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We consider the highly spin-imbalanced limit of a two-component Fermi gas, where there is a small density
of ↓ impurities attractively interacting with a sea of ↑ fermions. In the single-impurity limit at zero temperature,
there exists the so-called polaron-molecule transition, where the impurity sharply changes its character by
binding a ↑ fermion at sufficiently strong attraction. Using a recently developed variational approach, we
calculate the thermodynamic properties of the impurity, and we show that the transition becomes a smooth
crossover at finite temperature due to the thermal occupation of excited states in the impurity spectral function.
However, remnants of the single-impurity transition are apparent in the momentum-resolved spectral function,
which can in principle be probed with Raman spectroscopy. We furthermore show that the Tan contact exhibits
a characteristic nonmonotonic dependence on temperature that provides a signature of the zero-temperature
polaron-molecule transition. For a finite impurity density, we argue that descriptions purely based on the behavior
of the Fermi polaron are invalid near the polaron-molecule transition, since correlations between impurities
cannot be ignored. In particular, we show that the spin-imbalanced system undergoes phase separation at low
temperatures due to the strong attraction between ↑↓ molecules induced by the Fermi sea. Thus, we find that the
impurity spectrum and the induced impurity-impurity interactions are key to understanding the phase diagram
of the spin-imbalanced Fermi gas.

DOI: 10.1103/PhysRevA.103.023312

I. INTRODUCTION

The problem of a mobile impurity immersed in a Fermi
gas is important for a variety of systems ranging from neu-
tron stars [1] to trapped ultracold atoms [2] to the absorption
spectra in doped semiconductors [3–5]. In this scenario, the
impurity attractively interacts with the surrounding fermions
and becomes dressed by excitations of the Fermi gas to form
a quasiparticle—also termed a Fermi polaron—with modified
properties such as a larger effective mass [2]. The Fermi
polaron has an exceptionally clean realization in ultracold
atomic gases [6–16], where the impurity-fermion interactions
can be precisely tuned and the temperature can be varied from
the quantum-degenerate to the classical regime. Moreover,
the case of fermionic impurities corresponds to the limit of
extreme population imbalance in a two-component Fermi gas
[17–19], where the impurities form the minority (↓) com-
ponent and the Fermi medium consists of the majority (↑)
fermions. Such a spin-imbalanced Fermi gas provides a model
system for exploring fermion pairing phenomena and exotic
superfluid phases [20,21].

Of particular interest is the so-called polaron-molecule
transition at zero temperature [22–27], where the ↓ impurity
suddenly binds a ↑ fermion at sufficiently strong attraction
and forms a dressed ↑↓ molecule or dimer. Most notably,
the dressed dimer has a vanishing overlap with the bare
noninteracting impurity and thus corresponds to a radically
different quasiparticle from the original dressed impurity or
polaron. However, there has been much debate about the fate

of this single-impurity transition once there is a finite impurity
density or a finite temperature [16,19,28–30]. Most recently,
it has been proposed that polarons and molecules coexist in
the highly spin-imbalanced Fermi gas at low temperatures
[16,30], which has implications for the phase diagram of this
system.

In this paper, we reveal how the behavior of the polaron-
molecule transition at finite temperature is intimately linked
to the structure of the impurity spectral function. In par-
ticular, at zero temperature, the polaron-molecule transition
is connected to the appearance of two degenerate minima
in the momentum-resolved spectrum, as first elucidated in
Ref. [31]. Using a recently developed variational approach
[32], we show how the sharp single-impurity transition be-
comes a smooth crossover at finite temperature due to the
thermal occupation of excited states in the impurity spectral
function and the smearing of the ↑ Fermi surface. How-
ever, signatures of the zero-temperature polaron-molecule
transition can still be observed in thermodynamic quantities
such as the Tan contact [33], which we find monotoni-
cally decreases with temperature on the molecule side of
the transition, while displaying a characteristic nonmono-
tonic temperature dependence on the polaron side, consistent
with recent experimental measurements for unitarity-limited
impurity-fermion interactions [14]. We also discuss how the
structure of the spectral function can in principle be probed
with Raman spectroscopy, and that the polaron-molecule
transition can be particularly clearly resolved if impurities
are “injected” into the interacting state, rather than be-
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ing “ejected” from the interacting system as in a recent
experiment [16].

While thermal fluctuations destroy the single-impurity
transition, we argue that a finite impurity density typically
results in a first-order phase transition between superfluid
and Fermi liquid phases at sufficiently low temperatures. In
particular, we show that there is a strong attraction between
dressed ↑↓ dimers induced by the surrounding Fermi gas,
such that the dimer superfluid is unstable towards phase sep-
aration at zero temperature. Therefore, induced interactions
between dressed impurities are crucial for describing the low-
temperature phase diagram of the spin-imbalanced Fermi gas.

This paper is organized as follows. In Sec. II, we introduce
the Hamiltonian for the spin-imbalanced Fermi gas and we
discuss the fundamental properties of different spectroscopic
probes in the single-impurity limit. We furthermore outline
the variational method that we use to calculate the impurity
spectral function. In Sec. III, we discuss signatures of the
polaron-molecule transition in the impurity spectral function
as well as the impurity free energy and the Tan contact. We
also show how Raman injection spectroscopy can enhance the
signal of dressed molecule states in the spectrum. In Sec. IV,
we discuss the behavior of the Fermi polaron in relation to the
spin-imbalanced phase diagram, and we show how phase sep-
aration arises from the induced interactions between dressed
molecules in the Fermi gas. We conclude in Sec. V. The
theoretical details for Raman spectroscopy of polarons are
contained in the Appendix.

II. MODEL

We model the two-component Fermi gas with short-range
interactions using the Hamiltonian

Ĥ =
∑
kσ

εkĉ†
kσ ĉkσ + g

∑
kk′q

ĉ†
k↑ĉ†

k′↓ĉk′−q↓ĉk+q↑, (1)

where we work in units where the system volume and the
Planck and Boltzmann constants are unity. The operator ĉ†

kσ

creates a fermion with momentum k and spin index σ , where
the values σ =↑,↓ indicate distinct hyperfine states. The
fermions have mass m and dispersion εk = |k|2/2m ≡ k2/2m.
The interactions only occur between distinguishable particles,
and they are taken to be of zero range and characterized by a
strength g as in the case of a broad Feshbach resonance. We
can relate the interaction strength g to the scattering length a
via

1

g
= m

4πa
−

�∑
k

1

2εk
, (2)

where � is an ultraviolet cutoff on the relative momentum of
the scattering particles.

A. Probes of polaron physics

In the following, we consider the scenario of a majority ↑
Fermi sea and a small minority component of ↓ impurities.
The properties of the dressed impurities (or polarons) are

encoded in the spectral function [34]

A(p, ω) = − 1

π
Im[G↓(p, ω + i0)], (3)

where G↓ is the impurity Green’s function at momentum p
and energy ω. We have included an imaginary infinitesimal
+i0 that shifts the poles into the lower half of the complex
plane since we are dealing with the retarded Green’s function.
The calculation simplifies in the limit of a single impurity
atom, which is an accurate description of the system when the
impurities are uncorrelated with each other. This is the case
when the impurity density n↓ is sufficiently low and/or the
temperature T is sufficiently high, as we discuss in Sec. IV.
Note that the spectral relationships investigated in this section
are independent of dimensionality.

We now outline the various spectroscopic protocols that
can probe the polaron. The most common is radio-frequency
(rf) spectroscopy, which comes in two flavors. In injection
spectroscopy, impurities initially occupy an auxiliary state,
and (in the ideal case) this state is noninteracting with the
medium. Within linear-response theory, the rate at which im-
purities with definite momentum p are transferred from this
auxiliary state to the ↓ state is proportional to the injection
spectral function [35]

Arf
inj(p, ω) = A(p, ω + εp), (4)

where the frequency ω is measured relative to the bare
transition. Most cold-atom experiments are not momentum
resolved, and instead probe the total spectral function

I rf
inj(ω) =

∑
p

nB(p)Arf
inj(p, ω), (5)

which is averaged over the initial impurity momenta. We
take the impurities to be uncorrelated, and therefore they
are initially described by a Boltzmann distribution nB(p) =
e−βεp/Zimp, where Zimp = ∑

p e−βεp is the single-impurity par-
tition function, and β = 1/T is the inverse temperature. Note
that Eqs. (4) and (5) neglect any prefactors related to the
strength of the rf or optical field.

An alternative protocol is ejection spectroscopy, where the
impurity is ejected from the interacting ↓ state to the auxiliary
state. The transfer rate into impurity states of momentum p is
now proportional to the ejection spectral function Arf

ej (p, ω). It
turns out that, in the single-impurity limit, this is related to the
injection spectral function via the fundamental relationship
[36,37]

Arf
ej (p, ω) = eβ �F eβωnB(p)Arf

inj(p,−ω). (6)

The proportionality factor depends on the impurity free en-
ergy �F , defined as the difference between the free energy
of the interacting and noninteracting systems, �F = F − F0.
Similarly, the total ejection rate can be related to the total
(momentum-averaged) injection spectral function [36,37]:

I rf
ej (ω) =

∑
p

Arf
ej (p, ω) = eβ �F eβωI rf

inj(−ω). (7)

Recently, the Fermi polaron has also been probed via Ra-
man spectroscopy [16]. Like rf spectroscopy, this couples
the ↓ impurity state to an auxiliary state. However, unlike rf
spectroscopy, Raman spectroscopy is effectively a two-photon
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process, and thus, apart from imparting a frequency shift ω, it
also imparts a momentum q to the impurity. Within linear re-
sponse, the injection transfer rate for impurities initially with
momentum p − q in the auxiliary state is (see the Appendix)

AR
inj(p; q, ω) = A(p, ω + εp−q), (8)

where the final ↓ dressed impurity has momentum p. The
momentum-averaged transfer rate is then (see also Ref. [35])

IR
inj(q, ω) =

∑
p

nB(p − q)AR
inj(p; q, ω). (9)

In the limit q → 0, these expressions reduce to those for rf
spectroscopy.

Raman spectroscopy may also be used to eject particles
from the interacting impurity state, as was done in a recent
experiment [16]. Performing a calculation similar to that in
Refs. [36,37], we obtain the relationship between injection
and ejection Raman spectral functions:

AR
ej(p; q, ω) = eβ �F eβωnB(p − q)AR

inj(p; q,−ω), (10)

where the final impurity state has momentum p − q. Thus, the
total ejection rate in Raman spectroscopy is

IR
ej (q, ω) =

∑
p

AR
ej(p; q, ω) = eβ �F eβωIR

inj(q,−ω). (11)

For a derivation of these relationships, see the Appendix.
The Raman spectral functions satisfy the usual sum rules

(see, e.g., Ref. [38]) independently of q:∫
dω AR

inj(p; q, ω) =
∫

dω A(p, ω) = 1, (12a)∫
dω AR

ej(p; q, ω) = nint (p), (12b)

where nint (p) is the impurity momentum distribution in the
interacting state (for details, see the Appendix). We also have∫

dω IR
inj(q, ω) =

∫
dω I rf

inj(ω) = 1, (13a)∫
dω IR

ej (q, ω) =
∫

dω I rf
ej (ω) = 1. (13b)

Note that Eq. (13b) is only valid in systems where the
internal state of the impurity cannot be changed by the
impurity-medium interactions [37]. This condition is satisfied
in our model (1).

B. Variational approach

To approximate the impurity spectral function, we start by
considering the impurity Green’s function in the time domain:

G↓(p, t ) =
∫

dω

2π
e−iωt G↓(p, ω + i0)

= − i	(t )Tr[ρ̂0 ĉp↓(t )ĉ†
p↓(0)]. (14)

Here, 	(t ) is the Heaviside function, and we have introduced
the time-dependent impurity operator ĉp↓(t ) = eiĤt ĉp↓e−iĤt .
The trace is taken over medium-only states, with the density

matrix for the medium

ρ̂0 = e−βĤmed

Tr[e−βĤmed ]
. (15)

Ĥmed = ∑
k(εk − μ)ĉ†

k↑ĉk↑ is the medium-only Hamiltonian,
and μ is the chemical potential of the ↑ Fermi gas.

Following Ref. [32], we consider an approximate impurity
operator with at most one particle-hole excitation,

ĉp↓(t ) � αp;0(t )ĉp↓ +
∑
kq

αp;kq(t )ĉ†
q↑ĉk↑ ĉp−k+q,↓, (16)

where the variational parameters α j (t ) are complex functions
of time. Note that, unlike Ref. [16], we only require a single
variational ansatz rather than two to capture the polaron-
molecule transition and its evolution with temperature. We
then minimize the error

�p(t ) = Tr[ρ̂0ε̂p(t )ε̂†
p(t )], (17)

with respect to each of the α j (t ), where the error opera-
tor ε̂p(t ) ≡ i∂t ĉp↓(t ) − [ĉp↓(t ), Ĥ ] corresponds to the error
incurred in the Heisenberg equation of motion. Taking
the stationary condition αp;0(t ) = αp;0e−iEt and αp;kq(t ) =
αp;kqe−iEt yields the coupled equations [32]

Eαp;0 = εpαp;0 + g
∑
kq

αp;kq nF(q)[1 − nF(k)], (18a)

Eαp;kq = (εp+q−k + εk − εq)αp;kq + gαp;0

+g
∑

k′
αp;k′q[1 − nF(k′)], (18b)

with Fermi-Dirac distribution

nF(k) = Tr[ρ̂0 ĉ†
k↑ĉk↑] = 1

eβ(εk−μ) + 1
. (19)

Equations (18) correspond to a matrix eigenvalue problem
which can be solved to give eigenvectors {α(l )

p;0, α
(l )
p;kq} and as-

sociated eigenvalues E (l )
p . This finally yields the approximate

impurity Green’s function in the time domain,

G↓(p, t ) = −i	(t )
∑

l

∣∣α(l )
p;0

∣∣2
e−iE (l )

p t . (20)

By a Fourier transform, we arrive at the impurity Green’s
function in the frequency domain,

G↓(p, ω + i0) =
∑

l

∣∣α(l )
p;0

∣∣2

ω − E (l )
p + i0

, (21)

as well as the corresponding spectral function,

A(p, ω) =
∑

l

∣∣α(l )
p;0

∣∣2
δ
(
ω − E (l )

p

)
. (22)

The spectral function of the Fermi polaron has been inves-
tigated with a variety of theoretical tools, including variational
approaches at zero [39] and finite temperature [32], T -matrix
approximations [40–44], the functional renormalization group
[45], large-N expansion [38,46], and diagrammatic quantum
Monte Carlo (QMC) methods [47]. The variational approach
where we consider a single particle-hole excitation of the
Fermi sea is equivalent to a finite-temperature Green’s func-
tion approach that only includes ladder diagrams [32].
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III. IMPURITY SPECTRAL FUNCTION
AND THERMODYNAMICS

In this section, we focus on the limit of a single ↓ impurity
in a ↑ Fermi sea. As discussed in Sec. II A, this allows us to
make precise statements about the impurity spectral function
as well as the impurity thermodynamics via the free energy
�F . We take a fixed ↑-fermion density n↑ = ∑

k nF(k), with
corresponding Fermi momentum kF = (6π2n↑)1/3, Fermi en-
ergy EF = k2

F /2m, and Fermi temperature TF = EF . The
relevant dimensionless parameters in the single-impurity limit
are then the interaction strength 1/kF a and the temperature
T/TF .

A. Polaron-molecule transition

In the zero-temperature limit, it has been established that
the polaron undergoes a transition at sufficiently strong at-
traction (1/kF a)0, where the impurity binds a fermion to
form a dressed dimer or molecule [22–27]. To gain insight
into this transition, it is instructive to consider the structure
of the possible impurity states. Within the one particle-hole
approximation, the polaron wave function at momentum p has
the form [17]

|ψp〉 =
[
αp;0ĉ†

p↓ +
∑
kq

αp;kq ĉ†
p−k+q,↓ĉ†

k↑ĉq↑

]
|FS〉 , (23)

where |FS〉 is the Fermi sea of ↑ fermions. Here we have q �
kF < k, and we can take the coefficients α to be real without
loss of generality in the time-independent case. A key feature
of the polaron state is that it has a finite residue α2

p;0, which
corresponds to the squared overlap with the noninteracting
state ĉ†

p↓ |FS〉. Thus, the polaron appears as a δ-function peak
in the impurity spectral function at T = 0 [see Eq. (22)].

On the other hand, the lowest-order form of the dimer at
momentum Q is the Pauli-blocked state:∣∣ψM

Q

〉 =
∑

k

φQ;k ĉ†
Q−k,↓ĉ†

k↑ |FS〉′ , (24)

where |FS〉′ corresponds to the Fermi sea with one less ↑
fermion in order to conserve particle number among the
different impurity states. It has previously been shown that
the zero-momentum molecule |ψM

0 〉 becomes lower in en-
ergy than the zero-momentum polaron |ψ0〉 when 1/kF a �
(1/kF a)0 � 1.27 [23–25], whereupon the residue abruptly
vanishes and the impurity quasiparticle radically changes
its character. Including more particle-hole excitations of the
Fermi sea only shifts this polaron-molecule transition to lower
attraction, (1/kF a)0 � 0.88 [22–27]; it does not destroy it.

If we take |FS〉′ = ĉkF nQ,↑ |FS〉 with nQ = Q/Q a unit
vector in the direction of Q, then we see that Eq. (24)
corresponds to a special case of Eq. (23), where φQ;k =
αp;kq δp+q,Q δq,kF nQ and φQ;kF nQ = αp;0 δp,Q−kF nQ . Thus, the
zero-momentum molecule state is contained in the p = kF po-
laron wave function and manifests as a minimum in the energy
spectrum near the polaron-molecule transition, as shown in
Fig. 1. In particular, at this level of approximation, the sharp
polaron-molecule transition corresponds to the point where
the energy minima at p = 0 and p = kF become degenerate,
as first pointed out in Ref. [31] (and also observed in later

FIG. 1. Polaron energy (solid blue) and the onset of the
molecule-hole continuum (dashed orange) for (a) 1/kF a = 1 and
(b) 1/kF a = 1.4, corresponding to before and after the polaron-
molecule transition, respectively. The energies are calculated using
the zero-temperature ansatz in Eq. (23), where the polaron-molecule
transition occurs at (1/kF a)0 � 1.27 at this level of the approxima-
tion. The exact spectrum has a continuum of states (gray shading)
starting at the ground-state energy and spanning all momenta but
with less spectral weight than the molecule-hole continuum (orange
shading).

works [30,48,49]). This might suggest that the dimer simply
corresponds to a polaron at finite momentum [30,49]. How-
ever, the key point is that the dimer state has a residue that
scales inversely with the volume [50] and thus the dimer is
qualitatively different from the polaron in the thermodynamic
limit where the residue vanishes.

Even though the molecule has a vanishing residue, it is
still visible in the impurity spectral function because there
is a continuum of states in Eq. (23) involving a molecule
and a hole excitation of the Fermi sea [2], as depicted in
Fig. 1. The state in Eq. (24) then defines the onset of this
molecule-hole continuum since a hole excitation at the Fermi
surface has the lowest energy. Thus, at the level of the single
particle-hole approximation in Eq. (23), the spectral function
near the transition (1/kF a)0 contains a well-defined polaron
peak at low momenta and a visible molecule-hole continuum
centered around p = kF .

In the exact spectral function, where one can in principle
have an infinite number of particle-hole excitations, there is
a continuum spanning all p that extends all the way down
to the ground-state energy (see Fig. 1) due to low-energy
excitations at the Fermi surface. However, states with multi-
ple particle-hole excitations have negligible spectral weight
since their residue vanishes even faster with volume com-
pared to the molecule-hole continuum. Indeed, the strong
suppression of spectral weight above the polaron has also
been found in nonperturbative QMC calculations for unitarity-
limited impurity-fermion interactions [47]. Thus, we expect
the ansatz (23), as well as (16), to capture the main features
of the spectral function. In particular, the double-minimum
structure in Fig. 1 should be observable in a real experiment.
While additional particle-hole excitations will also couple the
polaron and molecule minima in the spectrum, the phase space
for such processes vanishes at the transition [26] in the ther-
modynamic limit. Therefore, the polaron-molecule transition
is akin to the orthogonality catastrophe [51] since it only
formally exists in the limit where the number of majority
↑ fermions tends to infinity. Such a transition may resem-
ble a crossover if the number of fermions considered is too
small [52].
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B. Free energy and contact

We now turn to the fate of the polaron-molecule transition
at finite temperature and how it is connected to the thermody-
namic properties of the Fermi polaron. Using the relationship
in Eq. (11) together with the sum rule (13b), we obtain the
following expression for the impurity free energy [36,37]:

e−β�F =
∫

dω
∑

p e−βωA(p, ω)∑
p e−βεp

(25a)

=
(

2π

mT

)3/2 ∑
p,l

e−βE (l )
p

∣∣α(l )
p;0

∣∣2
. (25b)

This allows us to calculate the contact [33,53], which is
defined by

C = 4πm
∂F

∂ (−1/a)

∣∣∣∣
T,μ

= 4πm
∂�F

∂ (−1/a)

∣∣∣∣
T,μ

. (26)

The contact can also be extracted from the high-frequency tail
[38,54] of the rf spectrum, since we have

I rf
ej (ω) → 1

4π2
√

m

C

ω3/2
. (27)

As long as ω 
 εq, the same relation holds for the Raman
spectrum.

As illustrated in Fig. 2(a), the impurity free energy
calculated from our ansatz (16) features a kink at the polaron-
molecule transition in the zero-temperature limit, where the
quasiparticle abruptly changes its character. This agrees with
the results for the impurity ground-state energy obtained from
the variational wave functions (23) and (24). Such a kink also
exists when more particle-hole pair excitations are included
[22–27] although it then occurs at smaller 1/kF a, primarily
due to the lower energy of the molecule [see Fig. 2(a)]. Note
that we show �F + εB to highlight the difference from the
trivial part of the free energy originating from the two-body
binding energy. We can understand the kink in the free en-
ergy from the behavior of the spectra shown in Fig. 1: When
1/kF a < (1/kF a)0, the free energy is set by the well-defined
quasiparticle peak at zero momentum, while when 1/kF a >

(1/kF a)0, the value of the free energy corresponds to the bot-
tom of the molecule-hole continuum at p = kF . As discussed
above, the edge of this continuum extends to zero momentum
when more particle-hole pairs are included; however, the be-
havior of the free energy across the transition will still look
qualitatively similar to Fig. 2(a), and the transition can be
characterized by the sudden loss of quasiparticle weight of
the ground state.

At finite temperature, Fig. 2(a) clearly illustrates how the
kink in the free energy is replaced by a smooth crossover,
where it becomes difficult to distinguish the polaron-molecule
transition already when T � 0.1TF . This behavior arises from
the thermal population of excited states in the impurity spec-
tral function, as well as from the thermal smearing of the
↑ Fermi surface which modifies the spectral function itself.
The latter effect is expected to be relevant for T � 0.1TF [29]
but has not previously been included in variational studies of
the polaron-molecule transition at finite temperature [16,30].
We also note that the magnitude of the impurity free energy
initially increases with temperature at low temperatures T �

FIG. 2. (a) Impurity free energy and (b) contact as a func-
tion of interaction strength around the polaron-molecule transition,
(1/kF a)0 � 1.27. In both cases, we have subtracted the leading con-
tribution that arises from the vacuum two-body bound state. We
show the T = 0 results as solid (dashed) lines when the respective
lines correspond to the ground (excited) states. The red crosses and
blue circles are the results at T/TF = 0.1 and 0.2, respectively, and
we estimate the numerical error to be significantly smaller than the
symbol size. The gray dotted lines correspond to the expression for
a bosonic molecule weakly interacting with the Fermi sea (see text).
The inset in (b) shows the temperature dependence of the contact at
1/(kF a) = 0.5 (solid) and 1.3 (dashed), where the lines are guides to
the eye.

TF , which is in contrast to the behavior at high temperatures
where we have �F → 0. This low-temperature feature can be
traced back to the fact that the interacting spectral function
in Eq. (25a) has a larger density of states at low energies
compared to the noninteracting case (see Sec. III C), and thus
�F is lowered as these states become thermally populated.
Since contributions to the free energy at finite temperature
are dominated by regimes of significant spectral weight [see
Eq. (25)], the finite-temperature free energy shown in Fig. 2(a)
is unlikely to strongly depend on the number of particle-hole
pairs included in the variational ansatz.

We now argue that the temperature dependence of the
contact, shown in Fig. 2(b), provides a clear signature of the
underlying zero-temperature single-impurity transition. As in
the case of the free energy, we have subtracted the (positive)
contribution to the contact from the two-body bound state. At
T = 0, the kink in the free energy leads to an abrupt jump in
the contact across the transition. This discontinuity was also
observed in Ref. [24], where the T = 0 contact was first ob-
tained. At low but finite temperature, we find that the contact
initially increases on the polaron side of the transition since
temperature populates the molecule-hole continuum which
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has a higher contact than the polaron itself [36,37]. On the
other hand, we expect the contact to decrease monotonically
on the molecule side of the transition since both the molecular
excited states and the polaron have a smaller contact than
the ground-state dimer. We therefore predict a strong quali-
tative difference in the behavior of the contact as a function
of temperature on the polaron and the molecule side of the
transition. Indeed, this is clearly observed in our numerical
results shown in Fig. 2(b). Unlike the kink in the free energy,
this nonmonotonic behavior should be discernible at typical
experimental temperatures T/TF ∼ 0.1–0.3.

In the regime where 1/kF a � 1 and T � εB, we can ap-
proximately treat the system as a bosonic molecule that is
weakly interacting with the Fermi sea. At zero temperature,
this gives �F + εB → −EF + nUBF , where the Bose-Fermi
interaction UBF = 3πaad/m, which involves the atom-dimer
scattering length aad = 1.18a [55]. This has been found to
well approximate the ground-state energy of the dressed
molecule [25]. The corresponding line is shown in Fig. 2(a),
and we see that it lies somewhat below that obtained from the
variational wave function in Eq. (24), highlighting the fact that
Eq. (24) overestimates the strength of the atom-dimer interac-
tions. This can be cured by including more particle-hole pairs
in our variational ansatz [23–25], leading to a correction to
the position of the polaron-molecule transition. Likewise, the
contact for a molecule interacting with majority fermions is
given by C � 8π/a + 2kF (kF a)2aad/a. In this case, the corre-
sponding line in Fig. 2(b) lies quite close to our variational
result, and therefore it is likely that corrections due to the
inclusion of multiple particle-hole pairs will be small.

Experimentally, the contact has been extracted from the
large frequency tail in rf ejection spectra for the case of
unitarity limited impurity-fermion interactions [14], and more
recently the contact was extracted over a larger range of
interactions using the high-frequency tail in Raman ejection
spectra [16]. We have previously shown that the temperature
dependence at unitarity observed in Ref. [14] can be well
reproduced within our variational approach [36,37]. Figure 3
shows a comparison between the results of Ref. [16] and our
variational ansatz at T/TF = 0.2 (the approximate tempera-
ture in experiment). On the absolute scale shown in Fig. 3(a)
we find a good agreement. However, in Fig. 3(b) we see that
once we subtract the two-body contribution that dominates
already when 1/kF a � 0.2, the results deviate substantially.
This difference could, at least in part, be due to the trap
averaging in experiment [16], the finite density of impurities,
and possibly non-negligible effective range corrections in the
two-body scattering phase shift in 40K.

C. Impurity spectra in the vicinity of the transition

We now address how signatures of the polaron-molecule
transition can be observed via the spectroscopic techniques
detailed in Sec. II A. The initial state of the interacting im-
purity in a Fermi sea is encoded in the occupied spectral
function, defined by e−βωA(p, ω), which in turn controls the
thermodynamic properties via its relation to the impurity free
energy, Eq. (25a). In Fig. 4 we show our calculated occu-
pied spectral function at temperatures T/TF = 0.1 and 0.2
around the polaron-molecule transition. The molecule-hole

FIG. 3. Contact measured in experiment (red squares) [16], com-
pared with our variational result at T/TF = 0.2 (blue circles), which
is approximately the temperature in experiment. We make a direct
comparison between our theoretical result and the experimental data
in (a) and we subtract the contribution from the two-body bound
state in (b). We also include the result at T = 0 (dashed lines) for
comparison.

continuum centered at p = kF (see Fig. 1) is barely visible
due to its small spectral weight, but we clearly see that the
impurity dispersion flattens with increasing attraction, which
is a sign that the molecule-hole continuum lowers relative to
the polaron. At lower temperature, we also observe a bending
down of the polaron dispersion as it approaches p = kF where
it starts coupling to the molecule-hole continuum. In order
to better expose the polaron-molecule transition, we require
a spectroscopic protocol that enhances the continuum around
p = kF . Thus we will now investigate the possibility of using
Raman spectroscopy.

In Fig. 5 we compare the rf and Raman ejection spectra
across the transition. These can be related to the spectral
function using Eqs. (4), (6), (8), and (10):

Arf
ej (p, ω) = eβ �F eβωnB(p)A(p,−ω + εp), (28a)

AR
ej(p; q, ω) = eβ �F eβωnB(p − q)A(p,−ω + εp−q). (28b)

In the case of Raman spectroscopy, we choose the two-
photon momentum to be at q = kF in order to add weight to
the molecule-hole continuum. The spectrum then depends on
the direction of the final impurity momentum with respect to
q, and we choose to plot this in the direction parallel (positive
p) or antiparallel (negative p) to the Raman momentum. On
the molecule side of the transition, both rf and Raman spectra
show slightly increased spectral weight at p = ±kF , which
signifies an increased contribution from the molecule-hole
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0 0.2 0.4 0.6 0.8 1.0

FIG. 4. Occupied spectral function e−βωA(p, ω) close to the polaron-molecule transition at temperature T/TF = 0.1 (top row) and 0.2
(bottom row). From left to right, the interactions in each column are 1/kF a = 1, 1.25, and 1.5. In all panels we apply a Gaussian broadening
with standard deviation 0.02EF , and we normalize the spectrum to the maximum value in each panel.

continuum. However, it appears that neither spectroscopic
technique shows marked differences across the transition.

Finally, in Fig. 6 we contrast rf and Raman injection spectra
in the vicinity of the transition. Here we weight the spectra
by the distribution function of the initial momentum state
[i.e., nB(p) for rf and nB(p − q) for Raman] to show the
contributions to the total spectral function sums in Eq. (5) and

Eq. (9), respectively. Similar to the occupied spectral function,
rf injection spectroscopy is dominated by low-momentum
attractive polaron states, with the molecule-hole continuum
holding little spectral weight, and therefore the spectrum ex-
hibits no marked changes across the transition. By contrast,
the additional momentum parameter, q, in Raman injection
spectroscopy overcomes these limitations. In particular, one

0 0.2 0.4 0.6 0.8 1.0

FIG. 5. Impurity ejection spectra close to the polaron-molecule transition as a function of momentum p along the direction of q. We have
temperature T/TF = 0.2 and, from left to right, the interactions in each column are 1/kF a = 1, 1.25, and 1.5. In the top row, we show rf
ejection spectroscopy, while in the bottom row, we show Raman ejection spectroscopy with q = kF . Across the transition, we observe spectral
weight spreading to the molecule-hole continuum at p = ±kF nq. In all panels we apply a Gaussian broadening with standard deviation 0.15EF ,
and we normalize the spectrum to the maximum value in each panel.

023312-7



PARISH, ADLONG, LIU, AND LEVINSEN PHYSICAL REVIEW A 103, 023312 (2021)

0 0.2 0.4 0.6 0.8 1.0

FIG. 6. Impurity injection spectra close to the polaron-molecule transition at temperature T/TF = 0.2. From left to right, the interactions
in each column are 1/kF a = 1, 1.25, and 1.5. In the top row, we show rf injection spectra, where we weight the spectrum by the Boltzmann
distribution nB(p). In the middle and bottom rows, we show Raman injection spectroscopy with q = kF and p = pnq, where we weight the
spectrum by nB(p − q). The choice of two-photon wave vector enables Raman spectroscopy to sensitively probe the molecule-hole continuum
contribution at p = kF nq. In the bottom row, we counter the frequency shift caused by the Raman spectroscopy to observe the molecule-hole
continuum onset lowering in energy relative to the attractive polaron at p = 0 across the polaron-molecule transition. In all panels we apply a
Gaussian broadening with standard deviation 0.06EF , and we normalize the spectrum to the maximum value in each panel.

can take advantage of the weighting function, nB(p − q), to
add significant spectral weight around p = q. With q = kF ,
we find that the molecule-hole continuum around p = kF nq
dominates the spectrum. Furthermore, by subtracting the fre-
quency shift caused by the Raman spectroscopy, εp−q [see
Eq. (8)], we see clear evidence of the molecule-hole contin-
uum onset lowering in energy relative to the energy of the
p = 0 attractive polaron. We thus conclude that Raman injec-
tion spectroscopy is particularly useful close to the transition.

From an experimental perspective, our results in Figs. 4–6
suggest that momentum-resolved Raman injection spec-
troscopy with q = kF is well suited to probe the polaron-
molecule transition. As shown in the bottom row of Fig. 6,
postprocessing of the spectra, where one subtracts the fre-
quency shift caused by Raman spectroscopy, εp−q, would
provide clean access to the energy of the molecule-hole con-
tinuum onset (at p = kF nq) for experimentally accessible
temperatures. To date, momentum-resolved spectroscopy has
been achieved with rf ejection spectroscopy of Fermi polarons
in two dimensions [9], and with rf injection spectroscopy
of zero-momentum Bose polarons [56] in three dimensions
through transferring the impurities from a Bose-Einstein con-
densate. Thus, it appears feasible that momentum-resolved

Raman injection spectroscopy will be realized in future ex-
periments. We also note that the momentum-averaged Raman
spectrum with q = kF will be dominated by regions of
largest spectral weight, and therefore by the molecule-hole
continuum.

IV. SPIN-IMBALANCED PHASE DIAGRAM

The behavior of the Fermi polaron has implications for
the phase diagram of the spin-imbalanced Fermi gas since it
determines the possible phases in the limit of extreme polar-
ization, where n↓/n↑ → 0. In particular, a polaron-molecule
transition in the single-impurity limit implies the existence of
a phase transition between a normal Fermi liquid and a paired-
fermion superfluid at finite impurity density, as illustrated in
Fig. 7. If the single-impurity transition is thermodynamically
stable—in the sense that it applies to a global minimum of
the Fermi system’s free energy—then it would correspond to
a continuous (second-order) phase transition. However, BCS
mean-field theory [18] and variational QMC [57] calculations
predict that such a transition is preempted by a first-order
phase transition at zero temperature, where the system spa-
tially separates into domains of superfluid and Fermi liquid
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1/kF a

SuperfluidFermi 
liquid

n↓/n↑

FIG. 7. Schematic illustration of the zero-temperature phase di-
agram in the highly spin-imbalanced regime. The blue diamond
denotes the polaron-molecule transition in the single-impurity limit
n↓ → 0. The associated continuous transition (dashed line) between
superfluid and Fermi liquid phases is preempted by a first-order
transition, resulting in a region of phase separation (shaded area) that
terminates in a tricritical point (orange circle).

phases (see Fig. 7). Such phase separation has also been
observed in cold-atom experiments [58,59].

The first-order transition at positive scattering length
can be understood as arising from interactions between the
dressed impurity quasiparticles. Specifically, it occurs when
there is an effective attraction between the dressed molecules
or dimers. To see this, consider the effective Ginzburg-Landau
free energy for the paired superfluid at zero temperature and
large spin imbalance,

� = −μd |ϕ|2 + u

2
|ϕ|4, (29)

where the order parameter |ϕ|2 corresponds to the density of
↑↓ dressed dimers, while μd is the dimer chemical potential
and u is the strength of the interactions between dressed
dimers. In the limit of a single impurity, one ignores the
quartic interaction term and only considers the behavior of
the quadratic (one-body) term. For μd < 0, the polaron is
favored over the dressed dimer and there is no superfluid phase
(ϕ = 0). Thus, the polaron-molecule transition corresponds to
the point where μd first becomes zero, such that the dressed
dimer energy is equal to the polaron energy.

Beyond the single-impurity limit, the condition μd = 0
in Eq. (29) corresponds to a second-order phase transition
provided we have repulsive dimer-dimer interactions u > 0.
This is the case for strong attraction, 1/kF a 
 1, where one
has a superfluid of tightly bound repulsive ↑↓ pairs that can
coexist with any excess ↑ fermions, as depicted in Fig. 7.
For μd > 0, we have a finite density of bosonic pairs given
by n↓ = μd/u, so the condition μd = 0 describes a second-
order phase boundary at n↓ = 0 where the superfluid density
smoothly goes to zero. For decreasing 1/kF a along this phase
boundary, the onset of phase separation occurs at a tricritical
point (orange circle in Fig. 7), where the effective interactions
vanish and we have μd = u = 0. We discuss in Sec. IV A how
this point can be understood as arising from the competition
between direct and induced boson-boson interactions in a
Bose-Fermi mixture.

Continuing along the phase boundary at n↓ = 0, immedi-
ately to the left of the tricritical point in Fig. 7 the effective
dimer-dimer interactions are attractive. Consequently, the
polaron-molecule transition (after which μd < 0) marks the
appearance of a local minimum in the free energy at ϕ = 0,

+

FIG. 8. Effective interaction between bosons in the effective
Bose-Fermi mixture at 1/kF a � 1. The boson-boson and boson-
fermion interactions, UBB and UBF , are drawn as a circle and squares,
respectively. The double lines correspond to bosons and the single
lines to fermions.

since u < 0 means that Eq. (29) is unbounded from below
and we must consider higher-order terms in the density |ϕ|2.
The polaron-molecule transition therefore corresponds to the
end of a spinodal line (dashed line in Fig. 7), beyond which
the Fermi liquid appears as a metastable state. According to
QMC calculations [57], the Fermi liquid is finally stabilized at
weaker attraction (closer to unitarity), as illustrated in Fig. 7.
However, we note that it has also been conjectured [19,28]
that the polaron-molecule transition coincides with the onset
of phase separation, which would then require u to change
sign at the transition. Such a scenario appears unlikely given
that the induced interactions between dimers are expected to
be strongly attractive in this regime (see Sec. IV A). A full
description of the phase-separated state requires an analysis
beyond the large imbalance limit of Eq. (29), since the su-
perfluid regions may only be weakly spin polarized or even
unpolarized [18,19].

Before turning to the tricritical point, let us conclude this
section by examining the situation where there is no sharp
single-impurity transition at zero temperature. Such a smooth
crossover is expected to occur in the case of the Bose po-
laron [60], where the impurity is immersed in a Bose-Einstein
condensate rather than a Fermi gas. The absence of a single-
impurity transition implies that there is no symmetry-breaking
continuous transition in a dilute gas of impurities, in contrast
to the superfluid transition discussed above. This makes sense
in the case of the Bose polaron since the statistics of the
impurity is unchanged if it binds a boson from the medium,
and thus the impurity quasiparticle should not fundamentally
change its character. However, this does not preclude the
possibility of a first-order phase transition between states of
the same symmetry but differing densities.

A. Tricritical point at zero temperature

The tricritical point in the spin-imbalanced phase dia-
gram corresponds to the point where the superfluid-normal
phase transition changes from first to second order with in-
creasing 1/kF a. To determine the tricritical point at zero
temperature, we consider the highly polarized limit in the
case of strong attractive interactions where 1/kF a � 1. In this
limit, we can approximate the gas as a repulsive Bose-Fermi
mixture consisting of bosonic dressed dimers and excess ma-
jority fermions. As argued above, the tricritical point occurs
when the effective boson-boson interaction vanishes. As illus-
trated in Fig. 8, there are two contributions to this effective
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interaction, corresponding to the direct boson-boson interac-
tion UBB and the induced interaction mediated by the gas of
excess fermions, Uind:

u = UBB + Uind. (30)

The induced interaction is a second-order process in the
boson-fermion interaction UBF , and takes the form

Uind = �(0)U 2
BF , (31)

where �(0) = −mkF /2π2 is the static Lindhard function
of excess fermions in the long-wavelength limit. Note that
whereas the direct interaction is repulsive, the induced inter-
action is attractive.

To proceed, we note that the boson-boson and boson-
fermion interactions are

UBB = 2πadd

m
, UBF = 3πaad

m
, (32)

in terms of the dimer-dimer and atom-dimer scattering lengths
add and aad , respectively. Here we have used the fact that the
boson-boson and boson-fermion reduced masses are m and
2m/3, respectively. Setting u = 0 and using Eqs. (30)–(32)
we thus find that the tricritical point occurs when(

1

kF a

)
tcp

= 9

4πa

a2
ad

add
. (33)

Using the known values add = 0.6a [61] and aad = 1.18a
[55], we obtain (1/kF a)tcp � 1.7. Remarkably, this value co-
incides with the result of QMC calculations [57], contrary to
what was claimed in Ref. [24]. Note that the BCS mean-field
result of (1/kF a)tcp � 1.88 [62] is also quite close to the
QMC result. This is because the upper critical dimension of a
tricritical point is three and thus we expect mean-field theory
to provide a reasonable description.

Equation (30) also enables us to evaluate the effective in-
teraction in general in the regime 1/kF a � 1 where the highly
polarized system is well described as a Bose-Fermi mixture.
This yields

u = UBB

[
1 − kF a

(kF a)tcp

]
. (34)

In particular, at the polaron-molecule transition we find that
the effective boson-boson interaction is u ∼ −UBB. Although
this estimate is, strictly speaking, on the border of its regime
of validity, the large negative value of u indicates that it is
unlikely that the onset of phase separation coincides with the
single-impurity transition.

The criterion in Eq. (33) can also be obtained from a
stability analysis of the Bose-Fermi mixture as discussed in
Ref. [19]. Here one considers the energy density [63]:

E = 3

5

(6π2δn)2/3

2m
δn + UBF n↓δn + 1

2
UBB n2

↓, (35)

where the excess fermion density δn = n↑ − n↓. The system
will become linearly unstable to phase separation when the
compressibility matrix ceases to be positive definite, i.e., when

∂μF

∂ (δn)

∂μB

∂n↓
� ∂μF

∂n↓

∂μB

∂ (δn)
, (36)

T/TF

n↓/n↑

SuperfluidNormal

1/kF a

Superfluid

FIG. 9. Schematic phase diagram at finite temperature for two
values of 1/kF a near the T = 0 polaron-molecule transition. The
first-order phase transition and accompanying region of phase sep-
aration (shaded area) becomes a continuous transition (dashed line)
between normal and superfluid phases for temperatures above a
tricritical point (orange circle). The dashed vertical lines denote the
unpolarized system n↓/n↑ = 1.

where μF = ∂E/∂ (δn) and μB = ∂E/∂n↓. Taking the limit
n↓ → 0 then yields Eq. (33).

B. Effective range corrections

Thus far, we have discussed the scenario of a broad Fes-
hbach resonance, where the two-body physics is determined
by a single parameter, the s-wave scattering length a. It is
interesting to consider what happens in the case of a narrow
Feshbach resonance [64]. There, the momentum-dependent
two-body scattering phase shift is instead determined by
k cot δ = −1/a − R∗k2, where the additional range parame-
ter R∗ is inversely proportional to the resonance width [65]
and we have kF R∗ � 1. Variational calculations [66] have
shown that the polaron-molecule transition occurs at 1/kF a �
−kF R∗/2 for kF R∗ 
 1; i.e., it moves to small negative scat-
tering lengths. On the other hand, the tricritical point can still
be obtained from Eq. (33): Using the asymptotic expressions
aad � 4a/3 and add � a

√
a/R∗/2 valid when R∗ 
 a [67],

we find that (1/kF a)tcp � (8/π )2kF R∗; i.e., the tricritical point
moves instead to small positive scattering lengths. Therefore,
for a narrow Feshbach resonance, we expect the unitarity
regime of the phase diagram to be dominated by phase
separation.

C. Effect of finite temperature

We now turn to the effect of temperature on the spin-
imbalanced phase diagram and how this is related to the
finite-temperature behavior of the Fermi polaron. Theoreti-
cally, it has been shown that there is a line of tricritical points
at finite temperature that terminates at the zero-temperature
tricritical point in Fig. 7 [62]. Each of these tricritical points
marks the point where a second-order transition between
superfluid and normal phases becomes first order, resulting
in a dome of phase separation, as shown in Fig. 9. This
finite-temperature phase diagram has also been confirmed ex-
perimentally at unitarity [68,69].
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In the highly imbalanced limit n↓/n↑ � 1, Fig. 9 shows
that increasing the impurity density n↓ will eventually re-
sult in phase separation for temperatures below the tricritical
point, when the interaction 1/kF a < (1/kF a)tcp. Therefore,
a finite impurity density does not necessarily lead to coex-
istence between polarons and molecules near (1/kF a)0, in
contrast to what has previously been claimed [16,30]. To
obtain a smooth crossover between polarons and molecules,
we require T/TF � (n↓/n↑)2/3 such that the impurities form a
classical Boltzmann gas and we can neglect any interactions
(induced or otherwise) between impurities. This condition is
also consistent with the phase diagram in Fig. 9, where we see
that there is a uniform normal phase at sufficiently small n↓
even when the temperature is below the tricritical point. The
recent Raman spectroscopy measurements [16] on the Fermi
polaron appear to be in the regime T/TF ≈ (n↓/n↑)2/3 and at
temperatures that are possibly even above the tricritical point
[62], thus leading to the observed polaron-molecule crossover.

V. CONCLUSION

To conclude, we have investigated the thermodynamic and
spectral signatures of the polaron-molecule transition in a
Fermi gas. In particular, we have calculated the impurity free
energy and contact across the transition, exposing how the
transition is replaced by a smooth crossover at finite tem-
perature. We have found that the contact has a characteristic
nonmonotonic temperature dependence on the polaron side
of the transition which is absent on the molecule side, thus
providing a clear and potentially observable signature of the
underlying zero-temperature transition. We have furthermore
discussed how the structure of the spectral function near the
transition can be probed with Raman injection spectroscopy
where the photon momentum is set to match the Fermi mo-
mentum, thus allowing the molecule-hole continuum to be
clearly imaged.

For a finite density of impurities, we have argued that
descriptions based on the behavior of a single impurity are
only valid when T 
 n2/3

↓ /m, where we can neglect any cor-
relations between impurities. On the other hand, at sufficiently
low temperatures, increasing the impurity density leads to
phase separation due to the strong induced attraction between
dressed dimers mediated by excess fermions. Approximating
the system as a Bose-Fermi mixture of dressed dimers and
excess fermions, we have determined the tricritical point at
T = 0 to be at 1/kF a � 1.7 in agreement with the result
of QMC calculations [57] (see also the stability analysis in
Ref. [19]).

Our formalism can naturally be extended to the multitude
of other impurity problems being actively pursued in the field
of quantum gases. Of particular interest is the Bose polaron,
where the statistics of the bosonic medium means that the
single-impurity transition is replaced by a crossover even at
zero temperature [60]. In this case there is no continuous
(symmetry-breaking) transition in the limit of vanishing im-
purity density, but the system may still feature a first-order
transition depending on the precise details such as the statis-
tics of the impurity.

Another promising direction of research is the Fermi po-
laron in two spatial dimensions. Here, a variational ansatz

for the polaron with a single particle-hole excitation does not
contain a polaron-molecule transition [70], and instead it is
necessary to consider impurity dressing by two particle-hole
pairs in order to reveal the transition [71]. While the investi-
gation of the transition using our finite-temperature formalism
therefore poses a technical challenge, the T = 0 ground-state
energy using such an ansatz has already been calculated
[72]. Such a theory could potentially guide experiments on
two-dimensional (2D) Fermi polarons [9,15] to reveal the
transition.

Finally, 2D Fermi polarons have also recently been realized
in the context of exciton-polaritons in charge-doped atomi-
cally thin semiconductors [3]. This scenario has been analyzed
[3] using the same type of variational states originally intro-
duced in cold atoms [17]. However, it is currently an open
and interesting question whether there is the equivalent of a
polaron-molecule transition in the limit of low doping, and
this can potentially be answered using the formalism devel-
oped in this work.
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APPENDIX: RAMAN SPECTROSCOPY

The two-photon transition employed in Raman spec-
troscopy can be described via the operator

V̂R = �R

2

∑
p

(
e−iωt d̂†

p−qĉp↓ + eiωt ĉ†
p↓d̂p−q

)
, (A1)

where d̂†
p creates a fermion with momentum p in the auxiliary

impurity state which does not interact with the majority ↑
fermions. �R is the Rabi coupling due to the optical field, ω

is the frequency with respect to the bare transition between
impurity states, and q is the imparted momentum. Note that
in standard rf spectroscopy, the momentum q would be essen-
tially zero.

In the case of injection spectroscopy, we start with non-
interacting impurities in the auxiliary state and then apply
V̂R to transfer a small fraction of impurities into the ↓ state.
Assuming that the system is initially in thermal equilibrium,
we can use Fermi’s golden rule to obtain the transfer rate in
the limit of a single impurity:

IR
inj(q, ω) = π�2

R

2

∑
p

nB(p − q)AR
inj(p; q, ω), (A2)
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where

AR
inj(p; q, ω) =

∑
n,ν

e−βEn

Zmed
|〈n| ĉp↓ |ν〉|2δ(Eν − En − εp−q − ω).

(A3)

Here, the noninteracting initial states are taken to be d̂†
p−q |n〉,

where |n〉 are the eigenstates of the ↑ Fermi gas with corre-
sponding energies En and partition function Zmed = ∑

n e−βEn .
For the total interacting system composed of both the ↓ im-
purity and the ↑ Fermi gas, the eigenstates and associated
energies are |ν〉 and Eν , respectively. Note how we have
defined AR

inj(p; q, ω) such that the Raman momentum q only
appears in the energy εp−q of the noninteracting impurity state
rather than in the final interacting states. Thus, we can directly
relate Eq. (A3) to the impurity spectral function defined as
[34]

A(p, ω) =
∑
n,ν

e−βEn

Zmed
|〈n| ĉp↓ |ν〉|2δ(Eν − En − ω), (A4)

which leads to Eq. (8).
Integrating Eq. (A3) over ω and removing a complete set

of states, we obtain the sum rule in Eq. (12a),∫
dω AR

inj(p; q, ω) =
∑

n

e−βEn

Zmed
〈n|ĉp↓ĉ†

p↓|n〉 = 1. (A5)

Thus we have∫
dω IR

inj(q, ω) = π�2
R

2

∑
p

nB(p − q) = π�2
R

2
. (A6)

In the main text, we define the total spectral function IR
inj(q, ω)

in Eq. (9) without the prefactor π�2
R/2, so that it is normalized

to 1 as in Eq. (13a).

For the case of ejection spectroscopy, where we initially
have ↓ impurities which are then transferred into the nonin-
teracting state, the transfer rate is

Iej(q, ω) = π�2
R

2

∑
p

Aej(p; q, ω) ≡ π�2
R

2
Iej(q, ω), (A7)

where

Aej(p; q, ω) =
∑
n,ν

e−βEν

Zint
|〈n| ĉp↓ |ν〉|2δ(Eν − En − εp−q + ω).

(A8)

Here we have a thermal average over the interacting states |ν〉,
with partition function Zint = ∑

ν e−βEν . Using the properties
of the δ function, we thus find

Aej(p; q, ω) = Zmed

Zint
eβ(ω−εp−q )Ainj(p; q,−ω), (A9)

which yields Eq. (10) once we relate the partition functions to
the impurity free energy �F via

eβ�F = ZmedZimp

Zint
. (A10)

Integrating Eq. (A8) furthermore yields

∫
dω Aej(p; q, ω) =

∑
ν

e−βEν

Zint
〈ν|ĉ†

p↓ĉp↓|ν〉
︸ ︷︷ ︸

nint (p)

, (A11)

which corresponds to Eq. (12b).
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