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Towards photoassociation processes of ultracold rubidium trimers

Jan Schnabel ,1,* Tobias Kampschulte,2 Simon Rupp ,2 Johannes Hecker Denschlag ,2 and Andreas Köhn 1,†

1Institute for Theoretical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart,
70569 Stuttgart, Germany

2Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology, Universität Ulm, 89069 Ulm, Germany

(Received 2 December 2020; accepted 26 January 2021; published 16 February 2021)

We theoretically investigate the prospects for photoassociation (PA) of Rb3, in particular at close range. We
provide an overview of accessible states and possible transitions. The major focus is placed on the calculation
of equilibrium structures, the survey of spin-orbit effects, and the investigation of transition dipole moments.
Furthermore we discuss Franck-Condon overlaps and special aspects of trimers including the (pseudo) Jahn-
Teller effect and the resulting topology of adiabatic potential-energy surfaces. With this we identify concrete
and suitable PA transitions to potentially produce long-lived trimer bound states. Calculations are performed
using the multireference configuration-interaction method together with a large-core effective core potential and
a core-polarization potential with a large uncontracted even-tempered basis set.

DOI: 10.1103/PhysRevA.103.022820

I. INTRODUCTION

Ultracold molecules offer great opportunities for research
and applications, as they can be prepared in precisely de-
fined quantum states [1–6]. Besides studying the molecular
properties with high precision, collisions and chemical re-
actions can then be investigated in the quantum regime
where only a single partial wave contributes. Furthermore,
cold molecules have a number of applications, ranging from
metrology to quantum sensors, to quantum simulation and
computation [2,5]. In recent years a number of ways to pro-
duce cold molecules have been developed ranging from buffer
gas cooling, slowing and filtering, laser cooling, to associating
ultracold atoms. The coolest temperatures and the highest
control in preparing the molecular quantum state have been
typically achieved by associating ultracold atoms [1,3,4]. In
this way a variety of different ultracold diatomic molecules
has been produced, typically consisting of alkali-metal atoms,
such as Li2, Na2, K2, Rb2, Cs2, NaRb, RbCs, RbK, NaK,
LiNa, LiK, LiRb, LiCs, and NaCs, but there are also other
compounds, such as LiYb and RbYb; see, e.g., Refs. [2–4,6]
and references therein. Possible methods for the molecule
production are, e.g., three-body recombination [7–9], pho-
toassociation (PA) [10,11], and sweeping over a Feshbach
resonance [12,13].

Alkali-metal dimer systems have also been studied the-
oretically in great detail. Accurate potential-energy curves
(PECs), dipole moments, and spin-orbit interactions can be
obtained via several ab initio methods [14]. Among others,
the Fourier grid Hamiltonian method [15,16] or the discrete
variable representation method [17] were used to analyze
the level structure of the well-known coupled A 1�+

u –b 3�u

manifold in homonuclear alkali-metal dimers.
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Producing and understanding ultracold alkali-metal trimers
(e.g., X2Y , X3, etc., with X,Y ∈ {Li, Na, K, Rb, Cs}) clearly is
a next milestone. Alkali-metal trimers are much more com-
plex and challenging as compared to alkali-metal dimers,
both from the theoretical and the experimental point of view.
One aspect of the complexity of an alkali-metal trimer is
that many of its levels are prone to quick decay due to fast
internal relaxation and dissociation mechanisms. This makes
it challenging to prepare and manipulate the trimer on the
quantum level. Indeed, detailed and highly resolved spec-
troscopy on free trimer molecules is generally still lacking.
Ultracold trimers have not been produced yet, apart from
the extremely weakly bound Efimov states [9,18], which
are fast-decaying three-body states of resonantly interacting
atoms. Alkali-metal trimers at mK temperatures, however,
have been produced in experiments using supersonic beam
expansion of Ar seeded with, e.g., sodium atoms, as in
Refs. [19–21], or in experiments with alkali-metal clusters
formed on helium droplets [22–26]. Theoretical interest in
alkali-metal clusters goes back to the 1980s and 1990s, with
a number of pioneering works [27–33] giving insights into
the electronic properties of alkali-metal trimers, the corre-
sponding ground-state potential-energy surfaces (PESs) and
the occurring Jahn-Teller (JT) effect. Yet, these studies were
restricted to light alkali-metal species, i.e., Li, Na, and K.
Later, following the success of the helium droplet method,
theoretical investigations of alkali-metal trimer systems were
reappearing—now also containing heavier elements such as
Rb [34–40]. In these works, the main focus was on selected JT
states and the reproduction of special transitions and spectra
measured with He droplet spectroscopy. In recent years, the
advent of experiments studying ultracold collisions between
an alkali-metal atom and an alkali-metal dimer also triggered
further calculations of ground-state alkali-metal trimer PESs.
For an overview see, e.g., Ref. [1].

A promising approach for preparing isolated trimer
molecules in precisely defined quantum states is PA which
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FIG. 1. Strongly simplified illustration of the two different pho-
toassociation (PA) schemes for the production of Rb3 species. PA 1
photoassociates a Rb2 dimer with a free Rb atom starting from
the asymptote |g1〉. PA 2 photoassociates three Rb atoms starting
from the asymptote |g2〉. Both PA processes can be also realized (in
principle) starting from an inner turning point (ITP), as discussed in
Sec. III A and indicated on the very left. In both cases the excited
trimer (more weakly bound for PA starting from |g1〉 or |g2〉) can
radiatively decay to the ground state.

so far has been used for creating dimers in the ultracold
regime [10,11]. In a PA process a colliding atom pair in the
electronic ground state and a laser photon are transferred into
a well-defined bound, electronically excited state |e〉 [11].
From there, the excited molecule can spontaneously decay
into a number of rovibrational, long-lived levels of the molec-
ular ground-state manifold |g〉. In analogy, one can in principle
think of two possible PA schemes for the production of trimer
molecules (see Fig. 1).

(i) A dimer molecule and a free ground-state atom are
photoassociated (≡ PA 1). This is shown in Fig. 1. The laser
photon drives a transition from the asymptote |g1〉 to an elec-
tronically excited bound state |e〉 of the trimer complex. From
there it can spontaneously relax to the ground state.

(ii) Three colliding free atoms are photoassociated
(≡ PA 2). As shown in Fig. 1, the photon drives the transition
now from the asymptote |g2〉 to the excited trimer state.

The PA can in principle take place at long range (large
internuclear distances) or at short range (small internuclear
distances). Photoassociation at large distances was recently
discussed theoretically in Ref. [41]. Here, we therefore rather
focus on trimer photoassociation at short distances. Recent
theoretical work in Ref. [42], however, suggests that the si-
multaneous collision of three atoms is strongly suppressed
due to an effective repulsive barrier in the short range of
the three-body potential, rendering the realization of PA2 at
short range less likely. For PA1, however, such a restriction

is not expected. Working out concrete schemes for trimer PA
requires detailed knowledge of the involved trimer states and
the optical transitions between them. With the present paper
we provide a broad overview of states in terms of energy
levels and the topology of PESs. Previous theoretical studies
on alkali-metal trimers [25–39,43] were essentially restricted
to either the doublet or quartet ground state or they inves-
tigated selected JT distorted excited states. Furthermore, we
calculate the electronic dipole transition matrix elements be-
tween states. We discuss special aspects of trimers including
different coordinate systems, the (pseudo) Jahn-Teller effect,
the Renner-Teller (RT) effect for linear configurations, as well
as accidental degeneracies. Finally, we suggest specific PA
transitions and investigate coupling effects in terms of spin-
orbit interaction. Our paper is intended as a basis for further
detailed investigations of PA, which at the next stage will
require the simulation of nuclear dynamics.

This paper is organized as follows. Section II briefly in-
troduces the computational aspects and convenient coordinate
systems for trimers. Hereafter we discuss major topological
features of the corresponding PESs by means of special cuts
and comment on the (pseudo) Jahn-Teller (and Renner-Teller)
effect. Here, we additionally provide an overview of the ex-
pected quartet and doublet equilibrium states of the trimer
system within a certain energy range and comment on spin-
orbit coupling (SOC) effects and estimate their magnitude. In
Sec. III we analyze the excited electronic states with regard to
their applicability in PA processes. We find that they can be
reached conveniently via the inner turning points on the quar-
tet ground-state PES. We identify one component of the 1 4E ′′
Jahn-Teller pair as a promising candidate for PA experiments.
We thoroughly investigate its suitability as a target state by
studying electronic transition dipole strengths with the quartet
ground state, spin-orbit coupling and further mixing effects
with other states in its close proximity, as well as its distance
from conical intersections (COINs). Finally, we summarize
the main points of this paper in Sec. IV and give an outlook to
ongoing work.

II. GENERAL OVERVIEW OF THE RUBIDIUM
TRIMER SYSTEM

A. Computational aspects

Since investigating PA processes of Rb3 requires an ex-
tensive survey of a large number of expected states and
transitions in the Rb3 system, a pragmatic but considerably
accurate computational approach has to be applied. In this
paper, we are using a large-core effective core potential (ECP)
in combination with a core-polarization potential (CPP) as it
has been developed in Ref. [44] with a large [15s12p7d5 f 3g]
(uncontracted and even-tempered) basis set (UET15); see
Supplemental Material [45] for details. In doing so merely
the valence electron of Rb is treated explicitly while the
remaining 36 electrons are described by the ECP. The CPP
accounts for dynamic polarization of the core electrons by the
valence electrons. All doublet and quartet states of Rb3 within
a certain energy range were computed using the internally
contracted multireference configuration-interaction (MRCI)
method [52–56]. As we are only dealing with an effective
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TABLE I. Comparison of experimental (references given in square brackets) and calculated values for some spectroscopic constants of
a few Rb2 states. De is the dissociation energy, Re the equilibrium distance, and Te the electronic term energy. Calculations are performed at
MRCI(ECP+CPP)/15s12p7d5 f 3g level of theory. We also report differences � between theory and experiment as well as the mean difference
�̄ and the absolute mean difference �̄abs for the given set of states.

State De [cm−1] Re [Å] Te [cm−1]

This work Expt. � This work Expt. � This work Expt. �

X 1�g [58] 4116 3993.593 122 4.1689 4.2099 −0.0410 0 0 0
a 3�u [58] 250 241.503 8 6.0065 6.0940 −0.0875 3866
b 3�u [59] 7218 7039 179 4.1537 4.1329 0.0208 9632 9601 31
A 1�u [59] 6071 5981 90 4.8637 4.8737 −0.0100 10778 10750 28
(2) 1�g [60,61] 3140 2963 177 5.4081 5.4399 −0.0318 13709 13602 107
(1) 1�u [62] 2150 1907 243 4.5203 14700 14666 34
(1) 1�g [63] 1246 1290 −44 5.4225 5.4188 0.0037 15604 15510 94

�̄ : 111 −0.0243 59
�̄abs : 123 0.0325 59

three-electron system, the MRCI method has no problem
with the separability of the wave function. This means that
the PESs are entirely well defined and show correct dis-
sociation behavior into three noninteracting Rb atoms. All
calculations are performed using the MOLPRO 2018.2 program
package [57].

The pragmatic ECP+CPP approximation is sufficient for
gaining a reliable understanding of the physics of the sys-
tem, as shown in the following, while saving tremendously
on computational costs. By construction, the ECP reproduces
the experimentally determined atomic energy levels up to the
2F state [44]. The results in Table I illustrate the expected
accuracy for molecular systems—here in terms of benchmark
calculations for spectroscopic constants of selected singlet
and triplet states of Rb2 in comparison to experimental results.
The calculations do not account for spin-orbit coupling ef-
fects, which are only rather small perturbations in most cases.
This we will also show in the present paper for Rb3. The mean
differences �̄ reported in Table I show a systematic overes-
timation of the binding energies by 100 to 250 cm−1, while
equilibrium distances are typically underestimated by 0.01 to
0.04 Å. This over- and underestimation is a well-known bias
introduced by the large-core ECPs due to the approximate
description of the repulsion of the core electrons [64,65].
For the electronic term energies Te, the errors are on the
order of 30 to 100 cm−1. Since the Rb3 system forms three
Rb-Rb bonds, we can estimate the accuracy of our ab initio
method from the above mean errors by ≈ ±300 cm−1. For
bond lengths the same accuracy as for Rb2 is expected (about
1% of the total predicted distance). According to the above
experience, binding energies are probably mostly overesti-
mated while bond lengths are underestimated. While these
deviations seem large from a spectroscopist’s point of view,
we note that these deviations are already within the regime of
accurate quantum chemical methods, typically defined by the
“chemical accuracy” level of ≈ ±1 kcal/mol ≈ ±350 cm−1

for energies. Increasing this accuracy is possible but requires
steeply increasing computational resources, while our present
approach only requires approximately 40 min on eight cores
for solving for 27 electronic states at a given Rb3 geome-
try, thus allowing one to explore the configurational space
efficiently.

B. Coordinates

The atoms of nonlinear triatomic molecular systems al-
ways define a plane, which we choose, without loss of
generality, as the xz plane; see Fig. 2(a). The system has
three internal degrees of freedom, with the only exception of
linear geometries for which the system has a fourth degree
of freedom. There are many coordinate systems available
for properly studying the physics of the system—like the
well-known Jacobi and hyperspherical coordinates; see, e.g.,
Ref. [66] and references therein. In general every coordi-
nate system has its strengths and weaknesses and the choice
strongly depends on what one wants to analyze. In this paper
we are making use of three different coordinate systems which
are introduced in the following.

It is straightforward to use internuclear distances as
shown in Fig. 2(a). However, not every triple of numbers
(R12, R23, R13) obeys the triangular condition and defines a
possible molecular configuration. It is convenient to em-
ploy perimetric coordinates [67–73], as used by Davidson
in his analysis of H3 [74]. Given the set of internal co-
ordinates {R12, R23, R13}, the perimetric coordinates can be
expressed as

R1 = 1
2 (R12 + R13 − R23), (1a)

R2 = 1
2 (R12 + R23 − R13), (1b)

R3 = 1
2 (R13 + R23 − R12). (1c)

The perimetric coordinates are the radii of mutually tan-
gent circles centered on each nucleus [as shown in Fig. 2(b)].
The general topology of this coordinate system reveals some
properties.

(a) Every triple of numbers (R1, R2, R3) in the positive
octant [see Fig. 2(c)] gives a unique molecular conformation
(modulo permutational inversion); i.e., the coordinates satisfy
the triangular inequality.

(b) Internuclear distances are given as the sum of the cor-
responding perimetric coordinates (e.g., R12 = R1 + R2).

(c) Linear molecules are found at the three equivalent
boundary planes of the positive octant, where one of the
perimetric coordinates is zero (e.g., for R1 = 0, R2 = R12,
and R3 = R13).
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FIG. 2. (a) Sketch of the Rb3 system in the xz plane with internuclear distances R12, R23, R13. (b) Illustration of the geometric interpretation
of the perimetric coordinates for triatomic molecules. They represent the radii of three mutual tangent circles centered on the nuclei.
(c) Division of the positive octant in perimetric coordinates to show special configuration subspaces of triatomic systems (i.e., D∞h, D3h,
and C2v).

(d) The dissociation limits (atom + dimer) are obtained by
one of the coordinates being large (e.g., atom1 + dimer23 ⇔
R1 → ∞).

The positive octant contains further special positions (i.e.,
configurations higher than Cs symmetry) summarized in
Fig. 2(c). Linear molecules of D∞h symmetry are found on
three equivalent diagonals of the boundary planes. Equilateral
triangular configurations (D3h symmetry) correspond to the
space diagonal while isosceles triangles (i.e., C2v symmetry)
are, due to the permutational symmetry, represented via one of
the three equivalent space diagonal surfaces [note that strictly
speaking there are six equivalent subspaces of C2v configura-
tions since it is not defined if the atoms are labeled clockwise
or counterclockwise—transition to the inverted structure takes
place over a linear one (Ri = 0)]. In the context of this paper
the perimetric coordinates are a powerful tool for investigating
the configuration space (see Sec. III A) of equilibrium states
of Rb3 helping to identify appropriate states for PA processes.

Since homonuclear (alkali-metal) triatomics are prominent
systems showing the JT effect [34–37,75,76] it is also useful
to introduce the (symmetry-adapted) JT coordinates to char-
acterize the corresponding major topological features [COIN
seam, Mexican-hat-like PES, and triply degenerate COINs for
pseudo Jahn-Teller (PJT) interactions] near D3h equilateral
triangular conformations. Given the internuclear distances
(R12, R23, R13) they are defined by [76]

(2)

They describe the planar vibrational modes of the system
where Q1 is associated with the breathing mode (preserving
D3h geometry), Q2 with the asymmetric stretch mode (distort-
ing the equilateral triangle into a Cs configuration), and Q3

with the symmetric stretch mode (taking the system into a C2v

conformation). Note that this only holds for D3h symmetry; in
the subspace of lower symmetry, e.g., C2v , the actual modes
are mixtures of Q1 and Q3. Using this set of coordinates,
e.g., Hauser et al. studied several aspects of the JT effect in
K3 and Rb3 [34–36] by C2v cuts [one- and two-dimensional
(2D)] through the PESs of both species. We are applying these
coordinates for investigating the 1 4E ′′ state in the context of
PA experiments in Sec. III C.

C. Special cuts through the PESs

To get an idea of the system’s physics, in particular the
occurring coupling and crossing effects, we start with analyz-
ing special cuts through the PESs of both doublet and quartet
manifolds. For this we restrict our investigations to the C2v

subspace since it turns out that all equilibrium structures show
at least C2v symmetry. Therefore we are labeling the resulting
electronic states according to the irreducible representations
(IRREPs) of this point group. Given the choice of coordinates
shown in Fig. 2(a), A1 and B1 states are symmetric, and A2

and B2 states are antisymmetric with respect to reflection of
the electronic coordinates at the molecular plane. Figure 3
gives a first impression of the topology of the potential-energy
landscapes for the quartet ground state (1 4B1) and the first
excited quartet state (1 4A2) in terms of two-dimensional cuts
for C2v-symmetric nuclear configurations. These correspond
to one of the space diagonal surfaces shown in Fig. 2(c).
The quartet ground state (1 4B1) in Fig. 3(a) is well isolated
from excited quartet states (i.e., crossings with other states
only appear at energies high above the minimum and the
dissociation limit of this state) with the global minimum oc-
curring at equilateral triangular (D3h) geometry [40]. At a
symmetric linear geometry (for this cut at R1 = 0) we obtain
a saddle point marking the transition to the inverted structure.
Moreover, we note that the PES of the 1 4B1 state is rather
shallow. These properties have also been pointed out by Sol-
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FIG. 3. Two-dimensional contour plots of the quartet ground state 1 4B1 (a) and the first quartet excited state 1 4A2 (b) PESs in the subspace
R1 and R2 = R3 of perimetric coordinates, i.e., along one space diagonal surface in Fig. 2(c). The space diagonal (i.e., D3h configurations)
corresponds to the diagonal line shown in white, while the horizontal line [both in (a)] represents the special one-dimensional C2v cut for
R23 = 6.094 Å. The wavy character in (b) is due to the underlying spline interpolation of the corresponding ab initio data.

dán in his work concerning the quartet ground state of Rb3

in Ref. [40]. Figure 3(b) shows the first excited quartet state
(1 4A2 in C2v) with the global minimum occurring at isosceles
triangular (i.e., C2v) geometry. This is due to the JT effect
forming a twofold degenerate E ′′ state (with 1 4B2) at D3h

geometries (this will be discussed in more detail in Sec. III C).
This PES rises significantly steeper than the shallow quartet
ground-state PES.

The presence of (pseudo) Jahn-Teller interactions can be
also observed from one-dimensional scans along the D3h sub-
space, i.e., along the diagonal shown in white in Fig. 3(a). The
resulting PECs are shown in Fig. 4 in the space of internal
coordinates (R12 = R23 = R13).

Equilateral triangular configurations of homonuclear tri-
atomics display D3h symmetry and allow for twofold degen-
erate, so-called E terms (see Table S.VIII in the Supplemental
Material [45]). According to the Jahn-Teller theorem [75–80],
the PES of at least one of these degenerate states has no
extremum at this high-symmetry point. Thus, the system low-
ers its symmetry to lift the degeneracy, here branching off
into A1 + B1 states for E ′ or into B2 + A2 states for E ′′, re-
spectively. This is accompanied by an energy lowering and
the formation of a COIN at the point of degeneracy. This is
also indicated by the insets shown in Fig. 4. Potential-energy
curves which are degenerate over the whole range shown in
Fig. 4 are actually one-dimensional COIN seams in the three-
dimensional (3D) configuration space.

The doublet ground states of alkali-metal trimers show
their global minimum at obtuse isosceles triangular ge-
ometries due to the JT effect (studied theoretically for
Li3 in Refs. [28,29], for Na3 in Refs. [27–30], for K3

in Refs. [28,29,34,43], and for Rb3 in Refs. [36,38,39]).
This finding is also illustrated by the corresponding PECs
in Fig. 4(a) (and by the alternative one-dimensional cuts
in Fig. S3 in the Supplemental Material [45]). A further
peculiarity—well known as the PJT effect—is formed, e.g.,
by the triple of states {2 2A1, 2 2B1, 3 2A1}, where 2 2A1 and
2 2B1 are degenerate components of the 2 2E ′ term (for D3h

configurations) and the 3 2A1 state is nearby in energy (near
degeneracy)—see Fig. 4(a) and Fig. S3. Consequently, all
three states can mix for C2v configurations, which is described
within the theory of PJT coupling (see, e.g., Refs. [81,82]).

It follows that due to the third state which is close in en-
ergy the COIN seam of the doubly degenerate JT state at
high-symmetry geometries vanishes. Only at a single point
in the D3h subspace all three states become degenerate form-
ing a triply degenerate COIN point [30]. This intersection is
analogous to the JT one, but it is not required by symmetry
(accidental degeneracy). All of this is essential to fully un-
derstand the well-known experimentally observed B band in
alkali-metal triatomics [75].

In contrast to the doublet ground state, the quartet ground
state is free of JT distortions with its global minimum at D3h

configuration. The first pair of excited quartet states, however,
is degenerate along a one-dimensional COIN seam in the D3h

configuration space, and spans a 1 4E ′′ term, which splits into
1 4A2 and 1 4B2 states when the symmetry is lowered. Besides
those states which are exactly degenerate, there are also a
number of nearly degenerate states. In particular, there are
quadruple interactions [39] present within the subset Q of
quartet states:

Q = {1 4A1, 2 4A1, 2 4B1, 3 4B1}. (3)

This peculiarity can be seen in Fig. 4(b) [and Fig. S3(b) in the
Supplemental Material [45]], where those states are almost
degenerate in a region reaching from ≈5.0 to ≈ 7.0 Å. More
details on all JT and PJT pairs within this energy range can be
found in the Supplemental Material [45] in Table S.V.

The other one-dimensional cut indicated in Fig. 3(a) cor-
responds to a collision trajectory between a Rb2 molecule
and a Rb atom. For this cut, we fixed the distance R23 to the
equilibrium distance of the lowest triplet state (a 3�u) of Rb2.
The resulting cuts in Figs. 4(c) and 4(d) give a first impression
of the states possibly involved in a PA 1 scheme. Moreover,
this graph shows one dimension of the 2D branching space
(formally spanned by Q2 and Q3; see Sec. II B) where the
degeneracies from high-symmetry configurations (here found
at the point R12 = R13 = R23 = 6.094 Å) are lifted. This gives
a notion of the topology of the full 3D potential-energy land-
scape. The density of states increases for higher energies for
both doublet and quartet manifolds and decreases the chance
for finding sufficiently long-lived target states for PA experi-
ments. Therefore and due to the fact that the doublet ground
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FIG. 4. Upper panel: One-dimensional cut through the potential-energy surfaces (PESs) along the space diagonal in the perimetric
coordinate space shown in Fig. 2(c) and in terms of the diagonal shown in Fig. 3(a) (i.e., D3h scan maintaining the equilateral triangular
configuration). Doublet states are shown in (a) and quartet states in (b), respectively. The low-lying states discussed in the text are highlighted;
the presence of further states is indicated by the gray lines. Lower panel: One-dimensional cut through the PESs along one special direction on
one space diagonal surface shown in Fig. 2(c). This C2v scan corresponds to a fixed distance R23 = Re(a 3�u) = 6.094 Å. Doublets are shown
in (c) and quartets in (d), respectively.

state has a rather complex behavior due to JT distortions we
focus on quartet states.

Linear configurations of the trimer system are subject to
RT or combined PJT plus RT interactions. A detailed analysis
of this, however, is beyond the scope of the present paper.
Nevertheless, a comment can be found in the Supplemental
Material [45].

D. Equilibrium states

A systematic overview of the energy levels of all doublet
and quartet states of Rb3 considered in this paper is given
in Fig. 5. All energy levels refer to the electronic energy at
the equilibrium geometry. For finding the equilibrium states
we started from high-symmetry configurations (D3h) and pro-
ceeded to geometries of lower symmetry (C2v). Our analysis
did not show any evidence for equilibrium structures of even
lower symmetry, i.e., Cs. We determined all equilibrium states
and their electronic term energies in the energy region up to

the 5s + 2 × 5p asymptote. The energies of the Rb2+Rb or
Rb+Rb+Rb dissociation asymptotes are given in the middle
panel. The assignment of the trimer states to the Rb2+Rb
asymptotes is in general only unique for the quartet ground
state 1 4B1 dissociating into a 3�u + 5s. For one-dimensional
C2v cuts as shown in Figs. 4(c) and 4(d) we obtain a unique as-
signment for all quartet states and some doublet states as well.
However, in the general case, for both doublet and quartet
states, all Rb2+Rb asymptotes correlating with the respec-
tive trimer state symmetry are possible dissociation channels.
Most of the excited states correlate to the 2 × 5s + 5p asymp-
tote. Merely the highly excited quartet states 2 4B2, 3 4B2, and
4 4A1 correspond to the 5s + 2 × 5p asymptote and thus to the
(1) 3�u + 5p dissociation limit. The lowest doublet JT man-
ifold 1 2E ′ = 1 2A1 + 1 2B1 dissociates either to X 1�g + 5s
or to a 3�u + 5s. The remaining doublet states correspond to
Rb2+Rb asymptotes below the 2 × 5s + 5p asymptote where
both singlet and triplet Rb2 states are possible. Finally, the top
panel of Fig. 5 also shows the ionized states of Rb+

3 appearing
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FIG. 5. Energy-level diagram of the extremal points of dou-
blet (right) and quartet (left) states of Rb3 optimized at
MRCI(ECP+CPP)/UET15 level of theory. The dissociation asymp-
totes into Rb2+Rb (with the corresponding equilibrium energies of
the Rb2 states) or Rb+Rb+Rb are shown in the area highlighted in
blue. Levels given in black belong to triangular equilibrium config-
urations (i.e., D3h or C2v symmetry) while levels given in orange
represent linear equilibrium configurations (all of them D∞h sym-
metry). Yellow boxes mark Jahn-Teller states, where the respective
dashed lines correspond to saddle points showing isosceles triangular
geometry. The ionized Rb+

3 states are shown at the top in terms
of blue energy levels. All energies are given relative to the free
atom-atom-atom limit (i.e., 3 × Rb[5s]).

in either singlet or triplet configuration. This could be useful if
a resonance-enhanced multiphoton ionization [83] scheme is
used for the detection of previously generated Rb3 species. All
these results are listed in Table II (for triangular geometries)
and in Table III (for linear configurations) together with their
corresponding harmonic vibrational frequencies ν̃.

Our results are in good agreement with previous the-
oretical studies of Rb3. For the quartet ground state
Soldán [40] found equilateral bond distances b with
b = 5.450 Å, using the RHF-RCCSD(T) approach with a
[16s13p8d5 f 3g] basis and the small-core ECP from Ref. [84]
(ECP28MDF). The energy of the minimum was determined
at Emin = −1071 cm−1. Hauser et al. [25,35] found for
the equilateral bond distances b = 5.500 Å with correspond-
ing energy Emin = −939 cm−1 and harmonic frequencies

{ν̃D3h , ν̃C2v
, ν̃Cs} = {18, 21, 21} cm−1 using RHF-RCCSD(T)

with the ECP28MDF small-core ECP and the correspond-
ing original basis set augmented by a (1s, 1p, 1d ) set of
diffuse functions. In comparison, our computations give a
binding energy of −1244 cm−1, equilateral bond distances
of 5.311 Å, and vibrational frequencies of {ν̃D3h , ν̃C2v

, ν̃Cs} =
{23.8, 23.6, 23.6} cm−1. In case of the doublet ground state
Hauser et al. [35,36] obtained bond distances with R12 =
R13 = 4.387 Å, R23 = 5.575 Å, and the equilibrium energy
Emin = −5321 cm−1 using RHF-UCCSD(T), small-core ECP,
and a [14s, 11p, 6d, 3 f , 1g] uncontracted even-tempered ba-
sis set derived from the ECP28MDF basis. Our calculations
result in bond distances with R12 = R13 = 4.379 Å and R23 =
5.393 Å with a corresponding binding energy of −6017 cm−1.
Moreover, we can extract the vertical transition energy from
the quartet ground state to the high-spin 2 4E ′ manifold from
Fig. 5 and Table II and compare the result with the one cal-
culated by Hauser et al. [25,35] using a modified version of
CASPT2 (referred to as RS2C in MOLPRO), the same small-core
ECP, as well as the same basis set as described before. Our
result is E2 4E ′←1 4A′

2
= 11 535 cm−1 compared to the result

11 530 cm−1 of Hauser et al. The corresponding experimental
value [22,26] is 11 510 cm−1 referring to the lowest-energy
maximum band of the measured band spectra applying laser-
induced fluorescence spectroscopy to Rb3 clusters formed on
helium nanodroplets.

In the Supplemental Material [45] in Tables S.III and
S.IV and Fig. S2 we provide a more detailed overview on
all states, i.e., by including saddle points, obtained within
the energy range up to the 5s + 2 × 5p asymptote. Some
of the saddle points define the barrier heights between min-
ima on PESs. This becomes important for analyzing the JT
effect.

E. Survey of spin-orbit coupling effects

SOC is still a comparatively weak effect for Rb (the SOC
induced splitting of the atomic 2P state is ≈240 cm−1) and
the classification of states in terms of their total spin, as in
the previous sections, is justified. Nevertheless, in particular
in the vicinity of degeneracies, SOC can lead to a mixing
of states of the same or of different spin. To get an idea of
the importance of this phenomenon we have investigated the
size of the couplings for selected nuclear configurations at the
MRCI(ECP+CPP)/UET15 level of theory using the ECP-LS
technique for the corresponding large-core pseudopotential.
All important details about the computation of the correspond-
ing spin-orbit matrix based on a pseudopotential approach
can be found, e.g., in Refs. [44,85]. The computations in-
cluded 15 quartet (4/5/3/3) and 12 doublet (5/4/2/1) states,
according to the MOLPRO specific ordering of the IRREPs
(A1/B1/B2/A2). That is, in total a 84 × 84 SO matrix is set
up and diagonalized.

To get a qualitative overview we show in Fig. 6 the ab-
solute values of the SO matrix |ĤSO

i j | at the equilibrium
geometry of the first excited quartet state 1 4A2 as a heat-
map representation. It should look similar for comparable
geometrical configurations. The main contributions come
from doublet-doublet (D ↔ D), respectively, quartet-quartet
(Q ↔ Q) couplings. However, there are also nonvanishing
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TABLE II. Synopsis of triangular (C2v and D3h) doublet and quartet (ground and excited) states of Rb3 as well as the singlet state of
Rb+

3 computed at MRCI(ECP+CPP)/UET15 level of theory. Equilibrium structures are given in terms of the internal coordinates (perimetric
coordinates) introduced in Fig. 2 and all corresponding energies (Erel) are given relative to the (3 × 5s) asymptote calculated at the same level
of theory. The states are labeled according to the C2v IRREPs while the corresponding assignment to D3h symmetry is given in parentheses.
This complements the results of the energy-level diagram of Fig. 5.

State (D3h) R12, R23, R13 [Å] Geometry Erel [cm−1] ν̃D3h [cm−1]a ν̃C2v
[cm−1]a ν̃Cs [cm−1]a

(R1, R2, R3)

1 4B1 (1 4A′
2) 5.311, 5.311, 5.311 D3h −1244 23.8 23.6 23.6

(2.656,2.656,2.656)
1 4A2 (1 4E ′′) 4.368,5.700,4.368 C2v 3397 50.2 17.2 35.8

(1.518,2.850,2.850)
2 4B1 (1 4E ′) 4.442, 8.179, 4.442 C2v 3962 40.3 9.6 40.4

(0.352,4.090,4.090)
1 4A1 (1 4E ′) 4.993, 8.076, 4.993 C2v 6766 32.8 9.8 50.7

(0.955,4.038,4.038)
2 4A1 (1 4A′

1) 5.325, 5.325, 5.325 D3h 7722 32.0 83.9 83.9
(2.663,2.663,2.663)

3 4B1 (2 4A′
2) 5.084, 5.084, 5.084 D3h 7869 43.0 58.2 58.2

(2.542,2.542,2.542)
2 4B2 (2 4E ′′) 4.443, 6.217, 4.443 C2v 9490 52.0 42.7 41.3

(1.335,3.109,3.109)
4 4B1 (2 4E ′) 5.283, 5.337, 5.283 C2v 10291 31.5 37.7 39.0

(2.615,2.669,2.669)
3 4A1 (upper) (2 4E ′) 4.687, 7.226, 4.687 C2v 11784 41.5 28.2 27.5

(1.074,3.613,3.613)

1 2B1 (1 2E ′) 4.379, 5.393, 4.379 C2v −6017 53.1 20.6 33.3
(1.682,2.697,2.697)

1 2B2 (1 2A′′
2) 4.276, 4.285, 4.276 C2v −1228 60.9 43.9 44.1

(2.134,2.143,2.143)
2 2A1 (2 2E ′) 4.398, 6.073, 4.398 C2v 229 50.4 26.7 42.1

(1.361,3.037,3.037)
3 2A1 (1 2A′

1) 4.557, 4.557, 4.557 D3h 1898 51.9 100.6 100.6
(2.279,2.279,2.279)

1 2A2 (1 2E ′′) 4.337, 5.132, 4.337 C2v 4286 52.9 23.7 30.2
(1.771,2.566,2.566)

1 1A1 ( 1A′
1) 4.610, 4.610, 4.610 D3h 19942 53.2 36.6 36.5

(2.305,2.305,2.305)

aIn general the assignment is not unique but usually ν̃D3h is Q1-like, ν̃C2v
is Q3-like, and ν̃Cs is Q2-like.

couplings between quartet and doublet states (Q ↔ D and
vice versa). The corresponding selection rules (for C2v config-
urations), deduced from group theory, allow for �S = 0,±1
and couplings between all combinations of IRREPs except
the same (a detailed derivation is given in the Supplemental
Material [45]).

The explicit values for resulting shifts and zero-field split-
tings (i.e., the lifting of degenerate states in the absence of
a magnetic field) are given in Tables S.XIII– S.XVI in the
Supplemental Material [45] for the equilibrium states listed in
Tables II and III together with the corresponding most dom-
inantly coupling states. Typical coupling strengths amount to
20 to 70 cm−1, as shown in Fig. 6, but the resulting energy
shifts and zero-field splittings are much smaller. For instance
the quartet ground state splits into the two states E1/2 and
E3/2 of the D3h spin double group [35], but the correspond-
ing zero-field splitting is less than 0.1 cm−1 and the energy
lowering induced by the SOC is less than 0.2 cm−1. The same

observation holds for the first excited quartet state 1 4A2 for
which these SOC effects are again smaller than 1 cm−1. The
reason for these small values lies in the effective quenching
of the orbital angular momentum in triangular geometries and
in the energy separation to other states. For highly symmetric
configurations, in particular for linear geometries and in the
presence of spatial degeneracies, the effects become larger,
e.g., for the 1 4�g state, for which splittings and energy shifts
of up to 200 cm−1 are computed.

The strength of SOC, in particular between the quartet
ground state 1 4B1 and the first excited quartet state 1 4A2,
decays with respect to distortions from equilateral triangu-
lar geometries. Only in the limit of dissociation into both
Rb2+Rb and 3 × Rb SOC effects become larger, since Rb2

always has a well-defined C∞ axis. To summarize, we do
not expect significant SOC induced mixing of the states in
the vicinity of equilibrium geometries, in particular for the
low-lying states 1 4B1 and 1 4A2.
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TABLE III. Synopsis of linear (D∞h) doublet and quartet (ground and excited) states of Rb3 as well as the triplet state of Rb+
3 computed

at MRCI(ECP+CPP)/UET15 level of theory. Equilibrium structures are given in terms of the internal coordinates (perimetric coordinates)
introduced in Fig. 2 and all corresponding energies (Erel) are given relative to the (3 × 5s) asymptote calculated at the same level of theory. The
states are labeled according to the C2v IRREPs while the corresponding assignment to D∞h symmetry is given in parentheses. This complements
the results of the energy-level diagram of Fig. 5.

State (D∞h) R12, R23, R13 [Å] Erel [cm−1] ν̃symm [cm−1] ν̃asymm [cm−1] ν̃bending1
[cm−1] ν̃bending2

[cm−1]
(R1, R2, R3)

1 4A2 + 2 4B1
a(1 4�g) 4.435, 8.869, 4.435 4044 33.7 41.7 236.8 84.7

(0.000,4.435,4.435)
2 4A1(1 4�+

g )b 4.937, 9.874, 4.937 7442 398.2 48.9 282.6 282.6
(0.000,4.937,4.937)

1 2A1 (1 2�+
g ) 4.795, 9.590, 4.795 −2109 24.9 60.8 4.1 4.1

(0.000,4.795,4.795)
3 2A1(2 2�+

g )b 4.440, 8.880, 4.440 3390 405.9 46.9 313.8 350.3
(0.000,4.440,4.440)

3 2B1 (2 2�+
u ) 4.930, 9.860, 4.930 5647 27.7 48.4 169.6 169.6

(0.000,4.930,4.930)

1 3B1 (3�+
u ) 4.875, 9.749, 4.875 24043 30.3 49.7 6.3 6.3

(0.000,4.875,4.875)

aRenner-Teller pair with the 4B1 state turning out as saddle point at this linear configuration.
bAs a consequence of a combined pseudo Jahn-Teller and Renner-Teller interaction two A1 states, one of them arising from a �u state, can mix
for greater displacements along D∞h geometries. This is also the reason for nondegenerate frequencies ν̃bending1,2

.

FIG. 6. Heat-map representation of the absolute values of the

spin-orbit matrix
√

|ĤSO
i j |2 (without diagonal elements). The Rb3

geometry was fixed to the equilibrium configuration of the first
excited quartet state 1 4A2 (see Table II). The partitioning sepa-
rates doublet-doublet (D↔D), quartet-quartet (Q↔Q), and quartet-
doublet (Q↔D) couplings. The dashed blue lines mark the rows
where the four components corresponding to the 1 4A2 state are found
in the SO matrix. The SO matrix is sorted according to IRREPs (C2v)
in the sequence (A1/B1/B2/A2) where each of them (in zeroth-order
basis) are ordered with respect to increasing energy and are accord-
ingly combined with the ms spin function starting from ms = +1/2

to −1/2 for doublets and ms = +3/2 to −3/2 for quartets. This is a
complete representation with respect to the energetically lowest 12
doublet (5/4/2/1) and 15 quartet states (4/5/3/3) leading to the
84 × 84 SO matrix.

III. IDENTIFYING APPROPRIATE STATES FOR
PHOTOASSOCIATION

A. Configuration space survey

For the realization of the trimer PA processes, nonvan-
ishing Franck-Condon factors are required, i.e., a significant
overlap of the nuclear scattering wave function of Rb2+Rb or
3 × Rb collisions and the molecular trimer vibrational wave
function of the excited state. In this paper we are mostly
interested in producing deeply bound trimers close to the
vibrational ground state for reasons of increased stability,
lifetime, and simplicity. In fact, as we will show in the follow-
ing, it turns out that the equilibrium geometries of a number
of excited states are in close proximity to the ITPs of the
scattering wave function. Since the scattering wave function
typically exhibits a local maximum at the ITP this suggests
that favorable Franck-Condon factors might be found for pho-
toassociating excited trimers in their equilibrium geometry.
For trimers, the ITPs are actually 2D surfaces in the configura-
tion space. They correspond to those points where the quartet
ground-state PES equals to the energy of the scattering state.
For the case of Rb2+Rb this energy is given by the negative
binding energy of the a 3�u state of Rb2, i.e., ≈ −250 cm−1,
and for the case of 3 × Rb the energy is approximately zero.
Again, note that PA2 at short distances is expected to be rather
unlikely due to the effective repulsive barrier in the short range
of the three-body potential; see Ref. [42]. Nevertheless, at
large distances PA2 should be possible. The feasibility for PA1
is shown in Ref. [41]. The locations of the ITPs (i.e., ITP250

and ITP0) and the positions of the equilibrium geometries are
shown in Fig. 7(a). The equilibrium geometries have at least
C2v symmetry and are located on a space diagonal surface, as
shown in Fig. 2(c) (due to the threefold degeneracy of C2v and
D∞h configurations, resulting from the indistinguishability of
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FIG. 7. Inner turning point (ITP) locations and locations of equilibrium geometries in the configuration space of perimetric coordinates.
(a) Since all equilibrium geometries show at least C2v symmetry the configuration space survey can be restricted to one of the space diagonal
surfaces shown in Fig. 2(c). ITPs on the quartet ground-state PES with respect to either the Rb2 + Rb or 3 × Rb dissociation scenarios are
given in light blue for the first one and in light red for the latter. States lying close to these lines are promising candidates for showing good
Franck-Condon factors. Here we focus on the 1 4A2 state highlighted in purple. The numbers given in (b) along both ITP lines represent the
electronic dipole transition strengths (in units of [D2]) between the quartet ground state and this 1 4A2 state at the corresponding ITP locations.
Note that the numbers given in (b) do not correlate with the equilibrium geometries depicted in (a). The transition dipole strength at the
equilibrium geometry of the first excited quartet state amounts to 0.018 D2. The ellipses shown in (a) and (b) give an estimate of the size of the
vibrational ground-state wave function for the 1 4A2 state.

the three Rb atoms, there are three equivalent such represen-
tations).

B. Electronic dipole transition moments

A successful realization of PA processes also requires non-
vanishing electronic dipole transition moments between the
initial state and the corresponding excited state. In C2v sym-
metry electronic dipole transitions between all states (with
�S = 0) are allowed, except transitions between A1 and A2

as well as B1 and B2 (a detailed derivation of this as well as
for the selection rules in D3h is given in the Supplemental Ma-
terial [45]). Due to the facts that the density of states increases
with increasing energy and that the transition between the
quartet ground state and the first excited quartet state (1 4A2)
is symmetry allowed and in close proximity to the ITP lines,
we are going to focus our following investigations on this
state.

We study the specific electronic dipole transition strengths
(in units of [D2]) at ITP configurations in Fig. 7(b). The mag-
nitudes of the electronic dipole transition strengths between
the quartet ground state and the first excited quartet state,
1 4A2, are approximately the same for ITP250 and ITP0. In both
cases we obtained no considerable changes in Cs direction.
In the vicinity of D3h configurations (diagonal dark red line)
we obtain vanishing transition strengths due to the fact that

for D3h geometries the 1 4A2 state forms a degenerate 1 4E ′′
JT state (see Sec. III C for a detailed discussion) where the
quartet ground state is described in terms of the A′

2 IRREP. In
the Supplemental Material [45] we show that electronic dipole
transitions between these states are zero by symmetry. For C2v

configurations admixture of other configurations makes the
transition dipole moment nonvanishing, but it remains rather
small.

Using the harmonic vibrational frequencies in Table II, and
the topology of the PES in Fig. 3(b) we can estimate the extent
of the vibrational ground-state wave function for the 1 4A2

state. For each normal mode i the size is approximated by the
harmonic oscillator length. It can be derived from the one-
dimensional Schrödinger equation of a particle of reduced
mass μ (for homonuclear triatomics μ = m/

√
3) moving in

a harmonic potential, yielding (for 87Rb)

xi =
√

h̄

μωi
=

√ √
3h̄

100 × m( 87Rb) × cν̃i
. (4)

The PES in this region takes on the form of a rotated ellipse
with semimajor axis a = 0.495 Å and semiminor axis b =
0.29 Å calculated from Eq. (4) using ν̃D3h and ν̃C2v

. These find-
ings are indicated in Fig. 7. Since there is a good overlap with
the ITPs, a sizable Franck-Condon factor can be expected.
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FIG. 8. The quartet states (according to C2v nomenclature) 1 4B2 and 1 4A2 forming the Jahn-Teller pair 1 4E ′′ in the higher-symmetry D3h

subspace (equilateral triangle). For each equilateral triangular configuration the two states show a conical intersection (COIN) leading to a
COIN seam (one-dimensional curve) in the full 3D configuration space. Lowering the symmetry, e.g., by scanning along the C2v preserving
coordinate Q3, leads to a splitting of both states [see (a) for Q1 = 8.335 Å and Q2 = 0.0 Å fixed]. Due to the Jahn-Teller character these states
cannot be viewed separately. The interactions lead to the formation of a lower PES sheet E− showing tricorn topology (three equivalent wells
alternating regularly with three saddle points, separated by the localization energy Eloc = 225 cm−1) and a parabolic shaped upper surface E+.
The 1 4A2 state represents a global minimum on E− while the 1 4B2 state is a saddle point on this surface. This behavior is illustrated by the
lower inset in (a) for Q1 = 8.335 Å. Including spin-orbit coupling (SOC) leads to the annihilation of the COIN and to an energy splitting �

as shown by the inset on the top left in (a). The topology of the PESs in the two-dimensional subspace of Q1 and Q3 is shown in (b). The
degenerate line at Q3 = 0.0 Å, where we have D3h symmetry, corresponds to the one-dimensional COIN seam. The white line at the bottom
represents the one-dimensional cut shown in (a).

C. The 1 4E ′′ Jahn-Teller pair

As indicated in Table II the first excited quartet state 1 4A2

forms, together with the 1 4B2 state, for equilateral triangular
geometries the JT pair 1 4E ′′. The two states are degen-
erate for every high-symmetry (D3h) nuclear configuration,
thus forming a one-dimensional COIN seam in the full 3D
configuration space as already outlined in Sec. II C. When
lowering the symmetry (scanning along Q2 and/or Q3) both
states branch off forming a lower PES sheet E− revealing
a tricorn topology with three equivalent minima (of 1 4A2

character) alternating regularly with three saddle points (of
1 4B2 character) as illustrated by the lower inset in Fig. 8(a).
The upper surface E+ is a paraboloid of revolution about
Q2 = Q3 = 0 [30]. SOC removes the COIN with an energy
splitting of � ≈ 10–20 cm−1 (i.e., weak SOC) between the
corresponding Kramers pairs of E+ and E−. For details of
the underlying (relativistic) JT theory see, e.g., Refs. [75–80]
and Refs. [86–88], respectively, for the effect of SOC on
COINs in general. Here it is important to note that due to
the JT interaction the 1 4A2 and 1 4B2 states cannot be viewed
separately. Figure 8(b) illustrates the one-dimensional COIN
seam occurring for Q2 = Q3 = 0 and shows a contour plot of
the trough of the E− PES in the D3h-C2v subspace of Q1 and
Q3. The energetically lowest COIN occurs at R1 = R2 = R3 =

2.250 Å with an energy Emin(COIN) = 4146 cm−1 (note that a
detailed overview on all JT pairs is given in Table S.V in the
Supplemental Material [45]). It is convenient [30] to define a
stabilization energy Es of the minima on E− from the COINs
as well as a localization energy Eloc defining the barrier height
in the tricorn potential. In the lower inset of Fig. 8(a) this
denotes the energy barrier for transitions between the three
equivalent minima on E− separated by three saddle points.
The stabilization energy for the cut through the 1 4A2 mini-
mum is Es[min(1 4A2)] = 991 cm−1 as indicated in Fig. 8(a)
and clarified in Fig. S4 of the Supplemental Material [45]. The
localization energy is Eloc = 225 cm−1.

D. Interactions in the vicinity of the 1 4E ′′ global minimum

Despite the small transition dipole strengths between the
quartet ground state and the first excited quartet state, dis-
cussed above [see Fig. 7(b)], we claim that the 1 4A2 state is a
promising candidate for PA experiments. First, its minimum
is rather well isolated from intersections with doublet and
quartet states (both in C2v and Cs configuration space) due
to the low density of states. Only the 2 2B1 and 3 2A1 states
show intersections, in close proximity to the 1 4A2 minimum,
besides the symmetry-required one with the 1 4B2 state. The
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energetically closest intersection emerges at C2v geometry
with the 3 2A1 state for R2 = R3 ≈ 2.65 Å and R1 ≈ 1.7 Å.
For Cs geometries intersections with the 2 2B1 state move
slightly closer to the minimum of the first excited quartet
state while the 3 2A1 intersections approximately remain at the
same location. However, all intersections are �60 cm−1 away
from the 1 4A2 global minimum. The situation is illustrated
in Fig. S5 of the Supplemental Material [45]. As indicated
previously, the 1 4A2 minimum is stabilized from COINs by
Es[min(1 4A2)] = 991 cm−1.

In the vicinity of the 1 4A2 equilibrium geometry SOC
effects are rather small vanishing with 1/r for large r (with

r ∝
√

Q2
2 + Q2

3 measuring the distortion from D3h symmetry
to acute C2v triangular geometries) as follows from relativistic
JT theory [35,79]. Strongest SOCs of the 1 4A2 state close to
its equilibrium geometry are to the quartet ground state 1 4B1

as well as to the excited state 1 4A1 with typical magnitudes
between 30 and 50 cm−1. The 1 4A1 state shows a local min-
imum at Emin(1 4A1) = 6766 cm−1 (see Table II) and is thus
well separated from the 1 4A2 state. Spin-orbit couplings to
doublet states are slightly weaker with interactions between
1 4A2 and the 2 2A1, 3 2A1, 4 2A1, 5 2A1, 3 2B1, and 4 2B1 states
with orders of 10 to 30 cm−1. Those equilibrium states are
found either well below the minimum of the 1 4A2 state at
229 or 1898 cm−1, respectively, or well above, starting from
5431 cm−1 (the corresponding values are taken from Table
S.III of the Supplemental Material [45]).

IV. SUMMARY AND OUTLOOK

This paper provides a possible roadmap to the experimen-
tal realization of PA processes of single ultracold rubidium
trimers. We give a wide-ranging overview of available states
using the MRCI method, together with a large-core ECP
with CPP and a modified even-tempered valence basis set.
By special cuts through the PESs of both low- and high-
spin species, we revealed their topology and gave an idea of
the mutual position and the expected density of electronic
states. We discussed the prominent feature of the (pseudo)

JT effect naturally occurring for triangular geometries and
outlined Renner-Teller (combined with pseudo Jahn-Teller)
interactions for linear geometries. We also provided a survey
of SOC effects giving selection rules and showing that they are
weak, particularly for the low-lying states involved in possible
PA schemes.

We studied the equilibrium states as well as the loca-
tions of selected ITPs on the quartet ground-state PES in
the configuration space. Since states lying close to ITPs are
promising candidates for good Franck-Condon factors this
analysis helped us to identify suitable states for PA processes.
We focused on the 1 4E ′′ state (consisting of the lowest-lying
excited states 1 4A2 and 1 4B2) for which we investigated
the characteristic JT topology of the corresponding PES and
discussed the consequences of the underlying JT effect. Fi-
nally, we investigated the main coupling effects for the first
excited quartet state (1 4A2), including electronic dipole tran-
sition strengths at ITP geometries, intersections to nearby
doublet and quartet states, as well as spin-orbit couplings.
This confirms the 1 4A2 state as a promising candidate for PA
experiments.

In a next step we will analyze and fix the breakdown
of the Born-Oppenheimer approximation, connected to the
various Jahn-Teller coupling effects, by means of different
diabatization techniques including diabatic PES interpolation
approaches.

Data corresponding to the figures are available in the
Supplemental Material [45].
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