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Fast-forward scaling of atom-molecule conversion in Bose-Einstein condensates
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Robust stimulated Raman exact passages are requisite for controlling nonlinear quantum systems, with wide
applications, ranging from ultracold molecules to nonlinear optics to superchemistry. Inspired by shortcuts to
adiabaticity, we propose the fast-forward scaling of stimulated Raman adiabatic processes with nonlinearity
involved, describing the transfer from an atomic Bose-Einstein condensate to a molecular one by controllable
external fields. The fidelity and robustness of atom-molecule conversion are shown to surpass those of conven-
tional adiabatic passages, assisted by the fast-forward driving field. Finally, our results are extended to fractional
stimulated Raman adiabatic processes for the coherent superposition of atomic and molecular states.
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I. INTRODUCTION

Over the past few decades, coherent control has been
considered a strategic cross-sectional field of research for
atomic, molecular, and optical physics and photochemistry,
providing a set of quantum mechanics–based methods for the
manipulation of populations, typically by laser pulses [1–7].
For example, the coherent control of chemical interactions
exemplifies its fascinating applications in chemistry for ma-
nipulating and enhancing the product yield [8]. Another
intriguing application is so-called superchemistry, in which
the coherent Raman transition generates a molecular Bose-
Einstein condensate (BEC) from an atomic BEC [9,10]. With
the advancement of modern quantum technologies, quantum
control has also emerged as an essential physical basis for
state preparation and manipulation in quantum information
science and quantum sensing [11,12].

In this context, there exist several promising techniques
for controlling quantum states coherently, such as adiabatic
passages [1,4,6], composite pulses [13,14], optimal control
theory [12], and single-shot shaped pulses [15,16]. Along with
these techniques, the concept of “shortcuts to adiabaticity”
(STA) provides an alternative control paradigm that improves
the speed and robustness of the control process [17,18]. In
the case of controlled population transfer, methods like coun-
terdiabatic (CD) driving [19–21] (alternatively, the quantum
transitionless algorithm [22–24]), invariant-based inverse en-
gineering (IE) [25–27], fast-forward (FF) scaling [28–30]
and the dressed state method [31] are capable of speed-
ing up conventional rapid adiabatic passage (RAP) and
stimulated Raman adiabatic passage (STIRAP) in two- and
three-level quantum systems, respectively. Despite the exper-
imental demonstrations in various quantum platforms with
nitrogen-vacancy center spins [32–34], cold atoms [35], and
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superconducting circuits [36], it is still essential to choose or
combine these approaches, depending on the specific systems
and objectives of the study, using appropriate features, over-
laps, and relations among them [37,38].

Quite naturally, STIRAP and its variants [5,6] have been
exploited to study the magneto- and photoassociation of a
BEC, by using partially overlapping pulses (pump and Stokes
lasers) to produce complete population transfer between two
quantum states of an atom or molecule [39–45]. However,
the nonlinearity induced from a three-body collision leads
to dynamical instability and inefficiency, with the resulting
breakdown of adiabaticity [46–48]. In recent years, the tech-
nique of STA [49,50], in addition to optimal control [53,54]
and adiabatic tracking [51,52], is considered a preferable
option to enhance the stability and efficiency of nonlinear
STIRAP.

In this article, we explore the FF scaling of atom-molecule
conversion in BECs with inherent second-order nonlinearities,
by extending the FF method to assist STIRAP [55,56]. Using
the dark state in nonlinear �-type STIRAP as an ansatz, we
construct an FF driving field in the form of couplings between
atomic and molecular BECs. We prove that the combination
of an FF field and nonlinear STIRAP overcomes the instability
and inefficiency of photo- and magnetoassociation of atomic
BECs by averting unwanted diabatic transitions. Furthermore,
the FF driving field can be similarly designed in nonlinear
fractional STIRAP (f-STIRAP), generating the coherent su-
perposition of atomic and molecular BECs. Conceptually, the
FF scaling approach in nonlinear STIRAP is different from
the CD driving in linear STIRAP, though they have similar
forms and presumably similar physical implementations. The
instantaneous eigenstates are degenerate and nonorthogonal
in nonlinear systems, resulting in an obscure calculation of
the CD field. In comparison to the original CD field, the
derived FF field is also more general and efficient, with extra
control parameters. Moreover, using the FF scaling approach
in nonlinear STIRAP, state evolution always takes place along
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FIG. 1. Schematic of coherent two-color photoassociation of a
Bose-Einstein condensate (BEC) in �-type STIRAP, where energy
levels |1〉, |2〉, and |3〉 present the electronic states for the atomic
BEC, the excited molecular BEC, and the stable molecular BEC,
respectively; �p and �s are Rabi frequencies for free-bound and
bound-bound transitions.

the dark state, leaving the excited states unpopulated. This
provides an advantage over the IE method [49], where irre-
versible losses are inevitable. Finally, we emphasize that our
results could be applicable to other nonlinear systems, e.g.,
nonlinear optics and BECs in an accelerated optical lattice in
the presence of third-order Kerr-type nonlinearities.

In Sec. II, we briefly review the model and Hamiltonian of
nonlinear STIRAP and its variants. In Sec. III, we derive the
formula for the FF driving field accordingly. In Sec. IV, the
stability and efficiency of FF-assisted STIRAP and f-STIRAP
are featured. Finally, we draw conclusions in Sec. V.

II. MODEL, HAMILTONIAN, AND ADIABATIC PASSAGE

The Schrödinger equation, describing nonlinear STIRAP
for coherent two-color photoassociation of a BEC in the
mean-field approximation as shown in Fig. 1, can be ex-
pressed as the set of differential equations [49]

iċ1 = K1c1 + �pc̄1c2, (1a)

iċ2 = K2c2 + �pc2 + �pc2
1 + �sc3, (1b)

iċ3 = K3c3 + (�p − �s)c3 + �sc2, (1c)

where �p,s ≡ �p,s(t ) are the time-dependent Rabi frequen-
cies of the pump and Stokes fields for free-bound and
bound-bound transitions, respectively, �p,s represent the cor-
responding detunings, and c j is the amplitude in state | j〉.
Here an overdot represents the derivative with respect to time.
Typically, the process of photoassociation aims to remove
two atoms from state |1〉 and create a stable molecule in
state |3〉 by using two-laser coupling with a bound-bound
molecule in excited state |2〉. The most intriguing property
presented here comes from the second-order nonlinearity,

which appears in the form of pump coupling, as well as
the third-order Kerr-type nonlinearity, Ki = ∑3

j=1 �i j |c j |2,
with �i j being some system-dependent constants and pop-
ulations |c j |2. In the context of atom-molecular conversion
in BECs, the extra c1 and c̄1 terms appearing in front of
�p describe the 1:2 resonance between the ground atomic
state and the excited molecular states. The total population is
conserved and is normalized as |c1|2 + 2(|c2|2 + |c3|2) = 1.
Here we write Hamiltonian (1) after performing a change of
variable, c2,3 �→ c2,3/

√
2, yielding the usual normalization,

|c1|2 + |c2|2 + |c3|2 = 1, for convenience.
Since the resonance-locking condition, �p = 2K1 − K2

and �s = K3 − K2, compensates Kerr nonlinear terms with
detunings [49], we simplify the previous Hamiltonian [see
Eq. (1)] within the on-resonance condition as

iċ1 = �pc̄1c2, (2a)

iċ2 = �pc2
1 + �sc3, (2b)

iċ3 = �sc2, (2c)

where the second-order nonlinearities are still involved, which
may lead to dynamical instability [49,50]. In principle,
there may exist more nonorthorgonal eigenstates than the
dimension of the Hilbert space in nonlinear systems [47].
Nevertheless, in analogy to its linear counterpart [1,6], the
nonlinear �-type STIRAP still supports a dark state (or
so-called coherent population trapping state) with zero eigen-
value [40,44] which is decoupled from the excited state.
Therefore, by setting c0

2 � 0 and using |c0
1|2 + |c0

3|2 = 1, we
obtain the instantaneous population,

∣∣c0
1

∣∣2 = 1 − ∣∣c0
3

∣∣2 = 2�s

�s + �e
, (3)

from which the dark state, corresponding to the eigenvector
|�0(t )〉 = [c0

1, c0
2, c0

3]T , is calculated as |�0(t )〉 = N (�s|1〉 −
c0

1�p|3〉), with �e = (�2
s + 4�2

p)1/2 andN being the normal-
ization constant. As used in conventional linear STIRAP [1,6],
the dark state is further reformulated into

|�0(t )〉 = cos �(t )|1〉 − sin �(t )|3〉, (4)

with the mixing angle

�(t ) = arctan

(
c0

1�p

�s

)
=

√
2�p√

�s(�s + �e)
. (5)

This dark state has already been experimentally verified,
e.g., through the superposition state of atomic and molec-
ular BECs [45]. Apart from it, we have the other two
eigenstates, [0,±1/

√
2, 1/

√
2]T , with the eigenvalues being

±�s/2. When �s/�p < 1/
√

2, two more eigenstates exist
[(1/2 − �2

s /�
2
p)1/2,±1/

√
2,�s/�p]T which have the eigen-

values ±�p/
√

2. Due to the lack of orthorgonality between
the dark state and the other eigenstates, the usual adiabatic
condition for linear STIRAP does not hold in the nonlin-
ear case. Thus, one can apply linear stability analysis only
around the fixed stable point [43], which corresponds to
the dark state, for calculating three orthogonal eigenstates,
w0 = N0[−�s/2, 0, c0

1�p]T and w± = N±[c0
1�p, ε±,�s]T .

The eigenvalues corresponding to w0,± are ε0 = 0 and ε± =
±√

�s�e, respectively. N0,± are the normalization constants.
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Accordingly, the adiabatic condition, suitable for nonlinear
STIRAP, is derived as [43]

Anl ≈
(
N+
w+

+ N−
w−

)1/2(
�̇p�s − �̇s�p

�s + �e

)
	 1. (6)

It is straightforward to observe, from the adiabatic approx-
imation in Eq. (6), that the pump and Stokes Gaussian
pulses [1,6], chosen as

�p(t ) = �0e−(t−τ )2/T 2
, (7a)

�s(t ) = �0e−(t+τ )2/T 2
, (7b)

transfer the population from state |1〉 at initial time t = ti to
|3〉 at final time t = t f along the dark state, (4). Note that
τ , T , and �0 represent the center, width, and amplitude of
the Gaussian pulses, respectively. A more general case would
be a combination of one pump and two Stokes Gaussian
pulses [57],

�p(t ) = �0 sin βe−(t−τ )2/T 2
, (8a)

�s(t ) = �0e−(t+τ )2/T 2 + �0 cos βe−(t−τ )2/T 2
, (8b)

which asymptotically become

0
t=−∞←− �p(t )

�s(t )
t=+∞−→ tan β. (9)

�p(t ) and �s(t ) create the coherent superposition of |1〉 and
|3〉 adiabatically by using the dark state. The constant, β, can
be determined by the final target state through the combination
of Eqs. (5) and (9). Especially for nonlinear f-STIRAP [58],
one has to set β = arctan

√
2 when the conditions �(t f ) =

π/4 and c0
1(t f ) = 1/

√
2 are stipulated to guarantee the state

to be a superposition of |1〉 and |3〉 with equal amplitudes.
Generally it takes a long time to evolve the system when the
adiabatic condition, (6), is satisfied, thus spoiling the state by
the decoherent effect or repeating the operation at a higher
energy cost. In what follows, we develop the FF scaling ap-
proach to speed up nonlinear STIRAP and f-STIRAP, thus
circumventing such difficulties.

III. FAST-FORWARD SCALING APPROACH

In this section, we generalize the FF scaling approach,
with the motivation to accelerate nonlinear STIRAP or f-
STIRAP, subjected to a slow variation of pulses. Inspired by
the fundamental work of Masuda and Nakamura [28], the
FF field for accelerating adiabatic processes has been carried
out for several examples like the discrete multilevel quantum
system [55,56] and the nonlinear Gross-Pitaevskii equation or
the corresponding Schrödinger equation [59,60]. In order to
recapitulate the FF scaling for our proposal, we choose the
dark state, (4), as an ansatz,

|�FF(t )〉 = cos[�(R(t ))]ei f1(t )|1〉 − sin[�(R(t ))]ei f3(t )|3〉,
(10)

with R(t ) being the “magnification factor” for the rescaled
time. The phase factors f1,3(t ) are introduced to sat-
isfy the time-dependent Schrödinger equation, i∂t |�FF (t )〉 =

HFF (t )|�FF (t )〉, which becomes

iċ1 = �FF
p c̄1c2 + �FF

c c3, (11a)

iċ2 = �FF
p c2

1 + �FF
s c3, (11b)

iċ3 = �∗FF
c c1 + �FF

s c2, (11c)

with the modified Rabi frequencies of the pump, the Stokes,
and an additional FF field being �FF

p ≡ �FF
p (t ), �FF

s ≡
�FF

s (t ), and �FF
c ≡ �FF

c (t ), respectively. Here the bound-
ary conditions f1,3(ti) = f1,3(t f ) = 0 are required to connect
to the corresponding adiabatic reference. By inserting this
ansatz, (10), into the dynamical equation, we have the follow-
ing equations:

�FF
p (t )

�FF
s (t )

= sin[�(R(t ))]

cos2[�(R(t ))]
ei[� f (t )− f1(t )], (12)

d� f (t )

dt
=

{
2 cos[2�(R(t ))]

sin[2�(R(t ))]

}
Re

[
�FF

c ei� f (t )], (13)

∂�

∂R

∂R

∂t
= Im[�FF

c ei� f (t )]. (14)

The Rabi frequencies in the FF scaling approach are finally
obtained as

�FF
p (t )

�FF
s (t )

= �p(R(t ))
�s(R(t ))

ei[� f (t )− f1(t )], (15)

�FF
c (t ) = e−i� f (t )

{
sin[2�(R(t ))]

2 cos[2�(R(t ))]

d� f (t )

dt
+ i

∂�

∂R

∂R

∂t

}
,

(16)

with � f (t ) = f3(t ) − f1(t ). When f1,3(t ) = 0 is further as-
sumed, the Rabi frequencies can thus be simplified as

�FF
p (t )

�FF
s (t )

= �p(R(t ))
�s(R(t ))

, (17)

�FF
c (t ) = i

∂�

∂R

∂R

∂t
. (18)

Obviously, the additional FF driving field �FF
c (t ) is dependent

on the magnification factor and essential for the acceleration
of adiabatic passages. The pump and Stokes fields, after FF
scaling, constitute the same ratio but with the rescaled time.
For R(t ) = ηt , when the rate of change in R(t ) is small,
i.e., η 	 1, the adiabatic process is recovered The FF field
vanishes in this limit, i.e., �FF

c (t ) � 0. In the case of R(t ) = t ,
the FF driving field can be written as �FF

c (t ) = i�̇, which is
similar to the CD driving in linear STIRAP [23]. However,
the mixing angle is associated with the c0

1 in Eq. (5), which
results in a different auxiliary interaction between |1〉 and |2〉,
distinguishing it from its linear counterpart.

It is important to note that, even though the similarities
are predominant between the FF scaling, presented here, and
other traditional STA methods like CD driving and IE meth-
ods, the differences between them are also significant. Though
the additional couplings between |1〉 and |3〉 are required
for both the FF scaling and the CD driving methods, the
FF scaling approach is more general in the sense that when
f13(t ) = 0, the FF field has both real and imaginary parts
with a pulse area larger than π [55]. Most importantly, the FF
scaling approach is fundamentally different from CD driving.
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FIG. 2. Nonlinear STIRAP (a) for state transfer (b) from an
atomic BEC to a molecular BEC, where �s (solid red lines) and
�p (dashed blue lines) sequences are Gaussian type with amplitude
�0 = 100 (in units of 1/T0), τ = 0.64T , T = 1 (in units of T0), and
T0 = 3.1 × 10−5 s. The final population |c3|2 = 0.9914 is achieved
in total time 10T . For comparison, FF-assisted STIRAP (c) for state
transfer (d) is also presented, where �FF

s (solid red lines) and �FF
p

(dashed blue lines) with �0 = 5 and other parameters are the same.
Assisted by the FF driving field �FF

c (dotted black lines), the final
population |c3|2 = 0.9999 is achieved with total time 5T .

In order to obtain the CD term, one has to calculate the nonadi-
abatic contribution after diagonalizing the Hamiltonian, which
is rather straighforward to calculate, as the eigenspectrum
is known in linear STIRAP. On the contrary, in nonlinear
STIRAP, we cannot use the eigenstates and their orthogonality
to obtain the CD driving directly. Instead, we assume the dark
state as an ansatz for constructing the FF driving field, such
that the state transfer is always along the dark state. This also
provides a significant advantage over the IE method used in
Ref. [49], in which the intermediate state |2〉 is populated,
thus leading to inevitable losses. Moreover, various functions
of R(t ) can be further adopted for accelerating the adiabatic
passage, which provides more flexibility as well [59,60]. By
selecting the magnification factor R(t ) for the rescaled time,
the FF scaling is closely connected with the time-rescaled
method recently proposed in [61]. However, we should point
out that the time-rescaled dynamics, driven by the modified
fields, (17), works perfectly only when the original protocol
is adiabatic, since the adiabatic condition cannot be improved
without the auxiliary coupling [see Eq. (18)].

IV. EFFICIENCY AND STABILITY

We first check the conventional nonlinear STIRAP in the
aforementioned �-type nonlinear system. By using Gaus-
sian shapes of the pump and Stokes fields [see Eq. (7)], the
state can be adiabatically transferred from an atomic BEC
at initial time ti = −5T to a molecular one at t f = 5T , as
shown in Figs. 2(a) and 2(b), where �0 = 100 (in units of
1/T0), τ = 0.64T , and T = 1 (in units of T0). Normally, T0 =
3.1 × 10−5 s can be chosen in the practical experiment [39],
corresponding to �0 = 3.226 MHz. The final population
|c3(t f )|2 = 0.9914 is achieved without exciting state |2〉 when
the total time is 10T with the fixed �0 = 100. Remarkably,

FIG. 3. The parameter Anl is depicted to quantify the adiabatic
condition, (6), where the parameters are used for nonlinear STIRAP
(solid red line) and FF-assisted STIRAP (dashed blue line) in Fig. 2.

the modified pump and Stokes fields and FF driving field
are designed to accelerate nonlinear STIRAP, as shown in
Figs. 2(c) and 2(d), where �0 = 5, and other parameters are
the same as those in Figs. 2(a) and 2(b). By introducing
R(t ) = at , the total evolution time is decreased up to 5T with
a = 2, when assisted by the FF field. From the comparison
in Fig. 2, we demonstrate that the assisted FF driving field
really speeds up the original nonlinear STIRAP, by follow-
ing the dark state, as seen in population evolution. The final
population reaches |c3|2 = 0.9999 in Fig. 2(d), even when
the parameters do not fulfill the adiabatic condition, (6). In
order to quantify the acceleration, we calculate the adiabatic
condition, (6) (see Fig. 3), where Anl 	 1, for the parameters
that are used in conventional nonlinear STIRAP. When the
transfer time is shortened, the corresponding parameters make
Anl significantly large so that the adiabaticity is broken, with
lower intensities of the pulses. For simplicity, one can choose
R(t ) = t while keeping the total time at 10T . It can still be
shown that the auxiliary FF field assists the pump and Stokes
fields to achieve the high-fidelity state transfer with �0 = 5.
Here, the Gaussian pulses do not fulfill the adiabatic condition
and the FF driving field speeds up the nonlinear STIRAP when
R(t ) = t , reducing the system evolution time for small �0.
This also clarifies the importance of auxiliary coupling and
causes the difference from the time-rescaled method [61], as
mentioned before.

Moreover, we select other functions of R(t ), demonstrat-
ing the diversity. For instance, one option is a trigonometric
ansatz [61],

R(t ) = at − t f − ti
2πa

(a − 1) sin

[
2πa

t f − ti

(
t − ti

a

)]
, (19)

where its inverse function and first derivative satisfy
the boundary conditions R−1(ti ) = ti/a, R−1(t f ) = t f /a and
R′(ti ) = R′(t f ) = 1. Here the additional conditions on the first
derivative imply that the time-rescaled Hamiltonian coincides
with the original one at the initial and final times. Figure 4(a)
shows the modified pump, Stokes Gaussian pulses for non-
linear STIRAP, and assisted FF driving field. Here we use
a = 2 to compare the results obtained from R(t ) = 2t , by
keeping the same fidelity at t = t f asin Fig. 2. We find that the
amplitude of Gaussian pulses becomes higher by using the
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FIG. 4. Using different values of R(t ), the modified pump and
Stokes Gaussian pulses are presented for nonlinear STIRAP (a, b),
together with the assisted FF driving field; �FF

s (solid red lines) �FF
p

(dashed blue lines), and �FF
c (dotted black lines). The parameters are

the same as in Fig. 2. Here (a) and (b) correspond to the trigonometric
and polynomial ansatzes of R(t ), respectively.

trigonometric function, while the population dynamics (not
shown here) does not change very much. Alternatively, the
fourth-degree polynomial, R(t ) = ∑3

i=0 η jt i, can be adopted
as well, where the four coefficients η j are completely solvable
by using the aforementioned boundary conditions. We do not
write them down explicitly, to avoid the lengthy expression.
In this case, the modified pump and Stokes Gaussian pulses
are presented in Fig. 4(b), together with the corresponding FF
driving field. It is confirmed by the comparison that the proper
choice of R(t ) helps to decrease the amplitude of pulses.

Next, we also apply the FF driving field for accelerating
nonlinear f-STIRAP. In Figs. 5(a) and 5(b) we recover the
original adiabatic process to generate the coherent superpo-
sition of an atomic BEC and a molecular BEC with equal
amplitudes where Gaussian pulses of the pump and Stokes
fields are used [see Eq. (8)], with �0 = 20 and β = √

2. Simi-
larly to nonlinear STIRAP, we apply the FF driving field along

FIG. 5. Nonlinear f-STIRAP (a) for generating the coherent state
superposition (b), where �s (solid red lines) and �p (dashed blue
lines) sequences are Gaussian type with amplitude �0 = 20 (in units
of 1/T0), τ = 0.64T , T = 1 (in units of T0), and T0 = 3.1 × 10−5 s.
The superposition of an atomic BEC and a molecular BEC with
equal amplitudes is provided with total time 10T . For comparison,
FF-assisted f-STIRAP (c) for generating such a superposition (d) is
also presented, where �FF

s (solid red lines) and �FF
p (dashed blue

lines) with �0 = 5 and the other parameters are the same. Assisted
by the FF driving field �FF

c (dotted black lines), the superposition of
atomic and molecular BECs with equal amplitudes is achieved with
total time 5T .

FIG. 6. Fidelity, F = |〈�0(t f )|�(t f )〉|2, versus the amplitude �0

(a) and the width T (b) of Gaussian pulses, where �0(t f ) is the
target state and |�(t f )〉 is the final solution of the time-dependent
Schrödinger equation. Here the fidelities of nonlinear STIRAP, non-
linear f-STIRAP, and FF-assisted STIRAP, denoted by solid black,
dashed blue, and dotted red lines, and that of FF-assisted f-STIRAP
(dash-dotted orange line) are undistinguishable. Other parameters are
the same as in Figs. 2 and 5.

with the modified pump and Stokes fields to speed up the
nonlinear f-STIRAP [see Figs. 5(c) and 5(d)]. Here we choose
the rescaling function as R(t ) = 2t for simplicity, which can
shorten the total evolution time from 10T to 5T , with the low
coupling amplitude �0 = 5. With the assisted FF driving field,
the state evolution follows exactly the adiabatic reference in
Figs. 5(b) and 5(d) to achieve the perfect coherent superposi-
tion at the ratio 1:1, but without populating excited state |2〉.
It is evident in Fig. 5 that the FF scaling approach provides
the desired state superposition, which can be generalized for
other ratios of amplitudes as well by changing the parameter
β in Eq. (8) through the mixing angle, (5).

Finally, we address the issue of the efficiency and stability
of nonlinear STIRAP and f-STIRAP assisted by the FF driv-
ing field. Figure 6(a) demonstrates that the fidelity F depends
strongly on the amplitude �0 of STIRAP and f-STIRAP,
where the fidelity can be defined as F = |〈�0(t f )|�(t f )〉|2,
with |�0(t f )〉 being the target state (the dark state at t = t f )
and |�(t f )〉 being the final solution of the time-dependent
Schrödinger equation. It is clear that the adiabatic passages
do not work for small values of �0, due to the breakdown
of the adiabatic condition. For instance, when �0 = 10 is
chosen, which is much less than �0 = 100, as used in Fig. 2,
the fidelity of nonlinear STIRAP is far from unity. Remark-
ably, the designed FF driving field accelerates the adiabatic
passage with perfect fidelity, F � 1, for an arbitrary value
of �0. In addition, as shown in Fig. 5, �0 = 20 is required
for nonlinear f-STIRAP to meet the adiabatic criteria. With
the assisted FF driving, perfect population transfer can be
achieved when �0 = 5. However, one has to keep in mind
that the energetic cost of STA, that is, the physical constraint
on the FF driving field sets the limitation to shorten the time,
relevant to quantum speed limits [62]. We also confirm that the
FF scaling approach improves the stability with respect to the
fluctuations in T , as shown in Fig. 6(b). The fidelity decreases
dramatically for the adiabatic case when T is shortened. How-
ever, ideally, it always remains close to unity, i.e., F � 1
regardless of the value chosen for T , when the FF driving
field is complemented. Furthermore, the stability with respect
to τ , affecting the sequence of Gaussian pulses, is improved
by the FF driving field as well. For instance, the fidelities
are decreased down to F = 0.9790 and 0.9953, respectively,
for the original nonlinear STIRAP and f-STIRAP when
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τ = 0.5T . However, with the assisted FF field, the fideli-
ties remain F � 1 in both protocols, where T is rescaled
by the magnification factor R(t ) = 2t with the assisted FF
field. Moreover, we check that the other protocols for previ-
ously mentioned R(t ) maintain the same feature of robustness
against variation of �0 and T . Actually, the increased robust-
ness makes sense, as the area of the whole pump and Stokes
Gaussian pulses is increased by π (for nonlinear STIRAP)
and π/2 (for nonlinear f-STIRAP), which is induced from
the FF driving field. Interestingly, we may simplify the STA
recipe in this case by using a one-photon 1-3 pulse, instead of
the original two-photon transition [23]. However, the resonant
pulses, i.e., π (or π/2) pulses, are sensitive to parameter
fluctuation. As far as physical implementations are concerned,
the transition induced from the designed FF driving field can
be physically implemented by a magnetic dipole transition, if
the electric dipole is forbidden. Therefore, the intensity of the
magnetic field, which directly couples states |1〉 and |3〉, limits
the ability to shorten the time infinitely. Upon combination
with the laser fields, the FF driving field, connecting levels |1〉
and |3〉, should be on resonance with the Raman transition,
which could be problematic due to the phase mismatch and
can easily be avoided by shaping the pulses through unitary
transformations [35].

V. CONCLUSION

In summary, we have worked out the FF scaling of coher-
ent control for atom and molecular BECs, with second-order
nonlinearity involved. By using the dark state in a nonlinear
�-type system, we derive the FF driving field, which, when
combined with the modified pump and Stokes fields, can
produce high-fidelity state conversion from an atomic BEC to
a molecular one beyond the adiabatic regime. Moreover, the
result can be directly generalized to nonlinear f-SITRAP for
the coherent superposition of an atomic and a molecular BEC.
FF-assisted STIRAP and f-STIRAP have a higher tolerance
to the fluctuations in various parameters such as the intensity
and the width of Gaussian pulses. In addition, the original
adiabatic passages are speeded up, but without populating
the intermediate excited state, which prevents losses due to
inevitable dissipation [44] or the dephasing effect [63].

We must emphasize that the FF scaling approach in non-
linear systems is different from CD driving and the IE method
of STA. In a nonlinear system, the eigenstates are generally
nonorthogonal and degenerate, which hinders the calcula-
tion of CD driving, even though the expression of the FF
field is similar. With extra parameters in the phase of the
dark state, (4), FF driving provides more flexibility for atom-
molecular conversion, with large areas of pulses. We realize
that the intermediate state |2〉 is populated in an alternative
IE method [49], in which one of the dynamical modes of
the Lewis-Riesenfeld invariant for its linear counterpart is
applied [64]. However, the price paid in the FF scaling ap-
proach is the supplement of the auxiliary coupling between
state |1〉 and state |3〉. And the availability of such coupling
will set the limitation to shorten the time. Therefore, when
it comes to experimental realization, one can pick up the
suitable recipes or protocols as discussed above, taking the
physical feasibility and limitations into account. Moreover,
there are many choices of the magnification factor R(t ) for
the rescaled time, which give different pulse amplitudes. One
can further investigate elsewhere to optimize it with respect to
the amplitude of pulses and the robustness against parameter
variations, e.g., by using analytical enhanced STA [65] or
combining other numerical recipes.

Last but not least, the FF scaling approach is interestingly
extended to study fast and robust control of unstable nonlinear
systems, such as BECs in optical lattices with third-order
Kerr-type nonlinearity [66], other applications of coupled
waveguides [67,68], and frequency conversion in nonlinear
optics [69], in an analogous fashion.
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