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Krylov-subspace approach for the efficient control of quantum many-body dynamics
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The gradient ascent pulse engineering (GRAPE) algorithm is a celebrated control algorithm with excellent
converging rates, owing to a piecewise-constant ansatz for the control function that allows for cheap objective
gradients. However, the computational effort involved in the exact simulation of quantum dynamics quickly
becomes a bottleneck limiting the control of large systems. In this paper, we experiment with a modified version
of GRAPE that uses Krylov approximations (K-GRAPE) to deal efficiently with high-dimensional state spaces.
Even though the number of parameters required by an arbitrary control task scale linearly with the dimension of
the system, we find a constant elementary computational effort (the effort per parameter). Since the elementary
effort of GRAPE is superquadratic, this speed up allows us to reach dimensions far beyond. The performance of
the K-GRAPE algorithm is benchmarked in the paradigmatic XXZ spin-chain model.
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I. INTRODUCTION

At the core of quantum technology is our ability to control
quantum dynamics. In the last decades, we have evidenced
unprecedented advances in the manipulation of dynamical
processes at the atomic and molecular scale. The control is
usually enforced by applying properly tailored external elec-
tromagnetic fields. One prosperous framework for producing
these control fields is quantum optimal control (QOC) [1–3].
QOC methods have thrived in a range of emerging quantum
technologies, e.g., communication, computation, simulation,
and sensing, until now, at the level of a few qubits [4–8].

A notable member of QOC’s “zoo” of algorithms [9–14]
is the gradient ascent pulse engineering (GRAPE), first in-
troduced in the context of NMR spectroscopy [15]. As its
name suggests, it proposed a gradient-based optimization of
the control protocols, as opposed to the derivative-free (finite-
difference) approaches that were commonly used at the time.
The key to GRAPE’s success was to propose a piecewise-
constant (PWC) ansatz for the control that in turn allowed for
cheap gradients of the objective. Gradient-based algorithms
usually have much better convergence than the gradient-free
algorithms [16]. Its ability to produce high-quality optimal
controls in an inexpensive and fast fashion made it the state-
of-the-art algorithm in quantum control.

Despite its successful application in small systems, QOC
methods encounter severe limits when applied to many-body
quantum systems. Due to the exponential complexity of sim-
ulating the latter, control algorithms fail to yield a desired
final state within an acceptable computational time. There
are basically two approaches for the efficient simulation of
quantum evolution. The first kind assumes that entangle-
ment will be small during the whole evolution and uses
a truncated representation of the state vector. This is the
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realm of tensor network methods, such as the density-matrix
renormalization group evolution or tDMRG [17]. The second
alternatives are Krylov-subspace methods. These circumvent
the computationally impracticable task of diagonalizing the
full Hamiltonian, a key step in the computation of matrix
exponentials arising in the treatment of time evolution, by
considering only a reduced number of effective energy levels
[18–20]. Just to illustrate the power of the method, Ref. [21]
reports having been able to simulate time evolution in Hilbert
subspaces of dimensions up to 9 billion, using parallel super-
computers.

A number of proposals for controlling many-body dy-
namics following the first approach were made [22–24].
References [22,23] used a matrix-product-state ansatz with a
derivative-free approach to drive a superfluid–Mott-insulator
transition in an optical lattice. The latter [24] revisited
the problem using gradient-based optimization and achieved
much better fidelities. Let us note that this task, the connection
of ground states on both sides of a phase transition, is perfectly
suited for such a low-entanglement ansatz. Nevertheless, more
general control scenarios may require full state descriptions.

In this paper, we explore the possibility of using the second
alternative in a control context. We apply a modified GRAPE
algorithm that uses Krylov approximations instead of the full
Hamiltonian eigendecomposition. As a particular example,
we try to control pure-state transitions on an XXZ spin-chain
model. Fixing the number of effective levels, we are able
to locate optimal protocols with a computational effort per
parameter roughly independent of the size of the system. Its
dimension only affects the search effort through the number
of parameters that are required for control solutions to exist,
a quantity that grows linearly with such. In a D-dimensional
Hilbert space, at least 2D − 2 parameters are needed to control
pure-state transfers [25–27]. This minimum number of pa-
rameters is related to the informational content of the control
field (basically, 2D − 2 is the number of real numbers needed
to completely specify an arbitrary pure state in a quantum
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system with D energy levels). Because the method uses the
entire representation of quantum states, we are able to ma-
nipulate arbitrary entangled states. Let us note that a recent
work proposed the use of Trotter-Suzuki approximations of
the propagator in order to deal efficiently with the propagation
problem [28].

The paper is organized as follows. In Sec. II we introduce
the modified algorithm, hereafter referred to as K-GRAPE.
In Sec. III, the algorithm is carefully tested to control an
XXZ spin-chain model. In this section we describe the con-
trol task and the numerical results. Finally, in Sec. IV, we
draw conclusions on the results obtained. To make the paper
self-contained, we have a included Appendixes on Krylov’s
approximation and on the GRAPE algorithm.

II. THE K-GRAPE ALGORITHM

Krylov-subspace methods are well-known linear algebra
techniques usually used to approximate the action of the func-
tion of a matrix on a vector [18,19,29]. The Krylov subspace
of a Hamiltonian H and a state |ψ〉 is defined as

KN = {|ψ〉 , H |ψ〉 , . . . , HN−1 |ψ〉}. (1)

In the following, we will use Krylov subspaces of dimension
N � D, but let us stress that the case N = D (the so-called
Krylov space) does not necessarily correspond to the full
Hilbert space of the system. Only systems with a nonde-
generate energy spectrum explore the entire state space and
have Krylov spaces that coincide with the full Hilbert space.
An orthonormal basis spanning KN can be used to perform
extremely cheap and accurate approximations to the time evo-
lution of a state. The basic mechanism first maps the initial
state into the ground state of an effective N-level system [see
Fig. 1(a)]. Time evolution is computed in this reduced space
(and thus very efficiently) using TN , the projection of the
Hamiltonian in the Krylov basis |φ〉N = e−iTN �t |0〉N . Finally,
the map is inverted: The actual “full-dimensional” evolved
state is recovered as a linear combination of the Krylov basis
vectors, using the amplitudes of the subspace-evolved |φ〉N as
coefficients. For details on this procedure, see Appendix A.
We will proceed to introduce the control scenario.

Consider a typical controlled system, where the Hamilto-
nian

H (t ) = Hd + ε(t )Hc (2)

is tunable through the time-dependent control ε(t ). Here, Hd

and Hc are usually addressed as the drift and control terms,
respectively, and their nested commutators determine the de-
gree of controllability of the system [1]. In short, how much
of Hilbert space can be dynamically explored by arbitrary
choices of ε(t ). The shaping of this function, also referred to
as the protocol or control field (experimentally, control is usu-
ally enforced through dipole couplings with electromagnetic
fields), will allow us to govern the evolution of the system. For
example, consider the situation where the system is initially
in a given state |i〉 and we are interested in a dynamics that
prepares the target state | f 〉 at time t = T . In order to search
for controls that accomplish the task, one has to introduce a
figure of merit quantifying the degree of fulfillment. In terms
of the overlap β = 〈 f |U (T ) |i〉 = 〈 f 〉 ψ (T ), we define the

FIG. 1. Artist’s impression. (a) Krylov’s approximation: An ini-
tial state with an arbitrary distribution on the full D-dimensional state
space is mapped into the ground state of an effective N-level system.
This ground state evolves under the action of TN , the Hamiltonian in
the reduced Krylov basis. Finally, the evolved state on the full Hilbert
space is recovered with the inverse mapping. (b) GRAPE’s ansatz: A
piecewise-constant control field. (c) The zeroth-order approximation
of the gradient is equivalent to the bracket of the control Hamiltonian
between the forward evolved initial state and the backward evolved
target-projected final state at each time slot. At each iteration, the
control field ε is updated using the gradient ∇I , the inverse of an
approximated Hessian B, and a backtracked step length α.

infidelity

I = 1 − |β|2. (3)

Here (and throughout), we have avoided stating explicitly the
dependence of I , β and U on the protocol ε(t ), given by the
fact that the latter is the solution of

i
dU (t )

dt
= H[ε(t )]U (t ), U (0) = 1, (4)

evaluated at t = T . The functional of Eq. (3) is a map from
the space of protocols to the interval [0,1] of real numbers.
This map is usually known as the quantum control landscape
[30,31]. Solutions to the control problem are global minima of
the landscape. Thus, the problem of finding suitable controls
is equal to a minimization process in this infinite-dimensional
space. In practice, optimal control techniques introduce a
parametrization on the field and thus constrain the problem
to finite-dimensional search spaces. For example, the GRAPE
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Algorithm 1. Basic GRAPE algorithm.

1: Guess initial control amplitudes {ε j}
2: while not converged do
3: compute propagators Uj ← e−iHj�t

4: forward evolve |ψ j〉 ← Uj |ψ j−1〉
5: set |χM〉 ← 〈 f 〉 ψM | f 〉
6: backward evolve |χ j〉 ← U †

j |χ j+1〉
7: evaluate gradient ∂I

∂ε j
≈ −2�t Im[〈χ j | Hc |ψ j〉]

8: update amplitudes ε ← ε + αB−1∇I and go to 3

algorithm uses a PWC parametrization of the control, namely,

ε(t ) =
⎧⎨
⎩

ε1 if 0 < t < �t,
...

εM if (M − 1)�t < t < T .

(5)

Here, the protocol duration was divided in M uniform in-
tervals �t = T/M at which the control is constant [see
Fig. 1(b)]. This ansatz has several advantages. First, the prop-
agator factorizes into a product of individual subpropagators,
each of which is generated by a constant Hamiltonian and thus
has a simple matrix exponential form. More importantly, the
derivatives of the objective with respect to the controls are
also extremely simple, in particular to first order in �t (see
Appendix B for a detailed derivation),

∂I

∂ε j
≈ −2�t Im[〈χ j | Hc |ψ j〉], (6)

where |χ j〉 = βU †
j+1 · · ·U †

M | f 〉 and |ψ j〉 = Uj · · ·U1 |i〉 can
be pictured as forward and backward propagated states.
More precisely, |χ j〉 is the final time-evolved state |ψ (T )〉 =
U |i〉 = |ψM〉, projected into the target state and backward
evolved [see Fig. 1(c)]. A sketch of GRAPE’s framework
is presented in Algorithm 1. A general update rule uses a
positive-definite matrix B and the gradient ∇I to generate
a search direction p = B−1∇I and then takes an appropriate
step of magnitude α in that direction. In the simplest situation
(steepest descent) B is the identity matrix and thus the step
is taken in the direction of the gradient. Newton’s method
instead uses the Hessian: B = ∇2I . There are two problems
with this: (i) Computing the Hessian is expensive, and (ii) the
Hessian may not be positive definite and thus have no inverse.
The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [32]
uses the gradient to build very cheap approximations of the
Hessian (the approximation is not built entirely at each itera-
tion, but instead only updated where relevant) that in turn are
positive definite. Modern implementations of GRAPE use the
L-BFGS method [33], a limited-memory variant that achieves
superlinear convergence in a time- and memory-efficient man-
ner. At each iteration, the step α is chosen with a backtracking
routine such that it satisfies Wolfe’s conditions [16].

GRAPE quickly became widely used in the control com-
munity. It offered the possibility of optimizing control pulses
in much larger control spaces than those allowed by finite-
difference gradients. Note that these require at least M + 1
full time evolutions (in the forward-difference setting), as
compared with the two evolutions required by GRAPE. Over
the years, several enhancements to the method were proposed

[4,34–36]. In particular, it was realized that the eigenvalues
and eigenvectors of each of the constant Hamiltonians, used
to compute the matrix exponentials for the objective, could be
cached and reused to compute exact gradients [4]. This setting
is faster, but for large system dimensions it quickly becomes
impractical in terms of memory, considering we have to store
M (one for each parameter) D-dimensional matrices and that
the number of parameters scales at least linearly with D. In
short, it requires storing more and bigger matrices.

In this work, we focus on the possibility of slightly mod-
ifying the GRAPE algorithm to perform efficiently in the
near many-body regime by replacing the exact forward and
backward state propagations with Krylov approximations. We
use a centered version of the zeroth-order gradient approxima-
tion [Eq. (6)] which we feed to an L-BFGS routine. We note
that, although there is plenty of room for playing with more
accurate higher-order approximations [see Eq. (B10)] or the
numerical integration of the natural gradient [Eq. (B8)], we
found the simple centered zeroth-order gradient to be more
than enough for an initial demonstration of the virtues of the
proposed method. In the following, we define a particular
control setting and compare the performance of GRAPE and
K-GRAPE algorithms. We use a built-in implementation of
GRAPE offered by the python toolbox QuTiP [37,38], that is
based on the DYNAMO package [4]. In order to be able to
reach large dimensions, we chose not to cache the propagator
gradients and instead let the fidelity computer calculate them
as needed. Let us point out that the GRAPE implementation
offered by the SPINACH package [39] uses a similar approach
to deal efficiently with the dynamics of large systems. Instead
of a Lanczos procedure, a Taylor expansion is used to propa-
gate the state.

III. EXAMPLE: CONTROLLING AN XXZ
HEISENBERG SPIN CHAIN

In this section, we test K-GRAPE in the well-known XXZ
spin chain. We benchmark the procedure comparing its per-
formance with the usual GRAPE algorithm.

A. Spin-chain model and control task

Let us consider a one-dimensional system consisting of L
spin- 1

2 particles whose drift evolution is described by the XXZ
Hamiltonian [40],

Hd = J

2

L−1∑
i=1

σ x
i σ x

i+1 + σ
y
i σ

y
i+1 + αzσ

z
i σ z

i+1. (7)

Here, σ
x,y,z
i are the Pauli matrices for the ith particle, and we

have set h̄ = 1 such that energy is measured in units of the in-
teraction strength J and time is measured in units of J−1. This
Hamiltonian has a number of symmetries. First, it conserves
the total magnetization in the z direction, σz = ∑L

i=1 σ z
i , since

[Hd , sz] = 0. This allows us to fracture the entire state space
into subspaces SK of fixed number of excitations,

H =
L⊕

K=0

SK . (8)
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The dimension of these subspaces is simply the number of
ways of picking K excitations out of L sites, and is given by

DK =
(

L

K

)
= L!

K!(L − K )!
. (9)

Additionally, the Hamiltonian in Eq. (7) conserves parity.
The parity operator acts on a given computational state by
“mirroring” against the middle of the chain, e.g.,

� |↓↓↑↓〉 = |↓↑↓↓〉 . (10)

Because the couplings in Hd are homogeneous, these two op-
erators commute [Hd ,�] = 0. Thus, each excitation subspace
Sk is further broken into two parity-excitation (PE) subspaces,
Sk,+ and Sk−, with even and odd parity, respectively. Finally,
we will avoid conservation of S2 by choosing αz = 0.5 and set
the coupling strength to J = 1.

As a control Hamiltonian, we use

Hc = J

2

(
σ z

1 + σ z
L

)
(11)

such that the total Hamiltonian H (t ) in Eq. (2) still commutes
with σz and � for any choice of control function. Initial states
that are eigenstates of these operators evolve constrained to
the PE subspaces, thus allowing us to use a reduced represen-
tation in the computations. The Hamiltonian in the reduced
PE subspace is constructed in the following way: (i) Write
the parity operator in a given excitation subspace SK and
(ii) diagonalize it, (iii) use the eigenvectors associated with
the desired parity (we use even parity throughout) to build
a rectangular change of basis matrix Q, and (iv) reduce the
Hamiltonian, Hred = QHQ†. The computational basis vectors
of the reduced excitation subspace are ordered relative to the
binary number associated with each sequence of bits (consid-
ering spin-ups as zeros and spin-downs as ones), in ascending
order.

As a control task, we will attempt to drive the first coordi-
nate vector in a given PE subspace into the last one,

e1 −→
ε(t )

eD. (12)

In the particular case of an odd number of spins and an even
number of excitations, this task corresponds to the transport
of a cluster of excitations from the middle of the chain to the
edges, for example,

e1 = |↓ · · · · · · ↓↑ · · · ↑↓ · · · · · · ↓〉 ,

eD = 1√
2

(|↑ · · · ↑↓ · · · · · · ↓〉 + |↓ · · · · · · ↓↑ · · · ↑〉).

(13)

Let us mention that we have performed numerical control-
lability tests (using the nested commutators of the reduced H0

and Hc, as described in Ref. [1]) and found the PE subspaces
to be controllable.

B. Numerical results

In the following we present a numerical study of the per-
formance of K-GRAPE on the spin-chain pure-state transfer
task defined above, using different choices of length L and

FIG. 2. Algorithm benchmarking: (a) Optimization runtime R
and (b) elementary runtime R̃ (runtime per iteration per time step)
for the state transfer task in Eq. (12) using GRAPE (dotted line
and red squares) and K-GRAPE (dashed line and green squares)
as a function of D, the dimension of the subspace holding the dy-
namics. The data points corresponding to GRAPE and K-GRAPE
are fitted with linear and a cubic functions, respectively. In the first
low-dimensional regime GRAPE outperforms (see the inset), while
in the large-dimensional one, K-GRAPE does.

excitations K . The results are properly compared with the con-
trol using the GRAPE algorithm. We initialize random fields
with M = 4D parameters drawn from a uniform distribution
in [−1, 1]. This linear scaling of M with dimension is roughly
twice the strictly needed.1 We further fix �t = .5 and truncate
at N = 10 Krylov vectors. A target infidelity of Itarget = 10−2

is set and as an additional stopping criterion, the minimum
change in the objective from one iteration to the next is chosen
to be �Imin = 10EPS, with EPS the machine precision. In the
following, we present runtime data, which was measured in
seconds.2

Figure 2(a) shows the total runtime R consumed by
GRAPE (dotted line and red squares) and K-GRAPE (dashed
line and green squares) as a function of dimension D. Each
data point corresponds to a single successful optimization. We
note that almost no traps were observed with these settings.
The results correspond to chains with K = 3 excitations in
the case of GRAPE and K = 4 in the case of K-GRAPE.
Other values of K were tested and were found to have no
influence on the results. On the first low-dimensional regime,
GRAPE outplays (see the inset). Instead, for D � 100, K-

1There is a lower bound on the minimum number of parameters for
solutions to arbitrary pure-state transfer problems to exist [27].

2The optimizations were carried out on an Intel(R) Core(TM) i7-
8550U CPU @ 1.80 GHz with 16GB of RAM.
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GRAPE is clearly more efficient.3 The gray lines connecting
the data are linear and cubic fits for K-GRAPE and GRAPE,
respectively. Figure 2(b) provides the “elementary” runtime
R̃, defined as the runtime per field evaluation (iteration) and
per time step. This elementary runtime is independent of di-
mension for K-GRAPE and is at least quadratic for GRAPE.
This is reasonable since K-GRAPE uses a fixed size effective
Hamiltonian while GRAPE has to deal with D-dimensional
matrices. GRAPE’s effort is well explained in terms of the
eigendecompositions at its core [41]. In turn, these elementary
efforts account for the total runtimes observed. Since both
algorithms perform a number of iterations that is roughly in-
dependent of D, the only dependence of the full runtime with
dimension is through the number of parameters, that must
grow linearly with dimension to satisfy the control constraint.
Thus, for example, K-GRAPE’s constant elementary effort
is translated into a linear scaling. Let us note that we have
checked that the error between exact and Krylov propagated
final states is orders of magnitude below the target infidelity.

The performance of K-GRAPE depends critically on the
choice of time step �t . On one hand, the algorithm is built
upon an approximated gradient that works optimally in the
low �t regime. On the other, there is a minimum time Tmin

(lower bounded by the quantum speed limit time) such that
the control problem has solutions. That is, with a too-small
value of �t (and a fixed number of parameters) the algorithm
will converge properly but will not be able to attain good
fidelities simply because they do not exist. Finally, the quality
of the gradient is further tied to the quality of the Krylov
approximation, which depends on a large-enough truncation
N and, again, on a small-enough time step �t .

In order to study the behavior of K-GRAPE with the time
step, we initialize and optimize 20 seeds for different values of
N and �t . The number of parameters is still fixed at M = 4D
(and will be fixed throughout) and we use D = 60. Figure 3(a)
shows the minimum infidelity achieved as a function of �t
for N = 2, 10, and 18 (blue squares, green circles, and red
diamonds, respectively). The yellow pluses correspond to an
exact evolution (no Krylov) and a centered zeroth-order gra-
dient. As mentioned above, there is a trade-off in �t : Small
values prohibit the state transfer while large values compro-
mise the gradient and thus convergence. In the middle there is
a “control window.” Notice how too-small values of truncation
(e.g., N = 2) also damage the gradient and in consequence no
window is observed. Instead, for N = 18 we find a broader
window than in the case of N = 10. Figure 3(d) displays
the elementary effort, which is observed to grow with N .
The mean number of iterations, shown in Fig. 3(c), is seen
to present a “bump” in the region around �tmin = Tmin/M ≈
0.25. We think this could be related to a blossoming of traps
in the control landscape [42]. To the right of this maximum,
the iterations decrease and then grow back again, this time

3If the caching of propagator gradients is enabled, GRAPE
performs much faster but still superquadratically, meaning the
intersection with K-GRAPE is only pushed forward. We built a
runtime curve (similar to those of Fig. 2) up to D = 255 (where the
routine collapsed due to memory overloading), fitted the data, and
estimated the crossing to be at D = 400.

FIG. 3. Time-step study: (a) Minimum infidelity, (b) mean run-
time R, (c) mean iterations, and (d) R̃ runtime per iteration per time
step, as a function of �t . The different curves correspond to differ-
ent values of the truncation parameter, N = 2, 10, and 18, marked
with blue squares, green circles, and red diamonds, respectively.
The yellow pluses correspond to the centered zeroth-order gradient,
evaluated using an exact evolution. See text for details.

due to the growing inaccuracies in the gradient. Finally, these
aspects merge in the total run-time observed [Fig. 3(b)]. Note
that the observed �tmin corresponds to Tmin ≈ D. We have
numerically checked this relation to hold for a wide range of
dimensions. In particular, the benchmarking study of Fig. 2
is consistent with this estimation, since we chose �t = 0.5
(twice this minimum value) and found solutions every time.
We cannot give a precise explanation of why this is the case,
but here is an attempt. If one considers the quantum speed
limit time associated with the drift Hamiltonian (that in this
case is τqsl ≈ 1) as a bound on the time needed to reach an
orthogonal state, and one assumes that, in the worst-case sce-
nario, the trajectory explores all the D − 1 orthogonal states
before reaching the desired target, we can argue that the min-
imum control time is bounded by Tqsl ≈ D − 1 [43,44].

Let us further characterize the control windows observed
in Fig. 3(a). To do so, we repeat the previous study, this time
as a function of dimension (see Fig. 4). We plot the minimum
achieved infidelity as a function of time step �t for a fixed
truncation of N = 6 and different dimensions D = 10, 19,
44, and 146 (marked with blue squares, green circles, red
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FIG. 4. “Death” of a control window: Minimum infidelity as a
function of time step �t for a fixed truncation of N = 6 and different
dimensions D = 10, 19, 44, and 146 (blue squares, green circles, red
diamonds, and yellow pluses).

diamonds, and yellow pluses). We find that while the trunca-
tion is enough to control systems of dimensions D = 10 and
19 (see how the blue and red dots do find infidelities below
the target, plotted as a black dotted line), the control window
“shutters” for greater dimensions. We emphasize that, due to
this behavior, we do not expect the linear behavior of Fig. 2
to continue forever. At some large value of dimension, we
expect an increase on the number of iterations (owing to the
buildup of imprecisions in the gradient) followed by a loss of
controllability.

To conclude, we present a study of the truncation parameter
N . Figure 5(a) shows curves of total runtime R involved in
achieving an optimal control field (within the desired fidelity),
as a function of dimension, for different values of truncation:
N = 8, 10, and 12, marked with blue squares, green circles,
and red diamonds, respectively. Since the elementary runtime
R̃ [Fig. 5(c)] is flat with D, and since the number of iterations
[Fig. 5(b)] is roughly independent of N , the total runtime
grows roughly linearly with N [in accordance with Fig. 2(a)].
An exception is the case of N = 8. Here, for dimensions
D > 38, the window starts to close, the iterations grow, and
the total runtime becomes superlinear. To avoid this situation,
either the number of parameters should be increased (such
that �tmin = Tmin/M decreases, pulling away the lower edge
of the window) or the gradient should be made more precise
(kicking forward its upper one). Either choice involves further
computations, evidencing a trade-off between window width
and effort.

IV. FINAL REMARKS

Krylov-subspace methods have been delivering fruitful in-
sights and advancements in several areas of research that go
from optimization theory to the characterization of operator
complexity in chaotic many-body quantum systems [45–48].
Important for the context of this paper, several recent works
have exploited its extreme efficiency at simulating time evo-
lution on large quantum systems [19,21].

The GRAPE algorithm is an acclaimed quantum opti-
mal control method that has enabled the efficient production
of high-quality protocols to actively guide the dynamics

FIG. 5. Truncation study: (a) Runtime R, (b) iterations, and
(c) elementary runtime R̃ involved in the achievement of controls
as a function of dimension D. The different curves correspond to dif-
ferent values of the truncation parameter N = 8, 10, and 12, marked
with blue squares, green circles, and red diamonds, respectively.

of quantum systems. Unfortunately, the performance of
GRAPE is seriously hindered when reaching out of the small-
dimensional regime.

In this work, we have studied the performance of an al-
gorithm combining these two worlds. Powered by efficient
Krylov approximations, K-GRAPE is best suited in the near
many-body regime, where optimization becomes problematic
with traditional methods. We tested the algorithm in an XXZ
spin-chain model and demonstrated its ability to find control
solutions at dimensions far beyond the capabilities of standard
GRAPE. We showed that its intrinsic complexity is indepen-
dent of the dimension of the problem, as opposed to GRAPE’s
quadratic scaling. This speed-up allows us to control systems
of dimensions, clearly exceeding what was available. We want
to emphasize that in no way our algorithm breaks the expo-
nential scaling presented by many-body systems.

To finish, we note the suitability of K-GRAPE’s frame-
work to be adapted to operator control. This straightforward
generalization is very interesting since, for example, it would
grant access to the efficient design of control protocols in large
open quantum systems. This investigation will be part of a
forthcoming publication.
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Algorithm 2. Lanczos algorithm. Receives a Hamiltonian H and
a state |ψ〉 and returns a set of N orthonormal vectors {|vi〉}, the
Krylov basis.

1: |v0〉 ← |ψ〉
2: for j > 0 do
3: |x j〉 ← H |v j−1〉
4: |ω j〉 = |x j〉 − ∑ j−1

k= j−2 〈vk | |x j〉 |vk〉
5: bj = √〈ω j | |ω j〉
6: if bj > 0 then
7: |v j〉 ← 1

b j
|ω j〉.

APPENDIX A: THE KRYLOV APPROXIMATION

In this Appendix, we describe in detail the mechanism
involved in the Krylov approximation. To begin with, consider
the construction of BN = {|v0〉 , . . . , |vN−1〉}, an orthonormal
basis spanning the Krylov subspace. This can be done us-
ing the Lanczsos method (see Algorithm 2). Notice that we
only have to explicitly remove the components of |x j〉, the
new candidate basis vector, on the last two elements of the
basis, |v j−1〉 and |v j−2〉. The reason for this is that the Hamil-
tonian, by construction, is tridiagonal in the Krylov basis.
Moreover, the coefficients appearing in the orthonormaliza-
tion procedure, 〈v j−2| |x j〉 and 〈v j−1| |x j〉, are the off-diagonal
and diagonal entries of such a tridiagonal matrix. Of course,
it may occur that the new vector is linearly dependent with
respect to the previous ones. This is referred to as a happy
breakdown [29] and indicates the finding of an invariant sub-
space. The Lanczos algorithm halts, since no new elements are
needed to describe the evolution. The dynamics explores only
a restricted portion of the state space and thus its description
involves only a reduced number elements.

It is important to note that if this procedure is used to build
large Krylov bases, round-off errors intrinsic to floating-point
arithmetic may cause loss of orthogonality between the basis
vectors. An obvious way to handle this problem is to explicitly
orthonormalize the new candidate against all previous vectors,
as in a standard Gram-Schmidt procedure. This can become
fairly expensive time and memory wise. More elaborate al-
ternatives involve keeping track of the orthogonality loss and
only perform the reorthonormalizations when needed [49].

Krylov bases have an obvious application in the time evo-
lution of a state,

|ψ (t + �t )〉 = e−iH�t |ψ (t )〉 ≈ |ψN (t + �t )〉 . (A1)

Here, |ψN (t + �t )〉 ∈ BN is a cheap yet excellent approx-
imation of the evolved state. Let us explain how to build
it. Following Ref. [19], first consider the projector onto the
truncated basis, PN = ∑N−1

j=0 |v j〉 〈v j | = V †
NVN , where V †

N is
the (D, N ) change of basis matrix between the reduced N-
dimensional Krylov basis and the original D-dimensional
basis,

V †
N =

⎡
⎢⎣

...
...

...

|v0〉 , |v1〉 , |vN−1〉
...

...
...

⎤
⎥⎦. (A2)

The method proceeds by locating the element |ψN (t + �t )〉 ∈
BN that is closest to the exact evolved state. This is carried out
by considering the evolution with a projected propagator,

|ψ (t + �t )〉 ≈ PN e−iH�t PN |ψ (t )〉 = V †
N e−iTN �tVN |ψ (t )〉 ,

(A3)
where TN = VN HV †

N is the Hamiltonian in the Krylov basis.
By construction, VN maps the initial state into the ground state
of an N-dimensional system, VN |ψ (t )〉 = (1, 0, . . . , 0)T ≡
|0N 〉. This state evolves subject to TN , populating these effec-
tive levels, and is finally mapped back to the full original space
(see Fig. 1).

Numerous estimations and bounds to the error in this ap-
proximation exist [18,29,50]. Most of them are based under
the assumption of exact arithmetic and are usually too pes-
simistic to explain the numerically observed error reductions.
Nevertheless, we have numerically checked that in the small
�t regime (in particular when �t < N2

W with W the spectral
width of the Hamiltonian) the dependence is O(�tN ) [19].

APPENDIX B: THE GRAPE ALGORITHM

Let us review the GRAPE algorithm. The PWC ansatz
for the protocols [see Eq. (5)] induces a factorization on the
propagator

U (T ) = UM · · ·U1, (B1)

where each of these subpropagators is generated by the
constant Hamiltonian Hj = H0 + ε jHc, correspondent with a
given time slot, and thus has a simple matrix exponential form

Uj = e−iHj�t . (B2)

Moreover, the derivatives of the objective with respect to the
controls are also extremely simple. First note that the gradient
of the objective is related to the gradient of the propagator
through

∇I = −2 Re〈 f | ∇U (T ) |i〉 〈i|U †(T ) | f 〉 . (B3)

Now, the derivatives of the propagator only affect the corre-
sponding subpropagator

[∇U ] j = ∂U

∂ε j
= UM · · ·Uj+1

∂Uj

∂ε j
Uj−1 · · ·U1, (B4)

and the problem is reduced to the computation of

∂Uj

∂ε j
= −i�t H̄cUj, (B5)

where

H̄c = 1

�t

∫ �t

0
Uj (−τ )HcUj (τ )dτ. (B6)

That is, the gradient reads

∂I

∂ε j
= −2�t Im[〈χ j | H̄c |ψ j〉] =

∫
�t j

g(t )dt

=
∫ ∞

0
g(t ) � j (t )dt,

(B7)

where in the last lines we have made explicit that the partial
derivatives of the objective with respect to the parameters in
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the pulse are simply the projections of the so-called natural
gradient [25,51]

g(t ) ≡ δI

δε(t )
= −2 Im[〈χ (t )| Hc |ψ (t )〉] (B8)

on the basis functions of the PWC parametrization

� j (t ) =
{

1 if t ∈ �t j,

0 else.

Note that the numerical integration of Eq. (B7) is a
straightforward alternative for computing arbitrary precise ap-
proximations to the gradient. This option seems particularly
suitable for K-GRAPE since, once the Krylov basis has been
built for a given time step (and the effective Hamiltonian has
been diagonalized), evaluating the evolved state on multiple
points on a time grid is virtually free.

Another possibility for improving the quality of the gra-
dient is to Taylor expand the exponentials in Eq. (B6). A
hierarchy of approximations to H̄c unfolds,

H̄c
(p) = (−i�t )p

(p + 1)!
LpHc, (B9)

where we have introduced the Liouvillian operator L ≡ [H, ·]
(Here, of course, the Hamiltonian corresponding to the corre-
sponding time-slot should be used H ≡ Hj .) This is ultimately
translated into a hierarchy of approximations to the gradient

∂I [P]

∂ε j
= −2�t Im

[ 〈χ j | H̄ [P]
c |ψ j〉

]
, (B10)

where the notation [P] implies that we sum over 0 � p � P,

H̄ [P]
c =

P∑
p=0

H̄ (p)
c . (B11)

A common practice for computing the matrix exponentials
in Eq. (B2) is to perform an eigendecomposition of the Hamil-

tonian and to invoke the spectral theorem,

Uj =
D∑

k=1

e−iλ j�t j |λk〉 〈λk| = QDQ†, (B12)

where |λk〉 are the eigenvectors of Hj , λk its eigenvalues, and

Q† = [|λ1〉 , . . . , |λD〉],
D = diag(e−iλ1�t , . . . , e−iλM�t ).

(B13)

An alternative way of computing these matrix exponentials
is using Padé approximations. Although slightly more expen-
sive, the eigendecomposition has a lot more to offer, since it
provides exact derivatives of the propagators

∂Uj

∂c j
= QH̃cFQ†, (B14)

where H̃c = Q†(−iHc)Q and

[F ] jk = −i�t 〈λ j | Hj |λk〉
⎧⎨
⎩

ω1 if 0 < t < �t,
...

ωM if (M − 1)�t < t < T .

Finally, let us propose a simple way of improving the qual-
ity of the zeroth-order approximation to the gradient [Eq. (6)].
Consider the first component of the standard zeroth-order
gradient,

∂I

∂ε1
≈ ∂I (0)

∂ε1
= −2�t Im[〈 f |UM · · · HcU1 |i〉β∗]. (B15)

This is precisely �t times the natural gradient of Eq. (B8)
evaluated at t = �t . By virtue of Eq. (B7) we know that the
exact calculation involves the integration of the natural gradi-
ent in the whole time domain of the pulse [see Eq. (B7)]. We
thus propose a centered version of the approximation, where
the natural gradient is still assumed constant in the interval,
but evaluated at t = �t/2, the center of the pulse,

∂I

∂c j
≈ 1

2

[
∂I (0)

∂c j
+ ∂I (0)

∂c j+1

]
. (B16)

We find this error to be O(�t3) instead of the characteristic
O(�t2) of the standard zeroth order.
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