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A major challenge in high-precision light-pulse atom interferometric experiments such as in tests of the
weak equivalence principle is the uncontrollable dependency of the phase on initial velocity and position of the
atoms in the presence of inhomogeneous gravitational fields. To overcome this limitation, mitigation strategies
have been proposed, however, valid only for harmonic potentials or only for small branch separations in more
general situations. Here we provide a mitigation formula for anharmonic perturbation potentials including local
gravitational effects that vary on length scales much smaller than the spatial extent probed by the atoms and
originate, e.g., from buildings that surround the experiment. Furthermore, our results are applicable to general
interferometer geometries with arbitrary branch separation and allow for compensation of Coriolis effects in
rotating reference frames.
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I. INTRODUCTION

The high sensitivity of light-pulse atom interferometry
with promising applications as inertial sensor in gravimetry
[1,2], gradiometry [3–5], and tests of the weak equivalence
principle (WEP) [6–8] has led to ambitious proposals on
ground [9–12] and in space [13,14].

A serious challenge for next-generation atom interferomet-
ric high-precision measurements is posed by nonlinearities
in the gravitational potential and Coriolis forces which lead
to nonperfect overlap of the trajectories in both momentum
and position after the final laser pulse. As a consequence, the
phase contains the initial position and velocity of the atoms
and the contrast drops dramatically in long-time interferome-
try [13,15]. Since control over the initial conditions is limited
[16], mitigation strategies had to be developed. Interferometer
schemes insensitive to initial kinematics in the presence of
homogeneous gradients and rotations can be constructed by
folding the interferometer geometry symmetrically [17,18].
However, in these schemes also the dominant part of the phase
from linear gravity cancels, including a possible violation
signal in a test of the WEP.

Similar to the mitigation strategies developed for Coriolis
effects by using tip-tilt mirrors [19–21], the crucial insight to
achieve compensation of initial-condition-dependent phases
in the presence of homogeneous gravity gradients was a mod-
ification of the pulse timing [15] or the momentum transfer
of the central pulse, e.g., in a Mach-Zehnder (MZ) interfer-
ometer as a function of the gradients [22–24]. This method
reduces the mismatch of the trajectories at the end of the
interferometer sequence while leaving the phase from linear
gravity unaffected. Besides other successive work to mimic
an inertial frame [25,26], gravity-gradient compensation was
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extended to spatially inhomogeneous gravity gradients [24]
based on an additional modification of the momentum transfer
of the final laser pulse. However, the derivation in Ref. [24]
is based on the midpoint theorem [27], which becomes less
accurate with increasing branch separation when applied to
anharmonic potentials. Therefore, future proposals includ-
ing large-momentum-transfer techniques [28,29] to increase
the space-time area of the interferometer or long-time in-
terferometry with large branch separation require a further
generalization of the method to such situations.

In this article particular emphasis is put on the perturbative
character of the description which allows the application of
the mitigation scheme to arbitrary anharmonic perturbations
in the gravitational potential as for example present in the
experimental setups of Refs. [24,30]. The formula derived
in the present article is furthermore valid for general inter-
ferometer geometries and arbitrary branch separation. Our
derivation within a full quantum-mechanical framework also
allows to consistently include contributions from wave-packet
dynamics.

In Sec. II we briefly review the perturbative formalism
employed to derive the compensation formula for inhomoge-
neous gravity gradients in Sec. III. In Sec. IV we generalize
the formula to include rotations and finally discuss conditions
for validity of our derivation in Sec. V.

II. PATH-DEPENDENT DESCRIPTION

In this article, we rely on the perturbative formalism re-
cently developed in Refs. [31,32]. The Hamiltonian

Ĥ (α) = Ĥ (α)
0 + V (r̂, t ) (1)

describes the evolution through the interferometer along the
upper (α = u) and the lower (α = l) branch. It consists of a
dominant part Ĥ (α)

0 with respect to which the interferometer
is closed (that is perfect overlap after the final pulse) and a
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FIG. 1. Gravity-gradient compensation in a small cubic potential.
In an MZ interferometer a π/2 pulse at t = 0 splits the initial wave
function into two components and transfers the momentum h̄k on
one of them. The atoms are then redirected by a π pulse at t = T and
finally the wave function is recombined by a second π/2 pulse at t =
2T . In absence of a nonlinear gravitational potential the atoms follow
the unperturbed trajectories (thin solid lines). These trajectories are
modified (dashed lines) in presence of a small perturbation potential
so that the branches do not overlap perfectly in both momentum and
position at the final laser pulse, the interferometer is then referred to
as open. Note that this deviation is displayed strongly exaggerated
in the figure. If the wave vector of the second and the final pulse
is modified appropriately by �k� (decreased in the example shown
in the figure), the interferometer can be closed (thick solid lines) and
dependence of the phase on the initial conditions is eliminated to first
order.

perturbation V (r̂, t ) which slightly opens the interferometer
and renders the phase dependent on initial position and veloc-
ity of the atoms. As an example we illustrate in Fig. 1 the case
of an MZ interferometer where a small cubic potential leads
to a slight mismatch of the trajectories at the final laser pulse
and explain how custom-tailored laser pulses can mitigate this
effect.

In a gravimeter configuration the natural choice for the
unperturbed Hamiltonian is

Ĥ (α)
0 = p̂2

2m
− mgr̂ + V (α)

em (r̂, t ), (2)

where m is the mass of the atoms and g is the local linear
acceleration. Furthermore,

V (α)
em (r̂, t ) = −h̄

∑
�

[
k(α)

� r̂ + ϕ
(α)
�

]
δ(t − t�) (3)

is the effective laser interaction potential, imprinting the mo-
mentum h̄k� and the laser phase ϕ

(α)
� at time t� on branch α.

Additional contributions to the gravitational potential such as
gradients of Earth’s gravitational potential, gravitational fields
of the local environment such as from buildings surrounding
the experiment [30], etc., are incorporated into the perturba-
tion potential V (r̂, t ) and treated perturbatively.

The phase ϕ and contrast C of a matter-wave interferometer
is defined as

〈Û (l )†Û (u)〉 = 〈eiφ̂〉 = Ceiϕ, (4)

where Û (α) is the time-evolution operator with respect to
Hamiltonian (1) for the respective branch and the expectation
value is taken with respect to the initial wave function. In
Refs. [31,32] we merged the two time-evolution operators on
the left-hand side in favor of the operator φ̂, which reads to
first order in the perturbation

φ̂ = φ0 − 1

h̄

∮
dt V (r̂(t )) (5)

and where φ0 is the interferometer phase for vanishing pertur-
bation. The integral runs along the upper branch and returns
along the lower. It is taken over the perturbation poten-
tial evaluated at the branch-dependent and operator-valued
Heisenberg trajectories r̂(α)(t ) generated by the unperturbed
Hamiltonian (2).

The Heisenberg trajectories can be decomposed into the
sum of the classical trajectory with the initial conditions given
by the initial mean position and velocity of the wave packet
and a fluctuation operator of the form r̂(t ) = r̂ − 〈r̂〉 + [ p̂ −
〈p̂〉]t/m where the expectation values are taken with respect
to the initial wave function [32]. This decomposition is valid
as the unperturbed Hamiltonian is linear in the position op-
erator. The standard deviation of the fluctuation operator is
a measure for the size of the expanding wave packet and
characterizes wave-packet effects. In a modification to the
form from Ref. [32] we define the fluctuation operator

δr̂(t ) = δr0(t ) + r̂ − 〈r̂〉 + p̂ − 〈p̂〉
m

t, (6)

which includes the deviation of the trajectories δr0(t ) due to
uncertainties in the initial conditions. Thus, the Heisenberg
trajectory reads

r̂(α)(t ) = r(α)
0 (t ) + δr̂(t ), (7)

where r(α)
0 (t ) is the classical unperturbed trajectory without

this deviation. Consequently, we find for the expectation value
that 〈δr̂(t )〉 = δr0(t ). Note that all expectation values are
taken with respect to the initial wave function. In summary,
in the real classical unperturbed trajectories r(α)

0 (t ) + δr0(t )
we choose r(α)

0 (t ) as a fixed reference while δr0(t ) describes
their uncertainty due to, e.g., limited initial characterization
time [16].

Making use of the decomposition from Eq. (7), a small
value of δr0(t ) and a small wave-packet size will allow for
a Taylor expansion of the perturbation potential around the
classical unperturbed trajectories in the next section. The
dominant linear contribution of δr̂(t ) in φ̂ not only introduces
a dependence on the initial conditions but also leads to a loss
of contrast [13,15] when calculating the expectation value in
Eq. (4). Following Ref. [22], slightly modifying the momen-
tum transfer of the laser pulses will eliminate δr̂(t ) to leading
order and therefore strongly mitigate these two effects.

In our fully quantum-mechanical treatment phase contri-
bution that arise from the square and higher powers of δr̂(t )
include both the residual, strongly suppressed dependence on
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the initial conditions and wave-packet effects due to, e.g.,
different dynamics along the interferometer branches.

III. GRAVITY GRADIENTS

As anticipated in the previous section, we start by replacing

k(α)
� → k(α)

� + �k(α)
�

for each laser pulse and modify the effective laser-atom in-
teraction potential in Eq. (3) accordingly. As the validity of
the perturbative approach requires a closed unperturbed in-
terferometer [32], we keep the unperturbed Hamiltonian (2)
unchanged and therefore consider

�V (α)
em (r̂, t ) = −h̄

∑
�

�k(α)
� r̂δ(t − t�)

as part of the perturbation potential V (r̂, t ). In the following
we will omit the branch index α whenever possible. Further-
more, quantities without operator hat are understood to be
evaluated at the unperturbed trajectories r0(t ), and we will
omit the explicit time dependence.

Inserting Eq. (7) into the perturbation potential followed
by Taylor expansion about the classical trajectories, we find
V (r̂) = V − maδr̂ + · · · with the acceleration a = −∇V/m
and consequently to first order in δr̂

φ̂ = φ0 − 1

h̄

∮
dt

(
V − maδr̂

) + �φk +
∑

�

�k�δr̂(t�). (8)

The last contribution in Eq. (8) and the phase

�φk =
∑

�

�k(u)
� r(u)

0 (t�) − �k(l )
� r(l )

0 (t�)

originate from the perturbation �Vem evaluated at Heisenberg
trajectories, and we abbreviated �k� = �k(u)

� − �k(l )
� to alle-

viate notation.
Thanks to the simple form of the unperturbed Hamiltonian

we find δr0 = δri + δvit where δri and δvi are the uncertain-
ties of initial position and velocity. Thus, making additionally
use of the explicit form of the fluctuation operator shown in
Eq. (6), all terms in Eq. (8) linear in δr̂ vanish if we require
that

J0 = −
∑

�

�k� and J1 = −
∑

�

�k�t� (9)

with the abbreviations

J0 = m

h̄

∮
dt a(t ) and J1 = m

h̄

∮
dt a(t )t . (10)

After eliminating the operator-valued terms in Eq. (8), the
operator φ̂ has become a c-number (to the order considered
here), and we find

ϕ = φ0 − 1

h̄

∮
dt V + �φk, (11)

where we stress again that V is evaluated at the classical
unperturbed trajectories r(α)

0 . The linear set of equations in
Eq. (9) can be solved in general if we slightly change the wave
vectors of the laser at two different times, say, t1 and t2, so that

we find

�k1 = −J1 − J0t2
t1 − t2

and �k2 = J1 − J0t1
t1 − t2

. (12)

The functions J0 and J1 in Eq. (10) allow an intuitive interpre-
tation. The former is proportional to the integrated differential
acceleration between the branches, while the latter corre-
sponds to its average over time. As shown in Appendixes A
and B, the dependence of �k1 and �k2 on these quantities
allows to design interferometer geometries for which the mit-
igation scheme simplifies. Furthermore, in Eq. (12) any two
distinct laser pulses can be chosen that not necessarily have to
correspond to the second and final laser pulse.

Once �k1 and �k2 are known, the shifts in momentum
transfer can be distributed between the two branches sat-
isfying �k� = �k(u)

� − �k(l )
� . For example we find in case

of a laser pulse imprinting opposite momentum on the two
branches that �k(u)

� = −�k(l )
� = �k�/2 such as in the case of

the central pulse in Fig. 1.
Before we generalize Eq. (12) to rotating frames in the next

section, we conclude with the following remarks.
The key advantage of the mitigation scheme is that the

accuracy to which initial momentum and position of the atoms
need to be determined is significantly relaxed, which might
otherwise take longer than the experiment itself in future
satellite-based WEP tests [16].

After mitigation of the initial kinematics the phase still
depends on the local gradients [33] [second and third terms on
the right-hand side of Eq. (11)], and it was discussed whether
it is meaningful to extent the mitigation scheme to also
compensate these contributions [34,35]. While in principle
compensation of the initial conditions can be achieved without
knowledge of the gravitational background by calibrating the
interferometer prior to the measurement [8,24], extension of
the mitigation scheme to cancel all gradient-dependent phases
would still require a precise characterization of the gravita-
tional background as in classical tests with torsion balances
[36]. It therefore seems more practical to postcorrect these
phases. This postcorrection of course can be done only to the
accuracy by which the gravity gradients are known. Therefore,
it needs to be guaranteed that the remaining phase shifts influ-
ence only the measurement result below the target accuracy.

In atom interferometric tests of the WEP the phases of
two interferometers operated with different atomic isotopes or
atomic species are compared. In the latter case the wave num-
bers of the lasers are generally different. In order to compare
the differential effective gravitational acceleration, the phases
have to be rescaled by the respective wave numbers (assuming
the same interferometer time T ) before taking the difference.
In ground-based tests this procedure is meaningful only as
long as the uncertainty in the wave vectors is smaller than
the target accuracy of the WEP violation parameter. In mi-
crogravity, however, this constraint is significantly relaxed. If
the mitigation scheme is applied, remaining gradient-induced
phase shifts independent of the initial kinematics cancel dif-
ferentially in case of homogeneous gradients. In case of
locally varying gravitational potentials, however, the atoms
feel different local potentials along the species-dependent tra-
jectories. As a consequence, these phase contributions are
only suppressed in the differential rescaled phase but not
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canceled. While this remaining differential phase is small,
it might nevertheless impose limits on future tests of the
WEP on ground if the gravitational background is not known
precisely.

In Eq. (8) the Taylor expansion is truncated at first order in
δr̂. Corrections to the phase from higher powers in the fluctu-
ation operator can be calculated with the cumulant expansion
[31,32,37], however, are often negligible [32]. Corrections
of this kind will be discussed in more detail in Sec. V. As
anharmonic potentials are treated quantum mechanically in
this work rather than within a semiclassical approximation,
our results also cover the application of large-momentum
transfer techniques where the branch separation can become
comparable to the spatial extent probed by the atoms. In
Appendix A we explain the approximations needed to ob-
tain the expressions derived in the Supplemental Material of
Ref. [24] and discuss their validity. We furthermore show how
Eq. (12) reduces to the result originally derived in Ref. [22]
for an MZ interferometer in presence of homogeneous gravity
gradients. In Appendix B we investigate simplifications of
our general results in case of trajectories symmetric in time.
We stress the importance of treating the perturbation potential
locally [38]. For instance the gravitational profile reported in
Ref. [30] cannot be Taylor expanded over the extent of the
interferometer due to its variations on short lengths scales. A
numerical integration of Eq. (10) for this example shows that
these local perturbations influence the value of �k1 at the 10%
level and above.

IV. ROTATIONS

For experiments in a rotating reference frame Coriolis and
centrifugal forces need to be considered additionally. For-
tunately, it is straightforward to extend our result to such
situations as will be shown next. The Hamiltonian in a rotating
frame is obtained by adding

Ĥ	 = � · ( p̂ × r̂)

to Hamiltonian (1) where � is the rotation frequency. Addi-
tional centrifugal forces present, for example, in a reference
frame fixed on Earth’s surface only redefine the direction and
absolute value of g. In complete analogy to Sec. III we inte-
grate Ĥ	 along the Heisenberg trajectories shown in Eq. (7)
and recall that p̂(t ) = m d/dt r̂(t ). Consequently, Eq. (8) is
extended by the term

−1

h̄

∮
dt � · [ p̂(t ) × r̂(t )] = φ	 + 2m

h̄

∮
dt [v0(t ) × �] · δr̂(t),

where we neglected terms quadratic in the fluctuation operator
and made use of partial integration for which we appreciated
that the unperturbed interferometer is closed. Furthermore,
v0(t ) is the velocity of the atoms on the unperturbed trajec-
tories, and we abbreviated

φ	 = −1

h̄

∮
dt � · [p0(t ) × r0(t )].

Consequently, by comparing to Eq. (8), the mitigation
schemes can be generalized to rotating reference frames with
the replacement

a(t ) → a(t ) + 2v0(t ) × �

in Eq. (10) and by adding φ	 to Eq. (11). Alternatively, the
effects of rotations can be analyzed in a nonrotating frame,
where the laser is rotating instead [39].

V. VALIDITY OF PERTURBATIVE TREATMENT

In the previous section we developed a general mitigation
scheme based on a perturbative treatment, covering both ro-
tations and gravity gradients. In the following we discuss the
validity of this approach and the approximations made in the
derivation.

In a perturbative calculation of the phase in powers of
the potential V subsequent orders are suppresses by ε =
�V T 2/(mξ 2) [32] where �V is the characteristic change
of the potential over the interferometer size, ξ is the typi-
cal length scale on which the potential changes and T the
characteristic interferometer time. The parameter ε can be
understood as the deviation of the trajectories caused by the
perturbation compared to the length ξ . For gravity gradi-
ents on Earth’s surface corresponding to the potential V =
mrT�r/2, one would choose ξ as the extent of the interfer-
ometer, given approximately by ξ = gT 2/2 in a gravimeter
configuration. Thus, �V ∼ m�ξ 2/2 and consequently ε =
�T 2, leading to a value ε < 10−5 for typical interferometer
times. Local variations as in the gravitational potential of
Ref. [30], in contrast, can lead to values of ξ much smaller
than the spatial extent probed by the atoms. A similar sup-
pression factor for rotations takes the form ε	 = 	T with
ε	 < 10−4 for the rotation of Earth. Consequently, the relative
uncertainty in the phase achieved by a first-order calculation
already is of the order of ε.

The term m
∮

dt aδr̂/h̄ in Eq. (8) introduces the dominant
dependence on the initial conditions. Estimating ∇V ∼ δV/ξ

[32] where δV is the change of the potential over the branch
separation and introducing the abbreviation η = δV T/h̄, this
phase contribution scales as ηδr0/ξ .

Application of the mitigation scheme requires prior knowl-
edge of the gravitational background which can be obtained
by measurement, numerical simulation of the gravitational
sources surrounding the experiment, or a combination of both.
However, determination of deviations from linear gravity will
be possible only to some relative uncertainty κ , which then
also constitutes the suppression factor for initial-condition-
dependent phases. Estimations suggest that at least κ = 10−3

seems plausible [14,24], thereby considerably relaxing the
requirements on determination of initial position and velocity
of the atoms. As described in the beginning of this section,
further terms linear in the initial conditions which would result
from the second-order calculation in the perturbation potential
are suppressed by ε compared to the first-order terms. Con-
sequently, an extension of the mitigation scheme to second
order in the perturbation [31] is necessary only if κ < ε since
otherwise initial-condition-dependent phases that are com-
pensated only partially are still larger than contributions from
the second-order calculation. Higher-order corrections to the
dominant phase in Eq. (11), in contrast, can be obtained as
shown in detail in Ref. [32].

Moreover, Taylor expansion of Eq. (5) around the classical
unperturbed trajectories to first order neglects terms scaling
as η(δr̂/ξ )2. Comparing to the residual contribution κ ηδr̂/ξ
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from the first-order calculation, these terms and further cor-
rections can be disregarded if δri/ξ < κ and δviT/ξ < κ . For
δri ∼ 1 µm as well as δvi ∼ 1 µm/s and ξ ∼ 1 m the latter
requirements are satisfied well.

In addition, wave-packet effects originating from different
expansion dynamics along the branches in an anharmonic
potential are generally small but straightforward to include if
necessary.

VI. DISCUSSION

Finally, we conclude by the following remarks. The ac-
celeration in Eq. (10) not necessarily points in direction of
momentum transfer. Consequently, gravity-gradient compen-
sation might also require a tilt of the mirrors in order to
adapt the direction of k appropriately. However, generally
for experiments on Earth’s surface the required modification
of momentum transfer orthogonal to the sensitive axis (k
pointing in direction of g) often is much smaller than the
parallel component due to symmetry in the mass distribution
surrounding the apparatus [30].

Obviously, the compensation method is equally applicable
to perturbations of nongravitational origin. However, initial
condition-dependent phases from, e.g., magnetic field gradi-
ents [40], black-body radiation [41], etc., are generally much
smaller than those from gravity and can be neglected.

Moreover, to avoid the necessity of a precise character-
ization of the gravitational background, the compensation
scheme can be implemented experimentally through calibra-
tion prior to the measurement by introducing artificial large
deviations of the initial conditions [8,24].

In the reference frame of an inertial-pointing satellite or-
biting Earth the gravitational potential is time dependent. In
a WEP test the varying projection of a possible violation
signal on the sensitive axis can be utilized to demodulate
systematic effects [14]. This technique also might relax the
required accuracy [42] to which the gravity gradients have to
be measured for application of the mitigation scheme. Note
that formula (12) also applies to time-dependent gravitational
potentials as in this situation.
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APPENDIX A: WEAKLY VARYING POTENTIAL

In this Appendix we start from the general result in Eq. (12)
and rederive the result of Ref. [24] in case of small branch
separation. The modified wave vector in Eq. (12) is a function

of the atom’s mass as the gravitational potential � with V =
m� is evaluated at the mass-dependent trajectories. How-
ever, if the local acceleration varies only moderately over
the branch separation (of the order of centimeter for a few
h̄k momentum transfer and a 10-m baseline) this dependence
cancels out and we will find the result of Ref. [24] for an MZ
interferometer.

1. Local gravity gradients

To prove this statement, we first decompose the trajectories

r(α)
0 (t ) = r(t ) + r(α)

∗ (t )

into a suitably chosen branch-independent mean trajectory
r(t ) and the deviation r(α)

∗ (t ). Thus, we Taylor expand

a(α)(r0) = a(r) − �(r)r(α)
∗ + · · · , (A1)

where the gradient tensor is defined as �i j = ∂i∂ jV/m. Substi-
tuting Eq. (A1) into Eq. (10), we find

J0 = −m

h̄

∮
dt �(r)r∗ and J1 = −m

h̄

∮
dt �(r)r∗ t (A2)

since a(r) is independent of the branch and therefore can-
cels in the looped integrals. If the mean trajectory r contains
only the mass-independent part of the trajectory generated
by linear gravity while r∗ is the additional contribution from
the laser pulses, Eq. (A2) becomes mass independent since
r∗ is inversely proportional to the mass through vr = h̄k/m.
To connect with previous results, we specify the case of an
MZ gravimeter where the atoms are launched initially in z
direction so that r = gt (T − t/2)ez. Consequently, with

r(u)
∗ = vrt , r(l )

∗ = 0, 0 � t < T,

r(u)
∗ = vrT , r(l )

∗ = vr (t − T ), T � t � 2T,

we find from Eq. (A2) the expressions

J0 = −
∫ T

0
dt t�(r)k −

∫ 2T

T
dt (2T − t )�(r)k (A3)

and

J1 = −
∫ T

0
dt t2�(r)k −

∫ 2T

T
dt (2T − t )t�(r)k (A4)

derived in the Supplemental Material of Ref. [24] after appro-
priate resummation of the integrals.

In Eq. (A1) corrections from the next order of the Taylor
expansion are suppressed by vrT/ξ where ξ , the characteristic
length scale on which the potential changes. For the local
variations in the gravitational profile from Ref. [30] the factor
vrT/ξ might approach unity in future experiments involving
large-momentum transfer techniques and therefore limits the
validity of Eqs. (A3) and (A4). Instead, using the midpoint
theorem [27] without the approximation in Eq. (A1), the result
still deviates from the exact expressions in Eq. (10) but only
by a factor (vrT/ξ )2, which justifies its application in many
cases, but care has to be taken when employing LMT tech-
niques or the potential changes on short length scales. This
deviation results from the semiclassical approximation in the
derivation of the midpoint theorem which limits its application
to anharmonic potentials.
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(a)

(b)

FIG. 2. Compensation for uniform gravity gradients. (a) In an
MZ interferometer the position of the geometric center tc on the
time axis of the space-time area A enclosed by the two branches
coincides with the position of the central pulse. For this reason, as
shown in the main text, global gravity gradients can be compensated
by adapting the momentum transfer of the central pulse only. The
required modification is proportional to the space-time area enclosed
by the trajectories. (b) In a Ramsey-Bordé interferometer the geo-
metric center is situated exactly between the two central pulses at
t = T1 and t = T1 + T2. In this case compensation can be achieved
by modifying the momentum transfer of these pulses equally.

2. Global gravity gradients

So far we have discussed general anharmonic perturbations
which might even change rapidly over the branch separation.
In this paragraph we assume that the deviations from linear
gravity are smooth enough to be accurately described over
the extent of the whole interferometer by a global gradient.
Correspondingly,

V = 1
2 mrT�r,

where the position-independent gradient tensor � is chosen
fully symmetric. In case all laser pulses are aligned, we
define the vector A = ∮

dt r0, whose modulus corresponds
to the space-time area enclosed by the two branches of the

unperturbed interferometer. With a = −�r0 the expression

J0tc = J1 (A5)

defines the position of the geometric center tc of this area on
the time axis and we can distinguish two different situations
corresponding to the two classes of interferometer geometries
displayed in Fig. 2: (1) Suppose the interferometer exhibits a
laser pulse at t1 = tc as for example in the MZ interferometer
visualized in Fig. 2(a). From Eq. (12) together with Eq. (A5)
we find

�k1 = m

h̄
�A and �k2 = 0,

which agrees with the result of Ref. [22] for an MZ interfer-
ometer with A = vrT where the modification of momentum
transfer is distributed equally over both branches. Thus, in
case of uniform gradients, compensation is particularly simple
if the interferometer exhibits a laser pulse at the geometric
center of the space-time area enclosed by the branches. (2) In
contrast if tc is located exactly in between two pulses at t1 and
t2, that is tc = (t1 + t2)/2 = T1 + T2/2, we find

�k1 = �k2 = m

2h̄
�A.

This situation is for example found in a Ramsey-Bordé
interferometer shown in Fig. 2(b) for which we find
A = vrT1(T1 + T2).

APPENDIX B: SYMMETRIC TRAJECTORIES

In this Appendix we consider interferometer schemes sym-
metric around a pulse at time ts, that is r0(ts + t ) = r0(ts − t )
for both branches. Since a function q(t ) symmetric around
time ts satisfies ∫ 2ts

0
dt q(t )t = ts

∫ 2ts

0
dt q(t ),

we conclude from Eq. (10) that

J0ts = J1.

Consequently, with the help of Eq. (12) the compensation
scheme simplifies to

�k1 = −J0 and �k2 = 0

for, e.g., t1 = ts, so that only the pulse at this time must be
modified. A geometry satisfying this symmetry requirement
is realized, for example, in an MZ interferometer with initial
velocity v0z = gT − vr/2 of the atoms in direction of the
subsequent momentum transfer. This result remains a good
approximation if the branches are only approximately sym-
metric [24].
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