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Many-body phases of a planar Bose-Einstein condensate with cavity-induced spin-orbit coupling
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We explore the many-body phases of a two-dimensional Bose-Einstein condensate with cavity-mediated
dynamic spin-orbit coupling. With the help of two transverse noninterfering, counterpropagating pump lasers
and a single standing-wave cavity mode, two degenerate Zeeman sub-levels of the quantum gas are Raman
coupled in a double-�-configuration. Beyond a critical pump strength the cavity mode is populated via coherent
superradiant Raman scattering from the two pump lasers, leading to the appearance of a dynamical spin-orbit
coupling for the atoms. We identify three quantum phases with distinct atomic and photonic properties: the
normal “homogeneous” phase, the superradiant “spin-helix” phase, and the superradiant “supersolid spin-
density-wave” phase. The last exhibits an emergent periodic atomic density distribution with an orthorhombic
centered rectangular-lattice structure due to the interplay between the coherent photon scattering into the
resonator and the collision-induced momentum coupling. The transverse lattice spacing of the emergent crystal
is set by the dynamic spin-orbit coupling.
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I. INTRODUCTION

A Bose-Einstein condensate (BEC) is a phase of quantum
matter with intriguing properties and no classical counterpart
[1–3]. The controllablility and tunability of atomic BECs
has seen an immense development over the past decades
such that BECs have become fundamental environments for
studying many-body effects in the quantum regime [4–6]. A
particularly fascinating research area is the study of spin-
orbit-coupled BECs both in free space [7–18] and in optical
lattices [19–30]. Spin-orbit-coupled BECs have the potential
for investigating complex phases of quantum matter, such as
topological states [31], that go beyond traditional condensed
matter physics.

Recently BECs coupled to dynamic electromagnetic fields
of optical resonators have been established as a promising
platform for investigating collective self-organizing phenom-
ena in quantum regimes under well-controlled conditions
[32]. The cavity-enhanced back-action of the BEC on the
cavity light fields and vice versa creates dynamic optical
potentials and long-range atom-atom interactions giving rise
to intriguing collective phases [33–37]. Recent milestones
in the field of many-body cavity QED with BECs include
the experimental and/or proposed realization of intriguing
nonequilibrium effects and quantum phases such as super-
solids [38–40], nontrivial spin orders [41–46], dynamical
synthetic spin-orbit coupling [47–53], and emergent qua-
sicrystalline symmetries [54]. For most of the self-ordering
phenomena the coherent resonator fields play a decisive
role in the self-organization process, while the coherence
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properties of the condensate are not substantial in the for-
mation of periodic density modulations. Hence, typically
self-organization for dilute atomic gases in optical resonators
can also be studied with cold thermal atomic clouds [55,56].
This implies that, in general, the emergent density modulation
exhibits a periodicity set via the cavity resonance wavelength.
This of course limits the realizable quantum states in such
geometries. In this work we show that for an interacting two-
component BEC in two dimensions (2D) strongly coupled to
a single standing-wave mode of a cavity phenomena beyond
this paradigm can appear.

The studied setup builds upon the recent theoretical pro-
posal for cavity-induced spin self-ordering [43] and the recent
experimental realization of a dynamic spin-orbit coupling [53]
in noninteracting BECs inside cavities, by incorporating the
two-body contact interactions and exploring their interplay
with coherent photon scattering. In particular, dynamical spin-
orbit coupling is induced in our setup for the interacting
two-component BEC via two counterpropagating pump lasers
and the standing-wave cavity mode as shown schematically in
Fig. 1. We find that the presence of the cavity has a significant
impact on the single-particle and many-body physics. Most
strikingly we identify a parameter regime where the many-
body ground-state density distribution spontaneously forms a
centered orthorhombic crystal. This density pattern emerges
as a consequence of two combined effects: coherent superradi-
ant scattering of laser photons into the cavity and matter-wave
interference of the BEC momentum components due to elastic
collisions in two dimensions. Since the off-diagonal long-
range order and interactions of the BEC simultaneously play
a crucial role in the formation of this self-ordered pattern,
our results have the potential to establish a paradigm shift
in the self-ordering of BECs in resonators. The crystalline
state possesses supersolid characteristics along the transverse
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FIG. 1. Sketch of the system. A two-component BEC in two
dimensions couples strongly to a single π mode of a standing-wave
resonator with the maximum vacuum Rabi frequency G0. Two coun-
terpropagating σ± running-wave pump lasers with Rabi rates �±

0

illuminate the atoms from the transverse direction. The microscopic
atom-photon coupling scheme is shown in the inset.

pump direction because it breaks the continuous translational
symmetry in the y direction. This phase is intimately related
to the supersolid stripe phase in one-dimensional (1D) spin-
orbit-coupled BECs in free space. However, in contrast to free
space, we find that the spin-orbit coupling and the supersolid
phase persist for a wider parameter regime. Furthermore, the
density modulation in the supersolid phase is much more pro-
nounced and multiple momentum components are populated,
which should facilitate the (destructive or nondestructive) ex-
perimental detection of the supersolid phase. In addition, the
dynamic coupling to the cavity mode also allows to distin-
guish the different phases nondestructively by measuring the
cavity field intensity.

The paper is organized as follows. First we introduce the
theoretical model in Sec. II. In Sec. III we discuss the numer-
ically obtained phase diagram. We divide the discussion into
two parts; first we focus on noninteracting atoms and show
that the presence of the cavity already changes the physics
of the system on this level. We then show that including
two-body interactions leads to the appearance of an addi-
tional phase—the “supersolid spin-density-wave” phase. The
interplay of coherent photon scattering and collision-induced
momentum coupling in this phase is then discussed. To clarify
this point, in Sec. IV we illustrate exemplary ground states
for the different phases and provide intuitive explanations for
the different phases based on the many-body Hamiltonian in
momentum space. We conclude and give an outlook on future
perspectives in Sec. V.

II. THEORETICAL MODEL

We consider a multicomponent BEC in 2D (the x-y plane)
placed inside a standing-wave optical cavity; see Fig. 1.
The bosonic atoms are assumed to have four levels with
two pseudospin ground states |↓〉 and |↑〉 and the corre-
sponding excited states |e↓,↑〉. The atoms couple to a single

resonator mode with resonance frequency ωc via the tran-
sitions |↓〉 ↔ |e↓〉 and |↑〉 ↔ |e↑〉 with a coupling strength
G(x, y) = G0 cos(kcx). kc = 2π/λc = ωc/c is the cavity mode
wave number related to the cavity wavelength λc, with c
being the speed of light. In addition, two counterpropagating
running-wave lasers with frequencies ωp+ and ωp− illuminate
the atoms perpendicular to the cavity axis (y direction; cf.
Fig. 1). These additional pump lasers drive the transitions
|↓〉 ↔ |e↑〉 and |↑〉 ↔ |e↓〉 with position dependent Rabi rates
�±(r) = �±

0 e±ikcy. Assuming large detuning of the pump and
cavity frequencies from any atomic resonances (�↓,↑ � 1)
allows the adiabatic elimination of the atomic excited states
|e↓,↑〉 and the omission of atomic spontaneous emission [43].
In this case the system resembles a spin-1/2 configuration,
where the pseudospin is coupled to the cavity mode via
two-photon Raman transitions. While this work focuses on a
generic treatment, the proposed geometry can for example be
realized using two internal sublevels |F, mF 〉 = |1,−1〉 and
|F, mF 〉 = |2,−2〉 of 87Rb atoms as in the recent experiments
in the Stanford group [42,53]. Note, however, that also other
atomic species such as 28Na or 133Cs feature Zeeman sublevels
which would allow similar couplings.

For the remainder of this work we focus on the case where
the two pseudospin states are degenerate, i.e., δ = 0, where
δ is the energy difference between the two states |↑〉 and
|↓〉. We also choose ωp+ = ωp− ≡ ωp and �↓ = �↑ ≡ �a. In
addition, we restrict our analysis to balanced pump intensities
�+

0 = �−
0 ≡ �0. Under these conditions the single-particle

spinor Hamiltonian in the rotating-wave approximation is
given in the matrix form by

ĥ =
[

p̂2

2m + â†âU (r) (â† + â) �R(r)

(â† + â) �∗
R(r) p̂2

2m + â†âU (r)

]
, (1)

where we have defined the functions U (r) = h̄U0 cos2(kcx)
and �R(r) = h̄η0 cos(kcx)eikcy, p̂ = −ih̄∇ is the canonical
momentum operator, and â (â†) is the bosonic photon an-
nihilation (creation) operators of the cavity mode. We have
also introduced the maximum potential energy per photon
h̄U0 := h̄|G0|2/�a and the maximum effective cavity pump
strength η0 := G0�

∗
0/�a.

The Hamiltonian in Eq. (1) exhibits the typical spin-orbit
coupling nature, i.e., different pseudospin components couple
to different momenta, by equal contributions of Rashba [57]
and Dresselhaus [58] couplings. Hence, the employed Raman
transitions give rise to a spin-orbit coupling similar to those
found in solid state materials where the linear crystal mo-
mentum interacts with the spin of an electron [59]. This also
implies that the canonical momentum p̂ = −ih̄∇ no longer
coincides with the kinetic momenta [3,53]

P̂↑ = p̂ + 1
2 h̄kcey,

P̂↓ = p̂ − 1
2 h̄kcey, (2)

of the two pseudospin components (ey is the unit vector along
the y direction). Note that spin-orbit coupling occurs only
along the direction of the pump lasers, i.e., the y direction.
In this direction the Hamiltonian (1) exhibits a continu-
ous screwlike symmetry, i.e., the Hamiltonian is invariant
under the unitary transformation U = ei�y( p̂y+h̄kc σ̂z/2)/h̄. This
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corresponds to a combination of a rigid translation along the y
axis by a distance �y and a simultaneous spin rotation by an
angle kc�y around the z axis.

Due to the additional coupling to the cavity, spin-orbit
coupling occurs only if the cavity mode is populated, i.e.,
〈â〉 �= 0. Hence, the Raman transitions are driven only if the
effective pump strength η0 exceeds the critical value [43],

√
Nηc =

√
− (�c − NU0)2 + κ2

�c − NU0
ωrec, (3)

where ωrec := h̄k2
c /(2m) is the recoil frequency, �c := ωp −

ωc is the cavity detuning with respect to the pump lasers,
κ denotes the cavity decay rate, and N is the total particle
number.

The many-body Hamiltonian, plus the free cavity Hamilto-
nian, in the second quantized formalism reads

Ĥ =
∫

dr�̂†ĥ�̂ − h̄�câ†â + Ĥint, (4)

with the spinor �̂(r) = [�̂↑(r), �̂↓(r)] consisting of the
single-component bosonic field operators �̂↑,↓(r). The inter-
action Hamiltonian,

Ĥint = g

2

∑
τ∈{↑,↓}

∫
�̂†

τ (r)�̂†
τ (r)�̂τ (r)�̂τ (r) dr

+ g↑↓
∫

�̂
†
↑(r)�̂†

↓(r)�̂↓(r)�̂↑(r) dr, (5)

takes into account elastic two-body contact interactions be-
tween atoms of the same pseudospin with the interaction
strength g and opposite pseudospins with the interaction
strength g↑↓.

The system’s dynamics is governed by the Heisenberg
equations of motion for the atomic and photonic field op-
erators �̂τ (r, t ) and â(t ) (in the Heisenberg representation):
ih̄∂t �̂τ (r, t ) = [�̂τ (r, t ), Ĥ ] with τ ∈ {↑,↓} and ih̄∂t â =
[â, Ĥ ] − iκ â. The non-Hermitian term ∝ −iκ in the equation
of motion for the cavity mode accounts for the loss of cavity
photons at a rate 2κ . In the mean-field approximation, where
the field operators are replaced by their expectation values
�̂τ (r, t ) → 〈�̂τ (r, t )〉 ≡ ψτ (r, t ) and â → 〈â〉 ≡ α, this re-
sults in three coupled equations for the BEC mean-field wave
functions ψ↑,↓ and the cavity-field coherent amplitude α, re-
spectively,

ih̄∂tψ↑ =
[
− h̄2∇2

2m
+ |α|2U (r) + g|ψ↑|2 + g↑↓|ψ↓|2

]
ψ↑

+2Re(α)�R(r)ψ↓, (6a)

ih̄∂tψ↓ =
[
− h̄2∇2

2m
+ |α|2U (r) + g|ψ↓|2 + g↑↓|ψ↑|2

]
ψ↓

+2Re(α)�∗
R(r)ψ↑, (6b)

ih̄∂tα = h̄[−�c − iκ + U0B]α + h̄η0S. (6c)

In the last line we introduced the bunching parameter B :=∫
dr cos2(kcx)(|ψ↑|2 + |ψ↓|2) and the spin order parameter

S := ∫
dr cos(kcx)(eikcyψ∗

↑ψ↓ + e−ikcyψ∗
↓ψ↑), characterizing

the superradiant phase transition. The total particle number
is fixed via N = ∫

dr(|ψ↑|2 + |ψ↓|2). This set of equations

again exhibits the dynamic nature of spin-orbit coupling due
to the presence of the cavity field. Since the Raman coupling
terms [last terms in (6a) and (6b)] explicitly depend on the
value of α, the spin-orbit coupling depends on the nonlinear
cavity-field dynamics governed by Eq. (6c). In addition, there
is no spin-orbit coupling below the superradiant self-ordering
phase transition. However, once the cavity mode is populated,
i.e., α �= 0, via two-photon Raman processes, the spin-orbit
coupling for the BEC sets in. In Eq. (6c) the pump term ∝ η0

depends only on the spin order parameter S , which shows
that the cavity mode can be populated only by spin-changing
Raman processes, but not via scattering from the BEC density
[50,60]. In this respect the system differs fundamentally from
common quantum-gas–cavity systems exhibiting a superra-
diant self-ordering phase transition due to photon scattering
from the atomic density distribution [32].

III. PHASE DIAGRAM

We numerically calculate the steady state of the system for
a fixed parameter set by applying a self-consistent algorithm.
For a given initial (random) value of the cavity-field amplitude
α we find the atomic ground states ψ↓,↑. With these atomic
ground states we then calculate the corresponding steady-state
cavity-field amplitude αss = η0S/(�c + iκ − U0B), obtained
by applying the steady-state condition ∂tα = 0 in Eq. (6c).
This steady-state field amplitude is again plugged back into
the atomic GP equations. The self-consistent loop continues
until the convergence. The dynamical stability of the self-
consistent ground state can then be checked by evolving it
with the set of equations given in Eq. (6). Note that all states
presented in the following are dynamically stable.

The full phase diagram of the system in the parameter plane
of the pump strength

√
Nη0 versus the intraspecies two-body

interaction strength gn is illustrated in Fig. 2. It is instructive
to analyze the phase diagram in two steps. First the generic
ground-state properties for the noninteracting case (cut for
g = g↑↓ = 0) is presented in the following and afterwards the
effect of interactions leading to the full phase diagram is dis-
cussed. A more detailed discussion of each phase is presented
in Sec. IV. The different phases can be characterized and
distinguished via three global quantities: the total spin im-
balance 〈σz〉 = ∫

dr(|ψ↑|2 − |ψ↓|2), the quasimomentum at
which the dispersion relation has its minimum, and the steady-
state cavity-field amplitude |αss|. The first two quantities are
standard quantities to characterize the different phases of spin-
orbit-coupled BECs [15], whereas the cavity-mode amplitude
characterizes the superradiant phase(s) of the system.

A. Noninteracting BEC

One fundamental implication of spin-orbit coupling is
that the energy spectrum can possess several global minima
at nonzero quasimomenta. To find the quasimomentum (or
quasimomenta) at which condensation takes place, we use a
Bloch ansatz for the wave functions ψ↑,↓(r) = eiq·ru↑,↓(r)
where the quasimomentum q lies in the first Brillouin
zone (BZ) q ∈ [−k/2, k/2]×[−k/2, k/2]. We then find the
self-consistent lowest energy state for the single-particle
problem (g = g↑↓ = 0) on a space r ∈ [0, λ]×[0, λ] for all
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FIG. 2. Many-body phase diagram for γ := (g−g↑↓)/(g+g↑↓) =
0.8 as a function of effective pump strength

√
Nη0 and interaction

strength gn (n = N/V is the total particle density). The black white
hatched region indicates the parameter regime where the density
is homogeneous (HOM) and the cavity-mode amplitude is zero
|α| = 0. In the red region where |〈σz〉| > 0 the spin-helix (SH) phase
is the ground state. In the blue region the spin imbalance van-
ishes |〈σz〉| = 0 and a supersolid spin-density-wave (SSDW) phase
is realized. The other parameters are chosen as (�c, NU0, κ ) =
(−10,−1, 5)ωrec.

quasimomenta in the first BZ. The corresponding ground state
energies as a function of the quasimomentum generate the
energy dispersion for a given parameter set. Note that due
to the nonlinear coupling to the cavity mode described via
the terms proportional to U (r) and �R(r) it is not possible
to obtain a compact analytical formula for the dispersion
relation. Exemplary single-particle energy dispersions for dif-
ferent effective pump strengths η0 are shown in Fig. 3. The
dispersion exhibits two degenerate global minima, which is
a hallmark of a spin-orbit coupling. The states corresponding
to the global minima of the dispersion (indicated by blue dot
for qmin

y > 0 and red diamond for qmin
y < 0 in Fig. 3) are the

possible ground states for the given parameter set.
In Fig. 4 the steady-state cavity-field amplitude and the

y components of the quasimomenta at which the dispersion
has its minimum qmin

y are shown as a function of the effective
pump strength η0. The energy dispersion exhibits the typical
double-minima nature known from spin-orbit coupling in free
space [9]. However, due to the additional coupling to the
cavity, spin-orbit coupling sets in only beyond the critical
pump strength. For pump intensities below the critical value
the cavity-mode amplitude remains zero [see Fig. 4(a)] and
the dispersion relation possesses two minima at the edge of the
BZ. If the intensity of the Raman beams exceeds the critical
value given in Eq. (3), the cavity mode is populated due to
the second-order superradiant phase transition [see Fig. 4(a)].
The numerically obtained value for the critical pump strength√

Nηnum
c = 3.43ωrec coincides (up to three significant digits)

exactly with the analytical value
√

Nηc = 3.43ωrec calculated
from Eq. (3). The nonvanishing cavity field amplitude im-
plies that beyond the critical pump strength ηc a dynamical

FIG. 3. Exemplary contour plots of the single-particle energy
dispersion for

√
Nη0 = (1.0, 3.8, 5.0, 8.0)ωrec, respectively, (a)–(d).

The blue dot and the red diamond mark the two minima of the
dispersion. The functional dependence of these minima on η0 is
illustrated in Fig. 4. All other parameters are the same as in Fig. 2.

spin-orbit coupling emerges [53]. As a result, the single-
particle energy dispersion exhibits two symmetric minima
inside the first Brillouin zone due to the spin-orbit coupling.
The position of the minima changes along the y direction with
increasing pump strength [see blue dots and red diamonds in
Figs. 3(b)–3(d) and 4(b)]. Each of those minima is capable
of hosting a BEC and the system chooses spontaneously in
which of the two minima to condense, therefore breaking the
degeneracy of the single-particle spectrum.

Figure 4(b) unveils another important effect of the dynamic
cavity field on the single-particle physics. In contrast to the
free space case where the dependence of qmin

y as a function of
the pump strength η0 is always concave, the curve shown in
Fig. 4 is convex, ∂2qmin

y /(∂η2
0 ) > 0. The reason for this change

in curvature is the dynamic coupling to the cavity, which gives
rise to the terms ∝ |α|2 cos2(kcx) and ∝ Re(α) cos(kcx) in the
Hamiltonian in Eq. (1). These terms modify the dispersion
relation correspondingly, resulting in the change of curvature.
The change in curvature has an important physical conse-
quence. In the free space case the concave nature of the curve
results in the fact that the quasimomentum at which condensa-
tion takes place is zero for sufficiently strong Raman coupling.
This results in the so-called zero momentum phase where
the dispersion exhibits only a single minimum. In the cavity-
induced spin-orbit coupling case studied here, in contrast, this
single-minimum phase occurs only at η0 → ∞. That is, the
double minima in the single-particle energy dispersion—the
hallmark of spin-orbit coupling—persists for a much wider
parameter regime. This also implies that the spin imbalance
〈σz〉 is always nonzero in the single-particle regime. Another

023302-4



MANY-BODY PHASES OF A PLANAR BOSE-EINSTEIN … PHYSICAL REVIEW A 103, 023302 (2021)

FIG. 4. Superradiant phase transition and the emergence of a
dynamical spin-orbit coupling in the single-particle regime. (a) Re-
scaled steady-state cavity-field amplitude (orange circles) as a
function of the pump strength. The numerically obtained critical
pump strength is

√
Nηc = 3.43ωrec. (b) The y components of the

quasimomenta qmin
y at which the dispersion relation has its minima as

a function of the pump strength. Blue circles (red diamonds) indicate
the minima position for the positive (negative) quasimomentum;
see also Fig. 3. The solid lines are a guide for the eye. All other
parameters are the same as in Fig. 2.

important feature, which can be seen from the energy disper-
sions in Fig. 3, is that for increasing pump strength η0 the
bands become flatter in the qx direction. This results from
the increasing depth of the emerging cavity potential which
increases the effective mass in the x direction.

This analysis shows that in the single-particle regime the
system exhibits two distinct phases which we call the normal
homogeneous (HOM) phase and the superradiant spin-helix
(SH) phase. In the first phase (HOM) the BEC is homoge-
neous in both x and y directions and the cavity-field amplitude
is zero. No spin-orbit coupling occurs in this regime. In the
latter case (SH) the cavity mode is populated and spin-orbit
coupling emerges. Since the cavity mode is populated the
density and spin textures are modulated in the x direction and
due to the cavity-induced spin orbit coupling the spin exhibits
a helix in the y direction without any density modulations. For
a detailed discussion of the properties of this phase we refer
to Sec. IV A.

B. Interacting BEC

To obtain the many-body phase diagram for the interacting
BEC it is no longer possible to apply the Bloch ansatz as in the
previous section. Therefore, obtaining the many-body phase
diagram is numerically challenging because it requires a very
good momentum space resolution along the y direction (the
direction along which the spin-orbit coupling occurs). To this
end we find the BEC ground state using the self-consistent
algorithm by performing an imaginary time evolution of the
coupled Gross-Pitaevskii equations, Eqs. (6a) and (6b), for

x ∈ [0, λ] and y ∈ [0, 80λ] with periodic boundary conditions.
This implies a quasimomentum resolution �qy = 2π h̄/80 =
0.08h̄ in the y direction, which allows us to sufficiently resolve
the two minima in the energy dispersion. We introduce the di-
mensionless parameter γ = (g − g↑↓)/(g + g↑↓), which tunes
the relative strength of intra- and interspecies interactions. In
fact, the specific choice of γ has no significant effects on the
fundamental physics presented in this work and we, therefore,
fix it to γ = 0.8.

The phase diagram in Fig. 2(a) exhibits three phases. For
certain parameter regimes the HOM and the SH phases, which
were already identified in the single-particle regime, remain
the ground states in the interacting case as indicated by the
black-white hatched (HOM) and red (SH) regions in Fig. 2(a).
Note that the two-body interactions also shift the superradi-
ant threshold to larger pump-strength values [green curve in
Figs. 2(a) and 2(b)]. In the SH phase the spin imbalance is
always nonzero 〈σz〉 �= 0 (red color in the phase diagram).
However, the two-body interactions give rise to an additional
state—the supersolid spin-density-wave (SSDW) phase. In
contrast to the HOM and the SH phase, the spin imbalance
vanishes, 〈σz〉 = 0, in this phase as indicated by the blue color
code in Fig. 2(a). The reason for the zero spin imbalance is
that due to the interactions the atoms condense in an equal
superposition of the two minima in momentum space to min-
imize the total energy. This underlying mechanism leading to
this additional phase is reminiscent of the mechanism result-
ing in a stripe phase in interacting spin-orbit-coupled BECs
in free space [10,17]. However, the dynamic coupling of the
BEC to the cavity leads to substantially different ground state
properties as we will show in the following.

We note that the many-body phase diagram can also be
explored nondestructively via the cavity field, as can be seen
from Fig. 5. This is in stark contrast to free space, where the
back-action of the BEC onto the external light fields is negligi-
ble. In optical cavities, however, the dynamic back-action onto
the cavity field gives rise to this uniqe feature. We find that
the phase transition between the HOM and the SH and SSDW
phases is always second order [see Fig. 5(c)]. However, at the
SH to SSDW transition the absolute value of the cavity fields
jumps [see Fig. 5(b)], indicating a first-order phase transition
between the SH and the SSDW states. The strong back-action
of the BEC state onto the cavity mode also makes this system
a potential candidate for quantum metrological devices with
cavity enhanced precession [74,75].

IV. GROUND STATES

We now turn to the presentation of typical examples
of the various phases discussed above. To understand the
ground state properties and underlying mechanisms resulting
in different states, we rewrite the many-body Hamiltonian in
momentum space. It is obtained from Eqs. (4) and (5) by
writing the field operators as

�̂τ (r) = 1√
V

∑
Pτ

ĉPτ ,τ eiPτ ·r, (7)

where ĉPτ ,τ (ĉ†
Pτ ,τ

) is a bosonic annihilation (creation) oper-
ator destroying (creating) a particle with spin τ ∈ {↑,↓} and
kinetic momentum Pτ . Note that due to spin-orbit coupling
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FIG. 5. The absolute value of the cavity-field order parameter |α|
(related to S) in the same parameter space as the phase diagram in
Fig. 2. The quantum phase transitions can be monitored via probing
the cavity mode amplitude |α|. Panel (b) shows horizontal cuts of the
field amplitude phase diagram shown in panel (a) for fixed

√
Nη0 =

(3.92, 4.02, 4.11)ωrec (solid blue, green dashed, red dash-dotted).
Panel (c) shows vertical cuts for gn = (3.63, 4.12, 4.88)ωrec. The
cavity field amplitude exhibits a jump at the SH to SSDW transition.
All other parameters are the same as in Fig. 2.

the kinetic momenta P↑ and P↓ are not equal in general;
cf. Eq. (2).

The many-body Hamiltonian in momentum space is recast
as Ĥ = Ĥ0 + Ĥint, with the first term Ĥ0 describing the nonin-
teracting part,

Ĥ0 =
∑

τ∈{↑,↓}

[
Ĥ τ

kin + Ĥ τ
pot

] + Ĥ↑↓
Raman + Ĥ↓↑

Raman + Ĥcav, (8)

where

Ĥ τ
kin =

∑
Pτ

h̄2|Pτ |2
2m

ĉ†
Pτ ,τ ĉPτ ,τ ,

Ĥ τ
pot = h̄U0

4
â†â

∑
Pτ

∑
s=±1

ĉ†
[Pτ +s2h̄kcex],τ cPτ ,τ ,

Ĥ↑↓
Raman = h̄η0

2
(â† + â)

∑
P↓

∑
s=±1

ĉ†
[P↑+h̄kc (sex+ey )],↑ĉP↓,↓,

Ĥ↓↑
Raman = h̄η0

2
(â† + â)

∑
P↑

∑
s=±1

ĉ†
[P↓+h̄kc (sex−ey )],↓ĉP↑,↑,

Ĥcav =
(

h̄U0

2
− �c

)
â†â, (9)

and ex,y are the unit vectors in the x and y directions. Ĥ τ
kin takes

into account the kinetic energy of the two components, the
second line Ĥ τ

pot describes the cavity potential, and the Raman

processes are taken into account by Ĥ↑↓
Raman and Ĥ↓↑

Raman. Note
that these latter terms are different compared to typical laser-
induced spin-orbit-coupled BECs in free space since they are a
result of the double-�-coupling configuration employed here.
This scheme couples the standing wave cavity field in the x di-
rection and the Raman lasers in the y direction, giving rise to a

FIG. 6. Graphical representation of the different terms in the
single-particle Hamiltonian in Eq. (9). The red arrows indicate pro-
cesses governed by the potential Hamiltonians Ĥ τ

pot and the green

arrows indicate Raman processes described by Ĥ↑↓
Raman and Ĥ↓↑

Raman.
Note that due to the spin-orbit coupling in general P↑

y differs
from P↓

y .

nontrivial 2D momentum space distribution for the atoms; cf.
Fig. 6. The coupling to the cavity mode also makes the terms
Ĥ↑↓

Raman and Ĥ↓↑
Raman nonlinear and dynamic as it is indicated by

the presence of the photonic real quadrature â + â†. The last
term Ĥcav is the the cavity Hamiltonian. The kinetic energy
Hamiltonian in Eq. (9) does not explicitly depend on the
cavity mode â whereas the other terms all contain the cavity
mode operator â. This again exhibits the dynamic nature of
spin-orbit coupling. Once the cavity mode is populated all
terms in Eq. (9) contribute and spin-orbit coupling sets in.

Figure 6 shows a graphical interpretation of the different
terms contained in the Hamiltonian H0 for both spin compo-
nents. The interaction of atoms and cavity photons results in
a ±2h̄kc momentum exchange along the cavity axis (i.e., the
x axis). This results in the population of the corresponding
two additional momentum states indicated in red in Fig. 6.
If a photon is scattered from the pump lasers into the cavity
(cf. H↓↑

Raman) a momentum transfer of ±h̄kc is imposed in both
x- and y-directions. This processes (green arrows in Fig. 6)
results in the population of two additional momentum states
indicated in green in Fig. 6. These terms also show that
photons can be scattered into the cavity only via a spin-flip
process |↑〉 ↔ |↓〉, but not via the BEC density.

The two-body interaction Hamiltonian for two particles
with two momenta Pτ

1,2 exchanging a momentum K takes the
form

Ĥint = g

2

∑
τ∈{↑,↓}

∑
Pτ

1 ,Pτ
2 ,K

ĉ†
Pτ

2 −K,τ
ĉ†

Pτ
1 +K,τ

ĉPτ
1 ,τ ĉPτ

2 ,τ

+ g↑↓
∑

P↑
1 ,P↓

2 ,K

ĉ†
P↓

2 −K,↓ĉ†
P↑

1 +K,↑ĉP↑
1 ,↑ĉP↓

2 ,↓. (10)
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FIG. 7. Typical ground state for the spin-helix (SH) phase for
η0 = 4.0ωrec and gn = 0ωrec. Panels (a) and (b) show the two
possible momentum space configurations. Orange circles corre-
spond to the psuedospin-down component |↓〉 and blue circles to
the pseudospin-up component |↑〉. The size of the circles visual-
izes the population of the corresponding momentum state. Panels
(c) and (d) show the position-space density distribution obtained
from the momentum space distribution shown in panel (b) for the
two pseudospin components. The particle number in the |↑〉-state is
N↑ = 0.71N and in the |↓〉-state N↓ = 0.29N . The other parameters
are the same as in Fig. 2.

The Hamiltonians (9) and (10) allow us to get an intuitive
picture that which momentum states can be populated via
photon scattering processes. However, this does not imply that
all these momentum components are ultimately populated. As
we will show in the following the intuitive argument based on
the analysis of the different terms of the many-body Hamil-
tonian in momentum space is in good agreement with the
numerically obtained ground-state momentum distributions.

A. Spin-helix phase

In the SH phase the particles condense in one of the two
minima of the dispersion relation. Hence, one of the two con-
figurations shown in Fig. 6 is realized randomly. In Figs. 7(a)
and 7(b) the two numerically obtained momentum state distri-
butions for the two possible ground states are shown. They
perfectly coincide with the intuitive picture based on the
Hamiltonian in momentum space (cf. Fig. 6). Note that due
to the Raman processes some particles are transferred from
|↓〉 → |↑〉 or |↑〉 → |↓〉 but the spin imbalance 〈σz〉 is still
always nonzero because the population of the momentum
component corresponding to the initial condensate always re-
mains bigger than the two momentum states populated via the
Raman processes; see Fig. 2. The y component of the kinetic
momentum at which condensation takes place is fixed by the
value of the quasimomentum corresponding to the energy-
dispersion minimum (or minima). Following from the relation
given in Eq. (2) the y component of the kinetic momentum for
a given quasimomentum qy for each spin component can be
calculated via P↑

y = qy + h̄kc2 and P↓
y = qy − h̄kc2.

FIG. 8. Exemplary spin texture for the spin-helix (SH) phase. It
is visualized via the projection of the normalized spin vector S̃(r)
in the S̃x-S̃y plane (d). The color indicates the spin angle ϕ(r) =
tan−1(S̃y/S̃z ). The spin performs a full spiral (i.e., a 2π rotation)
along the y direction in the x-y plane. The parameters are the same as
in Fig. 7.

Typical real-space density distributions of the two pseu-
dospin components in the SH phase are shown in Figs. 7(c)
and 7(d). Due to the emergent cavity potential a λ/2-periodic
density modulation along the x axis is formed, but no density
modulation along the y axis occurs. Therefore, the SH phase
does not break the continuous symmetry of the Hamiltonian
along the y direction. The spin texture forms a helix in the y
direction as illustrated in Fig. 8, where we plot the projection
of the normalized total spin

S̃(r) = S(r)
/√

S2
x (r) + S2

y (r) + S2
z (r), (11)

on the S̃x-S̃y plane. Here S(r) = 〈Ŝ(r)〉 is the local mean-field
spin vector, with Ŝ(r) = �̂†(r)σ�̂(r) (σ is the vector of the
Pauli matrices). The color coding in Fig. 8 corresponds to the
spin angle ϕ(r) = tan−1(Sy/Sz ). It exhibits the Z2-symmetry
breaking in the spin domain [43]. This phase is intimately re-
lated to the plane-wave phase in 1D spin-orbit-coupled BECs
in free space. Note that the SH phase can also be realized
in the nondegenerate case (δ �= 0) where the energies of the
two pseudospin states |↓〉 and |↑〉 do not coincide. This is
the regime where previous theoretical [43] and experimental
works [53] focused on. Of course, in this case only one of
the two states shown in Figs. 7(a) and 7(b) can be realized
depending on the sign of δ.

B. Supersolid spin-density-wave phase

The two-body interaction Hamiltonian (10) adds two ad-
ditional terms to the many-body Hamiltonian, which give
rise to interaction induced pattern formation and spontaneous
symmetry breaking in the y direction. The underlying process
for this pattern formation is the coherent multimode mixing of
coherent BEC momentum components. This effect is a very
fundamental property of Bose-Einstein condensates, often
also referred to as “matter-wave interference.” This genuine
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FIG. 9. Graphical illustration of the effects leading to the SSDW phase. (a) The system condenses in a superposition of the two possible
cases shown in Fig. 6. (b) Coherent multimode mixing of the different momenta due to the two-body intraspecies interactions ∝ g results
in the population of additional momentum states (red circles). This leads to a periodic density modulation with an orthorhombic centered
rectangular-lattice pattern.

quantum effect, which is directly related to the off-diagonal
long-range order, i.e., the coherence of the BEC, ultimately
leads to the breaking of the continuous symmetry and the
emergence of an orthorhombic centered rectangular-lattice
density pattern in some parameter regimes; cf. Fig. 10 below.

In the previous section we discussed two possible momen-
tum space configurations for the SH phase. In the SSDW

phase the particles condense into an equal superposition of
the two cases shown in Fig. 6 due to the interspecies interac-
tions. Based on the intuitive discussion above this results in
a momentum distribution as sketched in Fig. 9(a). Note that
this also implies a vanishing spin imbalance 〈σz〉 = 0 as it
was already suggested by the many-body phase diagram in
Fig. 2. This feature is reminiscent of the mechanism leading

FIG. 10. Exemplary momentum state populations (a), (b) and the corresponding density distributions (c), (d) in the SSDW for two different
pump strengths η0 = 4.0ωrec (left), 4.5ωrec (right) and gn = 10ωrec for the pseudospin |↑〉 component. The green dots mark the density maxima.
The blue (orange) curves at the boundary of the 2D plot show cuts through the density distributions along the white dashed lines on the x (y)
direction. The density distribution forms a centered orthorhombic lattice spanned by the vectors a1 and a2. For increasing pump strengths the
periodicity in the y direction becomes larger (smaller) in position (momentum) space due to the spin-orbit coupling [cf. Fig. 4(b)]. The vectors
bi are the reciprocal lattice vectors determined by ai. An exemplary spin texture for the region indicated in yellow in panel (d) is shown in
Fig. 11. Note that for the simulation the momentum space is cut off at Px,y = ±8h̄kc. The other parameters are the same as in Fig. 2.
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to a periodic stripe phase in 1D spin-orbit-coupled BECs in
free space [9–12]. However, it should be emphasized that
the dynamic coupling to the standing wave cavity field via
the double-� configuration results in the dynamic population
of different multiple momentum states compared to previous
work in free space based on �-type Raman coupling schemes.
The nontrivial 2D momentum space configurations implied by
the particular coupling scheme employed here (see Fig. 1) are
necessary in order to generate a 2D orthorhombic centered
rectangular-lattice density structure, as we will discuss in the
following. For the sake of simplicity, we focus on only the |↑〉
component. The same arguments apply to the |↓〉 component
as well. The only difference in this case is that the momentum
space distribution is mirrored around the zero line of the Px

axis. However, this results in exactly the same density distri-
butions for the pseudospin |↓〉 component.

The condensation in the equal superposition state results in
the population of multiple momentum states of the same pseu-
dospin component; see blue and orange circles in Fig. 9(a). In
particular momentum states with different momenta in Py di-
rection are now populated for the same spin component, which
was not the case in the SH phase. These momentum compo-
nents can be coherently mixed via the intraspecies interaction
Hamiltonian. This coherent multimode mixing process is de-
scribed by the first term of the Hamiltonian (10) and it results
in the population of additional momentum states as shown by
red circles in Fig. 9(b). For example, the momentum exchange
during the (repulsive) s-wave scattering process between par-
ticles in two momentum states with a momentum difference
h̄|Ki| [solid yellow arrows in Fig. 9(b)] results in the creation
of two particles with momenta ±h̄Ki as it can be directly
seen from Eq. (10). This coherent collisional coupling gives
rise to the circles with red filling in Fig. 9(b). Higher order
couplings result in even additional momentum states indicated
by the white circles with red border in Fig. 9. This mechanism
can also be understood as four-wave mixing of matter waves
[61–64].

Typical momentum and density distributions for the
SSDW phase are shown in Fig. 10. The momentum space
distributions resemble the intuitive picture depicted in
Fig. 9(b). Indeed additional momentum states are populated
in the ground state due to the two-body interactions; see
Figs. 10(a) and 10(b). The corresponding density pattern
breaks the continuous symmetry in the y direction and forms
a centered orthorhombic lattice where the unit cell is spanned
by the lattice vectors a1 and a2. The corresponding reciprocal
lattice vectors are defined as b1 = 2π [a2×a3]/[a1 · (a2×a3)],
b2 = 2π [a3×a1]/[a1 · (a2×a3)] and b3 = 2π [a1×a2]/
[a1 · (a2×a3)] with a3 = ez := (0, 0, 1).

The absolute values |a1| and |b1| are set by the cavity
potential (i.e., the cavity wave length λc). However, due to
the different minimum positions of the energy dispersion
(cf. Fig. 3), the periodicity of the density distribution in the
y direction changes and |a2| (|b2|) increases (decreases) for
growing pump strengths. Note that the periodicity in the y
direction is solely governed by the quasimomenta correspond-
ing to the minima of the energy dispersion (see Fig. 4). This
is fundamentally different from other self-organization phe-
nomena which solely rely on the build-up of a superradiant
optical lattice. In this case the lattice spacing in the x and

y direction is in general a multiple of the cavity resonance
wavelength λc. However, this is not the case in the dynamic
spin-orbit-induced many-body phase discussed in this section.
Since the emergent density distribution shown in Figs. 10(c)
and 10(d) spontaneously breaks the continuous symmetry in
the y direction, the system has supersolid properties [65]. The
formation of the SSDW phase has certain analogies to the
steering of matter-wave superradiance with an optical cavity
[66]. However, due to the presence of spin-orbit coupling the
periodicity in the y direction is no longer solely fixed by the
cavity resonance wavelength. Figure 10 also suggests that due
to the nontrivial coupling to the cavity the interaction induced
many-body phase has different properties than the stripe phase
which can be realized in spin-orbit-coupled BECs in free
space [9–12]. Note that a 2D treatment is crucial to obtain
the correct state in the SSDW regime.

The SSDW phase emerges due to two fundamental proper-
ties of the system: coherent scattering of photons and coherent
multimode mixing of the BEC momentum components. The
former results in cavity-induced spin-orbit coupling and the
population of the momentum states shown in Fig. 9(a).
The latter couples these different momentum states due to
two-body interactions, which results in nontrivial density dis-
tribution; see Figs. 9(b) and 10. Consequently, the coherence
of the condensate plays a crucial role in the formation of
the periodic density distribution. In this respect the studied
system differs substantially from other systems exhibiting
self-ordering in optical resonators [32]. In most systems it is
the coherent cavity field forming an emergent optical lattice,
which results in a self-organized periodic density pattern,
hence the coherence of the BEC and two-body interaction
do not play a major role [67]. Therefore, cold thermal gases
can also exhibit self-ordering if they interact with a coherent
cavity field. This, however, is no longer true in the case of the
SSDW phase presented here. For the periodic density forma-
tion discussed here, both processes—the coherent scattering
of photons into the cavity and the coherence of the BEC
momentum components as well as the two-body interactions
resulting in multimode mixing—are crucial. A related pattern
formation process in a BEC via multimode mixing of different
momentum states was also experimentally observed recently
in a driven BEC with modulated interaction strengths [68].
The formation of the density pattern in our model also shares
some aspects of the formation of supersolid droplets in dipolar
BECs where the combination of long-range dipolar interac-
tions and local repulsive interactions results in stable droplet
solutions [69–72]. In fact, the momentum mixed phase can
also be understood as a bosonic version of an FFLO (Fulde,
Ferrell, Larkin, and Ovchinnikov) phase [73].

The additional density modulation along the y direction
also changes the spin texture by changing the length of the
spin vectors |S̃(r)| locally; see Fig. 11. In other respects,
the spin textures still exhibit the spiral nature in the y direc-
tion. However, at the regions around the density minima the
spin spiral is altered significantly and it exhibits a jump in
the spin direction ∝ 2π . This could be due to the interplay
between cavity-mediated global spin interactions [43] and
two-body collision-induced local spin interactions, which its
investigation goes beyond the scope of the present publication
and will be considered elsewhere.
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FIG. 11. Projection of the normalized spin vector S̃(r) in the
S̃x-S̃y plane for the region indicated in yellow in Fig. 10(d) in the
SSDW phase for η0 = 4.5ωrec. The other parameters are the same as
in Fig. 2.

V. CONCLUSIONS AND OUTLOOK

In conclusion, the theoretical analysis of the single-particle
and many-body properties of a planar spinor BEC coupled to
a single mode of a standing-wave resonator reveals a very rich
phase diagram. The presence of the cavity alters the physics
substantially compared to free space spinor BECs. On the
single-particle level the dynamic cavity potential modifies the
energy dispersion such that the region where the dispersion
exhibits two minima with different quasimomenta extends
over a much larger parameter regime compared to free space
case. For the interacting BEC the additional momentum com-
ponents populated due to coherent photon scattering into the
cavity forms the basis of an additional transverse periodic den-
sity wave resulting in a 2D centered orthorhombic lattice for
certain parameters. In contrast to conventional cavity-induced
self-ordering [32], this pattern formation is due to the combi-
nation of coherent photon scattering into the cavity mode and
coherent momentum mixing via local two-body collisional
interactions. Hence, the nonlinear coupling of ultracold two-
component quantum gases to optical resonators in a double-�
configuration allows the realization of states of quantum mat-

ter which are not accessible in free space. As collisions in
the studied setup do not work against density-wave order but
are essential to create diagonal order, our findings can lead to
a paradigm shift in the self-ordering of BECs in resonators,
where the off-diagonal long-range order and interactions of
the BEC play a crucial role.

The experimental geometry to study the presented phe-
nomena is up to some minor modifications in the laser
geometries already realized in several laboratories. Still the
experimental realization requires good control of the interac-
tion strength, which is a challenge to be overcome in order to
realize the predicted SSDW phase. Nevertheless, we believe
that the predicted phase diagram can be studied in state-of-
the-art experiments. In general, even more complex pattern
formation could be observed by taking into account more
resonator modes, more atomic levels, and/or different pump-
laser geometries. The studied setup also exhibits the potential
of cavity-QED systems for implementing dynamical artificial
gauge fields for neutral atoms. The setup also has applications
in quantum metrology. The highly nonlinear coupled dynam-
ics of light and matter in many-body cavity QED systems
makes them a candidate for very precise nondestructive quan-
tum sensors [75,76,78]. In the particular case presented in this
work, the supersolidity of the SSDW phase along the Raman
beam direction (y direction) can give rise to a very precise
acceleration sensor similar to the one outlined in Ref. [77]. In
addition, the strong sensitivity of the cavity mode amplitude
on the population imbalance between the two pseudospin
ground states also allows very precise magnetic field sensing
with minor modifications to the studied setup [74].
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