate back and forth between
the edges of the bosonic bath and x = 0. These are emitted
at later evolution times for a stronger gBB, e.g., gBB = 0.2
[Fig. 14(c)] compared to gBB = 0 [Fig. 14(b)]. After their
creation, they immediately disperse within the cloud of the
bath while stronger repulsive interactions lead to larger por-
tions of the impurities occupying the outer density branches
[Figs. 14(b) and 14(c)].

Furthermore we investigate the impurities response in the
reverse pulse scenario, i.e., when the impurity-bath interac-
tion strength drives the system into the miscible phase, with
gin

AB = 1.4 to gf
AB = 0.6, and � = 1. Focusing on NB = 2

and 10 noninteracting impurities [Figs. 15(a) and 15(b), re-
spectively], a breathing motion is apparent with the most
prominent frequency being ωbr = 0.157 in both cases. Note
that the latter coincides with ωbr for NB = 10 and gBB =
0.9544 [Fig. 9(d)]. Moreover, there is a central density hump
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FIG. 15. Spatiotemporal evolution of the one-body density for
(a) NB = 2 and (b) NB = 10 noninteracting impurities, and density
evolution for NB = 10 impurities with (c) gBB = 0.2 and (d) gBB =
0.5. The impurity-bath interaction is driven from gin

AB = 1.4 to gf
AB =

0.6 with the modulation frequency � = 1 according to Eq. (2).

building upon ρ (1),B(x; t ), which is especially pronounced for
NB = 2 [Fig. 15(a)]. This density structure is similar to the
case of NB = 2 impurities in the reverse pulse scenario, i.e.,
from the miscible to the immiscible phase [Fig. 14(a)], where
the two impurities are predominantly localized around the trap
center. In this latter case, however, the two particles exhibit a
weaker breathing motion compared to the one triggered by
the driven dynamics to the miscible regime [Fig. 15(a)]. This
is due to the immiscible character of the system following
the reverse pulse scenario. Utilizing once more the effective
potential picture [Eq. (12)], we can infer that both the NB = 2
and 10 impurities occupy predominantly its ground state, a
result that is manifested by the presence of the central density
hump in ρ (1),B(x; t ) [Figs. 15(a) and 15(b)].

As the interactions increase, i.e., gBB = 0.2 and gBB = 0.5
[Figs. 15(c) and 15(d), respectively], ρ (1),B shows similar
patterns to the one emerging for gBB = 0.9544, especially
for gBB = 0.5 [Fig. 9(d)]. Note that this is in contrast to the
reverse scenario to the immiscible phase [Figs. 14(c) and
14(d)], where there is a generic diffusive pattern being appar-
ently different from the localized outer density branches when
gBB = 0.9544 [Fig. 9(d)]. The central density hump present
for gBB = 0 and 0.2 [Figs. 15(b) and 15(c)] corresponds again
to the ground state of the respective Veff(x; t ), and becomes
less prominent for a larger gBB as depicted in Fig. 15(d). In
the latter case, the effective potential resembles the structure
illustrated in Fig. 10(b), displaying two shallow wells ac-
counting for the two density humps close to the trap center
in the case of gBB = 0.5 [Fig. 15(d)]. Furthermore, both for
gBB = 0.2 and 0.5 [Figs. 15(c) and 15(d)], the cloud performs
a breathing motion, with the most prominent frequency being

ωbr = 0.157, i.e., the same as in the noninteracting case [see
Fig. 15(b)].

VI. SUMMARY AND CONCLUSIONS

We have investigated the nonequilibrium quantum dy-
namics of few repulsively interacting harmonically trapped
bosonic impurities immersed in a MB bosonic bath, sub-
jected to a time-periodic pulse of the impurity-bath interaction
strength. Importantly, the effect of the driving frequency
on the emergent dynamical response of both components is
studied in detail ranging from weak to strong driving. The
amplitude of the modulation is large enough to drive the two-
component system across its phase-separation boundary. In
this sense, we examine the driven impurity-medium dynamics
from the miscible to the immiscible phase and vice versa.

Focusing on the driving to the immiscible phase, two
distinct response regimes are identified. Namely, if the modu-
lation frequency is smaller than the trapping one, the system
transits successively in the course of time from the miscible
to the immiscible regime, according to the phase in which
it is driven by the impurity-bath coupling. Turning to larger
modulation frequencies than the trapping one, DB soliton
pairs emerge within the MF approach, which subsequently
merge after half of an oscillation period forming a bound state
around the trap center. Taking correlations into account, these
pairs are expelled towards the edges of the bath cloud, where
they equilibrate by performing small-amplitude oscillations.
In particular, by comparing the MF and the MB dynamics
we conclude that at early evolution times both descriptions
yield similar results, but subsequently correlations become
important and hence the MF product state does not provide
an adequate description. Interestingly, for an increasing mod-
ulation frequency we demonstrate that the MF framework
is valid only at the very initial stages of the dynamics. The
impurity atoms exhibit Mott-like correlations, thus being spa-
tially localized in these outer density branches, which develop
two-body correlations among each other. Moreover, a stable
density dip (hump) is formed around the trap center in the
bath (impurities). This dip splits the bath into two spatial
regions which feature two-body correlations. The impurities
motion can be intuitively understood in terms of an effective
potential picture, unveiling that they predominantly reside in
a superposition of its ground and first two excited states.

In the reverse driving scenario, i.e., following an inter-
action pulse from the immiscible to the miscible phase, we
again capture two distinct dynamical regimes, depending on
the modulation frequency. For small driving frequencies, the
mixture transits consecutively in time from the immiscible
to the miscible phase according to the modulation of the
impurity-bath coupling. In the time interval that the system
lies into its immiscible phase, the impurities reside in a super-
position of their lowest-lying effective potential eigenstates.
For larger modulation frequencies DB soliton pairs are gener-
ated within the MF framework possessing a larger oscillation
frequency compared to the previous driving scenario. Incorpo-
rating correlations, the impurities perform a breathing motion,
the frequency of which is in good agreement with the one
predicted by their effective potential. We also argue that the
dynamical response of the mixture can be well described
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within the MF approximation only at early evolution times, a
result that becomes more pronounced for an increasing modu-
lation frequency where correlation effects are more enhanced.
Furthermore, it is found that a multitude of excited eigenstates
of their effective potential participate in the dynamics. Re-
garding the bosonic bath, two small density dips are nucleated,
originating from the splitting of the spontaneously generated
quantum DB soliton pairs, which are symmetric with respect
to the trap center and are almost stable throughout the time
evolution. These dips split the bath into two incoherent parts
featuring two-body anticorrelations.

The role of different impurity particle numbers and
impurity-impurity interactions is also explored. It is found
that for weak repulsions, the impurities are mainly trapped
by the bath around the trap center, occupying predominantly
the ground state of their effective potential. This behavior is
especially pronounced for two noninteracting particles. By
increasing the impurity-impurity interactions or their particle
number, weak amplitude emitted density humps form and os-
cillate between the edges of the cloud of the bath and the trap
center. They also exhibit a dispersion within the bath density,
mostly for strong repulsions. In particular, when driving the
impurity-bath interactions from the immiscible to the miscible
phase, it is showcased that the impurities perform a breathing
motion with the same prominent frequency regardless of their
inherent repulsion.

The present paper can inspire several promising and inter-
esting future research directions. An extension of immediate
interest is to consider the 2D analog of the current setup,
where the ejection of correlated jet structures [58–60] and
the emergence of star-shaped patterns has been reported
upon modulating the scattering length [54]. Additionally,
the driving of the impurity-bath coupling strength in the
presence of fermionic impurities immersed in a Bose or
Fermi gas is an interesting prospect for studying the in-
duced interactions between the impurities and the impact
of their flavor in the dynamical response of the system. In
a similar vein, the dynamics of bosonic impurities embed-
ded in a fermionic bath with a similar driving protocol will
highlight the role of induced correlations mediated by the
fermionic bath [102]. Certainly, the study of modulated in-
teraction pulses in the presence of dipolar couplings is highly
desirable.
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APPENDIX A: ENERGY EXCHANGE PROCESSES

To elucidate the underlying energy exchange processes
between the different components [22,36,38] of the system in
both driving scenarios addressed in Secs. III and IV we invoke
the corresponding energy contributions of three different com-

ponents, namely, the one of the bath (EA), the impurities (EB),
and their mutual interactions (EAB). In particular the energy of
the bath is given by

EA(t ) = 〈
MB(t )|T̂A + V̂A(x) + ĤAA|
MB(t )〉
− 〈
MB(0)|T̂A + V̂A(x) + ĤAA|
MB(0)〉 , (A1)

while the energy of the impurities is

EB(t ) = 〈
MB(t )|T̂B + V̂B(x) + ĤBB|
MB(t )〉 , (A2)

and the impurity-medium interaction energy reads

EAB(t ) = 〈
MB(t )|ĤAB(t )|
AB(t )〉 . (A3)

In these expressions, the kinetic, potential, and impurity-bath
interaction operators have the form T̂σ = − h̄2

2M

∫
dx 
̂σ† d2

dx2


̂σ (x), V̂σ (x) = 1
2 Mω2

∫
dx 
̂σ†(x)x2
̂σ (x), and Ĥσσ ′ (t ) =

gσσ ′ (t )
∫

dx 
̂σ†(x)
̂σ ′†(x)
̂σ (x)
̂σ ′
(x), respectively, with

σ = A, B. Also, 
̂σ (x) [
̂σ†(x)] denotes the operator that an-
nihilates [creates] a σ -species particle at position x. Note that
the initial energy of the bath, which is large due to its substan-
tial spatial extent and particle number, is subtracted in order
to render EA comparable with the other energy contributions.

Focusing on the driving of the system from the miscible
to the immiscible phase with modulation frequency � = 1.5,
the interaction energy EAB(t ) initially oscillates according to
the quench protocol of Eq. (2) and subsequently decreases
[Fig. 16(a)]. Since energy is pumped into the system after
the pulse the energy of both components, EA and EB, in-
creases. The impurities acquire more energy than the bath and
this reflects the fact that the outer impurity density branches
[Fig. 3(d)] reach the edges of the cloud of the bath and re-
main there while oscillating [39,64]. At later time instants
EB features maxima whenever the outer density branches of
ρ (1),B [see Figs. 3(d) and 16(a) at t ≈ 85] tend to the edges
of the bath cloud, acquiring thus maximal potential energy,
and minima when the ρ (1),B branches approach the trap center
[Fig. 16(a), t ≈ 111]. EA exhibits a similar behavior and its
minima and maxima occur simultaneously with the minima
and maxima of EB, since the dips formed in the bath density
move in phase with the outer impurity density branches. The
impurity-bath interaction energy exhibits out-of-phase oscil-
lations with EA and EB, which is a manifestation of the energy
exchange process between the two components [33,64]. To
infer the behavior of the bath energy with respect to � we
present EA for � = 0.05, 0.5, and 1.5 [inset of Fig. 16(a)].
Evidently, there is a growth tendency of EA with increasing
�, since for larger modulation frequencies more energy is
pumped into the system. However for � = 1.5, EA is energet-
ically close to the case � = 0.5. For even larger modulation
frequencies, the energy of the bath displays a similar behavior
as for � = 1.5 because for large driving frequencies the effect
of the pulse is averaged out [39]. Turning to small � [� =
0.05 in the inset of Fig. 16(a)], EA performs small amplitude
oscillations, which are in phase with the oscillations of EAB(t )
and consequently with the modulation of gAB(t ).

Turning to the reverse pulse scenario, namely, from gin
AB =

1.4 to gf
AB = 0.6 with � = 1, the impurity-bath interaction

energy EAB(t ) now increases and afterwards oscillates around
a mean value. This behavior is attributed to the fact that the
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FIG. 16. (a) Energy contributions of the bath (EA), the impurities
(EB), and their mutual interaction (EAB) following a time-periodic
pulse of the impurity-bath coupling from gin

AB = 0.2 to gf
AB = 1.2

with � = 1.5. (b) The same as in (a) but for gin
AB = 1.4, gf

AB = 0.6,
and modulation frequency � = 1. The insets display the energy of
the bath for other modulation frequencies (see legend). The energies
are given in terms of h̄ω⊥.

system is driven into the miscible phase where the overlap
between the two components is large, compared to the driving
to the immiscible regime. The energy of the impurities os-
cillates around a mean value reflecting their breathing motion
[see Fig. 9(d)], with maxima at the positions where ρ (1),B(x; t )
expands [Fig. 9(d) at t � 25], possessing maximal potential
energy, and minima at the locations where ρ (1),B(x; t ) con-
tracts [see Fig. 9(d) at t � 60]. Since the impurities energy
remains roughly the same and oscillates around a mean value
while EAB increases with time due to the miscible character
of the system, the bath energy decreases due to energy con-
servation until t � 25 and thereafter oscillates with a small
amplitude around a constant value. As can be seen from the
inset of Fig. 16(b), EA becomes negative for other modulation
frequencies as well.

FIG. 17. Impurities breathing frequency following a pulse to the
miscible phase, i.e., gin

AB = 1.4 and gf
AB = 0.6 when varying gAA while

keeping gBB = 0.9544 fixed (see legend). The rhombi present the
numerically obtained breathing frequency in the MB evolution with
gAA = 1.004.

APPENDIX B: IMPURITIES BREATHING FREQUENCY
FOLLOWING A PULSE TO THE MISCIBLE REGIME

For consistency, let us finally investigate within the MF
approximation the role of the driving frequency on the im-
purities breathing frequency ωbr as the system is driven from
the immiscible to the miscible phase, i.e., gin

AB = 1.4 and
gf

AB = 0.6. The breathing frequency is derived by examining
the impurities position variance, 〈(xB)2〉 [31,101]. Apart from
� the impact of different bath interactions is also explored
(Fig. 17). By fixing gBB = 0.9544, ωbr eventually saturates for
sufficiently large driving frequencies (� > 5). More precisely,
ωbr = 0.1194 in the case of gAA = 1.004 and ωbr = 0.1521 in
the case of gAA = 2 (Fig. 17). Indeed for large �, the effect of
the pulse is averaged out (Sec. II A) and hence the dynamical
response of the impurities is unaffected. To explain these
breathing frequency values we resort to the effective potential
experienced by the impurities for large � [Eq. (12)]. A time
averaging is performed on the medium density, ρ̄ (1),A(x) =
1
T

∫ T
0 gAB(t )ρ (1),A(x; t ) for sufficiently long evolution times

T , in order to eliminate small density fluctuations [36,37].
For gAA = 1.004 and 2, the time-averaged density resem-
bles a TF profile ρ̄ (1),A(x) = Q(R2 − x2)θ (R2 − x2), and the

breathing frequency is then given by ωbr = 2
√

ω2 − 2Q
M [101].

According to the theoretical predictions [37,98,101] the lat-
ter provides ωbr = 0.13 and 0.1689 for gAA = 1.004 and 2,
respectively, when � = 10. The relative error of these the-
oretically anticipated values with the numerically predicted
values is of the order of 10% in both cases. Taking correlations
into account for gAA = 1.004, already from � = 0.05, ωbr

saturates to 0.157 (rhombi in Fig. 17), a value well above the
MF case where ωbr = 0.1194, thus suggesting the importance
of impurity-impurity correlations [25,37].
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[61] T. Mežnaršič, R. Žitko, T. Arh, K. Gosar, E. Zupanič, and P.
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