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Spin-selective insulators in Bose-Fermi mixtures
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We investigate an imbalanced mixture composed of two-color fermions and scalar bosons in the hard-core
limit, considering repulsive and attractive interspecies and intraspecies interactions. The interplay between com-
mensurability, repulsive interactions, and imbalance generates three insulating phases: a mixed Mott state and
two spin-selective insulators characterized by the commensurability relations ρB + ρ

↑,(↓)
F = 1. For an attractive

coupling between fermions and bosons, we found the relations ρB − ρ
↑,(↓)
F = 0 for the spin-selective insulators.

State-of-the-art cold-atom setups constitute ideal platforms to implement these unveiled insulating states and
verify their commensurability relations.

DOI: 10.1103/PhysRevA.103.023304

I. INTRODUCTION

The rapid development of the cold-atom field has allowed
researchers to verify and extend several predictions of con-
densed matter physics in clean and fully controllable setups
[1–4]. Seminal examples include the observation and ma-
nipulation of superfluid-insulator phase transitions confining
bosonic or fermionic isotopes of atoms [5–10]. Following
this path, a peculiar system exquisitely turned into reality
in cold-atom setups is that of mixed carriers which obey
the Bose-Einstein and Fermi-Dirac statistics [11–35]. Con-
trolling the number of each kind of carriers, the interspecies
and intraspecies interactions, it has been possible to evidence
exciting phenomena such as phase separation [36] and a Bose-
Fermi superfluid mixture [37].

It is common to describe a mixture of bosonic and
fermionic atoms within the framework of the Bose-Fermi-
Hubbard model, which has been addressed considering
different approaches that have been improved over time.
Given a particular approximation of this model, several an-
alytical and/or numerical techniques can be used, which
predict the emergence of superfluids, charge density wave,
Mott insulators, spin density wave, phase separation, Wigner
crystals, among other ground states [38–63]. Specifically,
for the superfluid-insulator transitions we know that re-
gardless of the sign of the boson-fermion interaction and
for a fixed fermionic density ρF , there are always two
nontrivial insulator phases between the trivial insulators
at integer bosonic densities ρB. These nontrivial insulators
satisfy the conditions ρB ± ρF = n and ρB ± 1

2ρF = n (n in-
teger), with the plus (minus) sign for repulsion (attraction)
[25,64–66]. The latter condition characterizes the noncom-
mensurate insulators whose origin will be discussed in this
article.

*jsilvav@unal.edu.co

The high degree of control over cold-atom setups has al-
lowed experimentalists to generate asymmetries in the spin
populations [67–71], making such systems ideal for observ-
ing the elusive unconventional pairing mechanism named
after Fulde, Ferrell, Larkin, and Ovchinnikov (FFLO) [72,73].
However, the effect of spin population imbalance on Bose-
Fermi mixtures has been barely explored. In this direction,
Singh and Orso very recently showed that the visibility of the
FFLO state is enhanced as the boson-fermion repulsion grows
[74]. In this article, we focus on the superfluid-insulator tran-
sitions and on the effect of the spin population imbalance on
their location. Considering a mixture composed of two-color
fermions and scalar bosons in the hard-core limit, we found
that in presence of the imbalance, the noncommensurate insu-
lator state is divided into two spin-selective insulator states,
which are separated by a superfluid phase. These new in-
compressible states fulfill the relations ρB ± ρ

↑,(↓)
F = n, where

plus and n = 1 (minus and n = 0) correspond to a repulsive
(attractive) boson-fermion interaction. In these spin-selective
insulators, one-color fermions satisfy a commensurability re-
lation with the bosons, while the others remain in a gapless
phase, being this the main result of this investigation.

The rest of this article is organized as follows. In Sec. II we
introduce the Bose-Fermi-Hubbard Hamiltonian considered
in this investigation. Using the density matrix renormalization
group (DMRG) algorithm, we build several zero-temperature
phase diagrams, which are shown in Secs. III and IV for
repulsive and attractive fermionic interactions respectively.
Our main findings are summarized in Sec. V.

II. MODEL

A mixture of bosonic and fermionic atoms confined in a
one-dimensional optical lattice can be described considering
a Hubbard-type Hamiltonian for each species and an inter-
species interaction characterized by the parameter UBF , which
can be attractive or repulsive. Therefore, the Bose-Fermi-
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Hubbard Hamiltonian is given by

ĤBF = ĤB + ĤF + UBF

L∑

i=1

n̂B
i

(
n̂F

i,↑ + n̂F
i,↓

)
. (1)

Here, ĤB corresponds to

ĤB = −tB
∑

〈i, j〉
(b̂†

i b̂ j + H.c.), (2)

which is the Bose-Hubbard Hamiltonian in the hard-core
limit, i.e., the number of bosons is at most one per site and they
do not interact with each other. Operator b̂†

i (b̂i) creates (anni-
hilates) a boson at node i of a lattice of size L, while n̂B

i = b̂†
i b̂i

is the local number operator. The hopping of bosons between
nearest-neighbor sites (〈i, j〉) is modulated by the parameter
tB, NB is the number of bosonic atoms, and ρB = NB/L is the
global density of bosons, which varies from zero to one.

The Fermi-Hubbard Hamiltonian characterized by the hop-
ping parameter tF and the local interaction UFF is

ĤF = −tF
∑

〈i, j〉,σ
( f̂ †

iσ f̂ jσ + H.c.) + UFF

2

∑

i,σ �=σ ′
n̂F

i,σ n̂F
i,σ ′ . (3)

Here, f̂ †
i,σ ( f̂i,σ ) creates (annihilates) a fermion with spin

σ =↑,↓ at node i, and n̂F
i,σ = f̂ †

i,σ f̂i,σ is the local number
operator for each kind of fermions, such that n̂F

i = n̂F
i,↑ + n̂F

i,↓.
We define ρσ

F = Nσ
F /L as the global density for σ fermions,

where Nσ
F is the number of fermions with spin σ . Then, the

total fermionic density is ρF = ρ
↑
F + ρ

↓
F , which varies from

zero to two, ρF = 1 being the half-filling configuration. The
spin-population imbalance is quantified by the parameter I =
(N↓

F − N↑
F )/(N↑

F + N↓
F ). By fixing tF = tB = 1, we establish

our energy scale.
Diverse mixtures of bosonic and fermionic isotopes have

been achieved in cold-atom setups using the same and dif-
ferent atoms, although their stability is severely limited by
three-body recombinations [75]. The model considered in
this paper can be emulated in current cold-atom setups; for
instance, the isotopes 171Yb and 174Yb (170Yb) can be used
[76]. Also, we highlight that dual Bose-Einstein condensates
of paired fermions and bosons with 6Li and 7Li have been
achieved experimentally [77].

It is well known that the commensurability condition, i.e.,
the fact that the number of carriers is proportional to the
lattice size, is critical for the emergence of insulating states
in pure bosonic and fermionic systems [78,79]. For instance,
two-color fermions in one dimension exhibit a Mott insulator
phase for ρF = 1, and insulator phases emerge at integer
densities in bosonic systems. When bosons and fermions
coexist, this commensurability condition also arises. This
corresponds to the case where the total number of carriers
(bosons + fermions) matches the lattice size, establishing
the relation ρB + ρF = 1 between the global bosonic and
fermionic densities. This scenario was observed in experi-
ments with Yb atoms [25], and predicted for polarized carriers
[64] and a mixture of scalar bosons with two-color fermions
[65,66]. In Fig. 1(a), we sketch the mixed Mott insulator
state for which ρB + ρF = 1, while commensurate insulators
consisting of bosons and one kind of fermion are shown

FIG. 1. Sketches of possible distributions of carriers of a mixture
of two-color fermions and scalar bosons in a chain of length L =
12. Blue (golden) circles represent bosons (fermions). A mixed Mott
insulator state with ρF = 1

2 and ρB = 1
2 , for which ρF + ρB = 1, is

depicted in (a). Possible ground states for an imbalance mixture with
I = 1

3 are shown in (b) and (c) such that the relations ρ
↑(↓)
F + ρB = 1

are fulfilled, respectively. Without imbalance, a noncommensurate
state emerges (d), which satisfies ρB + 1

2 ρF = 1. Note that from the
above state, the configurations (b) and (c) arise in the presence of
imbalance and when the number of bosons increases and decreases
by one, respectively.

in Figs. 1(b) and 1(c). An illustration of a noncommensurate
insulator is sketched in Fig. 1(d), which satisfies the relation
ρB + 1

2ρF = 1.
To explore the effect of the spin-population imbalance

on the superfluid-insulator transitions of a mixture of two-
color fermions and scalar bosons, we consider separately
the attractive and repulsive interactions between fermions,
and particular densities of the latter. The ground-state en-
ergy for NB bosons, and N↑

F and N↓
F fermions, denoted

by E (N↑
F , N↓

F , NB), was calculated using the density ma-
trix renormalization group with open boundary conditions
[80]. Namely, we used a local basis with eight states: |F 〉

|B〉 =
|0〉
|0〉 ,

|↑〉
|0〉 ,

|↓〉
|0〉 ,

|↑↓〉
|0〉 ,

|0〉
|1〉 ,

|↑〉
|1〉 ,

|↓〉
|1〉 ,

|↑↓〉
|1〉 , and considered the dynam-

ical block selection state protocol [81], which allows us to set
up the DMRG truncation error, while the number of main-
tained states varies. We kept a discarded weight of ≈10−7

and fixed the minimum number of states to 400, while the
algorithm considered a maximum of 1800 states. To obtain an
energy convergence of 10−3 or lower, we carried out between
9 or 11 sweeps.

III. REPULSIVE FERMIONIC INTERACTIONS UFF > 0

We start by studying the scenario where fermions repel
each other, and we focus on the densities of quarter- and half-
fermionic filling. However, the main results were corroborated
for other densities, imbalance, and interaction parameters.

A. Quarter-filling case ρF = 1
2

In this section, we consider a mixture of two-color
fermions and scalar bosons with a global density of fermions
of ρF = 1

2 , and a repulsive fermionic interaction UFF = 6, pa-
rameters that will remain fixed. For both positive and negative
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FIG. 2. Bosonic density ρB as a function of bosonic chemical
potential μB, calculated in the thermodynamic limit, for fermionic
density ρF = 1

2 and repulsive fermion-fermion interaction UFF =
6. Two different imbalance values were considered, namely, I = 0
(black dots) and I = 1

3 (red squares). (a) Repulsive interspecies
interaction UBF = 10. Inset: charge gap �B as a function of the
system size for the bosonic densities leading to insulating states. The
diamonds on the y axis correspond to the extrapolations to the ther-
modynamic limit. (b) Attractive interspecies interaction UBF = −10.
The lines are visual guides.

values of the boson-fermion coupling (|UBF | = 10), we dis-
play in Fig. 2 the evolution of the bosonic chemical potential
μB = E (N↑

F , N↓
F , NB + 1) − E (N↑

F , N↓
F , NB) as the number of

bosons increases from zero. For a spin-balanced mixture, i.e.,
equal number of fermions for each color (I = 0), we see that
the chemical potential mostly grows monotonously as the
number of bosons increases, indicating that there is no cost
to generate excitations for the majority of bosonic densities.
However, this behavior changes for two particular densities. In
the case of boson-fermion repulsion, these correspond to ρB =
1
2 and ρB = 3

4 [Fig. 2(a)]. The former density is related to the
mixed Mott insulator state for which ρB + ρF = 1, and the lat-
ter is a noncommensurate insulator for which ρB + 1

2ρF = 1.
The width of these plateaus when L → ∞ corresponds to the
charge gap �B for bosonic excitations in the thermodynamic
limit. For different spin populations N↑

F �= N↓
F , we observe

that gapless and gapped states emerge as in the balanced case.
Namely, we obtain that the mixed Mott insulator state always
appears, remaining unchanged regardless of the value of the

imbalance parameter. This result is expected since the total
number of carriers must be commensurate with the lattice
size regardless of the asymmetry in the spin populations.
In Fig. 2(a) we consider I = 1

3 , and the main change in the
ρB-μB curve is that the noncommensurate insulator splits into
two insulators, which are separated by a superfluid region; this
suggests a gapless region that can be a polaronic Luttinger liq-
uid [41] (see the Appendix). Then, for an imbalance of 1

3 , the
plateaus are located at the bosonic densities ρB = 1

2 , ρB = 2
3 ,

and ρB = 5
6 . Note that the evolution of the width of these

plateaus with the lattice size leads to finite gaps in the ther-
modynamic limit, namely, �

ρB=1/2
B = 3.52, �

ρB=2/3
B = 2.61,

and �
ρB=5/6
B = 2.65, which were obtained using a second-

order polynomial extrapolation [see inset of Fig. 2(a)]. As the
imbalance increases, the new plateaus move away from the
noncommensurate one, and for the extreme imbalance (Imax =
1) they tend to the bosonic densities ρB = 1

2 and ρB = 1, re-
covering the spin-polarized results, i.e., the trivial plateau and
the mixed Mott insulator state [64]. The above information
allows us to establish a relation between the global densities
of the carriers and the imbalance to determine the location of
the new insulator, which is ρB + 1

2ρF (1 ± I ) = 1. Notice that
with ρF = 1

2 and I = 1
3 , the insulators correspond to ρB = 2

3

and 5
6 , thus obtaining the densities discussed above.

For attractive interspecies interaction UBF = −10 and
without spin imbalance, the charge gap vanishes except at
the bosonic densities ρB = 1

4 and 1
2 . For these densities clear

discontinuities appear, as shown in Fig. 2(b), indicating that
insulator states emerge. It is evident that the sign of the
Bose-Fermi coupling modifies the insulator states of a mixture
of scalar bosons and spinor fermions, as was reported in a
recent paper by three of us in the soft-core approximation
without population imbalance [66]. There it was found that
the positions of these noncommensurate insulator states sat-
isfy the relations ρB − ρF = 0 and ρB − 1

2ρF = 0. The former
noncommensurate insulator is characterized by a local pairing
of one fermion and one boson, leading to a global charge
density wave state, where bosons and fermions are in phase.
Furthermore, this state was reported experimentally by Sug-
awa et al. [25]. Now, for any asymmetry between the spin
populations, the plateau that fulfills the relation ρB − 1

2ρF = 0
splits into two new insulators [ρB = 1

3 and 1
6 for I = 1

3 , as
shown in Fig. 2(b)], while the rest of the curve remains un-
altered. We establish that the location of the new insulators
is given by the relation ρB + 1

2ρF (−1 ± I ) = 0, which for
extreme imbalance leads to a trivial plateau at ρB = 0 and
other at ρB = 1

2 . Comparing the plots of Fig. 2, we note that
the plateaus are related by the transformation ρB → 1 − ρB

when going from a repulsive to an attractive Bose-Fermi
coupling. We also notice that |μA

B(ρB)| = |μR
B(1 − ρB)|, where

A and R correspond to attractive and repulsive interactions,
respectively, and the charge gaps in the thermodynamic limit
are the same regardless of the sign of UBF .

To explore the occurrence of insulating states for other
values of the boson-fermion interation, we replicate Fig. 2(a)
for different UBF keeping the fermionic density (ρF = 1

2 ),
the fermion-fermion interaction (UFF = 6), and the spin-
population imbalance (I = 1

3 ) constant. In this form we
obtained the phase diagram shown in Fig. 3, where the white
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FIG. 3. Phase diagram in the chemical potential vs interspecies
interaction plane. The fermion-fermion interaction is UFF = 6, the
fermion density is ρF = 1

2 , and the imbalance is I = 1
3 . The inset

shows the dependence of the critical points U ∗
BF with the imbalance.

The lines are visual guides; matching colors to those of the lobes
in the main panel indicate that they correspond to the same bosonic
density.

regions correspond to superfluid states, i.e., the charge gap
vanishes and the ground state is compressible. On the other
hand, incompressible states, signaled by a finite gap in the
thermodynamic limit, are represented by colorful regions.
Note that the extreme value of this phase diagram (UBF = 10)
corresponds to Fig. 2(a). Three lobes separated by superfluid
regions are clearly seen in this phase diagram. The yellow lobe
corresponds to the mixed Mott state (ρB = 1

2 ), while the others
emerge from the imbalance, namely, the cyan lobe for ρB = 2

3

and the green lobe for ρB = 5
6 . Note that for a spin-balanced

mixture the latter lobes combine to form a single lobe (ρB =
3
4 ), corresponding to a noncommensurate state which domi-
nates the phase diagram. As the Bose-Fermi coupling takes
lower values, the charge gap decreases monotonously for all
insulating lobes. Therefore, they shrink and finally disappear
at the critical values U ∗

BF = 1.0, 1.3, and 1.2 for ρB = 1
2 , 2

3 ,
and 5

6 , respectively; see the inset of Fig. 3. Hence, below the
critical points the ground state is superfluid. The fact that
criticality occurs at distinct interactions for ρB = 2

3 and 5
6

reinforces that they constitute well-separated insulators. This
is further emphasized by the different evolution of U ∗

BF as a
function of the imbalance parameter, shown in the inset of
Fig. 3. For ρB = 2

3 the critical point changes very little with I ,
while for the insulating lobe with ρB = 5

6 the position of U ∗
BF

goes to lower values. In addition, we observe that the critical
point for the mixed Mott state decreases as the imbalance
parameter grows, even though its density remains unaltered by
the asymmetry in the spin population. This can be understood
by considering that a larger imbalance leads to a stronger
effective repulsion of neighboring fermions, as their hopping
to sites occupied by others of the same spin orientation is
impeded, thus increasing the insulator lobe. Similar analyses
were performed for the attractive Bose-Fermi coupling case,

FIG. 4. Density profiles of bosons and fermions for a system
of size L = 84, with fermion-fermion repulsion UFF = 6, fermionic
density ρF = 1

2 , interspecies interaction UBF = 10, and imbalance
I = 1

3 . (a) Insulator state at ρB = 5
6 . (b) Insulator state at ρB = 2

3 .
The lines are visual guides.

for which we obtained a phase diagram with three insulating
lobes with very similar properties to those discussed above
(not shown).

After establishing that the spin-population imbalance splits
the noncommensurate plateau into two new insulator phases,
we discuss the associated distribution of carriers. In Fig. 4,
we display the density profiles of bosons and fermions along
the lattice, considering the same global fermionic density
and interaction parameters as in Fig. 2(a). For the insulating
state characterized by a bosonic density ρB = 5

6 , the expec-
tation value of the local number of bosons slightly oscillates
around 〈n̂B

i 〉 ≈ 0.833, and a similar behavior along the lattice
is observed for the expectation value of the local number of
fermions with spin up 〈n̂F

i,↑〉 ≈ 0.166 [see Fig. 4(a)]. Surpris-
ingly, we note that locally the system satisfies 〈n̂F

i,↑〉 + 〈n̂B
i 〉 =

1. While bosons and fermions with spin up adjust to meet
local commensurability, fermions with spin down exhibit a
local density expectation value 〈n̂F

i,↓〉 ≈ 0.333 (not shown).
To clarify the role of the spin-down fermions in the insulator
described above, we fixed the number of bosons and spin-up
fermions, while the number of spin-down fermions varies.
Our results are presented in Fig. 5, where the evolution of
the fermionic chemical potential μσ

F = E (Nσ
F + 1, Nσ ′

F , NB) −
E (Nσ

F , Nσ ′
F , NB) as a function of the density for one specific

color is shown. Fixing ρB = 5
6 and ρ

↑
F = 1

6 , we obtained that

023304-4



SPIN-SELECTIVE INSULATORS IN BOSE-FERMI … PHYSICAL REVIEW A 103, 023304 (2021)

FIG. 5. Fermionic density versus chemical potential for the
variable kind of fermions σ =↓,↑. Black dots: The number of spin-
down fermions changes, whereas the bosonic density ρB = 5

6 and the
density of spin-up fermions ρ

↑
F = 1

6 are fixed. In the other curves,
the bosonic density is fixed to ρB = 2

3 and the number of spin-
up fermions varies, considering ρ

↓
F = 1

3 (red squares) and ρ
↓
F = 1

6
(green diamonds). Here, the interaction parameters are UFF = 6 and
UBF = 10. The lines are visual guides.

the curve is continuous except for ρ
↓
F = 1

6 (Fig. 5, black
dots), consistent with the expectations for the balanced case
I = 0. Hence for a global fermionic density ρF = 1

2 and an

imbalance of I = 1
3 (ρ↓

F = 1
3 ), the spin-down fermions are in

a gapless state. This already suggests that the incompressible
state for ρB = 5

6 is characterized by a combination of a gapless
and an insulator state for fermions with spin down and up,
respectively. Also, we unveil a new link between an insulat-
ing state and global commensurability, i.e., this spin-selective
state fulfills the relation ρB + ρ

↑
F = 1, which means that the

number of bosons plus the number of fermions with spin up is
commensurate with the lattice.

For the other incompressible state that emerges due to the
imbalance, we obtained that all the density profiles exhibit a
charge density wave structure along the lattice. Specifically,
we show the expectation value of the local number of fermions
with spin down 〈n̂F

i,↓〉 and 〈n̂B
i 〉 in Fig. 4(b) for ρB = 2

3 . In
this case, 〈n̂F

i,↑〉 oscillates along the lattice (not shown), while
the addition of 〈n̂F

i,↓〉 and 〈n̂B
i 〉 at each site is approximately 1,

with both featuring oscillations of characteristic wave vector
2kF↓ . Hence, the insulator state for ρB = 2

3 incorporates the
fact that the number of bosons plus the number of fermions
with spin down is globally commensurated with the lattice
(ρB + ρ

↓
F = 1), whereas the fermions with spin up remain in

a gapless state because for ρ
↑
F = 1

6 , the chemical potential in
the thermodynamic limit is continuous (Fig. 5, red squares).
To evidence even further the emergence of the spin-selective
insulators, we show in Fig. 5 the ρ

↑
F − μF curve for condi-

tions distant from commensurability, i.e., here ρB = 2
3 and

ρ
↓
F = 1

6 (green diamonds). Increasing the number of spin-
up fermions, the fermionic chemical potential is continuous
until a discontinuity arises at ρ

↑
F = 1

6 , which determinates
the mixed Mott insulator. Afterwards, the chemical potential

grows continuously and the spin-selective insulator emerges
at ρ

↑
F = 1

3 , i.e., when the number of spin-up fermions plus the
number of bosons coincides with the lattice size, whereas the
spin-down fermions remain in a gapless state. After verifying
the same scenario for the incompressible state of ρB = 5

6 , we
conclude that the imbalance and the repulsion between the
fermions generate two spin-selective insulator states, which
satisfy the commensurability relations ρB + ρ

↑,(↓)
F = 1, in a

gapless fermion polarized background. Note that an analogous
physical idea explains the ferromagnetic metallic phase in
the Kondo lattice model, where the majority-spin conduction
electrons are metallic while the minority-spin electrons show
insulating behavior, with the latter satisfying a commensura-
bility relation with the localized spins [82].

Based on the above analysis, we revisit the balanced mix-
ture case, where a noncommensurate insulator arises which
satisfies the relation ρB + 1

2ρF = 1. However, fundamental
information can be unveiled by considering that a balanced
mixture corresponds to ρ

↑
F = ρ

↓
F = 1

2ρF . Therefore, bosons
and any kind of fermions fulfill a commensurability rela-
tion, which is clear from Fig. 5, where most of the plateaus
correspond to the balance case (I = 0). Hence, to add one
fermion to the mixture, a finite amount of energy must be
paid. The imbalance thus leads to an asymmetry that splits
the noncommensurate insulator.

An identical analysis can be performed for an attractive
boson-fermion interaction. As mentioned before, in this case
and with no imbalance we found a noncommensurate insu-
lator state characterized by the relation ρB − 1

2ρF = 0 [66],
which implies that one boson can couple locally with any
kind of fermions generating an insulator. In an imbalanced
Bose-Fermi mixture, two spin-selective insulator states will
arise as before, which satisfy the relations ρB − ρ

↑,(↓)
F = 0

(not shown). Note that in this form we recover our constraint
condition ρ

↑
F + ρ

↓
F = ρF .

B. Half-filling case ρF = 1

Commensurability conditions are fundamental for strongly
correlated systems of bosons and fermions in one dimension.
For two-color fermions, this key condition takes place at ρF =
1, and together with a repulsive interaction between fermions,
they generate the Mott insulator state. Adding scalar bosons
and turning on the interspecies repulsion, it is expected that
the mixed Mott state does not appear; instead, a noncom-
mensurate insulator state emerges, which satisfies the relation
ρB + 1

2ρF = 1 [65]. As discussed before, an asymmetry be-
tween the spin populations splits the above noncommensurate
insulator into two spin-selective incompressible states, which
are shown in the inset of Fig. 6(b) for I = 1

2 . In this case, these
correspond to ρB = 1

4 and 3
4 , which are in agreement with

the unveiled relation ρB + 1
2ρF (1 ± I ) = 1. We remark that as

before, the particular σ -mixed commensurability conditions
ρB + ρσ

F = 1 are fulfilled (σ =↑,↓), on top of a gapless po-
larized background.

The density profiles for bosons and fermions along a chain
of L = 48 sites are presented in Fig. 6(a), where I = 1

2 ,
UFF = 6, and UBF = 10. In particular, we show the density
profiles for the insulator state with ρB = 3

4 , although the same
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FIG. 6. (a) Density profiles for an imbalanced mixture of bosons
and fermions with a fixed fermionic density ρF = 1, I = 1

2 , boson-
fermion repulsion UBF = 10, fermion-fermion coupling UFF = 6,
and a lattice size of L = 48. A dimerized ground state is obtained
for ρB = 3

4 . (b) Fermion charge structure factor N F (k) as a function
of the wave vector. Here, we consider I = 1

3 , 1
2 , and 2

3 . In the inset,
we show the bosonic density versus chemical potential for a mix-
ture with I = 1

2 , clearly evidencing the emergence of two nontrivial
plateaus. In both plots, the lines are visual guides.

behavior is obtained for the other incompressible phase. The
ground state exhibits a dimer structure for both bosons and
fermions, which are out of phase. This is a particular dis-
tribution of carriers which already arose in previous studies
on Bose-Fermi mixtures that considered fermionic half-filling
[83]. The fact that both bosons and fermions exhibit a dimer
distribution along the lattice indicates that the density-density
correlations for both kinds of carriers will have the same
behavior. With this in mind, we display the charge structure
factor for fermions

N F (k) =
L∑

j,l=1

eik( j−l )
(〈

n̂F
j n̂F

l

〉 − 〈
n̂F

j

〉〈
n̂F

l

〉)
(4)

in Fig. 6(b) for ρB = 3
4 . Clearly, a ground state with a dimer

structure has a unit cell composed by four sites, which leads
to a maximum of N F (k) located at k = 2π

4 = 0.5π . Also,
interwoven distributions of carriers are obtained for other
values of the imbalance parameter, which are characterized by
a maximum of the charge structure factor in a specific value
of k. In Fig. 6(b), we see that N F (k) is maximum at k/π = 1

3

FIG. 7. Bosonic density vs the thermodynamic-limit chemical
potential for a Bose-Fermi mixture with attractive interaction be-
tween fermions (UFF = −6). Here, a balanced (I = 0) and an
imbalanced (I = 1

3 ) mixture were considered with a fermion density
ρF = 1

2 . Results for repulsive (a) and attractive (b) boson-fermion
coupling are shown. The lines are visual guides.

and 2
3 for imbalance I = 2

3 and 1
3 , respectively. We conclude

that special distributions of carriers take place for fermionic
half-filling, which are marked by a maximum in the charge
structure factor located at k/π = 1 − I; these results are
maintained for attractive interactions. For other fermionic fill-
ings, the distribution of carriers is more intricate, commonly
with more than one broad peak in the charge structure factor,
which cannot be described by such a simple relation.

IV. ATTRACTIVE FERMIONIC INTERACTIONS UFF < 0

In this section, we explore the superfluid-insulator transi-
tions for a mixture of two-color fermions and scalar bosons
considering an attractive interaction between the fermions.
A fermionic density of ρF = 1

2 was chosen and the absolute
value of the interaction parameters match with those of Fig. 2
to directly compare the results. In Fig. 7(a) we show the
evolution of the bosonic chemical potential as the number
of bosons increases from zero, for a repulsive interaction
between bosons and fermions (UBF = 10). As the number
of bosons grows in a balanced mixture, the charge gap in
the thermodynamic limit vanishes for all densities except at
ρB = 3

4 , where a strong discontinuity takes place. The charge

gap for this insulator state is �
ρB=3/4
B = 17.15. Surprisingly,

023304-6



SPIN-SELECTIVE INSULATORS IN BOSE-FERMI … PHYSICAL REVIEW A 103, 023304 (2021)

FIG. 8. Bosonic chemical potential as a function of the in-
terspecies interaction for an attractive coupling between fermions
UFF = −6. The fermion density is ρF = 1

2 and the imbalance is
I = 1

3 . The colorful regions indicate insulating phases with bosonic
densities ρB = 2

3 (yellow) and ρB = 5
6 (cyan), whereas the white

correspond to superfluid phases. The lines are visual guides.

the noncommensurate plateau survives and is related to the
same condition found before, namely, ρB + 1

2ρF = 1. On the
other hand, the mixed Mott state, crucial for repulsive in-
teractions, disappears when the coupling between fermions
is attractive. This is sensible since the Mott state is induced
by the commensurate condition and repulsive interactions.
Comparing Figs. 2(a) and 7(a), we conclude that an attractive
interaction between fermions prevents the mixed Mott state,
but enhances the charge gap related to the noncommensurate
insulator. The plateau corresponding to the latter state splits
into two when an asymmetry between the spin populations is
considered, in a similar way to the repulsive case. We establish
that these new spin-selective insulator states satisfy the com-
mensurability relations ρB + ρ

↑,(↓)
F = 1, on top of a gapless

polarized background. This relation remains valid since the
Pauli exclusion principle leads us to an effective repulsion
between fermions of the same color, resulting in a scenario
similar to that of Sec. III.

In Fig. 7(b), we show the ρB-μB curve for attractive interac-
tion parameters, i.e., UFF = −6 and UBF = −10. Again, from
the two noncommensurate insulating states without imbalance
one survives and its charge gap is enhanced (ρB − 1

2ρF = 0),
whereas the other disappears (ρB − ρF = 0). Here, the effec-
tive repulsion due to the Pauli exclusion principle allows the
emergence of the new spin-selective states (ρB − ρ

↑,(↓)
F = 0)

in presence of imbalance; this is exemplified for I = 1
3 . Com-

paring Figs. 7(a) and 7(b), we again establish that |μA
B(ρB)| =

|μR
B(1 − ρB)| when going from a repulsive to an attractive

boson-fermion interaction.
The zero-temperature phase diagram for an attractive in-

teraction between fermions of UFF = −6 is shown in Fig. 8,
where an imbalance of I = 1

3 and a fermionic density of
ρF = 1

2 have been considered. According to Fig. 7(a), an in-
sulating phase emerges at the bosonic density ρB = 3

4 , which
splits into two spin-selective insulators in the presence of the

imbalance. This scenario is maintained for other values of
the interspecies interactions as can be seen in Fig. 8, where
the charge gap in the thermodynamic limit decreases with
UBF , determining insulating lobes for the bosonic densities
ρB = 2

3 (cyan) and ρB = 5
6 (green), which are surrounded

by superfluid regions (white zones). The critical interspecies
interaction from which the spin-selective insulator arises is
different for each lobe, namely, U ∗

BF = 0.6 and 0.3 for ρB = 2
3

and 5
6 , respectively. Comparing Figs. 3 and 8, we note that

the attractive interactions between the fermions prohibits the
mixed Mott insulator state and facilitates the emergence of the
spin-selective insulators.

V. CONCLUSIONS

In this work we showed that a spin imbalance in mix-
tures of fermionic and bosonic atoms leads to the emergence
of fully polarized insulating phases. For this, the effect
of spin-population imbalance I = (N↓

F − N↑
F )/(N↑

F + N↓
F ) on

superfluid-insulator transitions was explored in mixtures
composed of scalar bosons and two-color fermions in the
hard-core approximation. Using the density matrix renormal-
ization group method, we calculated the bosonic chemical
potential as a function of the number of bosons and the in-
teraction parameters, building several zero-temperature phase
diagrams.

The number of incompressible states in a balanced mixture
depends on the repulsive or attractive character of the fermion-
fermion interaction. That is, a noncommensurate state is
always present regardless of the sign of UFF , while the mixed
Mott state only emerges for a repulsive interaction [66]. For
any spin-population asymmetry and repulsive interaction be-
tween fermions, we found that only one noncommensurate
plateau is affected by the imbalance, leaving the other unal-
tered regardless of the sign of the boson-fermion coupling.
The noncommensurate insulator state is divided into two spin-
selective insulator states, which are separated by a superfluid
phase.

We obtained that for a repulsive boson-fermion interac-
tion, the new incompressible states fulfill the relations ρB +
1
2ρF (1 ± I ) = 1, in terms of the global densities ρB,(F ) of the
carriers and the imbalance I . The above insulator states are
composed by a gapless state for one kind of fermion and an
insulator state for the other, with the latter satisfying a com-
mensurability relation with the bosons. Namely, in a gapless
fermion-polarized background, we have ρB + ρ

↑,(↓)
F = 1 for

the spin-selective states, indicating that the number of bosons
plus the number of one kind of fermion is commensurate with
the lattice size in each case. Special distributions of carriers
were observed in fermionic half-filling, which are signaled by
a maximum of the charge structure factor. In particular, for
an imbalance of I = 1

2 , we obtained a dimer distribution of
carriers for both insulator states.

On the other hand, attractive boson-fermion interactions
and imbalance generate two new insulator states that ful-
fill ρB + 1

2ρF (−1 ± I ) = 0, from which we established that

each spin-selective state satisfies ρB − ρ
↑,(↓)
F = 0, in a gap-

less fermion-polarized background. Note that the results for
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FIG. 9. Bosonic correlations 〈b†
0br〉 as a function of r for a

fermionic density ρF = 1
2 , imbalance I = 1

3 , repulsive fermion-
fermion interaction UFF = 6, and repulsive interspecies interaction
UBF = 10. Open brown circles, green up triangles, violet left trian-
gles, and solid orange squares correspond to the bosonic densities
ρB = 1

2 , 2
3 , 5

6 , and 3
4 , respectively.

repulsive and attractive boson-fermion coupling are related by
|μA

B(ρB)| = |μR
B(1 − ρB)|.

We expect that our results motivate further research on
Bose-Fermi mixtures where a spin imbalance plays a key role,
such as certain open fermionic systems [84,85]. In addition,
we believe that the experimental observation of the spin-
selective insulators suggested in the present investigation is an
intriguing challenge, which can be faced with state-of-the-art
cold-atom setups.
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APPENDIX: CORRELATIONS

In the main text, we explored the ground state of a Bose-
Fermi mixture composed of two-color fermions and hard-core
bosons. We found and characterized gapless and gapped
states, and expressed their location in terms of closed re-
lations. However, the former ones need a more demanding
exploration, and we denominated these regions surrounding
the insulator states as superfluid following the literature on
this subject. To show the emergence of a superfluid state for
some bosonic densities due to the imbalance, we calculate
the correlation function 〈b†

0br〉 as a function of r for different
bosonic densities. In addition, we keep the fermionic density
fixed at ρF = 1

2 , and use the imbalance and interaction param-
eters of Fig. 2(a), obtaining the results shown in Fig. 9.

Considering a balanced Bose-Fermi mixture with a
fermionic density ρF = 1

2 and repulsive interaction parame-
ters, an insulator state emerges at the bosonic density ρB = 3

4 .
However, turning on the imbalance leads to the splitting of
this insulator and to a gapless state for this particular bosonic
density. In Fig. 9, we show the evolution of the bosonic
correlation 〈b†

0br〉 as a function of r at the bosonic density
ρB = 3

4 , and we observe that the curve is similar to that for
bare bosons [86], which can be fitted by 〈b†

0br〉 ∼ |r|−K∗/2.
In fact, several fittings considering different ranges of r gave
values of K∗ > 2. This suggests that the ground state for
this bosonic density will be a polaronic Luttinger liquid with
K∗ > 2 [41]. However, more calculations are necessary to
determine a precise value of K∗, which is beyond the scope
of this article as it focuses on establishing the conditions for
the emergence of insulators (note that the characterization of
the FFLO superfluid was discussed by Singh and Orso [74]).
Also, in Fig. 9 we see that the bosonic correlations exhibit
the same behavior for the bosonic densities ρB = 1

2 , 2
3 , 5

6 , for
which an exponential decay is evidenced; this reinforces the
fact that for these densities we have insulating states. On the
other hand, for ρB = 3

4 , the correlations fulfill a power law due
to the imbalance, establishing that the spin-selective insulators
are separated by a gapless Luttinger liquid state.
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