
PHYSICAL REVIEW A 103, 022823 (2021)

Three-body Coulomb description of pionic helium
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The three-body Schrödinger equation of the system composed of an α particle He2+, a negatively charged pion
π−, and an electron interacting through Coulomb forces is solved in perimetric coordinates with the Lagrange-
mesh method. The ground state, quasibound states, and resonances are obtained for total orbital momenta L =
0 − 20. Mean distances between the particles allow for identifying the structure of these states. The widths
of resonances broader than 10−5 atomic units are derived with the complex scaling method. A transition from
atomic to molecular structure occurs between L = 10 and L = 13. Excited levels obtained for L = 0 − 5 display
hydrogenlike properties for both the α-pion system and the electron excitations. Excited levels with L � 14
correspond to a vibrational excitation of the relative motion of the heavy particles. The validity of the Born-
Oppenheimer approximation is found to be fair over the whole range of total orbital momenta.
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I. INTRODUCTION

Spectroscopic measurements on systems interacting by the
Coulomb force reach such a high precision that they can pro-
vide accurate information on the masses of the constituents.
This method was successfully applied to the determination
of the antiproton mass with studies of antiprotonic helium,
a system composed of an α particle He2+, an antiproton,
and an electron. Such systems with long enough lifetimes
are formed at high angular momenta when a beam of an-
tiprotons impinges on helium [1]. They have been studied in
very accurate spectroscopic experiments [1–3]. At these an-
gular momenta, the three particles essentially interact through
Coulomb forces and very accurate theoretical calculations are
possible [4–8]. Together, experiment and theory provided a
very precise measurement of the antiproton mass. Within the
present experimental and theoretical error bars, this mass is
found to be equal to the proton mass.

The same technique has been proposed to improve the
value of the mass of the negatively charged pion π− [9].
Recently, spectroscopic measurements on pionic helium com-
posed of an α particle, a negative pion, and an electron have
been performed [10]. A pion from a beam impinging on a
superfluid helium target can replace an electron on its orbital
and produce pionic helium π4He+ where the pion is excited,
among others, to n = 17 hydrogenic orbitals. A transition
induced by a tuned laser beam from the L = 16 level to the
Auger-decaying L = 15 level is observed through the emitted
products of π− absorption by the 4He nucleus. This promising
result demonstrates the possibility of a future measurement of
the pion mass with techniques of atomic spectroscopy.

A detailed theoretical knowledge of π4He+ is thus im-
portant. Following ideas of Condo [11], the first studies were
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performed by Russell [12–14]. Analysis of the three-body
problem with the complex scaling method [15,16] can be
found in Ref. [17]. Accurate calculations of the energies and
widths of levels with high orbital momenta L = 14 − 18 are
available in Ref. [9]. These long-lived levels correspond to
transitions that might become accessible to experimental
studies and Ref. [9] analyzes a possible experimental
approach. As in the case of antiprotonic helium [8], our
aim in the present paper is to study physical properties of
pionic helium modeled as a nonrelativistic three-body system
interacting through Coulomb forces, from its ground state to
high angular momenta.

To this end, we use the Lagrange-mesh method [18–23]
in the perimetric coordinate system [24,25]. This numerical
method has the simplicity of a mesh calculation but its high
accuracy is similar to the accuracy of a variational calculation.
It does not require any analytical evaluation of matrix ele-
ments. Computer times are quite small. The method is found
accurate in a variety of spectroscopic and collision applica-
tions [23]. For pionic helium, all states with an excited απ

subsystem are unstable and the method consists of searching
for stationary values of the energies. In the similar cases
of antiprotonic helium [8] and antiproton-hydrogen systems
[26], the accuracy on the energies matches or improves the
best available results in the literature. Other properties of the
system such as distances between particles can easily be com-
puted [8,26]. The short computing times allow for performing
a determination of the sensitivity of the energies to the pion
mass. The Lagrange-mesh method can be combined with
the complex scaling method [15,16] to provide energies and
widths of resonances [23]. Calculations are then heavier since
complex eigenvalues must be computed and found stationary
with respect to the scaling parameter. The obtained widths
describe the spontaneous dissociation of the system and are
known as Auger widths.

The Lagrange-mesh method and the conditions of the nu-
merical calculations are presented in Sec. II. Energies and
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mean distances between the different particles are given in
Sec. III and the sensitivity to the value of the pion mass
is analyzed in Sec. IV. Energies and widths of the broader
resonances are computed with the complex scaling method
in Sec. V. These results are discussed in Sec. VI and
compared with the Born-Oppenheimer approximation. Sec-
tion VII concludes with a summary. Atomic units (a.u.) are
used throughout.

II. COMPUTATIONAL METHOD

A. Principle of Lagrange-mesh method in perimetric
coordinates

We study the quantal three-body system formed by an
α particle, a negatively charged pion, and an electron, in-
teracting only through Coulomb forces. Fine structure and
relativistic effects are not taken into account.

The Schrödinger equation is solved in perimetric coordi-
nates to avoid numerical problems with the singularities of
the kinetic-energy operator and of the Coulomb interactions.
The system of perimetric coordinates [24,25] is composed of
three Euler angles ψ, θ, φ defined on the basis of the heavy
particles and the three dimensioned coordinates,

x = rαπ + rαe − rπe,

y = rαπ − rαe + rπe, (1)

z = −rαπ + rαe + rπe,

involving the distances rαπ , rαe, and rπe between the particles.
The coordinates x, y, and z vary over the (0,∞) interval. In
perimetric coordinates, the Coulomb potential reads

V (x, y, z) = − 4

x + y
− 4

x + z
+ 2

y + z
. (2)

The wave function with total orbital momentum L, projec-
tion M, and natural parity (−1)L is expanded as [22]

�L
M =

L∑
K=0

DL
MK (ψ, θ, φ)�L

K (x, y, z), (3)

where the DL
MK (ψ, θ, φ) with K � 0 are parity-projected and

normalized Wigner angular functions [21]. In some cases,
for L > 0, the sum over K can be truncated with excellent
accuracy at some value Kmax. For Kmax = 0, the wave function
presents a cylindrical symmetry along the απ axis. The value
of Kmax at convergence gives information about the departure
from this symmetry.

Three definitions of the six perimetric coordinates are pos-
sible. They differ only through their angular coordinates. In
each system, the three dimensioned coordinates are defined as
in Eq. (1) up to a possible permutation. The choice used in this
paper gives a special role to the two heavy particles. Their axis
is close to the reference axis of the Euler angles. This allows
for the use of small values for Kmax. For a limited number
of excited states at low L, a faster and better convergence
can, however, be obtained with the perimetric system where
the reference particles are the 4He nucleus and the electron.
The results computed within this second perimetric system are
followed by a star.

The �L
K (x, y, z) functions in Eq. (3) are expanded in the

Lagrange basis as

�L
K (x, y, z) =

Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

CL
Ki jkF K

i jk (x, y, z). (4)

The definition and properties of the Lagrange functions F K
i jk

are given in Refs. [8,21,23]. Let us just mention that they
are related to a three-dimensional mesh of NxNyNz points
(hxui, hyv j, hzwk ), where ui, v j , wk are the zeros of Laguerre
polynomials of respective degrees Nx, Ny, Nz, and hx, hy, hz

are three scale parameters with the dimension of a length in
atomic units. Each function F K

i jk vanishes at all mesh points
but the (i jk) one.

In the Lagrange-mesh method, all matrix elements are
computed with the Gauss-Laguerre quadratures associated
with the mesh. Hence, the matrix representing the kinetic en-
ergy has a block structure with elements expressed only with
the zeros and weights of these quadratures [21,27]. The matrix
representing the potential is diagonal with diagonal elements
equal to the values of the potential at mesh points. The method
thus involves searching a few eigenvalues (not necessarily the
lowest ones) of a large sparse matrix. The eigenvalue calcula-
tions are performed with the software JADAMILU [28]. The
search is performed in regions hinted from physics arguments
or inspired by values of the literature.

It is important to realize that all states are unbound except
for the ground state and its electronic excitations. Hence, the
physically interesting eigenvalues may be embedded among
eigenvalues corresponding to square-integrable approxima-
tions of states in the continuum. In this paper, the physical
eigenvalues ELν are labeled by increasing order with the
quantum number ν � 0 and the unphysical ones are disre-
garded. Although unphysical eigenvalues are unstable when
the condition of the calculation vary, their density may make
the physical eigenvalues difficult to identify. Fortunately, two
efficient signatures of physical states exist which must be
consistently satisfied. At the Gauss approximation, the mean
distances between α and π− are given by

〈rαπ 〉 = 1

2

∑
Ki jk

(
CL

Ki jk

)2
(hxui + hyv j ) (5)

and the probabilities of the K components by

PL(K ) =
∑
i jk

(
CL

Ki jk

)2
. (6)

At small L, the properties of physical eigenvalues resemble
hydrogenic values as explained in Sec. VI A. At large L,
unphysical eigenvalues are indicated by very large electron-α
and electron-pion distances and probabilities of K = 0 indi-
cating an unphysical structure.

Energies with few stable digits correspond to rather broad
resonances. They can be better studied by combining the
Lagrange-mesh method with the complex scaling method
[15,16]. The coordinates x, y, z are then replaced by eiθ x, eiθ y,
eiθ z, respectively, where θ is a real parameter. The complex-
scaled Hamiltonian matrix for each L value is symmetric but
not Hermitian. FEAST software [29,30] is used to compute
the eigenvalues E (θ ) of these sparse complex matrices. When
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θ is varied, the real and imaginary parts of an eigenvalue
stationary at θ0,

E (θ0) = Er − 1
2 i
, (7)

provide approximations of the energy Er and width 
 of a
resonance.

B. Conditions of the numerical calculations

In atomic units, the mass of the α particle is chosen as
mα = 7294.29954142, the mass of the negatively charged
pion is chosen as mπ = 273.13244, and the mass of the elec-
tron is me = 1. The mα/me ratio is taken from the CODATA
2018 recommended value [31]. The mπ/me ratio is deduced
from the negative-pion mass 139.57039(18) MeV recom-
mended by the Particle Data Group [32], which corresponds
to mπ = 273.13244(35) a.u.

For L = 0, the physical eigenvalues are obtained by search-
ing for minima as in a variational calculation. For other L
values, all states for which the απ system is excited are
unbound and non-physical eigenvalues appear which require
criteria of identification. For low L, the search can be guided
by an approximation based on a double hydrogenic structure:
the α + π− and απ pseudoparticle + electron Coulomb sys-
tems. The approximate energies are [23]

E app
L = − mαmπ

mα + mπ

2

N2
− (mα + mπ )me

mα + mπ + me

1

2n2
, (8)

where N and n are the respective hydrogenic principal quan-
tum numbers of these systems. The search for 14 � L � 18
can be guided by the accurate results of Ref. [9]. Other
cases are based on the Born-Oppenheimer approximation (see
Sec. VI D). The accuracy of the results is deduced from the
stability of digits with respect to variations of all parameters.

The Lagrange-mesh basis depends on six parameters: the
numbers of mesh points Nx, Ny, Nz and the scale parameters
hx, hy, hz. The search for optimal values of these parameters
proceeds in several steps. First, the hx, hy, hz parameter space
is explored with the help of our experience with antiprotonic
helium [8]. The parameters hx and hy should be close to each
other and increase with the distance between the heavy parti-
cles. Parameters hz should be in the vicinity of 0.4. Variations
of these parameters with large enough numbers of mesh points
lead to the roughly optimal values presented in Table I. The
number of stable digits of the energies gives the best accuracy
one can expect within the present approach. Then the numbers
Nx, Ny, Nz of mesh points are reduced as long as this accuracy
is not affected. Finally, the accuracy is checked by increasing
these numbers by a few units.

The resulting choices of parameters are displayed in Ta-
ble I. One observes that the stability of hz in the vicinity of
0.4 is confirmed and that hy becomes a little larger than hx

for L � 12. The behavior of the numbers of mesh points is
similar to the one for antiprotonic helium. It is affected by the
fact that the number of stable digits of the energies strongly
decreases between L = 5 and 11. Up to L = 14, Nz is larger
than the other two. For high L, Ny is the largest and all three
decrease in spite of the fact that the number of stable digits
increases as shown in Table II.

TABLE I. Optimal parameters for Kmax = 2. The same parame-
ters are employed for Kmax = 3.

L hx hy hz Nx Ny Nz

0 0.002 0.002 0.40 10 10 40
1 0.005 0.005 0.40 16 16 40
2 0.0035 0.0035 0.38 16 16 40
3 0.008 0.008 0.39 14 14 34
4 0.012 0.012 0.39 12 12 28
5 0.014 0.014 0.37 12 12 28
6 0.015 0.015 0.38 10 10 24
7 0.015 0.015 0.36 10 10 20
8 0.019 0.019 0.39 10 10 20
9 0.020 0.020 0.33 10 10 20
10 0.028 0.028 0.33 10 10 20
11 0.035 0.035 0.33 10 10 20
12 0.040 0.045 0.35 12 12 34
13 0.050 0.060 0.35 12 12 34
14 0.065 0.075 0.33 18 18 32
15 0.08 0.09 0.32 26 32 26
16 0.10 0.13 0.34 26 32 20
17 0.10 0.12 0.40 26 32 18
18 0.09 0.12 0.34 24 30 18
19 0.09 0.12 0.34 22 28 16
20 0.10 0.13 0.34 20 28 16

These parameters are used everywhere in this paper except
for some ν � 2 states with low L for which hz had to be
increased around 0.5 to obtain stable mean distances, and
in some calculations with the second perimetric coordinate
system.

In the complex scaling version of this method, the complex
Hamiltonian matrix has the same structure with kinetic matrix
elements multiplied by e−2iθ and the potential matrix elements
multiplied by e−iθ . The procedure starts with the optimal
parameters of the real calculation. After slight adaptations of
hx, hy, hz, the parameter θ is varied and the numbers of mesh
points are increased until convergence.

III. RESULTS

A. Energies and mean distances

In this section, we present the numerical properties of the
results. Their physical contents are discussed later.

The energies ELν obtained with Kmax = 2 for L � 2 are
displayed in Table II for the three lowest physical levels ν = 0,
1, and 2 for each απ excitation. Nonphysical eigenvalues,
i.e., which are not stable with respect to variations of the
parameters, are disregarded. The identification of unstable
eigenvalues is made easy by the verification of the two criteria
mentioned in Sec. II B. For L = 1 and 2, the second row
presents physical energies for ν � 3.

The displayed digits are stable with respect to variations
of the numbers of points and scale parameters, except the last
one which may vary by a few units. Within the given accuracy,
the results with Kmax = 3 are identical to those with Kmax = 2
while the results with Kmax = 1 are identical up to L = 14 and
less accurate beyond.
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TABLE II. Energies ELν obtained with Kmax = 2 for ν = 0, 1, and 2. For L = 1 and 2, the second row presents energies for ν � 3. All the
displayed digits are stable with respect to variations of the numbers of points and scale parameters, except the last one which may vary by a
few units. The results computed within the second perimetric coordinate system are followed by a star.

L EL0 EL1 EL2

0 −527.048402397489 −526.6734454321 −526.6040093
1 −132.1371354 −131.76210948 −131.76209874*

−131.692667 −131.692663*
2 −59.00576 −58.630423 −58.63037*

−58.56095 −58.56094* −58.561
3 −33.41052 −33.03443 −33.0342*
4 −21.5648 −21.187 −21.187
5 −15.132 −14.752 −14.75
6 −11.256
7 −8.745
8 −7.03
9 −5.81
10 −4.91
11 −4.243
12 −3.7420
13 −3.35846
14 −3.05695 −2.8586
15 −2.828551836 −2.6854268 −2.580022
16 −2.65751436078 −2.556986432 −2.48154177
17 −2.531948046652 −2.461807966154 −2.40704312870
18 −2.441386916525 −2.3911785509990 −2.35006537007
19 −2.3761071558417 −2.3381714951671 −2.3059519455157
20 −2.3278801636876 −2.2975736468200 −2.2712868515908

The number of stable digits for ν = 0 strongly varies with
L. The stable ground-state energy (of the Coulomb three-body
system) has 12 decimal digits, i.e., a relative accuracy better
than 10−14. The L = 1 energy E1,0 has seven stable decimal
digits. This indicates a narrow level. For L � 2, the number of
stable digits continues to decrease and reaches a minimum for
8 � L � 10. From L = 5 to L = 11, the resonances should be
broad. Physical energies of excited levels could not be found
among the eigenvalues for 6 � L � 13.

The number of stable digits increases beyond L = 12.
Excited levels become again identifiable for L � 14. Very
different parameter choices are possible for L = 14 (and to a
lesser extent for L = 16). The number of stable digits becomes
large at L = 15 and continues to increase beyond. The levels
with L > 15 are very narrow and correspond to quasibound
states as shown by their narrow widths in Ref. [9].

The mean distances 〈rαπ 〉, 〈rαe〉, and 〈rπe〉 are presented in
Table III for the levels of the energies shown in Table II. Here
also the displayed digits are stable with respect to variations
of the numbers of points and scale parameters, except the last
one which may vary by a few units. For high L, the number of
decimal digits has been limited to nine.

As expected from the centrifugal effect, the mean dis-
tance between α and π− increases with L. For ν = 0, 〈rαe〉
is close to 1.5 for low L and then progressively decreases
with, however, a fluctuation between L = 9 and 12. This fluc-
tuation corresponds to energies with very few stable digits.
Because of the repulsion between pion and electron, 〈rπe〉 is
always larger than 〈rαe〉. The difference is significant for the
quasibound levels with L � 14 for which 〈rαπ 〉 indicates a
moleculelike structure.

IV. SENSITIVITY TO THE PION MASS

The energies in Table II are computed with the 2020 value
of the pion mass m20 = 273.13244 a.u. This value is given
with an error 0.00035. If a new measurement improves this
mass or if spectroscopic data for π4He+ become available,
the corresponding energies can be obtained with the first-order
approximation:

ELν (mπ ) = ELν (m20) + �ELν

�mπ

(mπ − m20). (9)

The coefficients �ELν/�mπ are given in Table IV for lev-
els the energy of which is accurate enough to be sensitive
to the pion mass. These coefficients are computed with
energy differences �ELν corresponding to �mπ = 0.0001
around m20 = 273.13244. They are stable over the interval
[273.1321, 273.1328] which covers the experimental error
interval. The accuracy of energies obtained with Eq. (9) is
equivalent to the accuracy in Table II within at least this
interval.

The sensitivity coefficients can also be computed using
the Hellmann-Feynman theorem. The Lagrange-mesh matrix
elements of the derivative of the kinetic energy operator with
respect to the pion mass are obtained by differentiating Eqs.
(A.2) and (A.3) of Ref. [22] with respect to mπ . The obtained
values for dELν/dmπ are identical to those displayed in Ta-
ble IV except for two cases of different rounding of the last
displayed digit.

For low L, the correction is almost independent of ν. For
high L, the sensitivity to the pion mass decreases when ν

increases.
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TABLE III. Mean distances for the states of the energies shown
in Table II. The results computed within the second perimetric coor-
dinate system are followed by a star.

L ν 〈rαπ 〉 〈rαe〉 〈rπe〉
0 0 0.002848741 1.500175901 1.500179275

1 0.002848741 6.0007479 6.0007487
2 0.002848741 13.501 13.501

1 0 0.009495811 1.49994 1.49998
1 0.009495803 6.000279 6.000287
2 0.011394931∗ 5.0006603∗ 5.0006727∗

3 0.009495802 13.502 13.502
4 0.01139494∗ 12.50157∗ 12.50158∗

2 0 0.0199416 1.49893 1.49918
1 0.0199413 5.9982 5.9982
2 0.0237394∗ 5.00071∗ 5.00084∗

3 0.019941 13.50 13.50
4 0.02374∗ 12.51∗ 12.51∗

5 0.019941 10.72 10.72
3 0 0.034187 1.496 1.497

1 0.034185 5.992 5.993
2 0.039882∗ 5.02∗ 5.02∗

4 0 0.052235 1.492 1.493
1 0.05225 5.98 5.98
2 0.0597 5.02 5.02

5 0 0.07408 1.486 1.489
1 0.07408 5.96 5.97
2 0.0835 5.01 5.01

6 0 0.09973 1.48 1.49
7 0 0.1292 1.48 1.49
8 0 0.1625 1.51 1.53
9 0 0.1998 1.56 1.58
10 0 0.241 1.75 1.79
11 0 0.284 3.53 3.56
12 0 0.3287 3.33 3.40
13 0 0.4075 1.24 1.40
14 0 0.4848 1.115 1.312

1 0.6055 1.138 1.420
15 0 0.57664067 1.0350657 1.2905909

1 0.73042857 0.9653385 1.3338381
2 0.90483647 0.9151283 1.4181488

16 0 0.69073016 0.96432048 1.29923273
1 0.87326247 0.90515545 1.38020919
2 1.07264575 0.86456954 1.49973260

17 0 0.834453038 0.901076730 1.342403542
1 1.043295417 0.859051990 1.467555526
2 1.261884071 0.831930767 1.622767765

18 0 1.010866577 0.849770272 1.428203899
1 1.237343804 0.824372959 1.59154337
2 1.469325228 0.807876261 1.77533156

19 0 1.212783428 0.813259477 1.555235109
1 1.448460480 0.799656222 1.745395412
2 1.690329100 0.790224113 1.951044740

20 0 1.426659641 0.789936883 1.711433369
1 1.669218577 0.782885259 1.920624110
2 1.920261120 0.777607436 2.144011718

The energies presented in Ref. [9] are computed with a
different pion mass but also with a different mass of the α

particle. In Table V, we display the results of the present

TABLE IV. Numerical derivatives �ELν/�mπ of the energies
ELν with respect to the pion mass.

L ν = 0 ν = 1 ν = 2

0 −1.8582328 −1.8582328 −1.8582328
1 −0.4645576 −0.4645581 −0.4645582
2 −0.2064674 −0.2064700
3 −0.11614
14 −0.006897 −0.00564
15 −0.00554852 −0.0043810 −0.003499
16 −0.00436867 −0.00343706 −0.00277239
17 −0.00335686 −0.00268279 −0.00221817
18 −0.00254392 −0.00210535 −0.00179436
19 −0.00194906 −0.00167763 −0.00147024
20 −0.00154337 −0.00136818 −0.00122453

calculation performed with the CODATA 2012 value mHe =
7294.2995361, and the rounded mass mπ = 273.132. These
energies are compared with those of Refs. [9,33]. The agree-
ment is excellent for L = 17 and 18 and reasonable for the
other ones.

With Eq. (9) and Table IV, the energies of Table II can
be updated if a new value of the pion mass is recommended.
They can also be used to derive such a mass from future
spectroscopic data. The fine-structure corrections depend on
the pion mass through the three-body wave functions. The
corrections given in Table I of Ref. [9] should remain valid
for an accuracy around 10−9 − 10−10 on the energies.

V. COMPLEX SCALING

In this section, we study the properties of the resonances
with the complex scaling method. This method is numerically
heavier since matrices are both complex and larger but pro-
vides resonance energies and widths. These Auger widths are
decay widths of the system, i.e., widths for the decomposition
into a system απ and an electron. Electromagnetic widths
require a separate calculation which is not performed here.
It is shown in Ref. [9] that electromagnetic transitions are not
the main decay process.

The energies ECS
L0 and widths 
L0 of levels broader than

10−5 are computed with the complex scaling method and
presented in Table VI. They are compared with the stationary
energies EL0 of Table II. These energies and the corresponding
parameters are good starting points for the search of stationary
eigenvalues in the complex scaling method. The values of the
scale parameters hx, hy, hz are identical or close to those of
Table I. Between L = 3 and 11, Nx = Ny are increased to 16
or 18 and Nz is in the range 30 − 36. For L = 12, we could
not find stable results with Kmax > 1. Values Nx = Ny = 20
and Nz = 44 are used for L = 13 and 14.

The resonance energies are obtained with five to six stable
decimal digits between L = 2 and 10. As before, an error
of a few units may affect the last displayed decimal digit.
Simultaneously, the widths progressively increase from about
10−5 to about 0.01. At L = 11, the accuracy drops. This is
not surprising. The mean electron distances are very large for
L = 11 and 12 in Table III, indicating a wave function poorly
approximated by square-integrable functions. The complex
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TABLE V. Comparison of present energies ELν (first rows) computed for mHe = 7294.2995361 and mπ = 273.132 with those of
Refs. [9,33] (second rows).

L EL0 EL1 EL2

14 −3.0569483 −2.858595
−3.0569481417(4) −2.858617029(2) −2.70984178(2)

15 −2.8285493943 −2.6854249 −2.580020
−2.82854939373(4) −2.68542722(2) −2.58002554(1)

16 −2.65751243855 −2.5569849200 −2.48154055
−2.65751243850171 −2.556984919572(2) −2.481540552377(5)

17 −2.531946569606 −2.461806785706
−2.5319465695913 −2.4618067856861

18 −2.4413857971811 −2.3911776246295
−2.4413857971745

scaling method would probably require a much more extended
basis to improve the accuracy. The same comment is valid
for L = 12. At L = 13, the width becomes much smaller
and the energy again displays six stable decimal digits. The
L = 14 energy and width are confirmed by the more accurate
results of Ref. [9], after correcting the energy with the help of
Table IV. Beyond L = 14, the widths become too small to be
obtained with the present set of coordinates. Those larger than
10−10 are derived in Ref. [9] for L = 14 − 16.

The resonance energies ECS
L0 fairly agree with the stationary

values EL0 and the widths explain the number of stable digits
of EL0 that could be found. There is an excellent correlation
between this number obtained independently and the widths

L0.

VI. DISCUSSION

A. L = 0 − 5

The ground-state energy in Table II is well reproduced
by the approximation (8), with an error smaller than 10−5

a.u. This approximation corresponds to a 1s electron orbiting
a charge +1 with mass mα + mπ and the α + π− system
in a 1S hydrogenic ground state. The corresponding Bohr
radii are denoted as aαπ and a(απ )e, respectively. The mean
distance 〈rαπ 〉 presented in Table III does not differ from

TABLE VI. Energies ECS
L0 and widths 
L0 from complex scaling.

Comparison with the static energies EL0 of Table II.

L ECS
L0 
L0 EL0

2 −59.00576 1.3[−5] −59.00568
3 −33.410476 8.6[−5] −33.4104
4 −21.564793 3.32[−4] −21.5648
5 −15.132146 9.09[−4] −15.132
6 −11.256501 2.004[−3] −11.256
7 −8.745336 3.794[−3] −8.745
8 −7.029467 6.395[−3] −7.03
9 −5.809676 9.785[−3] −5.81
10 −4.916784 1.368[−2] −4.91
11 −4.2496 1.74[−2] −4.243
12 −3.7420
13 −3.358486 5.7[−5] −3.35846
14 −3.056951 1[−5] −3.05695

the hydrogenic value 1.5aαπ with aαπ = 0.0018991604. The
mean distances 〈rαe〉 and 〈rπe〉 are close to the hydrogenic
value 1.5a(απ )e = 1.500198218 with a(απ )e = 1.0001321452.

For L = 0, K is equal to zero. All states present an axial
symmetry around an axis close to the απ axis. The first two
excited states correspond to 2s and 3s excitations of the elec-
tron around the απ system in its ground state as shown by the
unmodified value of 〈rαπ 〉. Their excitation energies shown
in Table VII closely reproduce the corresponding hydrogenic
energies displayed in the last row. Their mean distances 〈rαe〉
and 〈rπe〉 do not deviate much from the mean distances 6a(απ )e

and 13.5 a(απ )e given by the expression

〈r〉nl = 1
2 [3n2 − l (l + 1)]a(απ )e (10)

of an hydrogenic state nl .
The lowest L = 1 states correspond to the 2p and 3p elec-

tron excitations around the 1S απ state. These states are not
found with the first coordinate system under the conditions of
Table I because the angular part in Eq. (3) is not appropriate
for an electron np orbital. They are easily obtained with the
second system as explained in Sec. II A. The 2p level is about
10−6 a.u. above the 2s level and the 3p level is even closer
to the 3s level. In the following, we shall focus on levels
corresponding to excitations of the απ subsystem.

The L = 1 lowest state presented in Table II closely cor-
responds to a 1s electron orbiting the απ subsystem in a
2P excited state. The value of 〈rαπ 〉 is close to 5aαπ =
0.009495802. The excited L = 1 states essentially have an

TABLE VII. Energy differences ELν − EL0 for L = 0 − 3 pre-
sented as a function of the hydrogenic quantum numbers nl . The
final row presents the excitation energies of an electron orbiting a
system with the total mass of α and π−. The hydrogenic ground-state
energy is −0.499933936 a.u. The results computed within the second
perimetric coordinate system are followed by a star.

L 2s 2p 3s 3p 3d

0 0.37496 0.44439
1 0.37503 0.37504∗ 0.44447 0.44447∗

2 0.37534 0.37539∗ 0.44481 0.44482∗ 0.4448
3 0.37609 0.3763∗ 0.4456
(απ )e 0.37495 0.37495 0.44439 0.44439 0.44439
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axial symmetry with only a 10−7 probability of the K =
1 component. Their approximate structure is (NLαπ , nl ) =
(2P, ns) as shown by their energies and mean distances. The
(2S, np) levels are obtained only with the second coordinate
system. They lie a little above the corresponding (2P, ns) lev-
els. The απ mean distance is 0.01139493 for the (2S, 2p) state
in agreement with 6aαπ = 0.01139496 and close to that value
for the (2S, 3p) state. The other mean distances are consistent
with the expected values of an excited 2p or 3p electron.

For L = 2, the structure becomes more complicated with
Kmax = 2. The search for optimal parameters was more dif-
ficult. The first five excited levels could be studied with
various accuracies. Their energies are given in Table II and
their excitation energies with respect to ν = 0 in Table VII.
All six states have approximate (NLαπ , nl ) hydrogenic prop-
erties with Lαπ and l coupled to L. The ν = 0 state has
a distance 〈rαπ 〉 close to the 3D mean distance 10.5aαπ =
0.1994118 like the ν = 1, 3, and 5 ones. For the ν = 2 and
4 states, this distance is similar to the 3P distance 12.5aαπ =
0.0237395. The order of the levels is (3D, 1s), (3D, 2s),
(3P, 2p), (3D, 3s), (3P, 3p). The location of (3D, 3d ) is
uncertain because the energy is not precise enough. The iden-
tification of the quantum numbers is easy with the mean
distances of Table III. The 3d mean distance starts to dif-
fer from the hydrogenic mean distance 10.5 a(απ )e. While ns
states are dominantly K = 0 with K = 1 and 2 probabilities
smaller than 3 × 10−5 and 10−7, respectively, other states
have more complicated structures to comply with the coupling
schemes necessary for a total orbital momentum L = 2.

A few levels are clearly identified among unphysical
eigenvalues for L = 3 − 5. They correspond to (NLαπ , 1s),
(NLαπ , 2s), and (NLαπ , 2p) with N = Lαπ + 1 in the hydro-
genic approximation. The mean distances still follow Eq. (10)
but less precisely. The widths of these levels increase when L
increases, in parallel with the decrease of the number of stable
digits of the three-body energies.

B. L = 6 − 13

From L = 6 to L = 12, only one stationary solution could
be found, with few stable digits. This corresponds to widths
larger than 10−3 a.u. in Table VI. For L � 9, the energies
and mean distances still resemble hydrogenic values, but not
accurately. For L = 10 − 12, the mean distances between the
electron and the heavy particles increase strongly. The dissoci-
ation widths exceed 0.01 for L = 10 and 11. In these cases, the
corresponding square-integrable wave functions are very poor
approximations of complicated scattering wave functions. The
probabilities PL(1) become larger than 13% for L = 11 and
12, and the probabilities PL(2) and PL(3) are far from negligi-
ble. The bound-state approximation is very poor here but the
stationary energies are still not far from the resonance energies
given by the complex scaling.

The results for L = 13 indicate the start of a significant
change. The mean distances 〈rαe〉 and 〈rπe〉 suddenly drop
while 〈rαπ 〉 continues to increase steadily to reach about 0.5
a.u. The probability PL(0) jumps from 0.84 to 0.98 from
L = 12 to L = 13. A transition occurs to a pseudomolecular
structure. No excited state could be found.
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FIG. 1. Electron emission energy EL0 − EL−le
απ for the lowest

electron orbital momentum le as a function of L, where EL−le
απ is the

energy of the highest open threshold below EL0.

C. L = 14 − 20

The states with L � 14 present a molecular structure in
spite of the fact that the heavy particles attract each other
because the distance between them is made large by the
centrifugal effect. Moreover, their dissociation widths start to
decrease very fast when L increases. Widths for L = 14 − 16
are given in Ref. [9]. For higher L values, the widths were
too small to be computed. The reason of this decrease is well
known [1,11]: the spontaneous dissociation by emission of an
Auger electron is hindered because the orbital momentum le
of the emitted electron increases.

This effect is illustrated in Fig. 1. The electron emission
energy EL0 − EL−le

απ for the lowest orbital momentum le is
computed as a function of L with respect to the closest open
threshold EL−le

απ . The values are labeled le. This orbital mo-
mentum increases from 1 to 2 at L = 12. It is still equal to
2 at L = 14 but the emission energy drops. The dissociation
width of the L = 14 level is about 10−5 [9], not yet very small.
At L = 15, le becomes equal to 3 and the width drops to
4 × 10−10. The stationary energy E15,0 has nine stable digits.
Beyond L = 16, le continues to increase. The widths become
very small, smaller than 10−13 for ν = 0. The pseudomolecu-
lar levels are quasibound. The main decay channel is the pion
decay π− → μ− + νμ rather than radiative [9].

For L � 15, the pseudomolecule adopts a near axial struc-
ture. The probabilities PL(3) and PL(2) become negligible for
L � 16 and L � 18, respectively. The mean distance between
α and π− increases with L and with the vibrational excitation.
Simultaneously, the mean distance between the α particle and
the electron decreases when L or ν increases as the screening
by the pion become weaker, while the pion-electron distance
increases. The pseudomolecule progressively takes a polar
form.

D. Comparison with Born-Oppenheimer approximation

The Born-Oppenheimer approximation is efficient in
molecular systems involving two heavy particles. The present
system is different from a molecule by the fact that the heavy
particles attract each other. Nevertheless, at large distances
between the particles, the effect of this difference should be
weak and the approximation should be valid. Here we explore
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FIG. 2. Differences of the energies EBO
L computed at the Born-

Oppenheimer approximation and the three-body energies EL0 of
Table II for L = 0 − 20 (black dots). Differences E app

L − EL0 are also
displayed as blue triangles.

its validity for a large range of distances between the heavy
particles.

The Born-Oppenheimer equation for the electron reads

(
−1

2
� − 2

rαe
+ 1

rπe
− 2

R

)
χ (rαe, R) = E (R)χ (rαe, R),

(11)

where R ≡ rαπ is fixed and the Laplacian � corresponds to
the α-electron coordinate rαe. The ground-state energy E (R)
depends on the parameter R. It is computed in confocal
elliptic coordinates (or prolate spheroidal coordinates) [34]
with the Lagrange-mesh method as explained in Ref. [35].
A Lagrange-Laguerre mesh with 20 points is employed for
the coordinate (rαe + rπe)/R − 1. The mesh is scaled with a
parameter h = 0.5/R for R < 0.002, 0.4/R for 0.002 � R <

0.02, and 0.35/R for R � 0.02. These values belong to the
plateaus of optimality for each R value. A Lagrange-Legendre
mesh with ten points is used for the coordinate (rαe − rπe)/R.

The energies E (R) become a potential for the next step
of the procedure. The radial Schrödinger equation of partial
wave L with this potential is solved on a regularized Laguerre
mesh with 20 points for R scaled with a parameter hL. The
zeros of this regularized mesh are identical to those of the non-
regularized Laguerre mesh used for the solution of Eq. (11);
both mesh methods differ only by the matrix elements of
the kinetic energy (see Sec. 3.3.4 of Ref. [23] with α = 0).
After a search for optimal values belonging to plateaus of
stability of the lowest Born-Oppenheimer energies EBO

L , the
scale parameter hL is parametrized as a function of L > 0
as hL = 0.0012 L + 10−7 L4. For L = 0, we use h0 = 0.0012.
With these choices, the energies EBO

L have an accuracy of
about 10−10 with respect to variations of h, hL, and the three
numbers of mesh points.

The differences between the Born-Oppenheimer energies
EBO

L and the three-body energies EL0 of Table II are displayed
as black dots in Fig. 2. Differences involving the approximate
energies E app

L defined in Eq. (8) are also displayed as blue
triangles for low L values. The Born-Oppenheimer approxi-
mation is better than the hydrogenic approximation except for
L = 0. It is very good for L � 14, as expected, but also fair
for L � 9 and L = 13. The sign of the difference varies in the
different ranges. For L = 10 − 13, the approximation is sig-
nificantly less good, except accidentally for L = 12, but can
still be a useful guide for a search of three-body resonances.

VII. SUMMARY

To summarize, the πHe− pionic helium described with
Coulomb forces has been studied with the three-body
Schrödinger equation in perimetric coordinates with the
Lagrange-mesh method. Energies of bound, quasibound, and
resonant states are obtained for L = 0 to 20. Calculations are
simple and fast once optimal values for the various parame-
ters are established. Except when the απ subsystem is in its
ground state, all states are unbound resonances with a large
variety of properties. The energies and widths of these reso-
nances are derived for L = 2 − 14 with the complex scaling
method. For these L values, the widths are larger than 10−5

a.u. The number of stable digits of the stationary eigenvalues
is related to the Auger emission widths of the levels.

Physical properties display the same pattern as for an-
tiprotonic helium [8]. A transition from atomic to molecular
structure occurs between L = 10 and L = 13. For L � 9, the
structure approximately consists in a double hydrogenlike
system. The energies and mean distances between particles
of excited states obtained for L = 0 − 5 display clear hydro-
genlike properties. For L � 13, a pseudomolecular structure
appears. Both atomlike and moleculelike structures are fairly
described with the Born-Oppenheimer approximation.

For the sake of future experiments trying to measure the
pion mass more precisely with techniques of atomic spec-
troscopy, we have studied the sensitivity of the energies to
the value of the pion mass. Corrections of these energies for
variations of this mass are presented.

The Lagrange-mesh method provides approximate wave
functions in a simple analytical form with an accuracy close to
the variational accuracy with the same basis. It allows analyt-
ical calculations of matrix elements for which the associated
Gauss quadrature is not accurate enough. For example, they
can be used to evaluate relativistic corrections and their pion
mass dependence as we plan.
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