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Quantum metrology via chaos in a driven Bose-Josephson system
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Entanglement preparation and signal accumulation are essential for quantum parameter estimations, which
pose significant challenges to both theories and experiments. Here, we propose how to utilize chaotic dynamics
in a periodically driven Bose-Josephson system for achieving high-precision measurements beyond the standard
quantum limit (SQL). Starting from an initial nonentangled state, the chaotic dynamics generates many-body
quantum entanglement and simultaneously encodes the parameter to be estimated. By using suitable chaotic
dynamics, the ultimate measurement precision of the estimated parameter can beat the SQL. The sub-SQL
measurement precision scaling can also be reached via specific observables, such as collective spin measurement,
which can be realized with state-of-art techniques. Our study not only provides insights for understanding quan-
tum chaos and quantum-classical correspondence, but also of promising applications in entanglement-enhanced
quantum metrology.
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I. INTRODUCTION

Quantum metrology promises high-precision measure-
ments for various parameters with far-reaching implications
for science and technology [1–3]. In general, the standard
procedure of parameter estimation consists of three stages:
Initialization, parameter-dependent time evolution, and mea-
surement [4]. In traditional protocols, for separable initial
states [5,6], i.e., nonentangled states, the related measure-
ment precision scales as the standard quantum limit (SQL),
which is inversely proportional to the square root of parti-
cle number

√
N , while for entangled initial states, e.g., the

Greenberger-Horne-Zeilinger (GHZ) state [7–9] or NOON
state [10–12], the measurement precision can be improved
to the well-known Heisenberg limit (HL), which is inversely
proportional to N .

Thus, in the long-standing quest for achieving high-
precision measurements, a key goal as well as a main
challenge is to prepare the entangled states and make use of
the entanglement to improve measurement precision. On one
hand, entangled states often require a lot of time to generate,
which makes it hard to prepare [13–17]. On the other hand,
the entangled states are extremely fragile under the environ-
mental noises, which inevitably decreases the measurement
precision [18–20].

Recently, to fully utilize the temporal resources, schemes
on concurrent entanglement generation and interrogation
are proposed [21,22]. Different from the traditional proto-
cols where interrogation takes place after state preparation,
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the concurrent state preparation and interrogation devote
all the time for parameter encoding, which yields a bet-
ter measurement precision under the same temporal re-
source [21]. In particular, by combining the conventional
one-axis twisting (OAT) dynamics with a machined-designed
sequence of rotations, a higher sensitivity of the esti-
mated parameter can be achieved compared with traditional
schemes [22].

Classical chaos, a well-defined property in nonlinear dy-
namical systems, is generally characterized by exponential
instability due to sensitivity to the initial conditions [23–26].
On the other hand, entanglement is a unique property of
quantum systems [27]. Up to now, numerous works aim
to find out the connections between chaos and entangle-
ment [28–31]. It has been explored mostly in the semiclassical
regime through studies of various models such as the quantum
kicked top [32–34], Bose-Josephson junction [35,36], Dicke
model [37–39], Bose-Hubbard model [40–42], and so on.
These studies are beneficial not only for the fundamental
understanding of quantum-classical correspondence, but also
for implications in quantum metrology where entanglement is
used as an important resource [43].

Chaotic behaviors, as an entanglement-generating dynam-
ics, have the potential to enhance the measurement precision.
In a kicked top with a Dirac-delta driving, one finds chaotic
behaviors can be employed to realize a high-precision pa-
rameter estimation according to the analysis of the quantum
Fisher information (QFI) and Fisher information (FI) [44]. Ul-
timate measurement precision can be substantially enhanced
by nonlinearly kicking the spin during the parameter-encoding
precession and driving it into a chaotic regime. However,
despite its simplicity, such a discontinuous driving is not easy
to realize [45].
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Periodically continuous time-dependent modulation allows
one to manipulate a quantum system in a controlled way,
which is more feasible in experiments. For example, a har-
monically driven Bose-Josephson system is also a suitable
platform for studying quantum chaotic dynamics. This is
what motivates us to propose a chaotic quantum metrology
scheme based on the harmonic driving in a Bose-Josephson
system. Naturally, based on a driven Bose-Josephson system,
the following questions are worth considering: (i) Is it possible
to utilize a more experimentally feasible continuous driving
for chaotic generation and use it for entanglement-enhanced
quantum metrology? (ii) Can the ultimate measurement pre-
cision scaling reach beyond the SQL? (iii) Can we find a
suitable realistic observable measurement for measurement
precision scaling to demonstrate our scheme?

In this paper, we study the chaotic dynamics in a harmoni-
cally driven Bose-Josephson system, and demonstrate how to
make use of the chaotic behaviors to achieve a measurement
precision beyond the SQL. Unlike the conventional parame-
ter estimation schemes, we initialize the system into a spin
coherent state (SCS) and let it undergo a chaotic dynamics
governed by a parameter-dependent Hamiltonian. During the
time evolution, not only is an entangled final state generated
via chaotic dynamics, but also the estimated parameter is
encoded into the final state, which can effectively improve the
measurement precision. We employ a mean-field approxima-
tion to arrive at classical Poincaré sections and then identify
the parameter regime at which chaotic seas appear. Classical
chaos facilitates our search for its quantum counterparts, such
as linear entropy, fidelity, and QFI. By appropriately choos-
ing the initial states, the scaling analysis of QFI reveals that
chaos contributes to measurement precision enhancement.
More specifically, a sub-SQL N scaling can be extracted from
FI as well as a collective spin measurement.

This paper is organized as follows. In Sec. II, we briefly
describe the harmonically driven Bose-Josephson system. In
Sec. III, we show how to perform quantum parameter esti-
mation in the considered system. In Sec. IV, we derive the
approximate mean-field Hamiltonian in the classical limit,
and calculate the corresponding Poincaré sections to identify
the locations of the chaotic seas with several different sys-
tem parameters. In Sec. V, under the guidance of quantum
counterparts, we verify that QFI, FI, and collective spin mea-
surement all exhibit an excellent N scaling. In Sec. VI, we
give a brief summary and discussion.

II. A HARMONICALLY DRIVEN
BOSE-JOSEPHSON SYSTEM

We are interested in a driven Bose-Josephson system
whose time-dependent Hamiltonian reads

Ĥ (t )/h̄ = Ĥ1 + Ĥ2(t ), (1)

with the linear term

Ĥ1 = BzŜz, (2)

and the nonlinear driven term

Ĥ2(t ) = χ

N
Ŝ2

z + Bx cos ωt Ŝx. (3)

Here, Bz is the strength of the static longitudinal magnetic
field, χ denotes the nonlinear interaction coupling strength,
and Bx cos ωt represents a harmonically driven transverse
magnetic field with the modulation amplitude Bx and the
modulation frequency ω. N is the total particle number of
the system. Throughout the paper, for convenience, we set
ω = 2π and h̄ = 1.

The Bose-Josephson system can be regarded as a spin-J
system comprising N spin-1/2 particles with a pseudospin
length J = N/2. The corresponding collective spin operators
are defined as Ŝx = (b̂†

2b̂1 + b̂†
1b̂2)/2, Ŝy = (b̂†

2b̂1 − b̂†
1b̂2)/2i,

and Ŝz = (b̂†
2b̂2 − b̂†

1b̂1)/2, where b̂μ (b̂†
μ) is the atom anni-

hilation (creation) operator and n̂μ = b̂†
μb̂μ is the occupation

operator in mode μ. Therefore, the Hamiltonian (1) is equiva-
lent to the Hamiltonian of a two-mode Bose-Hubbard model

ĤBH = χ

4N
(n̂2 − n̂1)2 + Bz

2
(n̂2 − n̂1)

+ Bx cos ωt

2
(b̂†

2b̂1 + b̂†
1b̂2), (4)

with N = 〈N̂〉 = 〈n̂1 + n̂2〉 representing the atom number
N . Since [N̂, ĤBH] = 0, the total number of atoms N is
conserved. {|J, mz〉}, called the Dicke basis, are common
eigenstates of Ŝ2 and Ŝz with eigenvalues J (J + 1) and mz. In
the Dicke basis {|J, mz〉} with mz = −J,−J + 1, . . . , J , arbi-
trary quantum states of the Hamiltonian (1) can be written as
|�〉 = ∑

mz
Cmz |J, mz〉, where Cmz denotes the probability am-

plitude projecting onto the basis |J, mz〉. Under the condition
ω = 0, if the system is dominated by the transverse magnetic
field Bx, the ground state is the SU(2) SCS. For a positive
nonlinearity strength which is large enough, the ground state
turns to |J, 0〉 for even N or (|J, 1/2〉 + |J,−1/2〉)/

√
2 for

odd N , while if negative nonlinearity strength dominates, two
degenerate ground states |J, J〉 and |J,−J〉 appear and any
superposition of these two states is a ground state, including
the GHZ state (|J, J〉 + |J,−J〉)/

√
2.

III. QUANTUM PARAMETER ESTIMATION

A longitudinal magnetic field causes a precession about
the z axis. The strength of the longitudinal magnetic field
Bz is the parameter we want to estimate. Assuming other
parameters are known, we are interested in the measurement
precision of Bz. Generally, quantum parameter estimation can
be described by a positive-operator valued measure (POVM)
comprising a set of positive Hermitian operators Ên, which
satisfy Ên � 0 and

∑
n Ên = 1, and n denotes the outcome of

the measurement. Starting from an initial nonentangled state
|ψ0〉, the system can be driven to undergo chaotic dynamics
while the estimated parameter Bz is encoded into the evolved
state. The entangled output state satisfies |ψ f (Bz )〉 = Û |ψ0〉
with the time-evolution operator

Û = T̂ exp

[
−i

∫ t

t0

Ĥ (t ′)dt ′
]

(5)

governed by the whole system (1). Here, Ĥ1 encodes the
estimated parameter Bz. At the same time, Ĥ2 acts as an OAT
Hamiltonian which can be exploited to prepare the squeezed
states as well as rotate the system around the x axis with
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a continuous driving. Both terms in the stroboscopic time
evolution conspire to provide a high-precision measurement
from an initial nonentangled state.

By reading out the final state, the conditional probability
of the measurement result given by the estimated parameter
Bz yields

Pn = 〈ψ f |Ên|ψ f 〉. (6)

The FI related to the conditional probability reads as

FI (Bz ) =
∑

n

Pn

(
∂ ln Pn

∂Bz

)2

. (7)

For a given POVM, the Cramér-Rao bound is expressed as

�Bz � 1/
√
NFI , (8)

which gives the minimal achievable uncertainty of the esti-
mated parameter with N times trials. FI represents an ability
to measure the parameter and instructs one to enhance the
measurement precision by maximizing it. Maximizing the FI
by trying all possible POVM, it is known that the ultimate
measurement precision is limited by the quantum Cramér-Rao
bound

�Bz � 1/
√
NFQ. (9)

The corresponding FI with the optimal POVM measurement
is called a QFI. The QFI can be calculated as

FQ(Bz ) = 4[〈ψ ′
f |ψ ′

f 〉 − |〈ψ ′
f |ψ f 〉|2], (10)

where |ψ ′
f 〉 = ∂|ψ f 〉/∂Bz denotes the derivative of the final

state with respect to the estimated parameter Bz. Obviously,
the QFI is only depends on the final state as well as its
derivative.

We consider two typical states as initial states, the SCS and
GHZ states. The initial SCS reads in the Dicke basis as

|J, θ, φ〉 =
J∑

mz=−J

√(
2J

J + mz

)
sin(θ/2)J+mz

× cos(θ/2)J−mz ei(J+mz )φ|J, mz〉, (11)

with θ and φ as the polar and azimuthal angles, respec-
tively. Correspondingly, the GHZ state is expressed as
(|J, J〉 + |J,−J〉)/

√
2. For conventional parameter estimation

schemes, the linear term Ĥ1 serves as the parameter-dependent
time evolution and one can use the entangled input state to
enhance the measurement precision. In the absence of Ĥ2(t ),
the system dynamics is dominated by Ĥ1. After substituting
the initial states and the evolved Hamiltonian Ĥ1 into Eq. (10),
the QFIs can be calculated. Mathematically, for an initial SCS
|N/2, θ, φ〉, FQ = Nt2 sin2 θ . When θ = π/2, corresponding
to all individual spins in equal superposition among the two
levels, the QFI is the optimal, i.e., FQ = Nt2 ≡ FSQL, while
for an initial GHZ state, the corresponding QFI becomes
FQ = N2t2 ≡ FHL. As for the references, �Bz � 1/

√
FSQL =

1/(
√

Nt ) is the SQL, while �Bz � 1/
√

FHL = 1/(Nt ) is the
HL.

IV. MEAN-FIELD APPROXIMATION

First, we should know the conditions for generating chaos
and then try to perform the measurement by using the chaotic
behaviors. To study the properties of chaos, we employ the
mean-field theory to obtain a classical Hamiltonian equation.
We then examine its Poincaré sections, especially for identify-
ing the parameter regime at which chaotic behaviors appear.
For Hamiltonian (4), in the semiclassical limit N → ∞, the
whole system is dominated by the condensed atoms and can
be approached via the mean-field approximation, i.e., b̂μ ≈
ψμ, b̂†

μ ≈ ψ∗
μ, with ψμ = 〈b̂μ〉, ψ∗

μ = 〈b̂†
μ〉. The total par-

ticle number |ψ1|2 + |ψ2|2 = N is conserved. Applying the
mean-field approximation, the classical Hamiltonian equation
is written as

HMF = χ

4N
(n2 − n1)2 + Bz

2
(n2 − n1)

+ Bx cos ωt

2
(ψ∗

1 ψ2 + ψ∗
2 ψ1). (12)

Substituting the mean-field Hamiltonian (12) into the equation

ih̄
dψμ(t )

dt
= ∂HMF

∂ψ∗
μ(t )

, (13)

the two coupled differential equations yield

i
dψ1

dt
= −Bz

2
ψ1 + χ

2N
(|ψ1|2 − |ψ2|2)ψ1 + Bx cos ωt

2
ψ2,

i
dψ2

dt
= +Bz

2
ψ2 + χ

2N
(|ψ2|2 − |ψ1|2)ψ2 + Bx cos ωt

2
ψ1.

(14)

The complex amplitudes can be expressed as ψμ =√
nμ exp (iφμ) in terms of the particle number nμ = ψ∗

μψμ

and the phase φμ. Due to two degrees of freedom lying
in the system, one can further set up two canonical variables,
the fractional population imbalance z = n1−n2

N = cos θ and the
relative phase φ = φ1 − φ2. The equations of motion in pa-
rameter space (φ, z) are given by

dφ

dt
= zχ − zBx cos ωt√

1 − z2
cos φ − Bz,

dz

dt
= Bx cos ωt

√
1 − z2 sin φ. (15)

We numerically obtain the Poincaré sections by recording the
phase space locations at each integer multiple of period T .

The mean-field approach enables us to locate parame-
ter regimes at which chaotic and regular regions coexist or
chaotic behaviors dominate. Once such parameter regime is
identified, and we then explore the difference between ini-
tial states locating in different regions. Through plotting the
Poincaré sections, we get the trajectory of the system up to
500 periods for different transverse magnetic field strengths
Bx: 0, 1.5, 3, and 5.5, as depicted in Fig. 1. Here, the particle
number is N = 1000, the longitudinal magnetic field strength
is Bz = π/2, and the nonlinearity strength is χ = 10.

In the absence of a transverse magnetic field, the reg-
ular behaviors perfectly emerge in the whole phase space
[see Fig. 1(a)]. Once the transverse magnetic field is added,
in addition to the regular behaviors, the chaotic behaviors
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FIG. 1. Poincaré sections governed by Eq. (15) at different
strengths of the transverse magnetic field: (a) Bx = 0, (b) Bx = 1.5,
(c) Bx = 3, and (d) Bx = 5.5. The other parameters are chosen as
N = 1000, χ = 10, and Bz = π/2.

also appear [see Fig. 1(b)]. When Bx increases further, the
chaotic regions enlarge while the regular regions shrink [see
Fig. 1(c)]. Up to a sufficiently large Bx = 5.5, the chaotic
regions nearly dominate [see Fig. 1(d)]. In addition, we note
that these Poincaré sections are almost symmetric about the
line φ = π , and it allows us to just concentrate on its left part.

V. FULL QUANTUM APPROACH

The periodically driven system (1) respects a discrete trans-
lation symmetry in the time domain, Ĥ (t + T ) = Ĥ (t ) with a
Floquet period T = 2π/ω. T̂ is the time-ordering operator,
and the time-evolution operator in a single period can be
calculated as

Û (T ; 0) = T̂ exp

(
−i

∫ T

0
Ĥ (t )dt

)
≡ exp(−iĤF T ). (16)

The system stroboscopic dynamics at moments nT (n =
1, 2, . . .) is governed by the time-averaged Hamiltonian

ĤF = i

T
ln Û (T ; 0). (17)

So far, we map the time-dependent system (1) to a time-
independent one (17), and one can obtain the stroboscopic
time evolution from the static Hamiltonian ĤF . The period-
ically modulated transverse magnetic field flexibly controls
the system behaviors. The interplay between the nonlinearity
strength and modulation amplitude may generate the chaotic
behaviors for a fixed modulation frequency, which will be
discussed later.

The chaotic behaviors are closely related to entanglement
generation. We devote ourselves to searching for suitable
quantum counterparts to find the connections to the corre-
sponding chaos. Then, we also calculate the corresponding
QFI, which can be used as a measure for the precision bounds
of the estimated parameter. We find that, after a long-time

FIG. 2. (a) Poincaré section as a function of θ, φ corresponding
to Fig. 1(b). (b)–(d) Its corresponding phase space distributions of
linear entropy, fidelity, and QFI in the quantum setting exemplarily
for a system with a large particle number (N = 1000) up to t = 215T .
The other parameters are chosen as χ = 10, Bx = 1.5, and Bz = π/2.
Marks labeled in (d) are chosen as initial parameters in Fig. 3.

evolution, the QFI for the chaotic region will be much larger
than the one for the regular region. Furthermore, by choosing
initial coherent states in different regions, we evaluate the
scalings of QFI versus evolution time t and total particle
number N . The N scaling of QFI with chaotic dynamics
can exceed the SQL. To demonstrate our scheme from the
perspective of experimental realization, for the case of mostly
chaotic phase space, we also analyze the scalings of practical
observables, such as FI and collective spin measurement.

A. In mixed phase space

First, we study the quantum counterparts of classical phase
space in which chaotic regions coexist with regular regions
and analyze the scalings of QFI. Due to the symmetry of the
Poincaré section about the line φ = π , it is reasonable to just
take into account the case for φ ranging from 0 to π , as shown
in Fig. 2(a). In order to explore the whole evolution of the
quantum counterparts, all points in the Poincaré section are
taken as initial states to evolve. Numerically, we deal with
the time-evolution operator Û (T ; 0) by a series of discrete
time steps δt = T/1000, and then let the system evolve in a
time domain with the static Hamiltonian ĤF .

Entropy, as a pure quantum resource, is a powerful bridge
between the classical and quantum worlds. The linear entropy
characterizes the entanglement between a single particle and
the rest of the system defined as

S(nT ) = 1

2

(
1 − 〈Ŝx〉2 + 〈Ŝy〉2 + 〈Ŝz〉2

J2

)
(18)

at the stroboscopic time nT (n = 1, 2, . . . , N). The linear
entropy nicely reproduces a similar structure to the Poincaré
section [see Fig. 2(b)]. The regions of classical phase space
where the dynamics is chaotic correspond to high entropy
in the quantum system. Regions that are classically regular
correspond to low entropy. Related works [46–48] have found
the striking resemblance between the entanglement in the
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quantum system and chaos in the classical limit. From the
analysis of the linear entropy, we know the entanglement can
be dynamically generated by the chaotic dynamics scheme.

The fidelity is written as

F (nT ) = |〈ψ (0)|ψ (nT )〉|2, (19)

which is used to quantify how much information could re-
main in the time-evolved state |ψ (nT )〉 comparing to the
initial state |ψ (0)〉. References [49,50] have proposed the
dynamical properties can serve as the signatures of chaotic
behavior such as coherence dynamics and temporal fluctua-
tions. Similarly, the fidelity serves as a dynamically sensitive
probe for distinguishing the chaotic sea and regular island
from the perspective of the difference between the initial and
final states. The initial SCS distributes in the Bloch sphere
with a localized form. In the regular region, one would get a
perfect localization nature and the state would remain trapped
in the regular island for all times, whereas the initial SCS
centered in the chaotic region tends to undergo an ergodic
dynamics, thus losing a lot of local information in a final state
with low fidelity. A good quantum-classical correspondence
is exhibited via fidelity [see Fig. 2(c)]. The linear entropy
and fidelity not only both establish a good correspondence
between the quantum dynamics and classical phase space, but
they also present a complementary relationship, that is, the
chaotic regions are indicated by the small value of fidelity and
high entropy, while a large value of fidelity and low entropy
implies regular regions.

The generated entanglement can be exploited for metrol-
ogy, which explains how chaos contributes to the enhance-
ment of measurement precision. More directly, we calculate
the corresponding QFI, which is closely related to quantum
parameter estimation according to Eq. (9). A similar struc-
ture reflects that the classical dynamics of the system has
an excellent correspondence with the quantum dynamics of
QFI, in Fig. 2(d). After a long-time evolution, the final QFIs
arising from the initial states in chaotic or regular regions are
obviously different. A chaotic sea takes on a large QFI while
a regular island possesses a relatively small QFI. Remarkably,
the border between the chaotic sea and regular island, called
an edge state, has a larger QFI. We refer to these three typical
regions as a chaotic sea (circle), edge state (cross), and regular
island (triangle), which are marked in Fig. 2(d).

The distributions of final states in the Bloch sphere reveal
an ergodic dynamics for a chaotic sea or edge state and a local-
ized dynamics for a regular island (see Appendix A for more
details). It is shown that a linear entropy, fidelity, and QFI
can all be used as sensitive probes for the quantum-classical
correspondence of chaos. In comparison with the classical
Poincaré section, these quantum counterparts may not only
distinguish regular and chaotic regions, but also present much
richer results by quantifying the chaos from different perspec-
tives.

In order to investigate the role of chaos in parameter esti-
mation, still within the mixed phase space, we adopt the initial
parameters in different regions in Fig. 2(d) to explore their
differences, from the perspective of QFI. In Fig. 3, different
marks correspond to the different states initially prepared in
the locations shown in Fig. 2(d). Figure 3(a) shows, beginning
from a moderate evolved time, that QFI still increases with

FIG. 3. QFI with respect to t and N for different initial param-
eters. (a) The stroboscopic evolution of QFI up to 215 periods with
a system size N = 1000. The fitted results (S,C) satisfy ln(FQ) =
S ln(t/T ) + C with a slope S and a constant C. Fits exhibit a chaotic
sea (1.97, 11), edge state (2, 11.3), and regular island (2.02, −1.86)
for t scaling. (b) QFI for different N with a fixed evolution time
t = 215T . The fitted results (S,C) satisfy ln(FQ) = S ln(N ) + C with
a slope S and a constant C. Fits exhibit a chaotic sea (2.14, 16.8),
edge state (2.22, 16.8), and regular island (0.84, 13.2) for N scaling.
The other parameters are chosen as χ = 10, Bx = 1.5, and Bz = π/2.
The gray solid line and black dashed line represent the SQL and HL,
respectively.

t and shows a nearly quadratic t scaling for chaotic, edge,
and regular initial situations. When an initial state locates
on a chaotic sea (circle) or edge state (cross), QFI evolves
with time between the SQL and HL, while for an initial state
locating within a regular island (triangle), QFI evolves below
the SQL. In addition, we note that the edge state is superior
to a chaotic sea all the time. The evolved time as a resource is
able to improve its value of QFI.

For a fixed evolution time t = 215T , Fig. 3(b) reflects that
the N scaling of QFI is sensitive to the locations of the ini-
tial states. Besides the early decay in a regular region, QFIs
increase with the particle number N for chaotic, edge, and
regular situations. The numerical results reveal that an initial
state in a chaotic sea performs best for small N , while for a
larger system size (N > 100) the edge state performs best. Fits
for three different initial states take on a slope of 2.14 (chaotic
sea), 2.22 (edge state), and 0.84 (regular island) for the N
scaling. Both N scalings for an edge state and chaotic sea can
approach even better than HL while an initial state in a regular
island fails to beat the SQL. It is indicated that chaos as a kind
of resource allows one to attain a high-precision measurement
beyond the SQL.

It has been already known that quantum metrology aims
to utilize quantum effects to enhance the parameter measure-
ment precision such as entanglement [1–3]. The comparison
of QFI with linear entropy in Figs. 2(b) and 2(d) shows that
QFI rapidly grows accompanied by the generation of linear
entropy. Starting from the initial SCS without entanglement,
the state gradually evolves into an entangled under the ergodic
dynamics in a chaos sea and edge regime which has the
potential to improve the estimation precision. However, for an
initial state in regular islands, the system undergoes periodic
dynamics with a relatively high fidelity with its initial SCS
yielding a SQL [see Fig. 2(c)] and the corresponding linear
entropy and QFI behave similarly with the SCS [see Figs. 2(b)
and 2(d)].
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FIG. 4. (a) QFI as a function of stroboscopic evolution time with
different system sizes N = 500 (solid line), 1000 (dashed line), and
2000 (dotted line) in a fully chaotic regime. (b) QFI as a func-
tion of system sizes for different evolution times. The fitted results
(S,C) satisfy ln(FQ ) = S ln(N ) + C with a slope S and a constant
C. Fits exhibit t = 3T (1.88, −0.173), t = 200T (1.63, 7.76), and
t = 10000T (1.31, 17.2) for N scaling. The initial state locates on
θ = 2.423, φ = 1.126. The other parameters are chosen as χ = 10,
Bx = 5.5, and Bz = π/2.

B. In a fully chaotic regime

According to the scaling analysis in the mixed phase space,
we have known that chaotic behaviors can play an important
role for quantum parameter estimation. Next, we naturally
turn to the fully chaotic regime, and evaluate the scalings
for QFI with respect to t and N . In particular, as the system
enters full chaos, the information about the initial SCS is
rapidly lost. Therefore the initial SCS can be chosen anywhere
without much changing the QFI, and the situation is markedly
different from the case of a mixed phase space.

Below we focus on the phase space of QFI whose classical
counterpart displays fully chaotic behaviors corresponding to
Fig. 1(d). Independent of the details of the initial state, we ran-
domly choose the initial parameters as θ = 2.423, φ = 1.126.
In the fully chaotic case (χ = 10, Bx = 5.5, and Bz = π/2),
the numerical results in Fig. 4(a) depict a time evolution of
QFI for different system sizes, which manifests as QFI dras-
tically increases during a short evolution time (t � 3T ) and
behaves similarly at three different system sizes: N = 500,
1000, and 2000. For a large N , QFI is more sensitive to
the early time. Since we take a SCS as the initial state, the
value of QFI is small at the initial time. As the evolution
time increases, the evolved state rapidly spreads out on the
phase space because of the ergodic dynamics in a chaotic sea
which results in a high-level entanglement. Compared with
traditional OAT dynamics, our chaotic dynamics can speed
up the entanglement generation (see Appendix B for more
details). After the initial rapid growth, QFI grows slowly for a
long time.

In order to further explore the influence of the evolution
time, we calculate the N scalings of QFI in Fig. 4(b) for
different evolution times: t = 3T , 200T , and 10000T . Other
parameters agree with the Poincaré section shown in Fig. 1(d).
Figure 4(b) displays the N scaling of QFI nearly achieves HL
for a short evolution time (t � 3T ), then gradually decays to
SQL with increasing evolution time.

In principle, QFI corresponds to the optimal POVM mea-
surement and just mathematically sets the ultimate bound
of the measurement precision, but it may not always be

FIG. 5. QFI and FI of the collective spin operator Ŝx (a) as a
function of χ for Bz = π/2 and (b) as a function of Bz for χ = 10.
The initial state locates on θ = 2.423, φ = 1.126, and Bx = 5.5. The
evolution time is t = 3T and the system size is chosen as N = 1000.
The gray solid line represents the SQL.

realistic. To approach the precision bounds set by QFI, we
specify a feasible measurement, i.e., FI (7). Starting from a
given initial state |J, θ, φ〉, where θ and φ signify the po-
sition of the SCS, the estimated parameter Bz is encoded
into the evolved state during a stroboscopic evolution. The
Dicke basis {|J, mα〉} comprises the common eigenstates of
Ŝ2 and Ŝα for mα = −J,−J + 1, . . . , J with α = x, y, z. The
obtained final state can be written in the Dicke basis as
|ψ f 〉 = ∑J

mα=−J Cmα
(Bz )|J, mα〉. The conditional probabili-

ties related to the collective spin operator Ŝα can be calculated
as P(mα|Bz ) = |Cmα

(Bz )|2, and its FI is defined as

FIα (Bz ) =
∑
mα

1

|Cmα
(Bz )|2

(
∂|Cmα

(Bz )|2
∂Bz

)2

. (20)

Considering the parameter dependence of QFI and FI,
we are devoted to analyzing the QFI and FI versus χ in
Fig. 5(a) and QFI and FI vs Bz in Fig. 5(b). Based on the
aforementioned experience in Fig. 4, we consider the system
size N = 1000 and perform a time evolution up to t = 3T . By
calculating the FI related to collective spin operator Ŝx, one
finds FI outperforms the SQL in a certain region of nonlin-
earity strength χ in Fig. 5(a) as well as in a broad range of
Bz in Fig. 5(b) but always below its QFI, which includes our
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FIG. 6. The log-log plot of the measurement-precision scaling
obtained from Ŝx , FIx , FQ, FSQL, and FHL. The fitted results (S,C)
satisfy ln(�Bz ) = S ln(N ) + C with a slope S and a constant C. The
system size takes a value from N = 1000 to 2000. The other parame-
ters are chosen as χ = 10, Bz = π/2, and Bx = 5.5. The initial state
locates on θ = 2.423, φ = 1.126, and the evolution time is t = 3T .

discussed case χ = 10 and Bz = π/2 marked with the black
dashed-dotted lines in Figs. 5(a) and 5(b).

Based on the known results in Fig. 4 and Fig. 5, we proceed
to carry out a comparison of N scaling. The measurement pre-
cision of FI and QFI is obtained via Eqs. (8) and (9). Besides,
we can perform an observable (collective spin) measurement
to estimate the final measurement precision. According to the
error propagation formula, its measurement precision is given
by

�Bz = (�Ŝα )F

|∂〈Ŝα〉F /∂Bz|
, (21)

where 〈Ŝα〉F = 〈�F |Ŝα|�F 〉 denotes the expectation value and

(�Ŝα )F =
√

〈�F |Ŝ2
α|�F 〉 − 〈�F |Ŝα|�F 〉2

is the correspond-
ing standard deviation for α = x, y, z. The state before the
measurement can be written as |�F 〉 = e−i π

2 Ŝx |ψ f 〉. This π/2
pulse is applied to the evolved final state for recombination.

Here, we select the collective spin measurement Ŝx as the
observable for evaluation. Choosing the particle number from
N = 1000 to 2000, a ln(�Bz )-ln(N ) scaling is shown in Fig. 6.
These fits yield slopes of −1.02 (Ŝx), −0.795 (FIx), −0.845
(FQ), −0.5 (FSQL), and −1 (FHL) for N scaling. From the N
scalings of FIx and FQ, it is obvious that the chaotic dynamics
exhibits the ability to beat the SQL, and the ultimate precision
bound can be approached by detecting the FI. By contrast,
the measurement precision obtained by the practical collective
spin measurement deviates from the ultimate bound. However,
its precision scaling is approximately proportional to N−1,

which attains the HL except for a large constant. Overall,
we provide numerical evidence that the ultimate achievable
precision obtained by QFI strictly outperforms the SQL. In
addition, not only can a high-precision parameter estimation
be realized via the FI, but also a Heisenberg-limited log-log
scaling can be obtained via the collective spin measurement,
which may be verified in experiments.

VI. SUMMARY AND DISCUSSION

Based on a harmonically driven Bose-Josephson system,
we propose a dynamic high-precision measurement scheme,
which generates quantum entanglement via chaos and simul-
taneously encodes the parameter to be estimated. Our scheme
not only overcomes the challenges of entangled state prepara-
tion, but also utilizes the most of the temporal resources. To
better understand the connection between chaotic behaviors
and metrology, we make a qualitative comparison between
the classical Poincaré section and full quantum approach of
the linear entropy, fidelity, and QFI. These three quantum
counterparts well reflect the coexistence of chaotic and regu-
lar regions from different perspectives. More specifically, we
respectively choose three different initial states in the mixed
phase space and compare their ultimate precision scalings.
The analysis of ultimate precision scalings in mixed phase
space indicates that chaos can be used to enhance the mea-
surement precision. Then, we turn to investigate the fully
chaotic case. The corresponding QFI and FI both exhibit
measurement precision scaling beating the SQL. Finally, we
choose the practical collective spin measurement for param-
eter estimation. Despite the absolute measurement precisions
being worse than the precision bounds set by QFI and FI, the
precision scalings can still beat the SQL.

Besides, we briefly discuss the experimental feasibility.
The Bose-Josephson system (1) can be experimentally re-
alized via a two-mode Bose-Hubbard system consisting of
trapping bosons in two hyperfine levels [51–54]. χ as the
atom-atom interaction can be tuned via the Feshbach reso-
nance [55–57]. By applying a time-modulated magnetic field,
one may obtain the driven term of Ĥ2(t ). We start with a SCS
|J, θ, φ〉, which is easy to prepare by employing a unitary
transformation at the specifical angle (θ, φ) to the state in
which all particles are spin down | ↓〉. In addition, the FI may
be experimentally obtained according to the method demon-
strated in Ref. [57]. The implemented π/2 pulse before the

FIG. 7. A distribution comparison of different final states, occur-
ring for different initial states labeled in Fig. 2(d). Different from
the wide spreading in a generalized Bloch sphere for a chaotic sea
in (a) and edge state in (b), the regular dynamics is restricted in a
localized region for regular island in (c).
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FIG. 8. (a) The linear entropy as a function of evolution time
with Bx = 0 and Bx = 5.5. (b) The enlarged comparison in the early
time of (a). The initial state locates on θ = 2.423, φ = 1.126. The
other parameters are chosen as N = 1000, χ = 10, and Bz = π/2.

collective spin measurement has also been well developed in
synthetic quantum systems [58–60].

It is shown that the chaotic dynamics can contribute to the
enhancement of measurement precision. However, decoher-
ence, such as dephasing and dissipation, will be an important
ingredient in realistic systems. In practice, it is also worth
exploring the influence of chaos dynamics in open quantum
systems.
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APPENDIX A: STATE DISTRIBUTION IN BLOCH SPHERE

The distribution in the Bloch sphere provides a natural way
to display the state difference. Based on three different initial
parameters labeled in Fig. 2(d), after a long-time evolution
up to t = 215T , the obtained final state as well as its density
matrix are described by |ψ f 〉 and ρ = |ψ f 〉〈ψ f |, respectively.
One can project the final state |ψ f 〉 into the Q representation,

Q(θ, φ) = 2J + 1

4π
〈θ, φ|ρ|θ, φ〉, (A1)

then vividly take on the generalized Bloch sphere (see Fig. 7).
The initial states in a chaotic region and edge region are
scrambled into the entire system and lost their local in-
formation during the process of quantum chaos, as shown

FIG. 9. QFI as a function of evolution time with Bx = 0 and
Bx = 5.5. The initial state locates on θ = 2.423, φ = 1.126. The
other parameters are chosen as N = 1000, χ = 10, and Bz = π/2.

in Figs. 7(a) and 7(b), respectively. Compared to a chaotic
regime, the distribution of a final state launched from a regular
island is restricted within this stability island [see Fig. 7(c)]. A
discrepancy is evident for both the regular and chaotic initial
SCS.

APPENDIX B: COMPARISON BETWEEN CHAOTIC
DYNAMICS AND ONE-AXIS TWISTING DYNAMICS

Here, we compare the entanglement generation between
our chaotic dynamics scheme and the traditional one-axis
twisting (OAT) scheme, by calculating the linear entropy S
(see Fig. 8) and QFI FQ (see Fig. 9) versus evolution time.
For Bx = 0 without modulation, it undergoes a traditional
OAT dynamics, and the corresponding linear entropy behaves
periodically with evolution time [see Fig. 8(a)], while for our
chaotic dynamics scheme (the case with modulation strength
Bx = 5.5), the linear entropy sharply increases to a large value
and then nearly remains constant [see Fig. 8(a)]. The maxi-
mum linear entropy of chaotic dynamics is much larger than
the one in the OAT dynamics. We enlarge the region at a very
early time [see Fig. 8(b)]. It is clearly shown that the linear
entropy for our chaotic dynamics blows up dramatically in a
very short time, while the linear entropy for OAT dynamics
grows slowly.

Similarly, the corresponding QFI of chaotic dynamics also
shows a rapid increase at a short time and always outperforms
the one of OAT dynamics (see Fig. 9). It is evident that,
by comparing the linear entropy as well as the QFI versus
evolution time for both schemes, our chaotic dynamics can
speed up the entanglement generation and further enhance the
measurement precision. This advantage can be practical and
beneficial for quantum metrology.
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