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Numerical and laboratory attoclock simulations on noble-gas atoms
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We conduct a systematic theoretical study of strong field tunneling ionization of noble-gas atoms, from He
to Kr, by elliptically polarized laser pulses in the so-called attoclock setup. Our theoretical model is based on
a numerical solution of the time-dependent Schrödinger equation in the single active electron approximation.
We simulate laboratory measurements utilizing few optical cycle pulses to benchmark our calculations against
experiment. We further conduct “numerical attoclock” simulations with short, nearly single-cycle pulses to test
various tunneling ionization models. We examine the attoclock offset angles as affected by the target orbital
structure and the laser pulse intensity. Finally, we exclude a finite tunneling time scenario and attribute the
attoclock offset angle entirely to the Coulomb field of the ion remainder as was recently demonstrated for the
hydrogen atom [U. S. Sainadh et al., Nature (London) 568, 75 (2019)].
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I. INTRODUCTION

Tunneling ionization of noble-gas atoms by circularly or
elliptically polarized laser pulses has been studied actively
over the past decade. It has been suggested that the photo-
electron momentum distribution (PMD) following such an
ionization process can be used for mapping orbital structure
of the target [1]. The use of circularly polarized light rather
than linear polarization minimizes rescattering and intercycle
interference to produce two-dimensional PMD images with a
clear signature of the angular orbital structure [2]. Electron
momentum imaging with circular or elliptical light can also
be employed for testing various tunneling ionization scenarios
[3,4]. Another major use of PMDs with elliptical polarization
is the so-called attoclock setup aiming to resolve the tunnel-
ing time that a photoelectron spends under the barrier [5–7].
“Improved” attoclocks driven by two laser pulses (double-
handed attoclocks) have also been proposed [8,9]. Results
of earlier and more recent measurements of tunneling time
in noble-gas atoms [10–12] are a subject of the continuing
debate [13,14]. Meanwhile, the cleanest attoclock measure-
ment on the atomic hydrogen has effectively eliminated a
finite tunneling time scenario [15]. Another interesting ef-
fect discovered in tunneling ionization of noble-gas atoms
with circular light is its strong dependence on the angular
momentum projection of the target orbital [16]. It appears
that ionization with a light wave counter-rotating with the
electron cloud has a strong propensity over the corotating
one. This effect can be used to produce nearly complete
spin polarization of the photoelectron beam [17,18]. Such
a strong angular momentum dependence can also be ob-
served in the Wigner time delay [19] and the attoclock offset
angles [20–22].

Despite this rich physics that can be probed by attoclock
experiments on noble-gas atoms, only very few measurements
have been reported to date on heavier atoms beyond helium

[7,9,12]. This makes a compelling motivation for a systematic
attoclock investigation across a series of target atoms in a wide
range of field intensities. Such experimental investigation is
currently underway [23]. To guide this investigation, we con-
duct a systematic theoretical study of tunneling ionization of
noble-gas atoms, from He to Kr, in the attoclock setup. In
our modeling, we simulate experimental parameters similar
to those employed previously in the atomic hydrogen mea-
surement [15]. We study PMD projected on the polarization
plane of a close to circular (ellipticity ε = 0.84) laser light
with the pulse duration of several optical cylces (FWHM =
6.8 fs at 770 nm). We model this process by solving the
time-dependent Schrödinger equation (TDSE) in the single
active electron (SAE) approximation. Beyond the SAE and
the usage of a localized numerical one-electron potential, our
theoretical approach is free from any further approximations
and thus it provides an accurate nonperturbative description of
electron ionization dynamics. We simulate the experimental
PMD and observe a close resemblance between the measured
and simulated electron momentum distributions. Because of
our usage of multicycle laser pulses, the simulated PMD’s
have complex structure with a manifold of concentric above
threshold ionization (ATI) rings. These rings are blurred in
the experiment because of the focus volume averaging effect.
In theory, each ATI ring has its angular maximum shifted
slightly relative to its neighbors [24]. Radial momentum inte-
gration over the ATI structure results in an angular distribution
which deviates from a simple Gaussian shape that makes
an accurate determination of the attoclock offset angle less
straightforward. In comparison, the PMD with very short,
circular polarized, nearly single-cycle pulses is much simpler.
In this case, the attoclock offset angle can be uniquely and
accurately identified. Even though these short pulses cannot
be readily deployed in laboratory studies, such “numerical
attoclock” simulations are very informative and can be used
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for testing and verification of various tunneling ionization
scenarios [25–29]. In this work, we also conduct numerical
attoclock simulations on noble-gas atoms and investigate the
orbital structure effect on the magnitude of the PMD and
the attoclock offset angle. The former effect is explained
within the semiclassical saddle-point method (SPM) [16,30].
To explain the latter effect, we employ the classical Keldysh-
Rutherford (KR) model [28] and relate a strong dependence
of this angle on the angular momentum projection of the
target orbital with the velocity of the photoelectron exiting
the tunnel. Finally, we modify the one-electron potential by
reducing the asymptotic charge of the ion remainder while
keeping the inner part of this potential intact. The attoclock
offset angle in such a modified potential becomes very close
to zero. This effectively excludes a finite tunneling time sce-
nario and attributes the attoclock offset angle entirely to the
Coulomb field of the ion remainder as was recently shown for
the hydrogen atom [15].

The rest of the paper is organized into the following sec-
tions. In Sec. II A we outline our computational techniques
and in Sec. II B we present our semiclassical and classical
models. In Sec. III we discuss and interpret our main numeri-
cal and analytical findings. Finally, we conclude in Sec. IV by
outlining further possible extensions of this study.

II. THEORETICAL MODELING

A. Numerical techniques

We solve numerically the TDSE

i∂�(r, t )/∂t = [Ĥatom + Ĥint (t )]�(r, t ), (1)

where Ĥatom describes a field-free atom and contains a lo-
calized one-electron potential. The interaction Hamiltonian is
written in the velocity gauge

Ĥint (t ) = A(t ) · p̂, E(t ) = −∂A/∂t . (2)

Here and throughout, the atomic system of units is in use such
that e = m = h̄ = 1. The vector potential in Eq. (2) is defined
by the following expression:

A(t ) = A0√
ε2 + 1

cos4

(
ωt

2N

)[
ε cos(ωt + φ) ex

sin(ωt + φ) ey

]
. (3)

Here, we introduce the ellipticity parameter ε, the angular
frequency ω, and the carrier envelope phase (CEP) φ. The
pulse length is parametrized with the number of optical cycles
N and the envelope function f (t ) vanishes for |t | � Nπ/ω.
The (mean) field intensity is given by I = (ωA0)2 and the
frequency ω is taken to correspond to 770 nm wavelength.
The multicycle pulses with ε = 0.84, N = 5, and φ = 0, π

were employed to model the ongoing experiment [23]. As in
this experiment, the field intensity was fixed for each atom and
incremented from the heaviest Kr to the lightest He to com-
pensate for the increasing ionization potential Ip and to keep
the corresponding tunnel width Ip/E approximately constant.
A selection of the fixed intensities is shown in Table I. For
numerical attoclock simulations, the single-oscillation pulses
at 800 nm were employed by selecting ε = 1, N = 2, and
φ = 0 as in [29]. Because the numerical attoclock simulations
are much less time consuming, a wide range of the field
intensities were spanned for each of the target atoms.

TABLE I. The laser pulse intensity I (in units of 1014 W/cm2)
selected for laboratory attoclock simulations on various target atoms
as guided by the ionization potential Ip (shown in Rydbergs). The
corresponding Keldysh parameters γ are also displayed.

Ip I, 1014×
Atom (Ry) W/cm2 γ

He 1.81 4.0 0.75
Ne 1.59 3.6 0.71
Ar 1.16 3.0 0.69
Kr 1.03 2.65 0.69
H 1 2.5 0.70

The TDSE (1) was solved by two different numerical tech-
niques: the spherical-coordinate implicit derivatives (method)
(SCID)-TDSE [31] and the split-operator method (SOM) [32].
To extract the ionization amplitudes from the calculated wave
function without the explicit boundary conditions, two dif-
ferent methods were also used: the ISURF method [33] and
the t-SURFFC method [34], respectively. Both methods belong
to the family of the time-dependent surface flux methods (t-
SURFF).

The SCID-TDSE/ISURF method was used previously
for the hydrogen attoclock simulations [15]. Both SCID-
TDSE/ISURF and SOM/t-SURFFC methods were employed for
numerical attoclock simulations [29]. The two TDSE codes
[32,33] were benchmarked against each other and their results
were found to be very close.

The solution of TDSE (1) was sought with the initial
condition �nlm(r, t = −πN/ω) = ψnlm(r) , where the set of
quantum numbers n, l, m defines the bound target orbital.
The photoelectron momentum distribution for the given initial
state is

Pm(k) = |〈ϕk(r)|�nlm(r, t → ∞)|〉|2. (4)

Here, the indices n, l are dropped on the left for brevity of
notations. Because of an exponential decrease of the ion-
ization probability with an increasing binding energy, the
dominant contribution to the PMD (4) comes from the out-
ermost atomic shell. In the present case, it is the np valence
shell of a noble-gas atom. In attoclock measurements, the
experimentally observed quantity is the PMD (4) projected on
the polarization (x, y) plane and summed over the unresolved
initial state angular momentum projections:

P(kx, ky) =
∫ ∞

−∞
dkz

∑
m

Pm(k). (5)

We also analyze partially integrated PMDs in the form of the
photoelectron energy spectrum collected from all the emission
directions:

Pm(E ) =
∫

k d�kPm(k), E = k2/2. (6)

Another integral quantity that we analyze is the angular profile

Pm(θ ) =
∫

k dk P̄m(kx, ky),

k = (
k2

x + k2
y

)1/2
, θ = tan−1(ky/kx ). (7)
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FIG. 1. Polarization ellipse of the laser field. The electric field
E(t0) along ŷ defines the direction of tunneling and the tunneling
width y0. The initial velocity in this direction vyi in (12) is purely
imaginary. The vector potential A(t0) along x̂ defines the photoelec-
tron momentum at the detector kt→∞ and the attoclock offset angle
θA. The initial velocity along this direction vxi in (12) is real. The
classical velocity of the orbital motion vm=±1 adds up to the real
velocity vxi at the exit from the tunnel.

The angular maxima of Pm(θ ) serve to determine the attoclock
offset angle θA relative to the minor polarization axis of the
laser pulse (the x̂ axis in our coordinate frame, see Fig. 1 for
illustration).

B. Analytical models

1. Semiclassical approach

We adopt the saddle-point method (SPM) [35] which re-
lates the photoelectron momentum at the detector k ≡ kt→∞
with a specific instant of tunneling ti such that the semiclassi-
cal action along the photoelectron trajectory starting from this
instant,

Sk(t ) =
∫ t

ti

dt ′{[k + A(t ′)]2/2 + Ip}, (8)

is stationary:

∂Sk(ti )/∂t = [k + A(ti )]
2/2 + Ip = 0. (9)

In a general case, several solutions of Eq. (9) lead to the final
photoelectron momentum k and the PMD is given by the sum
over the corresponding tunneling ionization times [16]

Pm(k) ∝
NSP∑
i=1

|φnlm(vi )|2[S′′
k (ti)]

−1 exp[iSk(ti)]. (10)

Here, the target orbital in the momentum space φnlm(vi )
depends on the initial velocity at the instant of tunneling
vi = k + A(ti ). We note that for very intense fields Ip can be
neglected in Eq. (9) and vi = 0.

For few-cycle circularly or elliptically polarized laser
pulses, the number of the saddle points for a given momentum
NSP = N + 1 [36]. For a continuous wave when N → ∞, the

solution of (9) can be found analytically [16,30,37]. In this
case, the initial velocity

vi = k0 + A0[cosh(ωτ0) ex + i sinh(ωτ0) ey]. (11)

Here, ωτ0 = sinh−1 γ and the Keldysh parameter γ =√
2Ip/A0. In Eq. (11), k0 = A0 sinh(ωτ0)/(ωτ0) defines the

peak position of the PMD. In the tunneling ionization regime,
ωτ0 
 γ � 1 and Eq. (11) can be reduced to

vxi 
 A0γ
2/3, vyi 
 iA0γ = iκ. (12)

The purely imaginary initial velocity vyi is related to the linear
momentum of the bound electron κ = √

2Ip.
The target orbital factor in Eq. (10) brings in the angular

momentum projection dependence

Pm(k) ∝ |exp(imφv )|2, tan φv = vyi/vxi. (13)

In the case of an np target orbital, Eq. (11) leads to

Pnp−1 (k0)

Pnp+1 (k0)
= |3 + γ |2

|3 − γ |2 
 1 + 4γ

3
as γ → 0. (14)

2. Classical considerations

The semiclassical action (8) and the SPM Eq. (9) do not
differentiate the photoelectron trajectories with respect to the
m projection. It is only the preexponential magnitude factor in
Eq. (10) that makes the m = ±1 ionization probabilities differ.
Identical trajectories would mean the same angular profiles
and the attoclock offset angle. However, various numerical
simulations do not support this scenario. As was shown earlier
[20,22] and will be demonstrated in the following, the offset
angles in noble-gas atoms differ substantially and systemati-
cally for m = ±1. In previous works [20,22], this difference
was attributed to variation of the tunnel width and a stronger
effect of the Coulomb field of the ion remainder when the
photoelectron leaves the atom closer to the ionic core. To
investigate this effect further, we employ here the following
classical models.

a. Neglect of the Coulomb field. This model is expected
to work in strong laser fields where the Coulomb field of the
ion remainder can be neglected. We define the photoelectron
trajectory in the laser field by the classical equations of motion

r(t ) =
∫ t

t0

A(τ )dτ + v f (t − t0) + r0. (15)

Here, v f = v0 − A(t0) is the final velocity after the pulse end
and v0 = v(t0) is the initial velocity. The vector potential (3)
is rewritten here as

Ax(t ) = −Ax0 f (t ) cos ω(t − t0),

Ay(t ) = Ay0 f (t ) sin ω(t − t0), (16)

where the envelope f (t0) = 1, f (t → ∞) = 0 and the mag-
nitudes Ax0 = εA0/

√
1 + ε2 < Ay0 = A0/

√
1 + ε2. The peak

electric field at t0 is directed along ŷ and the photoelectron
exit point r0 = (0, y0). We assume that f (t ) varies slowly.
Under this assumption, the photoelectron trajectory (15) can
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be expressed as

x(t ) = −b f (t ) sin ω(t − t0) + v f (t − t0),

y(t ) = −a[ f (t ) cos ω(t − t0) − 1] + y0, (17)

where a = Ay0/ω and b = Ax0/ω, v f = v0 + Ax0. After the
pulse end, the trajectory becomes a straight line

x(t → ∞) = v f (t − t0),

y(t → ∞) = ξa + y0. (18)

Here, we introduce a parameter ξ to account for a finite pulse
duration. With an accuracy to 1/N4,

ξ = 1 + 1/N2. (19)

We relate the angular momentum projection of the bound
electron m with its orbital velocity at the exit from the tunnel
as shown schematically in Fig. 1. Thus, we augment the initial
velocity after the tunneling vxi given by Eq. (12) in the strong
field limit, with this classical velocity:

v0 = vxi + m/y0, (20)

where the tunnel width

y0 
 Ip/(ωAy0). (21)

The initial momentum projection of the photoelectron at the
exit from the tunnel

m0 = v0y0 = m + vxiy0 = m + M0γ
2/3, (22)

where

M0 = Ax0y0 
 εK0, K0 = Ip/ω, (23)

and K0 is the multiquantum parameter [38]. The final photo-
electron angular momentum projection at the detector

M = v f (ξa + y0)

= m + (1 + ξ/3)M0 +
(

1 + m

M0

)
2ξE0

εω
. (24)

Here, we introduced

E0 = A2
x0

2
= 2ε2

1 + ε2
Up, Up = A2

0/4. (25)

Similarly, the final photoelectron energy is

E = (Ax0 + v0)2

2

 ε2Ip

3
+

(
1 + 2m

M0

)
E0. (26)

At large field intensities, M � M0 � m. For long laser pulses
N � 1 and ξ 
 1. Under these conditions, the photoelectron
momentum projection gain can be expressed via the photo-
electron energy at the detector:

�M = M − m 
 2ε

1 + ε2

Ip + Up + E
ω

. (27)

This expression relates the angular momentum projection gain
of the photoelectron with the number of absorbed photons via
the law of energy conservation.

b. Neglect of the laser field. For low-laser field intensity
and short-pulse duration, the photoelectron trajectory is deter-
mined largely by the Coulomb field of the ion remainder. To
determine such a trajectory, the classical Rutherford scattering
model can be applied [28]. In this model, the distance of the
closest approach in the Rutherford formula is equated with
the tunnel width y0 whereas the asymptotic electron velocity
at infinity corresponds to the peak vector potential A0. The
resulting attoclock offset angle is expressed as

tan θKR = ω2

E2
0

Z∗

y0
= 1

k2
0

Z∗

y0
. (28)

For neutral atomic targets, the asymptotic charge of the ion
remainder Z∗ 
 1. When this charge is fully screened, as in
negative ions [39] or in the Yukawa potential [15], Z∗ 
 0
and θA → 0. We will use this property of the KR model to
conduct our further TDSE simulations in Sec. III D where
we will reduce the asymptotic charge of the ion remainder to
observe vanishing of the angular offset.

The dynamic factor in Eq. (28) can be rewritten as

1

k2y0
= τ (k)Fmax

k
, Fmax = 1

y2
0

, τ (k) = y0

k
. (29)

Here, Fmax is the maximum Coulomb force experienced by
the electron at the exit from the tunnel and τ (k) is the time
the photoelectron spends in the vicinity of the ion. In the KR
model, which is applicable for short and weak laser pulses,
y0 is large and the photoelectron is accelerated to its final
momentum k0 while still interacting with the Coulomb field.
Under the present conditions, the photoelectron is accelerated
by the laser field even when it is far away from the laser field
and hence k < k0, which leads to τ = y0/k > τKR = y0/k0.
Therefore, the actual attoclock offset angle is larger than pre-
scribed by Eq. (28):

tan θA = C × tan θKR, C = τA

τKR
> 1. (30)

Thus, by comparing the numerical values of θA with predic-
tions of Eq. (28), we can estimate the time the photoelectron
interacts effectively with the Coulomb field.

III. RESULTS AND DISCUSSION

A. Numerical vs laboratory attoclock

The difference between the laboratory and numerical atto-
clocks with long and short pulses, respectively, is illustrated
in Fig. 2. Here, the numerical attoclock results are exhib-
ited in the top row of panels while analogous results for
the laboratory attoclock are displayed in the bottom row.
For illustrative purposes, we consider the Ar 3p photoion-
ization by a single-cycle 2.9-fs pulse at 0.86×1014 W/cm2

(top) and a multicycle 6.8-fs pulse at 3×1014 W/cm2

(bottom).
The parametric plots in the left column represent the vector

potential A(t ) [Eq. (3)] with N = 2 (top) and N = 7 (bottom).
Solutions of the SPM Eq. (9) corresponding to a given
photoelectron momentum k can be visualized graphically
by the intersects of A(t ) with the straight line pointing in
the −k̂ direction. Indeed, if Ip can be neglected in (9), then
simply k = −A(ti). In a general case, three solutions can
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FIG. 2. From left to right: the parameteric plots of the vector potential A(t ), the PMD (4) from the SPM simulations and that of the TDSE
simulations. The top row of panels corresponds to the argon atom ionized with a nearly single-cycle 2.9-fs pulse at 0.86×1014 W/cm2. The
bottom row of panels visualizes the same ionization process driven by a multicycle 6.8-fs pulse at 3×1014 W/cm2.

be identified for a short pulse with N = 2 of which two
correspond to small values of |A(ti )| and do not contribute
significantly to the PMD. The remaining “dominant” solution
produces a well-formed lobe of intensity in the PMD graph
shown in the top central panel. This image is obtained with
an exponential accuracy visualizing the kinematic factor

NSP∑
i

[S′′
k (ti )]

−1 exp[iSk(ti )],

while neglecting the squared momentum space orbital in
the preexponential term. In the top right panel, we display a
very similar PMD image returned by the TDSE calculation.
The only visible difference between the top central and right
panels is a rotation of the whole PMD by an attoclock offset
angle θA. This rotation is entirely due to the Coulomb field
which is neglected in the SPM.

The number of solutions in the case of a multicycle pulse
is significantly greater. The eight solutions can be identified
graphically in each of the positive and negative momentum
directions. Accordingly, the PMD is symmetric in the ±kx

direction as is shown in the bottom central panel of Fig. 2. The
ATI rings coming from the manifold of the SPM solutions are
clearly visible in this panel. Again, as in the case of a short
pulse visualized in the top row, the TDSE solution returns
a very similar PMD image except for the angular rotation.
Because of a number of ATI rings tilted differently, there is
no single attoclock offset angle θA that can be easily identified
to characterize the Coulomb field effect.

Further distinction between the numerical and laboratory
attoclock is illustrated in Figs. 3 and 4 where we plot the
corresponding photoelectron spectra (6) and their angular pro-
files (7), respectively. The energy spectra of the numerical and
laboratory attoclock are shown in the top and bottom panels
of Fig. 3, respectively. These spectra differ by the profound
ATI structure on the former and its absence on the latter. In-
tensity varies dramatically between the magnetic projections,
with m = 0 being strongly suppressed by the angular node
of the target 3p orbital in the polarization plane. As to the
other two projections, the ratio Pm=−1/Pm=1 � 1 in line with
Eq. (14). More detailed analysis of this ratio will be conducted
in Sec. III B.

Equation (27) allows us to relate the photoelectron spec-
trum Pm(E ) with the angular momentum projection profile
calculated as Pm(M ) 
 ωPm(E ). Except for very low photo-
electron energy, the Pm(E ) and Pm(M ) profiles match each
other rather well, both for the numeric (Fig. 3 top) and lab-
oratory (Fig. 3 bottom) attoclocks.

The angular profiles of the numerical and laboratory atto-
clocks are displayed in the top and bottom panels of Fig. 4,
respectively. While there is a single maximum in the angular
profile of the numerical attoclock, there are two symmetric
maxima in the case of the laboratory attoclock. Positions
of the respected maxima are located by the Gaussian fitting
illustrated in Fig. 4 for m = −1 profiles. Similar to the energy
spectra, the angular profiles differ strongly in magnitude. The
angular maxima positions are also displaced between various
m projections.
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FIG. 3. Photoelectron spectrum, Eq. (6), of Ar 3p ionized with a
single-cycle pulse at 0.86×1014 W/cm2 (top) and a multicycle pulse
at 3×1014 W/cm2 (bottom). Various m spectra are scaled up and
down relative to m = 1 to fit the scale of the figure. The correspond-
ing orbital momentum projection profiles Pm(M ) are converted to the
photoelectron energy scale by Eq. (27) and overplotted.

B. Effect of the target orbital structure

In this section, we examine the target orbital structure
effect on various observables returned by the TDSE calcula-
tions. As a case study, we consider the numerical attoclock
on Ar 3pm driven at λ = 800 nm by a circularly polarized
single-oscillation pulse. The field intensity range starts from
a modestly nonadiabatic tunneling regime at γ 
 2 and ends
below the onset of the over-the-barrier ionization regime at
IOBI 
 1015 W/cm2 [40].

In the top panel of Fig. 5 we plot the most probable gain of
the photoelectron momentum projection �M = M − m as ob-
tained from the TDSE solution and as prescribed by Eq. (24).
The latter equation predicts the linear increase of �M with
the field intensity which is indeed the case. In the weak
field regime, Eq. (24) is no longer valid and the numerical
TDSE results deviate from the prescribed asymptotic limit
�M = K0(1 + ξ/3). Both the numerical and analytical results
for various m converge for low fields but deviate noticeably
as the laser field grows. The gain �M is strongest for m = 1
and the weakest for m = −1. This can be understood from
the m-dependent term in Eq. (24) which appears due to the
orbital velocity term m/y0 in Eq. (20) under the assumption of
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FIG. 4. Angular profiles (7) of the Ar 3p ionized with a single-
cycle pulse at 0.86×1014 W/cm2 (top) and a multicycle pulse at
3×1014 W/cm2 (bottom). Various m profiles are scaled relative to
m = −1 for better clarity. A Gaussian fit is used to locate positions
of the corresponding angular maxima. The angular maxima of the
m = −1 profiles are marked with the vertical dotted lines which
define the corresponding attoclock offset angles θA. The bottom panel
shows the PMD (4) integrated radially and marked as �m.

the tunnel width y0 being independent of m. Because the an-
alytical predictions of Eq. (24) agree well with the numerical
TDSE results for all m, it can suggest that the actual tunnel
width is indeed independent of m, at least in the strong field
regime.

In the middle panel of Fig. 5 we plot the mean photoelec-
tron energy as returned by the TDSE calculations and compare
it with the predictions of Eq. (26). As prescribed by this equa-
tion, the photoelectron energy grows linearly with the field
intensity. At highest intensity, the analytical and numerical
results agree well. In the low-field limit, the analytical results
for all m values tend to Ip/3 while the numerical results fall
below this value. In the bottom panel, we display the attoclock
offset angles θA. Again, as in the case of the peak momentum
values, the m = −1 projection is noticeably different from the
two other m projections. When a comparison is made with
the KR formula (28), the scaling factors C = 2, 2.3, and 2.8
are deduced for m = 0, 1, and −1, respectively. This corre-
lates with predictions of a smaller initial velocity and hence
a longer time (29) that the photoelectron interacts with the
Coulomb field in the m = −1 case.

Equation (14) predicts the m = ±1 ratio of the peak val-
ues of the PMD as determined by the semiclassical SPM
expression (10) for a continuous wave. In Fig. 6 we com-
pare Eq. (14) for Ar 3p with the TDSE and SPM results
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FIG. 5. Various observables returned by TDSE calculations on
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photoelectron momentum projection �M compared with Eq. (24).
The low-field limit �M = K0(1 + ξ/3) is shown with the dotted line.
Middle: mean photoelectron energy E is compared with Eq. (26).
Bottom: the attoclock offset angle θA is compared with Eq. (28). The
scaling factor C of Eq. (30) is shown for each m.

for a short pulse at λ = 800 nm. Both results agree with
Eq. (14) even for larger Keldysh parameters γ 
 1 in a mildly
nonadiabatic tunneling regime. At larger field intensities, the
TDSE result approaches the γ → 0 limit faster than the SPM
result.

C. Comparison between various atoms

To make a comparison of the attoclock offset angles be-
tween various members of the noble-gas family, we take the
experimentally measurable PMD (4) and subject it to a radial
integration

∫
k dk. In doing so, we discard the m dependence

which is not resolved experimentally. Such an angular profile
is displayed in the bottom panel of Fig. 4 and marked as
�m along with the m-resolved angular profiles. Not surpris-
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FIG. 6. Ratio of the peak PMD values for Ar 3pm=±1 is compared
with the predictions of the semiclassical model (14).

ingly, the m-summed profile is very close to the dominant in
magnitude m = −1 profile. Thus, obtained angular profiles
are fitted with a Gaussian ansatz and the positions of their
respective angular maxima are obtained. The displacement of
these maxima relative to the minor polarization x̂ axis gives
the attoclock offset angles θA which are displayed in Fig. 7.
The error bars shown in the figure result from a deviation of
the angular profiles from a Gaussian shape noticeable in the
bottom panel of Fig. 4. In the same Fig. 7 we display the
offset angles for the numerical attoclock across a range of
field intensities. To make a comparison with the laboratory
attoclock, we select the dominant m = −1 projection. The
angular profiles of the numerical attoclock have a perfect
Gaussian shape, so the error bars are negligible here.

The numerical attoclock offset angles become smaller as
the ionization potential of the atom grows. This decrease of
θA is in line with the prediction of the KR formula (28) and
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FIG. 7. Attoclock offset angles of various atoms versus driving
pulse intensity. The numerical attoclock results with a short pulse are
marked with colored lines. The laboratory attoclock values with a
multicycle driving pulse at selected field intensities and m = −1 are
shown with error bars of the matching plotting style.

023110-7



SEROV, CESCA, AND KHEIFETS PHYSICAL REVIEW A 103, 023110 (2021)

0.1

1

10

0.1 1 10

0.25

0.5

Z*=1

E
ffe

ct
iv

e 
ch

ar
ge

 Z
(r

)=
rV

(r
)

Radius (a.u.)

Argon
Tong [05]

LHF Z=1.0
0.5

0.25

FIG. 8. Effective charge in Ar expressed via various one-electron
potentials. The asymptotic values Z∗ for various modifications of the
localized Hartree-Fock potential are marked on the left vertical scale.

can be explained by the larger tunnel width y0 = Ip/E0. The
hydrogen atom deviates somewhat from this tendency. This
may be a subtle effect of its electronic structure which is
different from the noble-gas atoms. A sharp decrease of θA

for hydrogen towards the higher end of the field intensities
reflects the onset of the over-the-barrier regime at IOBI 

0.5×1014 W/cm2 [40]. The laboratory attoclock offset angles
are generally in line with their numerical counterparts.

D. Coulomb field effect

The KR expression (28) for the attoclock offset angle con-
tains the asymptotic charge Z∗ of the ion remainder. In this
section, we treat this charge as an adjustable parameter. To
do so, we modify the one-electron potential V (r) entering the
atomic Hamiltonian Ĥatom and reduce Z∗ gradually to zero.
In this way, we aim to eliminate the Coulomb field effect on
the attoclock offset angle. The effective charge can be ex-
pressed via the one-electron potential as Z (r) = −rV (r) and
the asymptotic value entering Eq. (28) is Z∗ = Z (r → ∞).

In Fig. 8 we plot Z (r) for various one-electron potentials
used in our calculations for Ar. These are an empirical Tong
[05] potential [41] and a localized Hartree-Fock (LHF) poten-
tial [42]. The latter potential has a simple analytical form

ZHF(r) = (Z0 − Z∗)e−r/λ + Z∗,

where Z0 is the bare nucleus charge and λ is a screening
length. In our simulations, we gradually decrease Z∗ in several
steps as shown in Fig. 8. At the same time, we adjust λ to
maintain the binding energy of the 3p electron in Ar. The
resulting PMDs projected onto the polarization plane (4) are
exhibited in Fig. 9. The top panel should be compared with
the top right panel of Fig. 2 where the empirical potential from
[41] was used. As Z∗ is gradually diminished, the offset angle
is virtually reduced to zero at Z∗ = 0.25. Interestingly, the
ionization probability falls sharply when Z∗ decreases. This
is because the photoelectron becomes asymptotically free and
can no longer absorb photons.

IV. CONCLUSIONS AND FURTHER DIRECTIONS

We have systematically studied tunneling ionization of
noble-gas atoms with close to circularly polarized laser pulses

FIG. 9. The PMD (4) of Ar 3p driven by a single-cycle pulse at
0.86×1014 W/cm2. The asymptotic charge of the ion remainder in
the LHF potential is reduced from Z∗ = 1 (top) to 0.5 (middle) and
0.25 (bottom).

in the attoclock field configuration. We simulated both the
numerical and laboratory attoclocks driven by short, nearly
single-cycle pulses and much longer multicycle pulses, re-
spectively. Our numerical attoclock simulations covered a
range of field intensities from a mildly nonadiabatic tunnel-
ing regime to the onset of over-the-barrier ionization. The
laboratory attoclocks were simulated at selected energies
while maintaining an approximately constant tunnel width.

We analyzed various observables generated from solu-
tions of the time-dependent Schrödinger equation in the
single active electron approximation. We also employed
the semiclassical strong field ionization theory based on the
saddle-point approximation, both in the analytical form for
continuous waves and implemented numerically for short
pulses. In addition, we developed a classical model tracing
the photoelectron trajectory in the cases of strong and weak
laser fields. In the former case, the Coulomb field of the ion
reminder can be neglected while the latter condition allows to
neglect the laser field.

We examined the most probable values of the photoelec-
tron energy and the angular momentum projections as well as
the attoclock offset angle. All these parameters demonstrate a
strong dependence on the m projection of the initial bound
state. This deviation is particularly strong for the attoclock
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offset angles. In our field configuration, the m = −1 pro-
jection corresponds to the circularly polarized field counter-
rotating with the electron cloud in the initially bound state.
Electrons with this m projection depart from the parent ion
more slowly and are subjected much longer to its Coulomb
field. Screening of this field reduces the attoclock offset angle
virtually to zero. The tunneling width is found to be very
similar for all the m projections and correlates well with the
nominal tunnel width of the Keldysh theory of strong field
ionization.

Our classical modeling makes quantitatively accurate pre-
dictions for the photoelectron energy and angular momentum
projection gained from the laser field. The photoelectron en-
ergy spectrum is accessible directly from experiment while
the angular momentum projection distribution can be easily
obtained by virtue of the energy conservation. Both quantities
can be compared with the analytical theory predictions thus
providing a very direct way for calibrating experimental data.

The photoelectron energy at the detector depends linearly
on the field intensity with the proportionality coefficient being
dependent on the tunnel width. If the actual width dependence
on the field intensity departs from the power law I−1/2 pre-
scribed by the Keldysh theory, then the linear scaling will be
violated. If this power law is maintained but the proportional-

ity with Ip is broken, this will be immediately reflected in the
slope of the linear dependence of the photoelectron energy on
the field intensity. Because the m = −1 component dominates
strongly the measurable PMD, the experimental results can be
compared directly with theoretical predictions thus testing the
fundamental tunnel width expression of the Keldysh theory of
strong field ionization.

These considerations give us hope that our numerical re-
sults and their theoretical interpretation will help to navigate
the next generation of laboratory attoclock studies on noble-
gas atoms. One set of these experiments is currently underway
[23]. Recent progress of the nearly single-cycle optical pulse
production with circular polarization [43] gives us hope that
our simulations with numerical attoclock can also be experi-
mentally verified.
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