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We investigate theoretically the strong-field regime of light-matter interactions in the topological-insulator
class of quantum materials. In particular, we focus on the process of nonperturbative high-order harmonic
generation from the paradigmatic three-dimensional topological insulator bismuth selenide (Bi2Se3) subjected
to intense midinfrared laser fields. We analyze the contributions from the spin-orbit-coupled bulk states and the
topological surface bands separately and reveal a major difference in how their harmonic yields depend on the
ellipticity of the laser field. Bulk harmonics show a monotonic decrease in their yield as the ellipticity increases,
in a manner reminiscent of high harmonic generation in gaseous media. However, the surface contribution
exhibits a highly nontrivial dependence, culminating with a maximum for circularly polarized fields. We attribute
the observed anomalous behavior to (i) the enhanced amplitude and the circular pattern of the interband dipole
and the Berry connections in the vicinity of the Dirac point and (ii) the influence of the higher-order, hexagonal
warping terms in the Hamiltonian, which are responsible for the hexagonal deformation of the energy surface at
higher momenta. The latter are associated directly with spin-orbit-coupling parameters. Our results thus establish
the sensitivity of strong-field-driven high harmonic emission to the topology of the band structure as well as to
the manifestations of spin-orbit interaction.
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I. INTRODUCTION

Strong-field ionization and subsequent rescattering pro-
cesses have been well explored in atoms and molecules in the
gas phase. This includes the advanced understanding of the
microscopic processes leading to high-order harmonic gener-
ation (HHG) [1,2]. These insights have laid the foundations
of attosecond physics and metrology [3–6], which includes
the ability to probe the structure and dynamics of atomic
and molecular systems [7,8]. HHG has now been extended to
condensed-matter systems such as bulk crystals [9,10], where
the underlying microscopic dynamics are rationalized as a
combination of the intraband acceleration of carriers [9,11,12]
and the interband dynamics arising from the recollision of
electron-hole pairs on a subcycle timescale [13]. Represen-
tative applications of solid-state HHG include the prospect of
an all-optical retrieval of electronic band structures [9,12,13],
tracking of recollision dynamics of quasiparticles in crystals
[11,14,15], compact setups for attosecond pulse generation
[6,16], and strong-field dynamics in systems with reduced
dimensionality [17], as well as the reconstruction of the Berry
curvature in topologically trivial inversion-symmetry (IS)-
breaking systems [17,18].
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Here, we theoretically investigate HHG in three-
dimensional topological insulators (3D-TIs) [19–25]. In
these systems, the cooperative action of strong spin-orbit
interaction (SOI) and time-reversal symmetry (TRS) causes
band inversion [26] and leads to the coexistence of insulating
bulk bands and conducting gapless surface states with an odd
number of Dirac cones in the Brillouin zone (BZ). These
gapless surface states are formed near the Fermi level in
between the valence and conduction bands of the insulating
bulk states. The topological protection enforced by TRS gives
rise to a series of emergent behaviors, in particular robustness
of the surface states against nonmagnetic perturbations, linear
dispersion near the zone center, and a spin texture [27,28]
that supports helical, spin-polarized currents [29]. Owing to
these properties, TIs represent a potentially unique platform
to control and manipulate strong-field-driven dynamics,
including those leading to HHG. In this context, 3D-TIs
were theoretically shown to support subcycle chiral electron
dynamics originating from the chirality of Bloch bands near
the Gamma point and the hexagonal warping [30,31]. It
has further been predicted that the topological properties of
materials [32] can be controlled and manipulated through
interactions with strong circularly polarized (CPL) laser
fields. An all-optical, contact-free approach, which can probe
the structure and nonequilibrium dynamics of topological
materials is therefore highly desired [33,34].

HHG provides a complementary approach to more tradi-
tional spectroscopic methods, such as transport measurements
and angle-resolved photoemission spectroscopy, as well as
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perturbative nonlinear optical methods like photovoltaic ef-
fects, Kerr rotation, and second-harmonic generation, and has
the added advantage of being able to probe material dynamics
with sufficient time resolution to access the fastest timescales
associated with electron correlations and hopping. Recently,
Silva et al. considered a Chern insulator as a platform for
HHG experiments and predicted that the subcycle tunneling
dynamics depend strongly on whether the system is in a trivial
or a topologically nontrivial phase, and that the topological
invariant (in this case the Chern number) can be imprinted
on the helicities of the emitted harmonics [35]. HHG has
also been scrutinized as a sensitive probe of topological phase
transitions in the Haldane model (through circular dichroism
in the harmonic emission) [36] as well as other model systems
[37–39]. However, the high harmonic response of the topo-
logical surface states (TSSs) present in a realistic topological
material has not been investigated so far.

In this paper, we consider the prototypical strong topo-
logical insulator Bi2Se3 because of its relatively large band
gap (∼0.3 eV) that makes it particularly suitable for below-
band-gap excitation in the midinfrared (MIR) spectral range.
This paper is structured as follows. We start in Sec. II by
presenting the crystal symmetries and introducing the tight-
binding model (TBM) Hamiltonian adopted from Ref. [40].
After discussing the spectrum of the bulk states (BSs), we
proceed with the derivation of an effective 2D Hamiltonian
for the TSSs (Sec. II C) and discuss the incorporation of the
TBM results into the framework of the semiconductor Bloch
equations (SBEs) in Sec. III. Section IV includes HHG results.
Our calculations show distinctly different ellipticity responses
of bulk versus surface states. Whereas the response of the
BSs is shown to strongly resemble the case of monoatomic
gases, characterized by a fast, monotonic decay of the HHG
yield as a function of ellipticity, the surface states showcase
a nontrivial behavior, culminating in an enhanced yield for
CPL fields. We attribute this behavior to the presence of a
chiral, vortexlike pattern in the interband transition matrix
elements and the Berry connections in the vicinity of the Dirac
cone [41], and to the influence of the higher-order (hexag-
onal warping) terms [42]. Importantly, the latter mechanism
directly relates the ellipticity sensitivity of the HHG response
to the spin-orbit coupling (SOC) terms in the Hamiltonian. We
conclude with a short summary in Sec. V.

II. ELECTRONIC STRUCTURE CALCULATIONS

A. Crystal structure

We employ the generic TBM Hamiltonian put forward in
Ref. [40] for materials of the Bi2Se3 family sharing the rhom-
bohedral crystal lattice belonging to the D5

3d (R3m, No. 166)
space group. The crystal structure of Bi2Se3 is depicted
schematically in Fig. 1(a), together with the corresponding
3D BZ and the projected 2D surface BZ. Bi2Se3 is a lay-
ered material with five atoms in the unit cell. The five atoms
constitute a quintuple layer, and each layer is organized into
a triangular lattice. These are stacked along the ẑ direction
and held together by weak van der Waals interactions. The
spatial symmetries of the rhombohedral point group include
(i) inversion symmetry î (IS), (ii) twofold rotation along the x̂

FIG. 1. (a) Crystal structure of Bi2Se3, comprising alternating Bi
and Se layers, stacked along the z direction. Five consecutive layers
form a quintuple layer (QL, cp. red rectangle), the building block of
the lattice. Each QL comprises five atoms: two equivalent Bi sites,
two equivalent Se sites [Se(1)], and a third Se atom, Se(2), which
assumes the role of an inversion center. The hexagonal lattice con-
stants are a = 4.14 Å and c = 28.70 Å. The space-dependent wave
function of the surface states (squared magnitude), �Surf (k‖; z), is
sketched as a red-shaded surface and illustrates the employed bound-
ary conditions. (b) Schematic representation of the C3v-symmetric
Bi2Se3 (111) surface (rhombohedral convention), exposing a top Se
layer and underlying Bi and Se’ layers. (c) Sketch of the 3D Brillouin
zone of bulk Bi2Se3 (black) with the four time-reversal-invariant
points indicated (�, L, F, Z). The projected 2D BZ of the (111) sur-
face is shown as a red hexagon, with labeled high-symmetry points
�, K, M.

direction R̂(x)
2 , (iii) threefold rotation around the ẑ axis, R̂(z)

3 .
Although formally not a spatial symmetry of the D5

3d group,
the electronic wave functions of Bi2Se3 are also characterized
by TRS T̂ . We also briefly discuss the symmetry properties
of the (111)-surface [depicted in Fig. 1(b)], which can be
formally classified as belonging to the C3v group. IS is neces-
sarily lost at the boundary, whereas the threefold rotation R̂(z)

3

is preserved as well as a mirror plane σ̂
(y)
refl coincident with the

ŷ axis. There are in total three equivalent mirror planes parallel
to the �M-high-symmetry lines in the projected 2D BZ, and
one of them is chosen as the ky direction in the coordinate
system employed here. The TBM is constructed from the four
levels closest to the Fermi level which form the basis for each
site:

{|P+
z ,↑〉 , |P−

z ,↑〉 , |P+
z ,↓〉 , |P−

z ,↓〉}. (1)

The superscripts ± denote the parity of the state, and
|P+

z ↑ (↓)〉 and |P−
z ↑ (↓)〉 are derived from atomic pz orbitals

of the Bi and Se atoms, respectively. The ↑ (↓) symbols
denote the spin state.

In the basis defined above, the tight-binding Hamiltonian
in momentum space has the generic form

ˆ̃H (k) = ε̂(k) +
3∑

i=1

(
t̂ai e

ik·ai + t̂bi e
ik·bi + H.c.

)
, (2)
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where ε̂(k) is a diagonal (on-site) energy term. The sets of
vectors {±ai} and {±bi} in Eq. (2) indicate the positions of
the six intra- and interlayer neighbors on each lattice site and
are listed explicitly in Appendix A. Correspondingly, t̂ai and
t̂bi denote the intralayer and the interlayer hopping parameters.
The Hamiltonian in Eq. (2) can also be recast in the form

ˆ̃H (k) = h0(k) +
5∑

i=1

hi(k)�i, (3)

where �i are the Dirac matrices defined in terms of the Pauli
matrices σ̂i and τ̂i in Eq. (A4). The auxiliary functions hi(k)
in Eq. (3) are given in the Appendix. In Secs. II D and IV C
1, we study their low-energy behavior k ∼ 0 in the context of
the surface-state spin polarization and the surface Bloch band
topology.

B. Bulk states

We next apply the unitary transformation [Û1, see
Eq. (A11)] introduced by Liu et al. [43]:

Ĥ (k) = Û1
ˆ̃H (k)Û T

1 . (4)

Diagonalizing the resulting Ĥ (k) yields the eigenspectrum
and the eigenfunctions of the BSs. The spectrum is doubly
degenerate as a consequence of the combined action of IS and
TRS. The energies of the bulk valence (−) and conduction
(+) bands can be expressed as

E±
B (k) = h0(k) ±

√√√√ 5∑
i=1

h2
i (k). (5)

The wave functions are doubly degenerate as well and the
two eigenvectors (spinors), labeled by ν = {1, 2}, have the
form

ψ±
B,ν=1(k) = N±

B (k) f1k

⎛
⎜⎜⎜⎜⎝

−i
(

h5(k) ±
√∑5

i=1 h2
i (k)

)
−(h3(k) + ih4(k))

0

h1(k) + ih2(k)

⎞
⎟⎟⎟⎟⎠ (6)

and

ψ±
B,ν=2(k) = N±

B (k) f2k

⎛
⎜⎜⎜⎜⎝

0

h1(k) − ih2(k)

i
(

h5(k) ±
√∑5

i=1 h2
i (k)

)
h3(k) − ih4(k)

⎞
⎟⎟⎟⎟⎠. (7)

In the above, N±
B (k) is a normalization constant given

in Eq. (A12), and fνk = (h1(k) + i(−1)ν−1h2(k))−1. By con-
struction, the spinors ψ±

B,ν=1,2(k) form a Kramers doublet,

i.e., they are related by a time-reversal operation [T̂ =
i(σ̂y ⊗ 1̂2)K̂ with K̂ being the complex-conjugation operator]:
ψB,ν=1(k) = −i(σ̂y ⊗ 1̂2)ψ∗

B,ν=2(−k). TRS has profound im-
plications for the physics of topological insulators. By virtue
of the Kramers theorem, no time-reversal-invariant perturba-
tion can induce gap opening at the surface Dirac cone [26].

The TBM parameters used in the subsequent calculations
are listed in Table I, whereas Fig. 2 depicts the resulting

TABLE I. Parameters for the TBM Hamiltonian used in this paper.

t̂ai / eV t̂bi / eV

A0 −0.0255 B0 0.0164
A11 0.1937 B11 0.1203
A12 0.2240 B12 0.3263
A14 0.0551 B14 0
m11 −1.6978

band dispersions E±
B (k) along the parallel momentum k‖ for

selected values of kz. Note that for simplicity, we neglect the
interlayer spin-flip hopping, i.e., we set B14 = 0.

C. Surface states

For the purposes of describing the TSSs, we first derive
an effective two-band Hamiltonian [ĤS

2D(k‖)], based on the
generic 4 × 4 TBM Hamiltonian Ĥ (k) in Eq. (4). The detailed
procedure, adapted from Ref. [43], is outlined in Appendix B.
Here, we restrict the discussion to a brief recapitulation of the
main steps. The point of departure in our ansatz is to impose

FIG. 2. (a) Energy dispersion of the bulk states E±
B (kx, ky, kz )

along the high-symmetry directions �M and �K in inverse space,
shown for different kz values. The black lines correspond to the plane
kz = 0, projected band dispersion curves pertaining to increasing
kz are given in progressively lighter blue colors, whereby the kz

is varied by 	kz = 1.5 × 10−3 Å−1. The abscissa covers the range
from kx = 0 to kx = 0.36 Å−1 (�K direction) and from ky = 0 to
ky = 0.31 Å−1 (�M direction). (b) Energy dispersion of the surface
modes ES;(±)

2D (kx, ky ) resulting from the employed TBM model, given
in the disk defined by k‖ � 0.4 Å−1. Near the � point, the dispersion
is nearly linear. At higher momenta, the hexagonal warping effect is
seen as a consequence of the higher-order contributions. (c), (d) Spin
polarization of the surface lower (c) and upper (d) Dirac cones over a
selected portion of the BZ. The white arrows indicate the magnitude
and direction of the in-plane polarization, whereas the color coding
corresponds to the magnitude of the spin polarization in ẑ direction
(out of plane). We note that the Berry curvature in momentum space
follows a similar pattern as the out-of-plane spin polarization.
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open boundary conditions onto the Hamiltonian in Eq. (4) by
postulating that the surface-state wave function �Surf vanishes
at the crystal-vacuum interface (defined as z = 0 in Fig. 1)
and decays exponentially into the bulk for z → −∞, as illus-
trated by the red-shaded surface in Fig. 1(a). With the aid of
this procedure, we construct a general Hamiltonian [Ĥ (2)(k),
compare Eq. (B1)] describing both bulk and surface states and
use its low-energy limit to obtain expressions for the surface
state wave functions at the zero-energy Dirac point (� point in
the 2D BZ). Due to the presence of spin and orbital degrees of
freedom, the latter are degenerate at this special point of the

BZ. We then split the general Hamiltonian Ĥ (2)(k) into one
part dependent on the in-plane momentum coordinates [k‖ =
(kx, ky)T ] and another term Ĥ (2)(k‖ = 0, k⊥) independent on
k‖. This approach can be regarded as doing degenerate pertur-
bation theory in terms of the in-plane momentum k‖, whereby
the parallel perturbation Hamiltonian is then projected onto
the basis of the degenerate ground states, yielding the effective
Hamiltonian for the states localized near the surface. In the
end, following the steps presented in Appendix B, the full
expression for the effective Hamiltonian, corrected for the en-
ergy of the unperturbed states, and its spectrum, are given by

ĤS
2D(k‖) =

(
hz0

0 (k‖) + B0
( − hz0

5 (k‖) + h�
5

)
B11

)
1̂2 +

√
1 − B2

0

B2
11

[
hz0

1 (k‖)σ̂x + hz0
2 (k‖)σ̂y + hz0

3 (k‖)σ̂z
]

(8)

and

ES;(±)
2D (k‖) = 6A0 + hz0

0 (k‖) − h�
0 + B0

B11

(
6B11 − hz0

5 + h�
5

) ±
√( − B2

0 + B2
11

) ∑3
i=1

(
hz0

i (k‖)
)2

B11
, (9)

where ± corresponds to the lower (−) or the upper (+) Dirac
cones, respectively. The quantities hz0

i (k‖) and h�
i are defined

in Appendix B 1, whereas Ai j and Bi j are the TBM param-
eters with values listed in Table I. σ̂x,y,z are the conventional
Pauli matrices operating in real spin space. The surface mode
eigenstates (defined over the entire 2D surface BZ) read

ψ±
S (k‖) = N±

S (k‖) fk‖

(
hz0

3 (k‖) ±
√∑3

i=1

(
hz0

i (k‖)
)2

hz0
1 (k‖) + ihz0

2 (k‖)

)
, (10)

with fk‖ = (hz0
1 (k‖) + ihz0

2 (k‖))−1 and a normalization con-
stant N±

S (k‖) defined in Eq. (B20).

D. Spin polarization

In the following, we briefly examine the spin structure of
the surface modes derived in Sec. II C. The spin polarization
of the TSSs is calculated by evaluating the expectation values
of the Pauli matrices {σ̂i} (with i = {1, 2, 3} corresponding to
the axes {x, y, z}) over the eigenmodes ψ±

S (k‖):

〈σ̂i〉± ≡ 〈ψ±
S |σ̂i|ψ±

S 〉 = ± hz0
i (k‖)√∑3

j=1

(
hz0

j (k‖)
)2

. (11)

The spin polarization (〈σ̂x〉±, 〈σ̂y〉±, 〈σ̂z〉±)T pertaining to
the lower and upper Dirac cones is displayed as a vector den-
sity plot in Figs. 2(c) and 2(d). On the basis of these results,
one can deduce that the TBM model employed here recov-
ers the theoretically [43] and experimentally [44] established
characteristic that for low momenta, the spin polarization of
the surface states is predominantly in plane, whereby spin and
momentum are locked such that the spin is always perpen-
dicular to the in-plane momentum k‖. At high momenta, a
significant out-of-plane spin component (i.e., in the ẑ direc-
tion) develops as a result of the hexagonal warping.

Within the framework of the TBM presented in Sec. II B,
this observation can be quantitatively accounted for by ex-

amining the low-momentum limit of Eq. (11). The spin
polarization in momentum space and the resulting spin-
momentum locking at low momenta are tied to the following
terms in the 2D Hamiltonian:

ĤS
2D ∝ hz0

1 (k‖)σ̂x + hz0
2 (k‖)σ̂y + hz0

3 (k‖)σ̂z. (12)

For low momenta, the functions hz0
i (k‖) can be expanded

up to third order [O(k3
‖ )]. Taking into account the fact that

in the adopted TBM parametrization we have neglected the
interplane spin-flip transfer, i.e., B14 = 0 (cp. Table I), the
asymptotic expressions simplify to

hz0
1 (k‖ → 0) ∼ 3A14aky − 3

8
A14a3kyk2

‖ , (13)

hz0
2 (k‖ → 0) ∼ −3A14akx + 3

8
A14a3kxk2

‖ , (14)

hz0
3 (k‖ → 0) ∼ −1

4
A12a3kx

(
k2

x − 3k2
y

)
, (15)

where k‖ =
√

k2
x + k2

y .

From the above, it follows that hz0
1 (k‖)σ̂x + hz0

2 (k‖)σ̂y ∝
A14a(kyσ̂x − kxσ̂y) for very small k‖. In contrast, the out-of-
plane component gains in importance only at higher momenta
as hz0

3 (k‖) is of third order in k‖ according to Eq. (15). Further,
the magnitude of the in-plane spin polarization is controlled
by the intralayer spin-flip parameter A14, whereas the polar-
ization in ẑ direction is proportional to the intralayer hopping
A12. In Sec. IV C 1, the interconnection between the hopping
constants A12 and A14 and the strength of the SOI will be
revisited again in the context of the optical response of the
surface states to intense CPL laser fields.

III. SEMICONDUCTOR BLOCH EQUATIONS

The microscopic interaction of the intense MIR laser fields
with the bulk (Sec. II B) and the surface (Sec. II C) states
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is solved within the framework of the SBEs in the basis of
accelerated Bloch functions, closely following previous works
[11,14,45–48]. We solve the SBEs for the time-dependent
populations ρK

mm(t ) and coherences (ρK
mm′ (t ), m �= m′), which

are explicitly propagated according to

ρ̇K
m′m(t ) = i

[
	Em′m(K + AMIR(t ))

+EMIR(t ) · 	ξm′m(K + AMIR(t )) + i

T2

]
ρK

m′m(t )

+i
∑

m′′ �=m′
EMIR(t ) · d∗

m′m′′ (K + AMIR(t ))ρK
m′′m(t )

−i
∑

m′′ �=m

EMIR(t ) · dmm′′ (K + AMIR(t ))ρK
m′m′′ (t )

(16)

ρ̇K
mm(t ) = −2Im

{ ∑
m′′ �=m

EMIR(t ) · d∗
mm′′

× (K + AMIR(t ))ρK
m′′m(t )

}
. (17)

Decoherence due to scattering effects has been taken into
account via the phenomenological dephasing constant T2.
The index m runs over the number of bands, 	Em′m(k) is
the difference between the energies of the bands m′ and m:
	Em′m(k) = Em′ (k) − Em(k), where Em is either E±

B or ES;±
2D .

	ξm′m(k) denotes the difference between the corresponding
Berry connections ξmm(k). The latter are defined as ξmm(k) =
i 〈uk,m| ∇k |uk,m〉 with |uk,m〉 being the periodic part of the
Bloch wave function. dm′m(k) denotes the interband transition
matrix element i 〈uk,m′ | ∇k |uk,m〉 , m′ �= m, also referred to as
non-Abelian Berry connection in earlier works [31] on strong-
field dynamics in TIs. k is the crystal momentum, whereas
K = k − AMIR(t ) is the quasicanonical crystal momentum
in the presence of the vector potential AMIR(t ) associated
with the external laser electric field, defined as EMIR(t ) =
−∂t AMIR(t ). The laser electric field excites both intraband
[Jra (t )] as well as interband [Jer (t )] electron dynamics, which
can be calculated from the time-dependent populations ρK

mm(t )
and coherences ρK

m′m(t ) in the following manner:

Jra(t ) = −
∑

m

∫
BZ

dK2 pmm(K + AMIR(t ))ρK
mm(t ) (18)

and

Jer (t ) = −
∑
mm′

m �= m′

∫
BZ

dK2 pm′m(K + AMIR(t ))ρK
mm′ (t ), (19)

where pmm′ (k) denote the momentum matrix elements. The
intraband elements can be cast in terms of the group velocity
of the band m: pmm(k) = vgr,m(k), where vgr,m(k) = ∇kEm(k),
whereas the interband matrix elements are proportional to the
dipole matrix elements: pmm′ (k) = i(Em(k) − Em′ (k))dmm′ (k)
(m �= m′). The Bloch functions |um(k)〉 required for the evalu-
ation of all matrix elements in Eqs. (16) and (17) are evaluated
with the aid of the eigenspinors derived from the TBM Hamil-
tonian, i.e., Eqs. (6), (7), and (10).

Although all calculation results reported in the next
sections have been obtained by numerically propagating
Eqs. (16) and (17), a physical insight can also be gained
by writing the inter and intraband currents in closed form
using the approximation ρK

vv − ρK
cc ≈ 1 [36,49]. Thereby, the

subscripts c and v pertain to either the conduction and valence
bands (BSs), or the upper and lower Dirac cones (TSSs). In
this way, we can decouple Eqs. (16) and (17), and the ith vec-
torial component (i = x, y) of intraband current contribution
can be evaluated as

J (i)
ra (t ) = −

∑
m

∫
BZ

dK2 v(i)
m (K + AMIR(t )) ρK

mm(t ), (20)

where the occupation of the mth state, ρK
mm(t ), is given by

ρK
mm(t ) = (−1)m

∑
j,k

∫ t

t0

dt ′ E (k)(t ′)
∣∣d (k)

cv (K + AMIR(t ′))
∣∣

×
∫ t ′

t0

dt ′′ E ( j)(t ′′)
∣∣d ( j)

cv (K + AMIR(t ′′))
∣∣

× e−iS( j) (K,t ′,t ′′ )− t ′−t ′′
T2

+i(ϕ( j)
cv (K,t ′ )−ϕ(k)

cv (K,t ′ )) + c.c.

(21)

For the interband current, we have

J (i)
er (t ) = −

∑
j

∫
BZ

dK2	Ecv (K + AMIR(t ))

× ∣∣d (i)
cv (K + AMIR(t ))

∣∣eiϕ(i)
cv (K+AMIR (t ))

× eiϕ( j)
cv (K+AMIR (t ))

∫ t

t0

dt ′e− t−t ′
T2 e−iS( j) (K,t,t ′ )

× E ( j)(t ′)
∣∣d ( j)

cv (K + AMIR(t ′))
∣∣ + c.c., (22)

where S( j) (K,t,t ′ )=∫ t
t ′ [	Ecv (K,(t ′′ ))+EMIR (t ′′ )·D( j)

cv (K,t ′′ )]dt ′′ is the
electron-hole pair accumulation phase between the
birth event t ′ and the emission event t . We define
D( j)

cv (k) = 	ξcv (k) − ∇kϕ
( j)
cv (k) as the covariant Berry

connection, whereas ∇kϕ
( j)
cv (k) denotes the dipole phase

derivative. These terms appear naturally in the acquired
electron-hole pair phase and, together with the dipole
amplitude (|d ( j)

cv (k)|), are coupled to the MIR driving field and
hence dictate the ways in which electronic structure features
are encoded in the HHG spectra. In Sec. IV C, we elaborate
on the details of this coupling in the case of the TSSs. The
interband dipole matrix element between upper and lower
Dirac cones is displayed in terms of its real and imaginary
parts in Figs. 5(a) and 5(b). In Fig. 11 of Appendix F, we
present the Berry connection difference 	ξcv (k‖) [Fig. 11(a)]
as well the gradients of the dipole phase [Figs. 11(b) and
11(c)]. The fact that the magnitude of the phase gradients
∇k‖ϕ

( j)
cv (k‖) exceeds 	ξcv (k‖) (cp. Fig. 11), together with the

strongly enhanced magnitude of the dipole around the � point
due to the singularity, implies that the transition dipole has
the predominant influence on the HHG spectra. Finally, we
stress that the quantity D( j)

cv (k), as well as the total (intra and
interband) currents, are Bloch wave function gauge invariant
[36].

In the above, the integration is performed over the shifted
BZ, BZ = BZ − AMIR(t ). We consider a laser field normally
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incident on the (111) surface of the TI system (rhombohedral
convention) x − y plane, cp. Fig. 1. Under the assumption
that the initiated electron dynamics is confined to the incident
plane, we restrict the momentum space integration in Eqs. (18)
and (19) to two dimensions (kx, ky). Whereas the motion of
the surface-state electrons is confined to in-plane momenta
by construction, for the BSs, where the band structure is
inherently three-dimensional, this approximation implies that
the analysis is restricted to the (kx, ky, kz = 0) time-reversal-
invariant plane. Extending the BZ integration to include the
kz-direction would require extensive computational resources
that are beyond the capacity currently at our disposal. Further-
more, provisional 3D calculations indicate that extending the
momentum-space integration to include the kz-direction does
not result in qualitative changes of the HHG spectral features.

In the remaining sections, we study the strong-field dynam-
ics of bulk and surface states separately. The 2D Hamiltonian
for the TSSs in Eq. (8) yields two bands corresponding to the
lower (−) and the upper (+) Dirac cones. As IS is broken at
the surface, the Berry curvature of the surface bands possesses
a nonvanishing component in the ẑ direction:


(S)
± (k‖) = i

〈∇k‖ψ
(S)
± (k‖)| × |∇k‖ψ

(S)
± (k‖)

〉
. (23)

The 4 × 4 Hamiltonian describing the bulk band structure in
Eq. (3) yields two pairs of degenerate bands corresponding
to the valence (−) and conduction (+) bands, separated by a
band gap of 0.37 eV at the � point (for comparison, the experi-
mental band gap is reported as ≈0.3 eV). Hence, we propagate
the full 4 × 4 density matrix resulting from Eqs. (16) and
(17). The degenerate nature of the bands arising from the
combination of TRS and IS has profound consequences for the
Berry curvature and the anomalous velocity. In the presence
of degeneracies, the definition of the Berry curvature has to
be extended to a tensor definition [50–53] by the covariant
derivatives,(
�(B)

m (k)
)

i j = i
〈∇ku(i)

m (k)
∣∣×∣∣∇ku( j)

m (k)
〉

−i
2∑

l=1

〈∇ku(i)
m (k)

∣∣u(l )
m (k)

〉 × 〈
u(l )

m (k)
∣∣∇ku( j)

m (k)
〉
,

(24)

where the indices i, j run over the degenerate components.
The anomalous current is proportional to the trace of this
tensor, i.e., van,m(k) ∝ Tr{(�(B)

m (k))i j}, which forms a gauge-
invariant quantity. For the bulk bands, the trace evaluates to
zero as (�(B)

m (k))ii = −(�(B)
m (k)) j j owing to IS and TRS. In

our formalism, the contributions associated with the Berry
curvature manifest themselves via the interband velocity ma-
trix elements in Eq. (19).

IV. HHG RESULTS

A. Recovery of selection rules for circular polarization

HHG spectra from the bulk and surface states driven by a
left-CPL MIR laser field with a center wavelength of λMIR =
7.5 μm are shown in Figs. 3(a) and 3(b), respectively. To ratio-
nalize the observed spectral features, we discuss in detail the
selection rules based on dynamical symmetry (DS) analysis
in Appendix E. Essentially, the threefold crystal symmetry

FIG. 3. HHG spectra of Bi2Se3 driven by circularly polarized
fields, for both bulk (a) and surface states (b). The relative orientation
of the (111) surface (real space) and the MIR polarization vector
is sketched in the inset, whereby the propagation direction points
toward the reader. The MIR pulse is left-circularly polarized with
I0 = 0.0025 TW/cm2 and a FWHM duration of 12 cycles. The
helicity of the emitted harmonics is encoded in color: left, corotating
orders are shown in magenta (full lines), right, counter-rotating in
cyan (dashed lines). Bulk and surface states obey different selection
rules: ω = (6n ± 1)ω0 for the bulk (a) versus ω = (3n ± 1)ω0 for
the surface (b). In both calculations, the dephasing time is set at
T2 = 1.25 fs.

(R̂(z)
3 ) precludes emission of every third-harmonic multiple of

the fundamental frequency. Indeed, for both bulk and surface
states, harmonic orders (HOs) 3, 6, and 9 are missing, as
evident from Figs. 3(a) and 3(b). For the surface states, the
selection rule for allowed HOs reads ω = (3n ± 1)ω0, with
n ∈ N and ω0 being the driving frequency. In addition, the
(3n + 1)th orders are corotating, whereas the (3n − 1)th or-
ders are counter-rotating with respect to the helicity of the
laser field. In our results, magenta-color full lines (HOs 4,
7, and 10) represent corotating and cyan-color dashed lines
(HOs 2, 4, 8, and 11) represent counter-rotating harmonics,
respectively. The presence of IS in the bulk, as discussed
in the preceding Sec. II A, precludes additional even-order
harmonics, leading to a more restrictive selection rule: ω =
(6n ± 1)ω0. This is also consistent with our observation in
Fig. 3(a). We note that selection rules for harmonic generation
in CPL fields were first derived within a perturbative analysis
in Ref. [54] and verified experimentally for the nonpertur-
bative regime in Ref. [55]. Having established the essential
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FIG. 4. (a) Sketch of the excitation geometry, where the major
axis of the MIR ellipse (orange) remains perpendicular to the mir-
ror axis (dashed line) of the crystal throughout the measurement.
(b)–(d) show the calculated ellipticity response for harmonic or-
ders 5, 7, and 9. The calculations (12-cycle Gaussian pulse, I0 =
0.0085 TW/cm2, λMIR=7.5 μm, T2 = 1.25 fs) pertain to the contri-
butions from the bulk [(B), dashed lines, diamonds] and from the
surface states [(S), solid lines, circles].

selection rules for fully circular MIR fields, we move to the
more general case of elliptical polarization and focus on how
the harmonic yield changes as we vary the laser ellipticity in
small steps.

B. Nontrivial ellipticity dependence

We select few representative harmonics and plot their to-
tal yields as a function of laser ellipticity, both for the bulk
and surface states. During the ellipticity scan, the major axis
of the ellipse is kept fixed along the x axis (EMIR ‖ �K in
momentum space), as shown in Fig. 4(a). The intensity of
the MIR driver (λMIR = 7.5 μm) is I0 = 0.0085 TW/cm2. As
evident from Figs. 4(b)– 4(d), HOs 5, 7, and 9 from the bulk
(represented by dashed lines with diamond symbols) exhibit a
monotonic decrease as the ellipticity increases. We note that
the ellipticity profiles are normalized with respect to their
maxima. A closer look at these profiles shows a decrease in
FWHM as the HO increases from 5 to 9. These behaviors are
similar to the ellipticity dependence in atomic HHG, as well as
in a number of solid-state materials studied by HHG in recent
years [9,17].

However, the ellipticity dependence of HHG from the sur-
face states is profoundly different. As can be discerned from
Figs. 4(b), 4(d) and 4(f), HOs 5, 7, and 9 (represented by solid
lines with filled circle symbols) from the surface exhibit a
substantial enhancement as the laser ellipticity increases. In
particular, HO 5 reaches a maximum at circular polarization,
with a factor of ∼10 higher intensity with respect to the linear
polarization case. Because this observation is in contrast with
the manifestations of re-collision physics observed in atomic
and molecular HHG, it calls for a detailed investigation. To
track the origin of the nontrivial behavior, we perform a
detailed analysis of the characteristic quantities that govern
the population dynamics in the lower and upper Dirac cones
by virtue of Eqs. (20) and (22), i.e., the complex interband
transition moments and the Berry connections [36,48,56].

C. Mechanisms for HHG in elliptical fields

1. Low-momentum limit: band topology

In this section, we examine the low-momentum behavior
of the interband transition dipole moment dcv (k‖). All char-
acteristic quantities are associated to the surface states, unless
otherwise noted explicitly. With a series expansion of dcv (k‖)
around the � point, the elements of the interband transition
dipole vector can be approximated as

d (x)
cv (k‖) ∼ ky(a2k2

‖ − 8)2

128k2
‖

− i
A12

A14
a2 1

1536|k‖|3 [192k2
‖ (kx − ky)(kx + ky)

− kx
2(a2k2

‖ − 8)(3a2k2
‖ − 8)(kx

2 − 3ky
2)] (25)

and

d (y)
cv (k‖) ∼ −kx(a2k2

‖ − 8)2

128k2
‖

+ i
A12

A14
a2kxky

1

1536|k‖|3 [384k2
‖

+ (a2k2
‖ − 8)(3a2k2

‖ − 8)(kx
2 − 3ky

2)]. (26)

For very low momenta k‖, the dominant terms are given
by d (x)

cv (k‖) ∝ 1
2k2

‖
ky and d (y)

cv (k‖) ∝ − 1
2k2

‖
kx. This implies that

the direction of the transition dipole is perpendicular to the
electron crystal momentum k‖, in a manner reminiscent of
the spin-momentum locking, i.e., the orthogonal mutual ori-
entation of the in-plane spin polarization and k‖ on the TI
surface, discussed in Sec. II D [cp. Eqs. (13)–(15) therein] and
visualized in Fig. 2. The orientation of real part dcv (k‖ ∼ �)
forms a chiral vortex feature, as evident from the plot in
Fig. 5(a).

This last feature of the surface band topology, together with
the strong localization of the transition dipole magnitude in
the vicinity of the � point, implies a pronounced sensitivity to
the vectorial nature of the coupling to the external oscillating
electromagnetic field. In particular, CPL driving fields couple
more efficiently due to the nonvanishing x and y components
of the instantaneous polarization vector. This enhancement
mechanism for low-momentum range is reminiscent to the
one invoked to explain the nontrivial ellipticity response in
graphene [41], where the HHG yield was found to maximize
at finite ellipticities (|ε| ∼ 0.32 [57]). In the case of 3D-TIs
such as Bi2Se3, this mechanism precipitates the efficient gen-
eration of low-order harmonics (HO � 5) in highly elliptical
fields. As the interband dipole-momentum locking is medi-
ated by the real part of dcv (k‖ ∼ �), this last statement can
be verified by studying the effect of the imaginary part of the
dipole vector on the emitted HHG. In Fig. 5(c), we present
HHG spectra of Bi2Se3 for a left-CPL MIR field calculated
including only the real part of dcv (k‖ ∼ �), i.e., the leading
terms in Eqs. (25) and (26) (blue, dashed), and compare them
to the results of a full calculation (full red curve). The intensity
of the low-order harmonics such as HO 5 remains only slightly
affected compared to higher orders in the range from HO 11 to
HO 19, implying that the chiral vorticity of the dipole vector
is the dominant mechanism for HHG in this spectral range. In
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FIG. 5. (a), (b) Real (a) and imaginary (b) parts of the interband
transition matrix element dvc(k‖) between the surface valence and
conduction bands. The streamlines (white) indicate the local direc-
tion of the vector fields in momentum space. (c) HHG spectra of the
TSSs illuminated by a LCP MIR pulse with I0 = 0.0075 TW/cm2,
λMIR ∼ 7.5 μm, T2 = 1.25 fs, and a duration of 12 cycles. The blue
(dashed) curve corresponds to a calculation which considers only the
real part of the interband dipole dcv (k), i.e., leading term in Eqs. (25)
and (26). The red (full) curve pertains to the full expression for the
dipole.

addition, the vortex feature in the case of the TSSs of Bi2Se3

leaves an imprint on the population dynamics in the upper
band. The vorticity of the interband dipole dcv (k‖) leads to the
formation of a chiral vortex pattern in the electron population
distribution, as evident from the momentum-resolved occu-
pations of the upper Dirac cone depicted in Figs. 6(a)–6(c).
For comparison, in Fig. 6 (bottom row) we also show the
corresponding population evolutions for the BSs, which do
not exhibit these chiral features. Consequently, we conclude
that the ellipticity response is highly sensitive to the details of
the topology of the Bloch bands, particularly near the Dirac
cone.

2. High momentum limit: Hexagonal warping

We now turn to the dynamics in the high-momentum re-
gions of the BZ, which are governed predominantly by the
imaginary part of dcv (k‖), as implied by the results presented
in Fig. 5(c). In fact, the presence of imaginary components
in dcv (k‖) is a characteristic feature of TSSs in 3D-TIs that
is distinctly different than other gapless systems with linear
dispersion, such as graphene, as elaborated in Refs. [30,31].
We now show that this feature is mediated by the strong SOC
in the 3D-TI system and that it gives rise to the pronounced
anomalous ellipticity behavior of the higher orders.

Our analysis starts by noting that the higher-order (imagi-
nary) component of dcv (k‖) is directly proportional to the ratio
A12
A14

, i.e., the TBM coefficients linked to the in-plane spin po-
larization [hz0

1 (k‖)σ̂x + hz0
2 (k‖)σ̂y ∼ 3A14a(kyσ̂x − kxσ̂y)] and

its out-of-plane (A12) component [hz0
3 (k‖)σ̂z ∼ − 1

8 a3A12(k3
+ +

k3
−)σ̂z]. The latter term coupled to σ̂z is the analogon of

the cubic Dresselhaus spin-orbit term in bulk rhombohedral

FIG. 6. Upper row: Momentum-resolved temporal snapshot of the population distribution in the upper Dirac cone at different time points
during the interaction with a LCP MIR driving field (I0 = 0.0025 TW/cm2, 12 cycles), shown at three different time points (a)–(c) of the
pulse envelope. The top panels show the x component of the electric-field amplitude of the MIR driving pulse (in atomic units). Bottom row:
(d)–(f) show the corresponding population distribution for one of the degenerate components of the bulk conduction states (ψ+

B,ν=1) for the

same conditions as for the TSSs. Note that ρ
k‖
cc ∈ [0, 1] for the TSSs and ρ

k‖
c(ν=1)c(ν=1) = ρ

k‖
c(ν=2)c(ν=2) ∈ [0, 1/2] for the BSs.
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FIG. 7. HHG spectra emitted from the surface states driven by a
12-cycle left-circularly polarized pulse with a peak intensity of I0 =
0.004 TW cm−2, whereby one of the TBM parameters A12 (a) or A14

(b) is varied (s. legend). The spectra corresponding to the parameters
listed in Table I are shown in black (full lines).

structures, as noted in Ref. [42]. This relationship reveals
the sensitivity of the yield of higher-order harmonics to the
details of the SOC parameters in a system with a strong SOI.
Similar considerations apply to the Berry connections ξmm
(m = c, v) as well. We consider directly the difference be-
tween the Berry connections of upper and lower Dirac cones
	ξcv (k‖) = ξcc(k‖) − ξvv (k‖) that enter the SBEs in Eq. (16):

	ξ (x)
cv ∼ A12

A14
a2

kxky(a2k2
‖ − 8)2(kx

2 − 3ky
2)

768|k‖|3
, (27)

	ξ (y)
cv ∼ −A12

A14
a2

kx
2(a2k2

‖ − 8)2(kx
2 − 3ky

2)

768|k‖|3
. (28)

As in the case of interband dipole dcv (k‖), the magnitude of
	ξcv (k‖) near � is controlled by the ratio A12

A14
. The corre-

sponding vector field plot revealing the vorticity of the Berry
connection difference in the BZ is shown in Fig. 11(a).

To put the above considerations on a more quantitative
basis, we next investigate the sensitivity of the HHG efficiency
of Bi2Se3 in CPL fields to the variations of the two TBM pa-
rameters A12 and A14. In Figs. 7(a) and 7(b), we present HHG
spectra obtained for different A12 and A14 values, respectively.
Thereby, we have assured that the parameter range spanned
by the selected {A12, A14} values does not alter the underlying
band structure of the model Bi2Se3 appreciably. The results in
Fig. 7 imply that increasing A12, respectively, decreasing A14,
i.e., maximizing the A12

A14
-ratio, leads to a pronounced enhance-

ment of the HHG yield in CPL fields. In particular, increasing
the A12 value by a factor of 3 results in an enhancement of the
yield of higher-order harmonics (HO >15) by several orders
of magnitude. The same tendency is observed when A14 is
decreased by a factor of 2 − 4, s. Fig. 7(b). Although similar
tendencies are also present in the case of BSs [cp. Fig. 12 in
Appendix G], the overall efficiency of the HHG driven by CPL
fields in this case is much weaker.

Finally, we show that the above analysis implies that the
high-momentum-limit mechanism is intensity dependent, as
it is mediated by the higher-order (O(kn

‖ ), n � 3) terms in

the expansions of dcv (k‖) and 	ξcv (k‖) around �. For this
aim, we calculate the ellipticity dependence for three different
peak laser intensities and compare results with their bulk

counterparts. The results for the surface and bulk bands are
presented in the upper and bottom rows of Fig. 8, respectively.
From these results, it can be inferred that for surface states,
increasing the peak intensity brings about an anomalous el-
lipticity dependence, manifested in an increased HHG yields
for highly elliptical and CPL fields. This result is consistent
with the notion that for higher peak electric field amplitudes,
the strong-field dynamics is predominantly governed by the
higher-momentum regions of the BZ, populated by coupling
to the higher-order terms in Eqs. (25) and (26). Notably,
HO 5 exhibits an anomalous dependence that remains robust
for the entire intensity range considered, as the correspond-
ing dynamics for this order originates from low-momentum
range. An analogous intensity-dependent behavior is clearly
not present in bulk harmonics shown in the bottom row.

V. CONCLUSION AND OUTLOOK

Summarizing, we have investigated a strong-field driven
phenomenon on a 3D-TI Bi2Se3 crystal lattice subjected to
intense ultrashort fields in the MIR spectral domain. Specifi-
cally, we have studied the high-harmonic response of the BSs
and surface modes. To this end, we have integrated a simple
TBM (Ref. [40]) into the framework of the SBEs formulated
in the length gauge. Starting with a TBM comprising the
four electronic states closest to the Fermi energy, we have
outlined the derivation of the bulk eigenstates as well as
the construction of an effective 2D surface Hamiltonian that
allows us to treat the TSSs. Our analysis accounts for geomet-
rical effects in the strong-field dynamics by incorporating the
complex dipole elements and Berry connections into the SBE
treatment. We have studied the general characteristics of the
high-harmonic emission from bulk and surface states driven
by circularly as well as linearly (see Appendix D) polarized
MIR fields, and have elucidated the different dynamical sym-
metries that govern the nonlinear response. This symmetry
analysis establishes a potential approach to disentangle the
contributions from bulk and surface in an all-optical exper-
imental setting, for example, with generation of even-order
harmonics from the surface.

We have conducted a detailed analysis of the ellipticity
dependence of the harmonic yield and found a profound
difference in the ellipticity profiles of the bulk and the sur-
face states. Specifically, our results indicate that the TSSs
of Bi2Se3 exhibit an anomalous ellipticity behavior, mani-
fested in a pronounced enhancement of the harmonic yield
for CPL fields. With the aid of detailed analytical analy-
sis as well as numerical calculations, we have attributed
this behavior to two mechanisms operating predominantly in
the low- and the high-momentum regions of the BZ. The
low-momentum range mechanism relies on the characteristic
topological features of the Bloch bands that give rise to a
vortex structure in the interband dipole moments and Berry
connections in momentum space, manifested in a perpendic-
ular locking between the transition dipole and momentum
vectors. The high-momentum range mechanism is relevant for
high peak amplitudes of the incident field, and is mediated by
the warping terms in the surface Hamiltonian that cause the
hexagonal deformation of the energy surface. Representing
the counterpart of the cubic Dresselhaus spin-orbit terms in
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FIG. 8. Ellipticity dependence of the HHG yields of HOs 5 (full lines), 7 (dashed lines), and 9 (dash-dotted lines) of a MIR pulse with
λMIR = 7.5 μm and different driving peak intensities: I0 = 0.0025 TW/cm2 in (a) and (d), I0 = 0.0045 TW/cm2 in (b) and (e), and I0 =
0.01 TW/cm2 in (c) and (f). The upper row corresponds to the surface states, bulk states are plotted in the bottom row. As illustrated in the
inset of panel (e), the main axis of the polarization ellipse ê (orange ellipse) is set perpendicular to the mirror plane (σ̂ (y)

refl , dashed line). The
pulse has a Gaussian profile with a FWHM duration of 12 cycles.

rhombohedral structures, the sensitivity of the emitted HHG
spectra to these components of the Hamiltonian underlines its
potential to serve as an all-optical probe of SOI features.

While the detailed results presented in this paper are
specific for Bi2Se3, they are equally generalizable to any
member of the tetradymite family by adopting appropriate
tight-binding parameters. Moreover, the theoretical frame-
work developed in this work allows the investigation of
questions of fundamental importance such as topological
phase transitions or the influence of the band inversion of
the strong-field dynamics by modifying the phase diagram of
the TBM employed in the SBE framework. We believe that
these detailed theoretical results will serve as a guide for
future experiments.

Finally, it is worth commenting on the limitations of our
model, in particular the adopted electronic structure calcu-
lation strategy. As a consequence of the decoupling of the
surface states from the bulk, our treatment cannot account for
laser-induced transitions between surface and bulk bands. Fur-
ther, using the solutions at the � point as a basis for deriving
the effective surface model, as explained in Sec. II C, implies
that the TSS dispersions and wave functions are quantitatively
accurate only in the low-energy limit. Finally, our model does
not incorporate couplings to higher-lying bands. Nevertheless,
the intuition gained by examining this simplified model can
provide useful insights into the complex physics of 3D-TIs
in strong laser fields. Even for the highest intensities consid-
ered in this paper (I0 = 0.01 TW/cm2 for λMIR = 7.5 μm),
electron excursion trajectories are expected to cover 	k ∼
eEMIR,0/(h̄ω0) ≈ 0.17 Å, i.e., less than 20% of the BZ. The
above-enumerated effects are anticipated to gain importance
at intensities even higher than the ones considered in this pa-
per, in which case the trajectory of the driven electron covers
a large portion of the BZ.
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APPENDIX A: ADDITIONAL DETAILS ON THE TBM
HAMILTONIAN

The TBM considered in this paper accounts for nearest-
neighbor (NN) intralayer interactions (t̂ai ) as well as interlayer
hoppings (t̂bi ). The NN vectors ±ai and ±bi in Cartesian
coordinates are illustrated in Fig. 9 and are explicitly given
by

a1 = (a, 0, 0)T b1 =
(

0,

√
3a

3
, c

)T

, (A1)

a2 =
(

−a

2
,

√
3a

2
, 0

)T

b2 =
(

−a

2
,−

√
3a

6
, c

)T

, (A2)

a3 =
(

−a

2
,−

√
3a

2
, 0

)T

b3 =
(

a

2
,−

√
3a

6
, c

)T

. (A3)
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FIG. 9. Simplified representation of the lattice structure illustrat-
ing the nearest-neighbor vectors ±a and ±b.

The set of vectors ±b are also the lattice vectors.
The � matrices employed in Eq. (3) are defined as

�1 = σ̂1 ⊗ τ̂1, �2 = σ̂2 ⊗ τ̂1, �3 = σ̂3 ⊗ τ̂1,

�4 = Î2 ⊗ τ̂2, �5 = Î2 ⊗ τ̂3. (A4)

In the above, the two sets of Pauli matrices {τ̂i} and {σ̂i} can
be interpreted as operating on the orbital (τ̂ ) and the spin (σ̂ )
degrees of freedom, respectively.

In the following, we define the auxiliary functions hi(k)
used in the TBM Hamiltonian of Eq. (3):

h0(k) = 2A0

3∑
i=1

cos(k · ai ) + 2B0

3∑
i=1

cos(k · bi ), (A5)

h1(k) = −2A14 sin ω[sin(k · a2) − sin(k · a3)]

+2B14[sin(k · b1) + cos ω(sin(k · b2)

+ sin(k · b3))], (A6)

h2(k) = −2B14 sin ω[sin(k · b2) − sin(k · b3)]

−2A14[sin(k · a1) + cos ω(sin(k · a2)

+ sin(k · a3))], (A7)

h3(k) = 2A12

3∑
i=1

sin(k · ai ), (A8)

h4(k) = −2B12

3∑
i=1

sin(k · bi ), (A9)

h5(k) = 2A11

3∑
i=1

cos(k · ai )

+ 2B11

3∑
i=1

cos(k · bi ) + m11, (A10)

where ω = −2π/3. m11 in h5(k) controls the band inversion
and, in this paper, is chosen such that the resulting band
structure describes a strong topological insulator, s. discussion
in Ref. [40].

The unitary transformation matrix Û1 employed in Eq. (4)
is given by [43]

Û1 =

⎛
⎜⎝

1 0 0 0
0 −i 0 0
0 0 1 0
0 0 0 i

⎞
⎟⎠. (A11)

The normalization constant of the bulk spinors in Eqs. (6)
and (7) reads

N±
B = 1√

2

{
(h1(k)2 + h2(k)2)

×
(

± h5(k)

√√√√ 5∑
i=1

(hi(k))2 +
5∑

i=1

(hi(k))2

)−1}1/2

.

(A12)

In contrast to the k · p-perturbative model [43] frequently
employed to study the low-energy physics of 3D-TIs (s.
Refs. [30,31]), the TBM Hamiltonian defined in Eq. (3) retains
its validity over the entire BZ and is periodic.

APPENDIX B: DERIVATION OF THE EFFECTIVE 2D
SURFACE HAMILTONIAN

1. Surface-state spinors at the � point

In this section, we briefly outline the derivation of the
effective (2D) Hamiltonian for describing the surface elec-
trons. The approach follows closely the procedures outlined in
Refs. [43,58]. We start by obtaining approximate expressions
for the TSS Hamiltonian and the wave functions at the � point
(k = 0); the latter will be subsequently used as a basis for con-
structing the 2D model. For this aim, we start by expanding
the TBM Hamiltonian in Eq. (3) up to second order:

Ĥ (2)(k) ≡

⎛
⎜⎜⎜⎜⎝

h(2)
0 (k) + h(2)

5 (k) −6B12ckz 0 a(3A14 + √
3B14)k−

−6B12ckz h(2)
0 (k) − h(2)

5 (k) a(3A14 + √
3B14)k− 0

0 a(3A14 + √
3B14)k+ h(2)

0 (k) + h(2)
5 (k) 6B12ckz

a(3A14 + √
3B14)k+ 0 6B12ckz h(2)

0 (k) − h(2)
5 (k)

⎞
⎟⎟⎟⎟⎠. (B1)

In the above, k± = kx ± iky. The terms h(2)
i (k) denote the

second-order Taylor expansions of the functions hi(k) around
�. In particular,

h(2)
0 (k) = 6(A0 + B0) − 1

2 a2(3A0 + B0)k2
‖ − 3B0c2k2

z , (B2)

h(2)
5 (k) = 6(A11 + B11) − 1

2 a2(3A11 + B11)k2
‖ − 3B11c2k2

z

+ m11. (B3)
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The low-momentum Hamiltonian in Eq. (B1) is of equiva-
lent form as the k · p-Hamiltonian derived by Liu et al. in
Ref. [43]. To obtain the general surface-state Hamiltonian,
open boundary conditions are applied, i.e., we restrict the
surface mode to the half space defined by z < 0 and let the
corresponding TSS wave function vanish at z = 0 and z →
−∞. The resulting breaking of the translational symmetry can
be accommodated via the substitution kz → −i∂z in Eq. (B1):

ĤS(k‖; −i∂z ) ≡ Ĥ (2)(kx, ky, kz → −i∂z ). (B4)

The following ansatz is used for the wave function,

�Surf (k‖; z) ∝ ψλeλz, (B5)

where ψλ is a four-component spinor of the form

ψλ =
(

ψ↑
ψ↓

)
=

⎛
⎜⎜⎜⎝

ψ1↑
ψ1↑
ψ2↓
ψ2↓

⎞
⎟⎟⎟⎠, (B6)

and λ denotes a parameter which is chosen to sat-
isfy the boundary conditions. Substituting Eq. (B4) into
ĤS(k‖; −i∂z )�Surf (k‖; z) = E�Surf (k‖; z) leads to the time-
independent Schrödinger equation for the spinors ψλ,

ĤS(k‖; λ)ψλ = Eψλ, (B7)

which constitutes a second-order differential equation, con-
sequently, the superposition defined by Eq. (B5) features at
most eight components, with coefficients constrained by the
imposed boundary conditions. The general solution for the
low-energy (second-order) Hamiltonian has been derived in
multiple works (see, e.g., Refs. [58,59]), therefore, we refrain
from presenting it here. At the center of the BZ (� point), the
Hamiltonian ĤS(k‖; λ) becomes block diagonal, i.e.,

Ĥ� =

⎛
⎜⎜⎜⎜⎜⎜⎝

h�
0 + h�

5 + 3(B0 + B11)c2λ2 6iB12cλ 0 0

6iB12cλ h�
0 − h�

5 + 3(B0 − B11)c2λ2 0 0

0 0 h�
0 + h�

5 + 3(B0 + B11)c2λ2 −6iB12cλ

0 0 −6iB12cλ h�
0 − h�

5 + 3(B0 − B11)c2λ2

⎞
⎟⎟⎟⎟⎟⎟⎠

(B8)

where Ĥ� ≡ ĤS(k‖ = 0; λ) and h�
i corresponds to the value

of the function hi(k) at the � point. The eigenvectors of the
Hamiltonian Ĥ� are doubly degenerate (TRS) and the two
spinors have the structure

ψ
↑
S =

(
φ

0

)
, (B9)

ψ
↓
S =

(
0

τ̂zφ

)
, (B10)

where φ is a two-vector. With the basis defined in Eq. (1), the
two spinors at the � point thus correspond to pure spin-up and
spin-down components. Recasting the results in Ref. [58] in
terms of the TBM parameters, our ansatz for the low-order
solutions at k = 0 becomes

ψ
↑
S = 1√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

i
√

B11−B0
B11√

B11+B0
B11

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
eλ1z − eλ2z

)
(B11)

and

ψ
↓
S = 1√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

0

i
√

B11−B0
B11

−
√

B11+B0
B11

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
eλ1z − eλ2z

)
. (B12)

In this paper, we are primarily interested in the electron
dynamics on the surface, and we drop the spatial part (∝ eλz).

2. Effective 2D surface Hamiltonian in the TBM formalism

In the following, we illustrate the construction of the ap-
proximate 2D Hamiltonian for the surface states. We start with
the full Hamiltonian given by Eq. (4) and perform a Taylor
expansion only in kz. We then split the resulting Hamiltonian
Ĥ (z2 )(k) into two parts: one term independent of k‖ and an-
other term depending on k‖:

Ĥ (z2 )(k; kz → −i∂z ) = Ĥ0(k = 0; −i∂z ) + Ĥ‖(k‖), (B13)
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with k‖ = (kx, ky)T . In the language of degenerate perturba-
tion theory, the second term in Eq. (B13) can be understood

as a perturbation term and, in the TBM formalism employed
here, is given by

Ĥ‖(k‖) = Û1

(
hz0

0 (k‖)Î4 +
5∑

i=1

hz0
i (k‖)�i − h�

0 Î4 − h�
5 �5

)
Û T

1

=

⎛
⎜⎜⎜⎜⎜⎝

hz0
0 (k‖) − h�

0 + hz0
5 (k‖) − h�

5 i(hz0
3 (k‖) − ihz0

4 (k‖)) 0 −i(hz0
1 (k‖) − ihz0

2 (k‖))

−i(hz0
3 (k‖) + ihz0

4 (k‖)) hz0
0 (k‖) − h�

0 − hz0
5 (k‖) + h�

5 −i(hz0
1 (k‖) − ihz0

2 (k‖)) 0

0 i(hz0
1 (k‖) + ihz0

2 (k‖)) hz0
0 (k‖) − h�

0 + hz0
5 (k‖) − h�

5 i(hz0
3 (k‖) + ihz0

4 (k‖))

i(hz0
1 (k‖) + ihz0

2 (k‖)) 0 i(−hz0
3 (k‖) + ihz0

4 (k‖)) hz0
0 (k‖) − h�

0 − hz0
5 (k‖) + h�

5

⎞
⎟⎟⎟⎟⎟⎠.

(B14)

In the above, hz0
i (k‖) ≡ hi(kx, ky, kz = 0), h�

i ≡ hi(k = 0),
and hi(k) are the auxiliary functions defined in the Appendix.
Afterward, the effective 2D Hamiltonian 	ĤS

2D is constructed
by taking the matrix elements of Ĥ‖(k‖) with the spinor part
of the basis states ψ

↑,↓
S ≡ |ψσ

S 〉:(
	ĤS

2D

)
σ,σ ′ = 〈

ψσ
S |Ĥ‖|ψσ ′

S

〉
. (B15)

The explicit expression individual matrix elements are given
in the next section.

3. Matrix elements of the effective surface Hamiltonian �HS)
2D

The matrix elements of 	HS
2D(k‖) are given by

〈ψ↑
S |Ĥ‖|ψ↑

S 〉 = hz0
0 (k‖) − h�

0 +
√

1 − B2
0

B2
11

hz0
3 (k‖)

+B0
( − hz0

5 (k‖) + h�
5

)
B11

, (B16)

〈ψ↓
S |Ĥ‖|ψ↓

S 〉 = hz0
0 (k‖) − h�

0 −
√

1 − B2
0

B2
11

hz0
3 (k‖)

+B0
( − hz0

5 (k‖) + h�
5

)
B11

, (B17)

〈ψ↑
S |Ĥ‖|ψ↓

S 〉 =
√

1 − B2
0

B2
11

(
hz0

1 (k‖) − ihz0
2 (k‖)

)
, (B18)

〈ψ↓
S |Ĥ‖|ψ↑

S 〉 =
√

1 − B2
0

B2
11

(
hz0

1 (k‖) + ihz0
2 (k‖)

)
. (B19)

Adding the energies of the unperturbed states to the diago-
nal elements in the above expressions gives the Hamiltonian
H (S)

2D (k‖) reported in Eq. (8).
The normalization constant N±

S (k‖) of the surface wave
functions in Eq. (10) is given by

N±
S (k‖) = 1√

2

√√√√1 ∓ hz0
3 (k‖)√∑3

i=1

(
hz0

i (k‖)
)2

. (B20)

APPENDIX C: CALCULATION DETAILS

We employ the following expression for defining the tem-
poral profile of the vector potential:

AMIR(t ) = −A0genv(t )

(
sin(ω0t ) + cos(2αQWP) cos(ω0t )

− sin(2αQWP) cos(ω0t )

)
, (C1)

where ω0 denotes the angular frequency of the driving laser
field, A0 = E0

ω0
is the peak amplitude of the vector potential

(corresponding to peak electric field E0), and αQWP is the an-
gle with respect to the fast axis of a quarter wave plate in cases
where an elliptically or CPL field is considered. αQWP = 0
corresponds to horizontally polarized (P-polarization) laser
field, whereas αQWP = +/ − π

4 yields left/right CPL fields
(LCP/RCP), respectively. The function genv(t ) in Eq. (C1)
represents a Gaussian envelope. In the text, we report the
full-width-half-maximum (FWHM) pulse duration in number
of cycles. Interaction with the magnetic component of the
laser field is neglected.

We consider ultrashort (10 − 12 optical cycles in FWHM
duration with a Gaussian profile) driving pulses with a photon
energy lying below the bulk band gap, i.e., in the far MIR
range (h̄ω0 ∼ 0.165 eV) and a peak electric field amplitude
of 1 − 3 MV/cm. In accordance with previous theoretical
studies employing the SBE formalism in this spectral domain
[14], we set the dephasing time to T2 = 1.25 fs. We solve the
SBEs for the bulk and the surface in the length gauge on a
two-dimensional momentum grid typically 640 × 640 points
(BS) or 960 × 960 points (TSS). Momentum-space integra-
tion is performed over � 85 % of the first BZ by applying a
circular mask in the BZ. Prior to Fourier transformation, the
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FIG. 10. HHG spectra of Bi2Se3 driven by linearly polarized fields, for both bulk and surface states. The relative orientation of the (111)
surface (real space) and the MIR polarization vector is sketched in the insets. (a) and (c) show spectra of the bulk states for a linearly polarized
MIR laser pulse oriented along the �M and �K directions, respectively. All emitted harmonics are parallel with respect to EMIR(t ) (cyan,
full). The laser field has a peak intensity of I0 = 0.002 TW/cm2 and a FWHM duration of 15 cycles. (b) and (d) show the corresponding
spectra for the surface states. The polarization of the even harmonics flips from parallel (cyan, full) when EMIR(t ) ‖ �M (i.e., EMIR(t ) ‖ σ̂

(y)
refl)

to perpendicular (magenta, dashed) with respect to the driving field when EMIR(t ) ‖ �K (i.e., EMIR(t ) ⊥ σ̂
(y)
refl). In all calculations, the dephasing

time is set at T2 = 1.25 fs.

time-dependent currents are filtered by a Hanning window.
The HHG spectra are normalized with respect the linear re-
sponse (i.e., the maximum).

APPENDIX D: HHG DRIVEN BY LINEAR POLARIZATION

Here we cover the case of a Bi2Se3 crystal excited by
a linearly polarized 15-cycle MIR pulse (λMIR = 7.5 μm,
I0 = 0.002 TW/cm−2) with a polarization vector aligned ei-
ther along kx (EMIR ‖ �K in the 2D BZ), cp. red hexagon
in Fig. 1(c) or along ky (EMIR ‖ �M in the 2D BZ). For
the surface states, the latter choice corresponds to a situ-
ation where the MIR electric-field direction coincides with
the mirror plane (EMIR ‖ σ̂

(y)
refl), whereas it is orthogonal to

it (EMIR ⊥ σ̂
(y)
refl) in the former case. In Fig. 3, we depict the

resulting harmonic spectra of the combined (intra- + inter-
band) emission for the two different orientations of the MIR
polarization with respect to the high-symmetry directions in
the 2D BZ [EMIR ‖ �M in Figs. 3(a) and 3(d) and EMIR ‖ �K
in Figs. 3(b) and 3(e)].

From the results in Fig. 10, the following tendencies can be
discerned. First, the inversion-symmetric bulk bands support
only odd harmonics, linearly polarized along the polarization
direction of the MIR field, whereas all orthogonally polarized
(with respect to EMIR) contributions to the total current vanish

[Figs. 10(a) and 10(c)]. This follows from DS analysis [60,61]
after taking into account the fact that the reciprocal k̂x and k̂y

directions correspond to the R̂(x)
2 - and σ̂

(y)
refl-symmetry opera-

tions in real space. A more rigorous treatment is provided in
Appendix E. In addition, the absence of an orthogonal current
component also reflects the zero trace of the non-Abelian
Berry curvature associated with the BSs (s. Sec. III). This
results in a null anomalous velocity contribution of the BSs.

As a direct consequence of the breaking of IS at the TI
surface, even harmonics appear in the spectra from the TSSs
[cp. Figs. 3(b) and 3(d)]. As in the case of the BSs, the
polarization of the odd harmonics follows the polarization of
the driving MIR field EMIR. For the even harmonics, this holds
only when the laser field is parallel to the mirror plane σ̂

(y)
refl

[EMIR ‖ �M, Fig. 3(b)], in which case the DS conservation re-
quires that current component orthogonal to σ̂

(y)
refl must cancel

out (s. Appendix E). On the contrary, when EMIR ⊥ σ̂
(y)
refl, i.e.,

when the MIR is aligned along �K , the only even harmonic
contributions are generated perpendicular to the driving field
polarization [cp. dashed magenta line in Fig. 3(d)]. These re-
sults are consistent with experimental findings in IS-breaking
systems such as ZnO [62], GaSe [63], α-SiO2 (α quartz [18]),
or 2D monolayers (MoS2) [17], as well as with a number of
previous theoretical results [48].
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FIG. 11. (a) Vector field plot of the difference of the Berry connections of upper and lower Dirac cones of the TSS. The color quantifies the
absolute magnitude of 	ξcv (k‖). The streamlines (white) indicate the local direction of the vector fields in momentum space. (b), (c) Stream
plots of the derivatives of the x (b) and the y components (c) of the phase of the interband dipole matrix element dcv (k‖).

APPENDIX E: DYNAMICAL SYMMETRIES OF THE D5
3d

SPATIAL GROUP

We outline the derivation of the DS selection rules for the
three cases considered in Sec. IV of the main text as well as
Appendix D: a linearly polarized MIR field EMIR polarized
along x̂, along ŷ, and CPL. Thereby, we closely follow the
procedure derived in Refs. [60,61]. We consider the adjoints
of the spatial symmetry operators outlined in Sec. II A (î,
R̂(x)

2 , R̂(z)
3 , σ̂

(y)
refl) with the temporal transformations τ̂n, where

τ̂n denotes the temporal translation by T0/n with T0 being
the fundamental optical cycle: τ̂nEMIR(t ) = EMIR(t + T0/n).
Selection rules are derived by studying the effect of each DS
adjoint on a time-dependent observable o(t ), expanded as a

Fourier series with coefficients Fn: o(t ) = ∑
n Fnei 2π

T0
nt .

1. Laser field linearly polarized along the x direction

For the BSs, the IS î and the twofold rotational axis along x̂
(R̂(x)

2 ) lead to the following two DS restrictions when EMIR ‖
x̂:

∑
n

î · Fnτ̂2ei 2π
T0

nt =
∑

n

Fnei 2π
T0

nt

⇔
(−Fn,x

−Fn,y

)
einπ =

(
Fn,x

Fn,y

)
(E1)

and

∑
n

R̂(x)
2 · Fnτ̂2ei 2π

T0
nt =

∑
n

Fnei 2π
T0

nt

⇔
(

Fn,x

−Fn,y

)
=

(
Fn,x

Fn,y

)
. (E2)

Condition (E2) implies that all polarization components of the
emitted HHG perpendicular to the driving field vanish. For the
HHG emission parallel to the field, the IS [Eq. (E1)] implies
that eiπn = −1, which is fulfilled for odd values of n only.
Summarizing, only odd-order harmonics, linearly polarized
along the driver field are emitted.

For the surface states, the absence of IS and the presence
of a mirror axis σ̂

(y)
refl along y result in the following DS:∑

n

σ̂
(y)
refl · Fnτ̂2ei 2π

T0
nt =

∑
n

Fnei 2π
T0

nt

⇔
(−Fn,x

Fn,y

)
einπ =

(
Fn,x

Fn,y

)
. (E3)

Emission along the polarization axis, i.e., EMIR ‖ x̂, is subject
to the condition eiπn = −1 and thus restricted to odd har-
monics only. The orthogonal emission has to comply to the
restriction eiπn = 1 and supports only even HOs of the driving
field.

2. Laser field linearly polarized along the y direction

In a manner analogous to the above, we obtain the follow-
ing DSs for the BSs in the case EMIR ‖ ŷ:∑

n

î · Fnτ̂2ei 2π
T0

nt =
∑

n

Fnei 2π
T0

nt

⇔
(−Fn,x

−Fn,y

)
einπ =

(
Fn,x

Fn,y

)
(E4)

and ∑
n

R̂(x)
2 · Fnτ̂2ei 2π

T0
nt =

∑
n

Fnei 2π
T0

nt

⇔
(−Fn,x

Fn,y

)
=

(
Fn,x

Fn,y

)
. (E5)

The last condition implies that harmonics along the x̂ di-
rection, or, perpendicular to the driving field, are symmetry
forbidden. Harmonic emission is directed along ŷ and thus
follows the laser polarization, whereby n is restricted to odd
numbers only (due to eiπn = −1).

For the surface states, when EMIR ‖ σ̂
(y)
refl, the DS rules

reduce to ∑
n

σ̂
(y)
refl · Fnei 2π

T0
nt =

∑
n

Fnei 2π
T0

nt

⇔
(−Fn,x

Fn,y

)
=

(
Fn,x

Fn,y

)
. (E6)
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This condition implies that whereas all perpendicular compo-
nents along x̂ (Fn,x) vanish, the parallel component comprises
both even and odd harmonics.

3. Circularly polarized laser fields

The DS pertaining to the case of CPL MIR drivers is most
easily tackled by adopting the spherical basis for the vectors
Fn, i.e., Fn = (Fn,+, Fn,−)T with Fn,± = Fn,x ± iFn,y. In the
presence of discrete threefold rotational symmetry R̂(z)

3 , the
DS reads ∑

n

R̂(z)
3 · Fnτ̂3ei 2π

T0
nt =

∑
n

Fnei 2π
T0

nt

⇔
(

e−i2π/3Fn,+
ei2π/3Fn,−

)
ein2π/3 =

(
Fn,+
Fn,−

)
, (E7)

which implies ei(n∓1)2π/3 = 1 or n = 3N ± 1, where N is an
integer. In other words, each third harmonic multiple is pre-
cluded by symmetry. This consideration holds for surface and
BSs alike. For the BSs, IS still holds and further restricts
the emitted harmonics to odd multiples only, implying an
effective selection rule of n = 6N ± 1. Further, the individual
members of the pairs n = 3N ± 1 or n = 6N ± 1 have alter-
nating helicities.

APPENDIX F: ADDITIONAL VECTOR FIELD PLOTS

The momentum dependence of the differential Berry con-
nection 	ξcv (k‖) as well as the dipole phase derivatives

FIG. 12. HHG spectra emitted from the bulk states driven by a
12-cycle left-circularly polarized pulse with a peak intensity of I0 =
0.004 TW cm−2, whereby one of the TBM parameters A12 (a) or A14

(b) is varied (s. legend). The spectra corresponding to the parameters
listed in Table I are shown in black (full line).

∇k‖ϕ
(x,y)
cv (k‖) discussed in Sec. III are depicted as vector den-

sity plots in Fig. 11.

APPENDIX G: ADDITIONAL CALCULATIONS OF THE
BULK ELLIPTICITY RESPONSE

This section contains complementary calculations related
to the ellipticity dependence of the BSs. Figure 12 shows the
effect of the variation of the TBM parameters A12 and A14 on
the emitted HHG under illumination with MIR CPL fields.
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