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Time keeping and searching for new physics using metastable states of Cu, Ag, and Au
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We study the prospects of using the electric quadrupole transitions from the ground states of Cu, Ag, and Au
to the metastable states 2D5/2 as clock transitions in optical lattice clocks. We calculate lifetimes, transition rates,
and systematic shifts and find that they are very suitable for this purpose. In particular, the elements are found to
have a blackbody radiation shift that is one to two orders smaller than that of Sr. The Au clock is found to have
strong sensitivities to a variation of the fine-structure constant, to effects of scalar dark matter, and to a violation
of local Lorentz invariance (LLI). Cu and Ag are also suitable for tests of LLI. We identify two more metastable
states (4F o

9/2), one in Cu and another in Au, which can serve as additional clock transitions. The α-sensitivity
coefficients of the two Au clock transitions are large and have opposite sign. This doubles the overall sensitivity
to variation of α and opens the possibility of a α-variation test with a single neutral atomic species. We also
present more accurate or additional values of the sensitivity to local position invariance violation for several
established or proposed clock transitions. These values are important for properly evaluating the effectiveness of
clock-clock comparisons.
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I. INTRODUCTION

The use of optical clock transitions for searching for new
physics beyond the standard model is a promising area of
research. A hypothetical manifestation of new physics at low
energy is expected to be very small. Therefore, the highest
possible accuracy of the measurements is needed. Fractional
uncertainty of the best optical clocks currently is around
1 × 10−18 [1–7], allowing for the highest accuracy so far
achieved in the history of measurements. However, apart from
one exception (Yb+), the best current optical clocks are only
weakly sensitive to new physics such as time variation of the
fine-structure constant, violation of local position invariance
(LPI), and violation of local Lorentz invariance (LLI), etc.
[8–11]. LPI, LLI, and the weak equivalence principle form
the Einstein equivalence principle, which is the foundation of
general relativity.

Several ideas were proposed to combine a high accuracy
of optical clocks with a high sensitivity to new physics. These
include the use of the highly charged ions (HCIs) [12–15],
nuclear clocks [16], and metastable atomic states with a large
value of the total angular momentum J (J > 1) [8,17–20].
These states are connected to the ground state via transi-
tions, that correspond to single-electron transitions with large
change of the single-electron total angular momentum j. The
large � j is what makes the transition sensitive to the variation
of the fine-structure constant (see, e.g., [21]). For example,
in the present work, we consider transitions between the
nd10(n + 1)s 2S1/2 ground state and the nd9(n + 1)s2 2D5/2

excited metastable state. This is roughly the s1/2 to d5/2 tran-
sition with � j = 2.

The energy diagrams displaying seven low-lying states of
Cu and Au and the five lowest states of Ag studied in this

work are presented in Fig. 1. One metastable state of interest
(2D5/2) is the first-excited state for Cu and Au. In Ag, the
2Po

1/2 state lies below the 2D5/2 clock state. However, this
has no significance since the states are very weakly con-
nected (by E3, M2, or hyperfine-induced E1 transitions with
very small value of transition frequency, h̄ω = 690 cm−1). Cu
and Au each have another, higher-energy metastable state,
nd9 (2D5/2)(n + 1)s1/2 (n + 1)p3/2(3P2) 4F o

9/2, which can be
used in an additional clock transition connecting this state
to the 2D5/2 clock state via a M2, E3, or hyperfine-induced
E1 transition. Having two clock transitions in one atom is a
potential important advantage in using clocks for the search
of α variation and LPI violation. The Au 4F state has been
observed in magnetic resonance experiments on atomic beams
[22,23].

The clock transition in Ag was studied experimentally in
Ref. [24] under two-photon excitation, not under E2 exci-
tation. For an optical clock application, an E2 excitation is
advantageous compared to a two-photon excitation since the
involved laser intensity is much lower, leading to a lower
corresponding systematic shift.

The sensitivity of the 2D5/2 metastable states of Ag and Au
to variation of the fine-structure constant was studied before
[8]. In this work, we further study these two, as well as three
other metastable states, in terms of their suitability for high-
accuracy measurements and sensitivity to other manifestations
of new physics, such as LPI violation and LLI violation.

II. CALCULATIONS

A. Methods

We are mostly interested in the lowest states of Cu, Ag,
and Au shown in Fig. 1. The D, F , and some P states of
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FIG. 1. Energy diagram (approximately to scale) for the lowest
states of Cu (I = 3/2), Ag (I = 1/2), and Au (I = 3/2). Thick red
lines indicate the upper clock states. Electric quadrupole (E2) clock
transitions are shown as short-dashed red lines. Additional clock
transitions in Cu and Au are shown as long-dashed red lines. Cooling
transitions are shown as solid blue lines. The presence of leakage
transitions (black dotted lines) implies the need for repumping (ma-
genta lines). Numeration of the states corresponds to the one in
Table II.

all three atoms have excitations from a d shell. This means
that the d shell is open and d electrons should be treated
as valence ones. The total number of valence electrons, i.e.,
11, is too large for most standard computational approaches.
We use a version of the configuration interaction (CI) method
specifically developed for such systems (the CI with perturba-
tion theory (CIPT) method [25]). In this method, off-diagonal
matrix elements of the CI Hamiltonian between highly excited
states are neglected. This allows one to reduce the CI matrix
to an effective matrix of a small size in which the contribution
from high states is included perturbatively.

The CI equations can be written in a matrix form via matrix
blocks [25,26],

AX + BY = EX,

CX + DY = EY, (1)

where A is a matrix of small size containing matrix elements
between low-energy states, which dominate in the wave-
function expansion, B and C are blocks of the CI matrix
containing matrix elements between low and high states (ci j =
b ji since the CI matrix is symmetric), D is a diagonal matrix
(dik = 〈k|HCI|k〉δik), E is an eigenenergy, and X and Y are
parts of the eigenvector containing expansion coefficients of
the wave function for valence electrons over a set of single-
determinant basis functions. From the second equation (1), we
get

Y = (EI − D)−1CX, (2)

where I is the unit matrix. Since D is a diagonal matrix, (2)
can be rewritten as

yk = 1

E − Ek

∑
m

ckmxm, (3)

where Ek = 〈k|HCI|k〉 is the diagonal CI matrix element for
high-energy states.

By substituting (2) into (1), we get the CIPT equation,

[A + C(EI − D)−1B]X = EX. (4)

Once the energy E and the wave function X are found by
solving (4), a correction to the wave function Y can be found
using (2) and (3). Note that after Y is calculated, the total
wave function should be renormalized. This is because the
solution of (4) is normalized by

∑
k x2

k = 1, while the total
wave function should be normalized by

∑
k x2

k + ∑
m y2

m = 1.
In our previous works [25,27–31], only the solution of the

CIPT equation (4) was implemented, while the correction to
the wave function (2) was not calculated. In the present work,
we calculate Y too and include it in the calculation of the
matrix elements (see below).

We perform the calculations in the V N−1 approximation,
with one electron removed from the initial relativistic Hartree-
Fock (HF) calculations to obtain the potential for calculating
single-electron basis states. The B-spline technique [32] is
used to construct single-electron basis states above the core.
Many-electron states for the CIPT calculations are constructed
by exciting one or two electrons from a reference configura-
tion and then using the resulting configurations to build all
corresponding many-electron states of definite value of the
total angular momentum J and its projection Jz. States cor-
responding to about 100 lowest nonrelativistic configurations
go into the effective CI matrix, while higher states are treated
perturbatively. Note that our calculations are completely rela-
tivistic. We only use nonrelativistic configurations to simplify
the procedure of generating many-electron basis states. In
the list of nonrelativistic configurations, each of them is
subsequently replaced by a corresponding set of relativistic
configurations. For example, the 5d96s6p configuration is
replaced by four relativistic ones, i.e., the 5d4

3/25d5
5/26s6p1/2,

5d3
3/25d6

5/26s6p1/2, 5d4
3/25d5

5/26s6p3/2, and 5d3
3/25d6

5/26s6p3/2

configurations.
To check the stability of the results, we perform calcula-

tions in a different way. We keep the minimum number of
possible configurations in the effective CI matrix [block A in
Eq. (1)], but introduce an extra term into the CI Hamiltonian,
i.e., the effective polarization potential,

δVl = − αl

a4 + r4
. (5)

This term imitates the effect of core-valence correlations. Its
form is chosen to coincide with the polarization potential
(Vp = −α/r4) on large distances. The parameter a is a cutoff
parameter introduced to remove the singularity at r = 0. We
use a = 1aB and treat αl as a fitting parameter. Here, l is
the value of the angular momentum, indicating that we use
different fitting parameters in the calculation of the s, p, and
d single-electron basis states. The values of αs are chosen to
fit ionization potentials (IPs), the values of αp are chosen to fit
the energies of the states of the nd10(n + 1)p configuration,
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TABLE I. Fitting parameters for the effective polarization poten-
tial (5).

Atom αs αp αd

Cu 0.72 0.88 0.22
Ag 0.71 0.81 0.24
Au 0.69 0.92 0.34

and the values of αd are chosen to fit the energies of the states
of the nd9(n + 1)s2 configuration.

B. Energies

The obtained fitting parameters are presented in Table I.
Energy levels, calculated in the two different approaches, are

presented in Table II. Note the significant improvement to the
energies due to the fitting. The fitting is not perfect because
we use one fitting parameter for both components of the fine
structure. We do this to avoid a false contribution to the fine
structure (e.g., a contribution which does not vanish in the
nonrelativistic limit).

Fitting also improves the wave functions, leading to more
accurate values of the matrix elements. Comparing transition
amplitudes and other matrix elements obtained with and with-
out fitting is an important test of the theoretical uncertainty.

We point out that the fitting can be used for improved
predictions of the spectra of systems with poor experimental
data, e.g., superheavy elements or highly charged ions. To
do so, we need to perform accurate fitting for a system with
known spectra and electronic structure similar to the system

TABLE II. Excitation energies (cm−1), ionization potential (IP, cm−1), and lifetimes for six states of Cu and Au and for the four lowest
excited states of Ag. Lifetime values without indicated uncertainties are theoretical values.

Energy (cm−1) Lifetime

NIST Present work Present

N Conf. Term [53] No fitting Fitted work Other

Cu
1 3d104s 2S1/2 0 0 0 ∞
2 3d94s2 2D5/2 11203 10521 11277 45 s 26.76 sa

3 3d94s2 2D3/2 13245 12270 13331 7.3 s 4.46 sa

4 3d104p 2Po
1/2 30535 29489 30513 7.1 ns 7.4(2) nsb

6.535 nsa

5 3d104p 2Po
3/2 30784 31115 30772 6.9 ns 7.1(2) nsb

6.369 nsa

6 3d94s4p 4Po
5/2 39018 38693

7 3d94s4p 4F o
9/2 40909 40400 600 s 6897 sa

IP 3d10 1S0 62317 60328 62333

Ag
1 4d105s 2S1/2 0 0 0 ∞
2 4d105p 2Po

1/2 29552 29495 29549 6.6 ns 7.41(4) nsc

6.85 nsa

3 4d95s2 2D5/2 30242 32480 30289 0.26 s 0.2 sd

4 4d105p 2Po
3/2 30473 30451 30437 6.1 ns 6.79(3) nsc

6.25 nsa

5 4d95s2 2D3/2 34714 36430 34804 79 μs 40 μse

65.8 μsa

IP 4d10 1S0 61106 58891 61141

Au
1 5d106s 2S1/2 0 0 0 ∞
2 5d96s2 2D5/2 9161 10670 9161 44 s
3 5d96s2 2D3/2 21435 22096 21744 33 ms
4 5d106p 2Po

1/2 37359 38853 36784 4.1 ns 6.0(1) nsb

5 5d106p 2Po
3/2 41175 43028 41217 3.3 ns 4.6(2) nsb

6 5d96s6p 4F o
7/2 45537 46375

7 5d96s6p 4F o
9/2 48697 49166 2 s

IP 5d10 1S0 74408 72806 74472

aReference [34].
bReference [35].
cReference [36].
dExtrapolation from Hg+; see Ref. [37] and references therein.
eReference [38].
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of interest. Then the same fitting parameters can be used to
calculate the unknown spectra.

C. Transition amplitudes

To calculate transition amplitudes, we use the well-known
random phase approximation (RPA; see, e.g., [33]). The RPA
equations for a single-electron state have the form

(HHF − εc)δψc = −(
F̂ + δV N−1

F

)
ψc. (6)

Here, HHF is the relativistic Hartree-Fock Hamiltonian, the
index c numerates single-electron states, F̂ is the operator
of an external field, δψc is a correction to the state c due
to an external field, and δV N−1

F is the correction to the self-
consistent Hartree-Fock potential due to the external field. The
same V N−1 potential is used in the RPA and HF calculations.
The RPA equations (6) are solved self-consistently for all
states c in the core. Transition amplitudes are found as matrix
elements between many-electron states found in the CIPT
calculations for the effective operator of an external field,

Aab = 〈b|F̂ + δV core
F |a〉. (7)

Here, |a〉 and |b〉 are many-electron wave functions. They have
a form

|a〉 =
∑

k

xk�k (8)

or

|a〉 =
∑

k

xk�k +
∑

m

ym�m, (9)

where �k is a single-determinant many-electron basis wave
function, xk comes from the solution of (4), and yk comes from
(3). In our previous works [25,27–31], we used (8), while in
the present work, we also include the correction to the wave
function (3) and so use (9) for matrix elements. The difference
in matrix element values (7) when using (8) or (9) is usually a
few percent. In most cases, it does not exceed 2%.

The rates of spontaneous emission are given in atomic units
by

	E1,M1 = 4

3
(αω)3 A2

E1,M1

2J + 1
, (10)

for electric dipole (E1) and magnetic dipole (M1) transitions,
and by

	E2,M2 = 1

15
(αω)5 A2

E2,M2

2J + 1
(11)

for electric quadrupole (E2) and magnetic quadrupole (M2)
transitions. In these formulas, α is the fine-structure constant,
ω is the energy difference between the lower and upper states,
A is the amplitude of the transition (7), and J is the total
angular momentum of the upper state. The magnetic ampli-
tudes AM1 and AM2 are proportional to the Bohr magneton,
μB = |e|h̄/2mc. Its numerical value in Gaussian-based atomic
units is μB = α/2 ≈ 3.65 × 10−3. The lifetimes of the excited
states are calculated by τa = 2.4189 × 10−17/

∑
b 	ab, where

τa is the lifetime of atomic state a in seconds, the summation
goes over all possible transitions to lower states b, and the
transition probabilities 	ab are given by (10) or (11). Lifetimes

were calculated using the transition amplitudes and probabili-
ties reported in Table III. The lifetimes of the lowest states of
Cu, Ag, and Au are presented in Table II.

Table III presents the amplitudes calculated in the first
approach (large CI matrix and no fitting). The difference be-
tween the two approaches is a few percent for large amplitudes
and up to a few tens of percent for small amplitudes, e.g.,
amplitudes which vanish in the nonrelativistic limit. Another
way to estimate the accuracy of the amplitude calculations is
to compare with available experimental data or other calcula-
tions, in particular the calculations for Cu and Ag performed
with the use of Cowan’s code [34]. This is done in Tables II
and III. One can see that the accuracy for the calculated
amplitudes goes down while moving from Cu to Au, coming
to about 50% disagreement with the reference data for a large
transition rate in Au for the E1 transition between states 4 and
1; see Table III (this translates into about 25% uncertainty in
the transition amplitude). For weak transitions, the disagree-
ment might be even larger. The accuracy is better for Cu and
Ag. The limited accuracy for the calculated amplitudes is due
to the small size of the effective CI matrix. At the present
stage, the contribution of the high-energy states is included for
the energies, but not for the transition amplitudes. However,
the present accuracy is sufficient for the main conclusions of
the paper regarding the suitability of the clock states for time
keeping and the search for new physics.

It should be mentioned that states with no excitation from
the upper d shell (e.g., the 5 f 106p1/2,3/2 states of Au) can
be treated more accurately within different approaches, for
example, with the use of the correlation potential method [33].
The main advantage of the current approach is that it can be
used for any state of the considered atoms, including states
with excitations from the upper d shell where most other
methods would not work.

III. ANALYSIS

A. Clock transitions

Cu has three long-lived metastable states (N = 2, 3, 7 in
Table II), Ag has one (N = 4), and Au has two (N = 2, 7).
The states of Cu and Au have lifetimes that are substantially
larger than 1 s, comparable to those of the currently used
Sr and Yb lattice clocks. The 0.2 s lifetime of the Ag upper
clock state is comparatively small. Nevertheless, the natural
Q factor, 1 × 1015, is pronouncedly high and could permit
a lattice clock of excellent stability. In the following, we
consider the clock transitions between these six states and
their respective lower clock states. Note that the two 2D clock
states of Cu are very similar and therefore, in most cases,
we present the data for only the 2D5/2 state. We also do not
present a comprehensive analysis for the 4F o

9/2 states of Cu
and Au, limiting the present work to calculating the lifetimes
and sensitivity to new physics.

B. Laser cooling of Cu, Ag, and Au

1. Silver

Silver has been laser cooled [42]. Here, the cooling scheme
is straightforward: the cooling transition is between the
ground and second-excited state, 2S1/2 → 2P3/2, with only
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TABLE III. Transition amplitudes and probabilities for transitions between the seven states of Cu and Au and between the five lowest states
of Ag.

h̄ω This work NIST

Transition Type (cm−1) |A| (a.u.) 	 (s−1) 	 (s−1)

Cu
2-1 E2 11203 2.603 2.23[−2]
3-1 M1 13245 0.0002μB 6.27[−7]
4-1 E1 30535 2.217 1.42[8] 1.376(14)[8]a

5-1 E1 30784 3.140 1.45[8] 1.395(14)[8]a

3-2 M1 2043 1.549μB 0.138
5-2 E1 19581 0.546 1.13[6] 2.0(4)[6]b

4-3 E1 17290 0.404 8.48[6] 1.65(30)(2)[6]b

5-3 E1 17538 0.174 8.23[4] 2.4(4)[5]b

5-4 M1 248 1.154μB 1.38[−4]
7-6 E2 1891 24.1 1.6[−4]

Ag
2-1 E1 29552 2.534 1.68[8] 1.3(1)[8]c

3-1 E2 30242 2.872 3.90
4-1 E1 30473 3.578 1.84[8] 1.4(1)[8]c

5-1 M1 34714 0.00015μB 6.4[−6]
4-2 M1 921 1.146μB 6.9[−3]
5-2 E1 5162 0.406 1.15[4]
4-3 E1 230 0.534 1.75 1.6(6)d

5-3 M1 4472 1.536μB 1.42
5-4 E1 4242 0.175 1.18[3]

Au
2-1 E2 9161 4.359 2.29[−2]
3-1 M1 21435 0.0008μB 4.25[−5]
4-1 E1 37359 2.153 2.45[8] 1.64(3)[8]e

5-1 E1 41175 2.923 3.02[8] 1.98(14)[8]e

3-2 M1 12274 1.549μB 29.9
5-2 E1 32013 0.983 1.61[6] 1.90(13)[7]e

4-3 E1 15924 0.504 1.04[6] 3.4(1.7)[6]e

5-3 E1 19739 0.243 2.30[5] 5.2(2.6)[5]e

5-4 M1 3816 1.141μB 0.488
7-6 M1 3160 2.4μB 5.1[−1]

aReference [39].
bReference [40].
cReference [41].
dReference [42].
eReference [35].

weak leakage to the clock state 3. A repumper laser is nev-
ertheless needed because of the small hyperfine splitting in
the excited state.

2. Gold

A scheme for laser cooling of Au is presented in Fig. 2.
The main cooling transition is the electric dipole transition be-
tween the ground state and the excited odd-parity 2Po

1/2 state.
Compared to using 2Po

3/2 as the upper level, the advantage is
that only one repumper is needed and that the longer cooling
wavelength is experimentally advantageous. There is leakage
from the 2Po

1/2 to the 2D3/2 state by another electric dipole
transition (4 → 3). Therefore, without repumping, only ∼250
cycles are possible. With repumping (628 nm), the cooling

may go for as long as needed. Another leakage channel is too
weak to affect the scheme.

3. Copper

A cooling scheme similar to silver can be considered for
copper: 2S1/2 → 2P1/2. It requires one additional laser for
repumping.

4. Additional remarks

Optical lattice clocks require the cooling of atoms to the
μK level for efficient loading of the optical lattice with the
atoms. Therefore, after cooling on the strong E1 transition to
a temperature of the order of 1 mK, a second cooling process
utilizing a weak transition should follow (“narrow-linewidth
cooling”). One option is to cool on the 2S1/2 → 2D3/2
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FIG. 2. Details of the level scheme of 197Au (I = 3/2) (not to
scale) with proposed laser cooling. The hyperfine structure is shown
schematically. The magenta arrow shows the repumper transition.
Narrow-linewidth laser cooling is not shown. The clock transition
(dashed red line) is composed of several hyperfine components.

transition (1-3 for Cu, 1-5 for Ag, 1-3 for Au). These are M1
transitions and are very weak. However, the strengths could
be increased and the lifetime of the 2D3/2 states shortened by
E1 coupling them to the respective 2P states using appropri-
ate laser waves. The 1-5 transition in Ag might be directly
usable for narrow-linewidth cooling. This transition has been
observed under two-photon excitation [38].

The hyperfine structure in both lower and upper laser cool-
ing levels will typically require additional repumper fields to
optimize cooling efficiency (see above). We shall not discuss
such experimental details here.

Finally, we note that copper and silver atoms have been
cooled using buffer-gas cooling [43].

C. Polarizabilities, blackbody radiation shifts,
and magic frequencies

Knowledge of the atomic polarizabilities for both states
of the clock transition is important for estimation of the fre-
quency shift caused by blackbody radiation and for finding the

magic frequency of the lattice laser field, i.e., the frequency at
which the dynamic polarizabilities of both states are equal,
causing no frequency shift.

The static scalar polarizability αv (0) of an atom in state v

is given by

αv (0) = 2

3(2Jv + 1)

∑
n

|〈v||D||n〉|2
En − Ev

, (12)

where D is the electric dipole operator with the RPA correc-
tion (see the previous section), and the summation goes over
the complete set of excited many-electron states.

Static scalar polarizabilities of the ground states of Cu, Ag,
and Au are known from a number of calculations and mea-
surements [44]. Table IV presents the recommended values
taken from Ref. [44]. In contrast, to the best of our knowledge,
there is no similar data for the upper clock states of Cu, Ag,
and Au. Therefore, we performed the calculations using two
different approaches.

In the first approach, we stay within the CIPT method
and calculate 20 odd-parity states for each value of the to-
tal angular momentum J , which satisfies the electric dipole
selection rules for the transitions from the ground and clock
states (J = 1/2, 3/2, 5/2, 7/2). Then we use formula (12) to
perform the calculations for both states. These calculations
show three important things: (a) there is good agreement with
other data for the ground state, (b) there is good saturation of
the summation in Eq. (12), (c) the summation for the clock
states is strongly dominated by the transitions to the states
of the 5d96s6p configuration (we use the Au atom as an
example).

The last fact implies that a different approach can be used,
previously suggested for atoms with open f shells [46]. In
this second approach, we use the fact that the sum (12)
is dominated by the 6s-6p transitions, while the open 5d9

subshell remains unchanged. Therefore, the open d shell is
attributed to the core and treated as a closed shell with an
occupational number of 0.9. The atom is treated as a system
with two external electrons above the closed-shell core and an
appropriate CI+ MBPT (many-body perturbation theory) [47]
method is used (see Ref. [46] for more details). The advantage
of this approach is the efficient completeness of the basis with
two-electron excitations. The shortcoming is the omission of
the transition amplitudes involving excitations from the d
shell. In contrast, the CIPT approach includes all amplitudes;
however, the summation in Eq. (12) is truncated much earlier.

In the end, both approaches give similar results. The re-
sults for the clock states are presented in Table IV together

TABLE IV. Scalar static polarizabilities (in a3
B) and BBR frequency shifts for three clock transitions of Cu, Ag, and Au. �α is the difference

between the theoretical value for the upper clock state and the experimental value of the lower clock state.

αg(0) αc(0) BBR (T = 300 K)

Atom Expt. [44] CIPT CI+MBPT CIPT CI+MBPT Final �α �ν (Hz) �ν/ν

Cua 47(1) 54.5 43.5 46.8 42.9 45(11) 2(11) <0.12 <3.4 × 10−16

Ag 55(8) 51.8 50.6 45.9 49.5 47(2) −8(8) <0.14 <1.5 × 10−17

Au 36(3) 35.7 34.0 38.9 33.2 36(3) 0(4) <0.03 <5.6 × 10−17

aState c is the 2D5/2 clock state.
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with experimental or estimated theory uncertainties. For these
estimations, we used a comparison of the two approaches for
the clock states as well as a comparison of the CIPT and
CI+MBPT calculations with other data for the ground states.

The results of the calculations indicate that the values of
the polarizabilities of the clock states of Cu, Ag, and Au are
similar to those of the ground state. This is a nonstandard
situation. More often, the polarizabilities of excited states are
larger. Indeed, the higher is the state on the energy scale, the
smaller is the energy denominator in Eq. (12). The present
results can be explained by the fact that the summation in Eq.
(12) is dominated by the states of the 5d10np configurations
for the ground state (we use Au again as an example) and by
the states of the 5d96s6p configuration for the clock state. The
latter states are higher on the energy scale.

The blackbody radiation (BBR) shift is given by (see, e.g.,
[48])

δνBBR = − 2
15 (απ )3T 4[αc(0) − αg(0)], (13)

where α is the fine-structure constant, T is the temperature,
and αc(0) and αg(0) are static scalar polarizabilities of the
clock and ground states, respectively. For simplicity, we do
not include the dynamic correction to the BBR shift. For the
more complete formula, see, e.g., [48].

The similarity of the polarizabilities implies a sub-
stantial cancellation of the blackbody radiation (BBR)
frequency shift, a very favorable effect. The total uncer-
tainty of the polarizability difference �α has been evalu-
ated as u2

tot = uexp[αg(0)]2 + δ2
theor, where δtheor = αc(0)CIPT −

αc(0)CI+MBPT. Since for the three species the difference be-
tween experimental values for the ground state and the mean
of the two theory results for the upper clock state is smaller or
similar to the estimated uncertainty utot, we can only give the
upper bounds for the BBR shifts. The results are presented in
Table IV. These bounds of the three species are significantly
lower than the BBR shifts in the established strontium and
ytterbium optical lattice clocks, i.e., (−53,−25) × 10−16, re-
spectively [49,50]. The bound for Ag is actually 100 times
lower than the BBR shift of Sr. The bounds of Ag and Au
are also smaller than the shift in the mercury lattice clock,
−1.6 × 10−16, and the theoretical shift of the recently pro-
posed 431 nm transition in Yb (−2.9 × 10−16 [19]), listed in
Table VIII.

More accurate estimations of the BBR shift might be possi-
ble if the polarizabilities are measured or calculated to higher
accuracy.

Magic frequencies can be found in the vicinity of every res-
onance for one of the polarizabilities, i.e., when the frequency
of the lattice laser field is approximately equal to the excita-
tion energy [energy denominator in Eq. (12)]. The first magic
frequency is near the first resonance for the ground-state po-
larizability, i.e., h̄ωm � 30 535 cm−1 (327 nm) for Cu, h̄ωm �
29 552 cm−1 (338 nm) for Ag, and h̄ωm � 37 359 cm−1

(267 nm) for Au. Note that since the clock states have large
values of the total angular momentum (J = 5/2), the magic
frequencies would also depend on the quadrupole contribution
to the polarizabilities. The current level of computational ac-
curacy does not allow one to find accurate values of the magic
frequencies. Having more experimental data may help. In the
vicinity of a resonance or a few resonances, a semiempirical

formula can be used,

αa(ω) ≈ α′
a(0) + 2

3(2Jv + 1)

∑
b

A2
ab

ω − �Eab
, (14)

where α′
a(0) is chosen in such a way that αa(ω = 0) is equal to

the known (e.g., experimental) static polarizability of state a.
Summation in Eq. (14) goes over close resonances. If the static
polarizability is known to sufficient accuracy and amplitudes
Aab of E1 transitions are extracted from experimental data or
from accurate atomic calculations, then (14) can be used to
find magic frequencies.

D. Stark, quadrupole, and Zeeman shifts

The interaction of atomic electrons with an external electric
field and its gradient leads to Stark and electric quadrupole
shifts of transition frequencies. These shifts are tiny in optical
lattice clocks. We consider the shifts in more detail in Ap-
pendix A.

The linear Zeeman shift is given by the expression

�EF,Fz = gF μBBFz, (15)

where gF is the g factor of a particular hyperfine-structure
(hfs) state. It is related to the electron gJ factor by

gF = gJ〈F, Fz = F, I, J|Ĵz|F, Fz = F, I, J〉/F. (16)

Electron g factors have approximate values g1/2 ≈ 2, g3/2 ≈
0.8, and g5/2 ≈ 1.2. More accurate values for Cu, Ag, and
Au can be found in the NIST tables [53]. For a clock state
with J = 5/2 and F = 2, we have g2 = (11/12)g5/2 = 1.1.
For a clock state with J = 3/2 and F = 2, we have g2 =
(1/2)g3/2 = 0.4.

The linear Zeeman shift can be avoided if only transitions
between states with Fz = 0 are considered, as suggested in
the past for clock operation. Alternatively, one can average
over the transition frequencies with positive and negative Fz in
order to cancel the linear shift. However, the large individual
shifts will make it difficult to achieve an accurate cancellation.

A second-order Zeeman shift is unavoidable. Therefore,
it is important to know its value. If we consider transitions
between definite hfs components, then the shift is strongly
dominated by transitions within the same hfs multiplet. The
total shift is the difference between the second-order shifts in
the clock and in the ground state. Both shifts are given by

δEF,Fz =
∑

F ′=F±1,F ′
z

|〈F ′F ′
z IJ|Ĵz|FFzIJ〉gJμBB0|2

�Ehfs(F, F ′)
. (17)

Here, �Ehfs(F, F ′) = E (F I J ) − E (F ′ I J ) is the hfs interval.
It has a different sign depending on whether this is an up or
down transition.

It follows from (B1) that

�Ehfs(F, F + 1) = −A(F + 1) − B[2(F + 1)2 + 1

− 2J (J + 1) − 2I (I + 1)]

and

�Ehfs(F, F − 1)

= AF + B[2F 2 + 1 − 2J (J + 1) − 2I (I + 1)].
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TABLE V. Magnetic dipole (A) and electric quadrupole (B) hfs
constants (MHz) used in the calculation of the second-order Zeeman
shift. Values are rounded to 0.1 MHz or to the last significant digit.

Atom Ground state Clock state Reference

A A B

63Cu 2S1/2 5866.9 2D5/2 749.1 186.0 [51,52,65]
63Cu 2S1/2 5866.9 2D3/2 1851.0 137.4 [51,52,65]
107Ag 2S1/2 −1712.5 2D5/2 −126 [24,57]
197Au 2S1/2 3049.7 2D5/2 80.2 −1049.8 [22,57]

Using experimental values for A and B (see Table V), we
calculate the second-order Zeeman shift for Cu, Ag, and
Au. The results are presented in Tables VI and VII. The
shift for Ag was studied theoretically before [24]. Our result
differs from theirs; this may be due to a simple calcula-
tional error in the previous work. Table VI presents separate
contributions from the shifts in the ground and excited
states. One can see that the disagreement may come from
the sign error in a particular contribution. Different signs
are caused by energy denominators. For example, when we
move from the first to the second line of the table, the
sign of the energy denominator for the ground-state con-
tribution changes and so does the contribution itself. Since
the other contribution remains the same, the total shift must
change.

Table VII shows the second-order Zeeman shift for 63Cu
and 197Au. As in the case of 107Ag, the shift is small.
Note that Cu has one clock transition with both a tiny
quadratic shift coefficient and no linear shift. By measuring
two or more Fgz = 0 → Fez = 0 Zeeman components and
taking appropriate combinations of the corresponding transi-
tion frequencies, the second-order shift may be substantially
reduced.

The quadratic shift vanishes in the considered approxima-
tion for transitions between states with maximum value of F
and its projection Fz (see the bottom lines of Table VII). This
is because there are no terms in Eq. (17) which would satisfy
the selection rules. Note, also, that the (nonzero) numbers in
Table VII should be considered as rough estimations only.
This is because of uncertainties of the experimental data for
the electric quadrupole hfs constant B, in particular for Cu
[52]. The numbers can change several times depending on
which set of data is used.

TABLE VI. Second-order Zeeman shift [mHz/(μT)2] for 107Ag
and comparison with other calculations. The index g is for the ground
state and index c is for the excited (clock) state. It is assumed that
Fz = 0 in both states.

Fc Fg �Ec/B2
0 �Eg/B2

0 (�Ec − �Eg)/B2
0 Ref. [24]

2 0 0.186 0.114 0.072 0.07
2 1 0.186 −0.114 0.301 0.07
3 1 −0.186 −0.114 −0.072 −0.3

TABLE VII. Second-order Zeeman shift coefficient
[mHz/(μT)2] for 63Cu and 197Au. Gaps in the data mean that
the corresponding set of quantum numbers is not possible for the
transition.

(�Ec − �Eg)/B2
0

63Cu 63Cu 197Au
Fg Fgz Fc Fcz

2D5/2
2D3/2

2D5/2

1 0 0 0 −0.759
1 0 1 0 0.087 0.743 0.023
1 0 2 0 0.193 0.058 0.027
1 0 3 0 −0.247 0.025 0.050
2 0 0 0 −0.792
2 0 1 0 0.053 0.710 −0.041
2 0 2 0 0.160 0.024 −0.037
2 0 3 0 −0.281 −0.009 −0.014
2 0 4 0 0.001 −0.037
2 ±2 3 ±2 −0.044 0.004 0.002
2 ±2 3 ±3 −0.017 0.0 0.004
2 ±2 4 ±4 0.0 0.0

IV. SEARCH FOR NEW PHYSICS

An exceptionally high accuracy of atomic clocks is a
great advantage for using them in a search for new physics.
The search is conducted by monitoring relative values of
different atomic frequencies over a significant time interval.
Establishing a time variation of the frequency ratio allows
multiple interpretations. For example, the interaction between
low-mass scalar dark matter and ordinary matter may lead
to oscillation of the fine-structure constant and a transient
variation effect [58–60]. In this section, we consider the sen-
sitivities to a hypothetical time variation of the fine-structure
constant, α (α = e2/h̄c), to local position invariance (LPI)
violation, and to local Lorentz invariance (LLI) violation.

A. Time variation of the fine-structure constant

It is convenient to parametrize the α dependence of atomic
frequencies by the formula ω = ω0 + q[( α

α0
)2 − 1] [8], where

α0 and ω0 are present-day values of the fine-structure constant
and the frequency of the transition, and q is the sensitivity
coefficient, which comes from the calculations. To monitor a
possible frequency change with time, one atomic frequency is
measured against another. Then,

∂

∂t
ln

ω1

ω2
= ω̇1

ω1
− ω̇2

ω2
=

(
2q1

ω1
− 2q2

ω2

)
α̇

α
. (18)

The value K = 2q/ω is called an enhancement factor. It shows
that if α changes in time, then ω changes K times faster. Cal-
culated values of q and K for different optical clock transitions
are presented in Table VIII. We include all clock transitions of
the present work and those transitions of previously studied
clocks, which are sensitive to α variation. We remark that
work on the historically important Hg+ ion clock [9,17] has
been stopped. We nevertheless include it in the discussion.
There are seven transitions where |K| > 1. The largest values
of |K| correspond to the smallest values of transition fre-
quency ω. It would be wrong to say that all these transitions
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TABLE VIII. Sensitivity of clock transitions to variation of the fine-structure constant (q, K), to LLI violation [reduced matrix element
〈c||T (2)

0 ||c〉 of the tensor operator (22) for the upper state c], and to LPI violation (relativistic factor R). Note that 〈g||T (2)
0 ||g〉 is zero for the

ground state of all clocks due to the small value of the total angular momentum J � 1/2.

Atom/ Transition h̄ωa q 〈c||T (2)
0 ||c〉 R

Ion Lower state Upper state (cm−1) (cm−1) K = 2q/h̄ω (a.u.) Present Other

Cu 3d104s 2S1/2 – 3d94s2 2D5/2 11202.565 −4000 −0.71 −48 0.98
Cu 3d104s 2S1/2 – 3d94s2 2D3/2 13245.443 −1900 −0.29 −37 0.99
Cu 3d94s2 2D5/2 – 3d94s4p 4F o

9/2 29706.54 2100 0.14 −48
Ag 4d105s 2S1/2 – 4d95s2 2D5/2 30242.061 −11300 −0.75 −41 0.93
Au 5d106s 2S1/2 – 5d96s2 2D5/2 9161.177 −38550 −8.4 −45 0.67
Au 5d96s 2D5/2 – 5d96s6p 4F o

9/2 39535.970 24200 1.2 −44
Ybc 4 f 146s2 1S0 – 4 f 146s6p 3Po

0 17288.439 2714 0.31 0 1.12 1.20b

Ybc 4 f 146s2 1S0 – 4 f 135d6s2J = 2 23188.518 −44290 −3.82 −72d 0.65 1.40e

Ybe 4 f 146s6p 1Po
0 – 4 f 135d6s2J = 2 5900.079 −43530 −15 −72d

Yb IIf 4 f 146s 2S1/2 – 4 f 136s2 2F o
7/2 21418.75 −56737 −5.3 −135 0.58 −1.90b

Yb IIf 4 f 146s 2S1/2 – 4 f 145d 2D3/2 22960.80 10118 0.88 10d 1.42 1.48b

Yb IIe 4 f 136s2 2F o
7/2 – 4 f 145d 2D3/2 1542.06 −66855 −87 10d

Hg IIg 5d106s 2S1/2 – 5d96s2 2D5/2 35514.624 −52200 −2.94 0.68 0.2b

aNIST [53].
bReference [9].
cReference [19].
dPresent work.
eReference [61].
fReferences [11,56].
gReferences [8,19].

are good for searching for α variation. This is because the
accuracy of the measurements is equally important (see, also,
the discussion in Ref. [19]). The true figure of merit is the ratio
of the relative frequency shift due to variation of α and the
fractional uncertainty of the measurements, (q/ω)/(δω/ω) =
q/δω. This ratio does not (directly) depend on ω. Therefore,
looking for a large value of K caused by the small value
of ω brings no benefit. The value of the relativistic energy
shift q is more important. Comparing the values of q for
different clock transitions (see Table VIII), we see that the
E2 clock transition sensitivity for Au is essentially as large
as the recently proposed new transitions in neutral ytterbium
[19] and only 30% smaller than the octupole transition in the
ytterbium ion (Yb II). It is possible to search for α varia-
tion by comparing two clock transitions in the same atom,
i.e., gold. The corresponding differential sensitivity factor is
q2−7 − q1−2 � 63 × 103 cm−1. This value is similar to the
differential sensitivity of the two clock transitions in the yt-
terbium ion.

B. LPI violation

In the standard model extension, the term in the Hamilto-
nian responsible for the LPI violation can be presented in the
form (see, e.g., Ref. [9])

ĤLPI = c00
2

3

U

c2
K̂, (19)

where c00 is the unknown parameter characterizing the magni-
tude of the LPI violation, U is the gravitational potential, c is
the speed of light, K̂ = cγ0γ

j p j/2 is the relativistic operator

of kinetic energy, in which γ0 and γ j are Dirac matrices, and
p = −ih̄∇ is the electron momentum operator.

The presence of the term (19) in the Hamiltonian would
manifest itself via a dependence of the atomic frequencies
on the time of the year, caused by the changing Sun-Earth
distance leading to a change of the Sun’s gravitational poten-
tial U . As in the case of the α variation, at least two clock
transitions are needed to measure one clock frequency against
the other. The interpretation of the measurements is based on
the formula [9]

�ω1

ω1
− �ω2

ω2
= −(R1 − R2)

2

3
c00

�U

c2
, (20)

where �ω and �U are the change of atomic frequencies
and gravitational potential between the measurements, respec-
tively. R in Eq. (20) is the relativistic factor, which describes
the deviation of the kinetic energy EK from the value given by
the nonrelativistic virial theorem (which states that EK = −E ,
where E is the total energy),

Rab = −EK,a − EK,b

Ea − Eb
. (21)

The values of the factor R are calculated in computer codes by
varying the value of the kinetic-energy operator in the Dirac
equation (see Ref. [9] for details).

The results are very sensitive to the many-body effects,
which means that the effects should be treated very accu-
rately or avoided. Otherwise, the results are unstable. A good
criterion for the reliability of the results is the achievement
of the nonrelativistic limit R = 1. This can be done by set-
ting to zero the value of the fine-structure constant α in the
computer codes. It turns out that for complicated systems
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such as those considered in the present work, the best results
are obtained by simple estimations based on single-electron
consideration. Namely, the clock transitions in Cu, Ag, and
Au can be considered as ns → (n − 1)d5/2 single-electron
transitions (n = 4, 5, 6 for Cu, Ag, and Au, respectively).
Therefore, we just use single-electron energies of theses states
in Eq. (21). We use the same approach for Hg+ and Yb+.

The results are presented in Table VIII, together with the
results obtained earlier for other systems. Note that the results
for the transitions involving excitation from the 5d shell in
Hg+ and the 4 f shell in Yb+ are different from what was pub-
lished before. The old calculations were based on a version
of the CI method [62,63] that contained a fitting parameter
responsible for the correct energy interval between states of
different configurations. It was assumed that this parameter
does not change under variation of the kinetic-energy op-
erator. We believe that the present results are more reliable
because they are free from any assumptions and because they
reproduce the nonrelativistic limit R = 1. Note that the values
of R for transitions in Yb and Yb+, which do not involve
excitation from the 4 f shell, are in good agreement with pre-
vious calculations (R = 1.12 and R = 1.42; see Table VIII).
This means that the present single-electron estimations work
well and that accurate many-body calculations are possible for
simple systems.

To study the LPI violation, one needs to compare two
clocks with different values of the relativistic factors R [see
formula (20)] over at least half of a year. An important past
experiment with optical clocks was the comparison of a Hg+

clock with an Al+ clock [9,17]. Table VIII shows that there
are various choices for such clock pairs. In particular, the Au
clock’s sensitivity is comparatively strong (with a large neg-
ative deviation from the nonrelativistic value R = 1). Thus, it
is suitable for pairing with a clock with strong, but opposite
sensitivity, such as the standard Yb lattice clock (R > 1). It is
more sensitive than the Cu-Yb pairing by a factor 2.5. The two
clock transitions in Yb+ have the largest difference |R1 − R2|.

C. LLI violation

The LLI violation term is a tensor operator,

ĤLLI = − 1
6C(2)

0 T (2)
0 , (22)

where C(2)
0 is unknown constant and the relativistic form of the

T (2)
0 operator is given by T (2)

0 = cγ0(γ j p j − 3γ 3 p3). To study
the effect of the LLI violating term (22), one needs long-lived
atomic states with a large value of the total electron angular
momentum J , J > 1/2. All clock states of Cu, Ag, and Au
satisfy this requirement. Note that the established lattice opti-
cal clocks Yb, Sr, and Hg do not satisfy this requirement and
are thus not suitable for testing LLI.

The term (22) should cause a dependence of the atomic
frequencies on the apparatus orientation in space (e.g., due to
Earth rotation). Interpretation of the measurements requires
knowing the values of the reduced matrix elements of the
operator T (2)

0 for the clock states. We calculate these matrix
elements using the CIPT method to obtain wave functions and
the RPA method to obtain the effective operator for valence
electrons.

The results are presented in Table VIII. The results of
earlier calculations for Yb II [11] are also presented for com-
parison. In contrast to the search of the α variation and LPI
violation, one clock state is sufficient for the search of the LLI
violation. The comparison of frequencies is done for states
with different projections of the total angular momentum J
[10,11].

The large value of the matrix element is important, but it
is not the most important parameter, e.g., the lifetime of the
metastable state is even more important (see, e.g., [11] for
more discussion). Obviously, in addition, the uncertainty of
the clock is also crucial. The calculations show that Cu, Ag,
and Au are suitable for the search for LLI violation.

V. CONCLUSION

We further advanced the CIPT method of electronic struc-
ture calculations for atoms with open shells by calculating
the correction to the wave function caused by mixing with
high-energy states. We used this method to study electric
quadrupole transitions between ground and excited metastable
states of Cu, Ag, and Au and demonstrated that the transitions
have important features of optical clock transitions.

A main result of this work is that we have identified three
elements for which the blackbody shift is smaller than that of
the standard lattice clocks (notably strontium) by a factor of
up to approximately 100. The predicted shifts for Ag and Au
are also smaller than the predicted shifts in Cd, Zn, and Yb
(431 nm). At present, among the neutral species, only Tm has
a smaller (measured) blackbody shift [64].

Other sensitivities to external perturbing fields, such as
Zeeman and Stark sensitivities, are similar to or smaller than
that in current top-performing optical clocks and lead to well-
controllable shifts. These results lead to the identification of
Ag and Au as two particularly valuable candidates for next-
generation optical lattice clocks.

We remark that as an example, the laser system required
for Au is commercially available and does not require partic-
ularly difficult deep-ultraviolet wavelengths. For example, the
268 nm cooling wavelength of Au can be easily obtained as
the fourth harmonic of a powerful Yb+-doped fiber laser at
1071 nm. The narrow-linewidth cooling requires a laser, e.g.,
at 456 nm, which is a wavelength available from a diode laser.
The clock laser radiation can be directly provided by a fiber
laser.

Analyzing the performance of the new clock transitions
for the search for physics beyond the standard model, we
find neutral atom clock candidates that have a nonzero and
relevant sensitivity to violations of local Lorentz invariance.
Our finding includes the recently proposed additional clock
transition of Yb (431 nm). Such tests do not require a second
atomic clock.

We furthermore found that the pairing of the Au clock with
the already established Yb lattice clock (578 nm transition)
would be a particularly sensitive choice for a test of local
position invariance as reflected in the difference of R factors.

Finally, we had previously found that the 1092 nm tran-
sition of Au also exhibits a strong sensitivity to variation of
α. The sensitivity K is approximately 27 times larger than for
the standard Yb lattice clock, so that a pairing with the latter

022822-10



TIME KEEPING AND SEARCHING FOR NEW PHYSICS … PHYSICAL REVIEW A 103, 022822 (2021)

represents an option. Alternatively, the search for α variation
can be done by pairing two clock transitions in the Au atom.
The sensitivity coefficients q in the two Au clock transitions
have opposite sign and this doubles the overall sensitivity to
variation of α. Note that this is only the second neutral atomic
species found (besides Yb) that exhibits this feature. Thus,
there now exist concrete options for lattice-clock-based tests
of α variation.

A reevaluation of the relativistic factor R of four clock
transitions in Yb, Yb+, and Hg+ has led to significant changes
in the values. Use of the correct values is crucial to derive the
correct upper bounds for local position invariance violation,
and also for selection of suitable clock pairs in future experi-
mental campaigns.

We emphasize that these sensitivities are to be considered
together with the eventually achievable accuracy and long-
term stability of the clock frequencies. It is for these reasons
that we have studied some important systematic shifts here.
Because of the potential of the Cu, Ag, and Au clock, our
work provides a strong motivation for experimental studies of
their blackbody radiation shifts and lattice-induced shifts.

ACKNOWLEDGMENTS

We thank one referee for pointing out Ref. [34] to us.
This work was supported by the National Natural Science
Foundation of China (Grant No. 11874090) and the Aus-
tralian Research Council (Grants No. DP190100974 and No.
DP200100150). V.A.D. would like to express special thanks
to the Institute of Applied Physics and Computational Math-
ematics in Beijing for its hospitality and support. The work
of S.S. was performed in the framework of Project No. Schi
431/22-1 of the Deutsche Forschungsgemeinschaft. This re-
search includes computations using the computational cluster
Katana supported by Research Technology Services at UNSW
Sydney.

APPENDIX A: STARK AND ELECTRIC
QUADRUPOLE SHIFTS

The Stark shift of the frequency of the transition between
atomic states a and b due to interaction with residual static
electric field ε is

δωab = −�αab(0)
(ε

2

)2
, (A1)

where �αab(0) is the difference between the static scalar
polarizabilities of states a and b. The shift is quadratic in
the electric field and usually small. It is further suppressed for
the considered clock transitions due to the small difference in
the polarizabilities (see Table IV).

The energy shift due to a gradient of a residual static
electric field ε is described by a corresponding term in the
Hamiltonian

ĤQ = −1

2
Q̂

∂εz

∂z
, (A2)

where Q̂ is the atomic quadrupole moment operator (Q̂ =
|e|r2Y2m, which is the same as for the E2 transitions). The
energy shift of a state with total angular momentum J is
proportional to the atomic quadrupole moment of this state.

TABLE IX. Stable isotopes with nonzero nuclear spin (I) and
possible values of total angular momentum F (F = I + J) for ground
states (GS) and clock states (CS) of Cu, Ag, and Au.

Isotopes Transition I F for GS F for CS

63,65Cu, 197Au 2S1/2 − 2D5/2 3/2 1,2 1,2,3,4
63,65Cu 2S1/2 − 2D3/2 3/2 1,2 0,1,2,3
107,109Ag 2S1/2 − 2D5/2 1/2 0,1 2,3

It is defined as twice the expectation value of the Q̂ operator
in the stretched state,

QJ = 2〈J, Jz = J|Q̂|J, Jz = J〉. (A3)

Calculations using the CIPT method for wave functions and
the RPA method for the operator give the values QJ = 0.431
a.u. for the 2D5/2 clock state of Cu, QJ = 0.296 a.u. for
the 2D3/2 clock state of Cu, QJ = 0.966 a.u. for the clock
state of Ag, and QJ = 1.47 a.u. for the clock state of Au.
The quadrupole moments of the ground states of these atoms
are zero due to the small value of the total electron angular
momentum (J = 1/2).

Consider transitions between hyperfine-structure (hfs)
components of the ground and clock states with definite values
of the total angular momentum F . The quadrupole shift is
given by

�EQ = F 2
z − F (F + 1)

2F (2F − 1)
Q

∂εz

∂z
, (A4)

where Fz is the projection of F . For F = 3 and Fz = ±2, the
shift is zero. Note that clock states with F = 3 exist for all
stable isotopes of all three considered atoms (see Table IX).
Using these states would lead to a linear Zeeman shift. It
cancels out by averaging over the transition frequencies to the
states with Fz = −2 and Fz = 2. For Fz 
= ±2, the estimations
can be done in the following way. On the inner surface of a
metallic vacuum chamber, there can be spatial variations of
the electrostatic potential of the order of 0.1 V. The typical
internal size of a vacuum chamber may be 10 cm. The corre-
sponding Stark shift is ∼10−7 Hz. The electric-field gradient
is smaller than 0.1 V/(10 cm)2. Considering that the factor
before the electric-field gradient in Eq. (A4) is ∼1 a.u. leads
to a negligible quadrupole shift of ∼10−5 Hz.

APPENDIX B: HYPERFINE STRUCTURE

The atoms considered here all exhibit hyperfine structure
in the ground state, in the clock state, and in the excited state
addressed in laser cooling. The nuclear spins are given in
Table IX. The hfs splitting is approximately given by [45]

Ehfs(F ) = A

2
F (F + 1) + B

2
{F 2(F + 1)2

+ F (F + 1)[1 − 2J (J + 1) − 2I (I + 1)]}. (B1)

The total angular momentum is F = J + I, where I is nuclear
spin. A and B are magnetic dipole and electric quadrupole
hfs constants, respectively. They are reported in Table V. In
addition, for I = 3/2 nuclei, there is a small octupole hfs
contribution [22,23].

022822-11
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For example, the hyperfine structure of Au was studied
experimentally with high precision in the 1960s, and was also
calculated [54,55]. The hyperfine splitting between F = 1, 2
in the ground state amounts to 6.10 GHz [57]. The splittings
in 2D5/2 are [22]

F = 1 ↔ F = 2: 1.00 GHz,
F = 2 ↔ F = 3: 0.71 GHz, and
F = 3 ↔ F = 4: 0.52 GHz.

The splittings in 2D3/2 are [23]
F = 0 ↔ F = 1: 1.11 GHz,
F = 1 ↔ F = 2: 1.31 GHz, and
F = 2 ↔ F = 3: 0.31 GHz.
The hfs in the 4F state has also been studied experimentally

[23]. We show these numbers to indicate to experimentalists
that one will need to use appropriate repumping lasers or
modulators.
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