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Classical patterns in the quantum rainbow channeling of high energy electrons
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We are investigating the quantum dynamics of a well-collimated electron beam transmitting through planar
channels of the Si crystal. Electron states were represented by wave packets while the electron beam is
treated as an ensemble of noninteracting wave packets. We have investigated the relationship between classical
caustic pattern and anharmonicity of the potential and analyzed how quantum dynamic depends on the wave
packet impact parameter and beam’s angular divergence. We found that the extrema of the electron trajectory
period, considered as a function of the impact parameter, determine the shape of the caustic pattern. All wave
packet probability densities have multiple maxima generated by a self-interference. Their sum, that represents
probability density of an ensemble, was found to depends strongly on the beam angular divergence. For small
divergence, most peaks of different wave packets are aligned causing wavelike behavior of the ensemble. For
moderate angular divergence maxima of some wave packets, are aligned with minima of others, resulting in
the emergence of the classical caustic pattern. We have shown and experimentally confirmed that the only
indication that the observed caustic pattern is generated by the quantum dynamics is a slight systematic shift
of the corresponding caustic maxima.
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I. INTRODUCTION

It is generally believed that low energy scattering is gov-
erned by the nonrelativistic quantum mechanics. For larger
energies, the full quantum treatment is no longer necessary,
since the semiclassical approximation becomes sufficiently
accurate. In the semiclassical framework, a quantum wave
function is constructed from the corresponding family of
classical phase space trajectories [1]. It describes small cor-
rections to the classical dynamics arising due to the particle’s
wave nature. For even larger energies the wave corrections
become negligible and particle scattering can be adequately
described in the terms of classical mechanics.

In this publication, we will focus on the transition between
classical and quantum mechanics. The quantum-classical cor-
respondence is usually studied in the framework of the
semiclassical approximation with a plane wave representing
the classical ensemble. However, the semiclassical-classical
transition is singular [2,3]. It is mathematically equivalent to
a limit h̄ → 0, with a physically meaningless limiting value
h̄ = 0 since it removes terms describing spatial and temporal
variations of the wave function. This singularity obstructs a
complete understanding of the emergence of the classical level
of reality. This is the reason why a great majority of studies
were investigating which new phenomena emerge on the route
to the classical limit [4].

*Corresponding author: mcosic@vinca.rs

Note that the standard paradigm describes how single-
particle behavior changes in different energy ranges. Here, we
would like to point out a different possibility for the emer-
gence of classical behavior. According to J. von Neumann,
the causality of the macroscopic world is just an illusion
created by a leveling action of the law of large numbers which
obscure the true nature of elementary processes operating
simultaneously [5]. Therefore classical behavior emerges nat-
urally in the ensemble of quantum particles. Under certain
conditions interaction between ensemble members behaves
as a continuous monitoring apparatus inducing continuous
quantum-classical transition. This approach is elaborated in
the so-called decoherence theory [6].

Note that there exists a third possibility. The classical
structures can emerge on the level of ensemble out of purely
quantum dynamics of noninteracting wave packets and are a
consequence of its structural stability [7]. Structurally stable
systems have a special property that their topological features
are unaffected by relatively large variations of system pa-
rameters. However, even for infinitesimal changes of critical
values of parameters, the morphology of the system changes
dramatically [8–10].

A system suitable for this kind of investigation is particle
transmission of channeled particles through thin nanostruc-
tured materials in the regime of low current where particles
can be considered as independent. Channeled particles per-
form bounded motion in potential wells of atomic planes [11]
and have well-defined trajectories. In the classical description
of these systems, structural stability manifests itself in the
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form of caustic lines [12]. In the quantum domain, classical
caustics are just a skeleton onto which quantum interference
is superimposed [13]. Existence of the rainbow lines under-
lays all manifestations of optical [14], atomic [15], nuclear
[16], surface [17], and crystal rainbow effects [18–20]. Crys-
tal rainbow effect has been experimentally confirmed many
times [21–25], and channeling experiments are now relatively
straightforward to perform.

In the past, the rainbow scattering of high energy elec-
trons in crystals has been investigated by the Kharkov group
[26–28]. In their approach, an electron beam was represented
by a plane wave, and interpretation of the effect was based
on the detailed comparative study of classical and quantum
results. It should be mentioned that the Belgrade group has pi-
oneered a different approach. They have represented a beam of
positively charged particles by an ensemble of noninteracting
wave packets and analyzed the obtained family of quantum
wave functions using tools borrowed from singularity theory
and topology. It has been found that coordination of wave
packets self-interference is the key concept allowing the ex-
planation of the quantum crystal rainbow effect [29,30] which
will be used also for the analysis of the quantum-classical
transition.

We have investigated the transmission of 255-MeV elec-
tron beam in a direction parallel to the (110) plane of thin Si
crystal. Electrons were represented by wave packets, while the
electron beam was treated as an ensemble of noninteracting
wave packets. This choice corresponds to a setup of a recent
experiment in which the crystal rainbow effect with electrons
was observed for the first time and interpreted in the frame-
work of the classical mechanics [31].

We will show that another interpretation of the experi-
mental results is possible. Namely, that classically behaved
patterns can be produced on the level of the ensemble by
the coordinated self-interference of wave packets. The ob-
tained interpretation was also experimentally tested. In the
experiment, well collimated 255-MeV electron beam was
transmitted through planar channels {220} of the 470-nm-
long Si crystal, and the angular distribution of transmitted
electrons was recorded. We will show that result of quan-
tum simulation fit much better experimental data than the
corresponding result of the classical simulation. It will be
also shown that the angular divergence of the incoming
beam influences the level of coordination between wave
packet self-interference. For the maximal level of coordi-
nation the wave nature of electrons is amplified in the
ensemble producing a wavelike distribution of transmitted
electrons.

II. THEORETICAL FRAMEWORK

Let aL, and Na denote lattice constant and a number of
atoms in the unit cell of the Si crystal. Viewed in the direction
parallel to the plane (110), the arrangement of atoms form a
set of planes {220}. Spacing between them is d220 = √

2aL/4,
while corresponding surface density is σ220 = Nad220/a3

L.
We assume that the y0z plane of the Cartesian coordinate

system is attached to the (220) plane of the Si crystal. A
quasiparallel electron beam of kinetic energy Ek = 255 MeV
was assumed to be aligned with the z axis of the coordinate

FIG. 1. (a) Schematic representation of the classical channeling
process. The thin black line shows the trajectory of initial position
b and exiting angle θx . (b) Schematic of the quantum channeling
process. Red (gray) lines show probability density that has an initial
mean value of position b, spatial standard deviation σx , and have a
mean value of the exiting angle θx . Thinner red (gray) lines show self-
interference peaks. The thick black lines show positions of atomic
planes {220}. The dashed lines show the boundaries of the planar
channel.

system. Consequently, the x axis of the coordinate system is
orthogonal to the crystal planes. In the laboratory system the
relativistic electron mass mr and longitudinal linear momen-
tum pz are given by expressions

mr = me

(
1 + Ek

mec2

)
, p2

z = 2meEk

(
1 + Ek

2mec2

)
, (1)

where me is electron rest mass and c is vacuum light velocity.
The electron-crystal interaction potential was constructed

from Molieré’s approximation of Thomas-Fermi’s electron-Si
interaction potential [11,32]

U (r) = − Z2e2

4πε0|r|
3∑

n=1

αn exp

(
−βn

|r|
as

)
, (2)

where r = (x, y, z) denotes the electron-Si separation vec-
tor, Z2 = 14 is Si atomic number, e is elementary charge,
ε0 is vacuum permittivity, α = (0.35, 0.55, 0.1) and β =
(0.3, 1.2, 6) are dimensionless Molière’s fitting parameters,

as = ε0 h̄2

mee2
3

√
9π5

2Z2
is screening length, and h̄ is reduced Planck’s

constant.
Channeled particle undergoes through a series of correlated

small angle scattering on atoms forming atomic strings or
planes which keeps particle’s transverse energy conserved
[11]. As a result, channeled particles perform bounded motion
in the potential well of the crystal plane. The schematic of the
classical channeling effect is shown in Fig. 1(a). Since scatter-
ing angles are small, the continuous approximation could be
applied [33]. The resulting thermally averaged potential of a
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single crystal plane is given by the expression [34]

V th
220(x) = − Z2e2as

4
√

2ε0d2
111

3∑
n=1

αn

βn
exp

[
β2

nσ 2
th

2a2
s

]

×
{

exp

[
−βn|x|

as

]
erfc

(
βnσth√

2as

− |x|√
2σth

)

+exp

[
βn|x|

as

]
erfc

(
βnσth√

2as

+ |x|√
2σth

)}
, (3)

where erfc stands for complementary error function [35], and
σth is the standard deviation of the Si atoms thermal vibration
given by the expression

σ 2
th = 3h̄2

ArmukB	D

(
	D

T
Df (T/	D) + 1

4

)
, (4)

here Ar = 28.0855 is atomic weight of Si atom, mu =
1.6605×10−27 kg is universal atomic mass unit, 	D = 543 K
is Si the Debye temperature [11], kB = 1.3806×10−23 J/K is
Boltzmann’s constant, T is crystal’s absolute temperature, and
Df is the Debye’s function. The potential of the planar channel
was expressed as a sum of potentials of individual atomic
planes. In the laboratory coordinate system, the potential of
the channel is given by the following expression

V (x) =
N∑

m=−N

V th
220(x − m d220) − V̄ . (5)

Constant V̄ = ∑
m V th

220(m d220) was introduced in order
to have V (0) = 0, and 2N + 1 is a number of neigh-
boring planes contributing significantly to the scattering
process.

The maximal deflection angle a channeled particle could
have is small. It is given by the expression

	c =
√

V0

Ek
, (6)

where V0 = V (d220/2), and it is called the critical channeling
angle. Instead of the time, t , classical and quantum dynam-
ics will be parameterized by variable τ = 1

2π
ωt called the

reduced time [36], where

ω =
√

∂2
x V (x)

mr

∣∣∣∣∣
x=0

, (7)

is an angular frequency of electron trajectories in the center of
the potential well.

Here, we are investigating the dynamics of the electron
beam for 0 � τ � 2. During this time most of the electron
trajectories will perform less than two full oscillations in the
transverse plane. For a such short times electronic, nuclear,
and radiative energy losses, together with the fluctuations of
the electron scattering angle can be neglected, and longitudi-
nal linear momentum is approximately conserved.

In the transverse direction, classical dynamics is governed
by Hamilton’s equations

d

dτ
θx = −2π

∂xV (x)√
2mrω2Ek

,
d

dτ
x = 2π

√
2Ek

mrω2
θx, (8)

where θx = px/pz is current scattering angle. When beam is
parallel solutions of the Eqs. (8) give family of trajectories
parameterized only by the impact parameter b. For any fixed
value of the variable τ , the trajectory family defines two maps.
A map of the electron initial position b to its current position
X (b) ≡ x(τ ; b) and current scattering angle 	x(b) ≡ θx(τ ; b)
that are called spatial and angular deflection functions, respec-
tively. Points of their respective equilibrium sets, defined by
equations ∂bX (b) = 0, ∂b	x(b) = 0, are called spatial and an-
gular rainbows. Their trajectories define lines called caustics
[37]. On the line, the density of electron trajectories is infinite.
Therefore the probability of finding a classical particle on the
caustic line is very large.

In the quantum description, electrons are represented by
the wave packets parameterized also by the impact parame-
ter b. Schematic of the process is given in Fig. 1(b). In the
spatial representation, the dynamics of the electron transverse
quantum state ψb is governed by the Schrödinger equation

i∂τψb(x, τ )
h̄ω

2π
=

[
− h̄2

2mr
∂2

x + V (x)

]
ψb(x, t ). (9)

while motion in the longitudinal direction is free. The
corresponding wave function in the angular representation
ϕb(θx, τ ) is given by the integral

ϕb(θx, τ ) =
√

kz

2π

∫
ψb(x, τ ) exp [−ikzθxx]dx, (10)

where kz = pz/h̄ is electron’s longitudinal wave vector. The
initial electron state is given by a Gaussian function

ψ0(x; b) ≡ ψb(x, 0) = 1√√
2πσ 2

x

exp

[
− (x − b)2

4σ 2
x

]
, (11)

of mean value b, and standard deviation σx, whose angular
representation is

ϕ0(x; b) ≡ ϕb(θx, 0) = 1√√
2πσ 2

θ

exp

[
− θ2

x

4σ 2
θ

− ikzθxb

]
,

(12)
where σθ = 1/(2kzσx ).

The reduced angular Hamilton’s principal function Sθ is
defined by the equation

d

dθx
Sθ (θx ) = −x(θx ). (13)

In the initial value, representation [38,39], a semiclassical
wave function is given by the integral

ψb(x, τ ) =
√

kz

2π

∫
|ψ0(�; b)| exp [−ikz(Sθ (�) − x 	x(�))]

×
√

d	x(�)

d�
d�, (14)

where dSθ (b) = X (b)d	x(b). In order that integrand can be
considered as rapidly oscillating function, and semiclassical
representation (14) valid, it is necessary that size parameter
ς = kzd220 � 1.

The electron beam is represented by an ensemble of
noninteracting wave packets. Spatial and angular probability
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densities of the ensemble labeled ρx and ρθ , respectively, are
given by relations

ρx(x, τ ) =
∑

b

pb|ψb(x, τ )|2,

ρθ (θx, τ ) =
∑

b

pb|ϕb(θx, τ )|2,
(15)

where pb are statistical weights of states (
∑

b pb = 1). We
have assumed that the incoming electron beam has a Gaussian
profile of small angular divergence �. It is easy to show that
initial angular distribution ρθ (θx, 0) is given by the expression

ρθ (θx, 0) = 1√
2πσ 2

θ

exp

[
− θ2

x

2σ 2
θ

]
, (16)

giving σθ = �, and σx = 1/(2kz�). At the entrance plane of
the crystal, the spatial distribution of the electron beam is
practically uniform. If impact parameters form regular gird
of M points and statistical weights are all equal to pb = 1/M
then for sufficiently large M the difference between ρx(x, 0)
and the uniform distribution is negligible in the interval
−d220/2 � x � d/220/2 [13].

III. RESULTS

The lattice constant of the Si crystal is aL = 0.5431 nm,
and the number of atoms per unit cell is Na = 8. Corre-
sponding interplanar distance and planar surface density are
d220 = 0.1920 nm, and σ220 = 9.5893 nm−2, respectively.
The screening length is as = 19.4388 pm, while amplitude of
the thermal vibrations at the room temperature (T = 301 K)
is σth = 7.5815 pm. It was found that N = 3 is sufficient for
convergence of the interaction potential (5).

For 255-MeV electrons, the relativistic mass is mr =
500.0226 me, and relativistic factor is βz = vz/c = 0.999998,
where vz is longitudinal electron velocity. The corresponding
critical channeling angle is 	c = 0.2981 mrad, while τ = 2
corresponds to the crystal thickness of L = 708.3773 nm.

The ionization energy loss of channeled electrons can
be estimated using the relativistic form of the Bethe-Bloch
formula

Si = −dE

dz
= 4πZ2Na

mec2β2
z a3

L

(
e2

4πε0

)2[
ln

(
2mec2β2

z

(1 − β2
z )I

)
− β2

z

]
,

(17)

where Si is ionization stopping power, I = 172.25 eV is the
average ionization energy of the Si atom [40]. Traversing the
crystal electrons will lose approximately

�Ei =
∫ L

0
Sidz = 508.6857 eV. (18)

To estimate radiation energy losses we shall employ the
harmonic approximation [41], and represent potential (5) in
the interval −d220/2 � x � d220/2 by the expression V (x) ≈
4V0 (x/d220)2. The relative difference between actual and ap-
proximative potential is very small everywhere except near
points ±d220/2. At any instance of time, the radiated power
is given by the relativistic Larmor formula [42]. For parallel
beam, the transverse part of the electron trajectory is given

by the expression xb(τ ) = b cos(2πτ ), and electron accelerate
only in transverse direction. In that case, the radiated power Pb

is given by the relation

Pb = −dE

dt
= e2ω4

96π5ε0c3

[
d2

dτ 2 xb(τ )

1 − β2
z

]2

. (19)

The total radiated energy by the electron beam is given by the
relation

�Er = 2π

d220ω

∫ 2

0

∫ d220/2

−d220/2
Pb(τ )dbdτ

= e2

9ε0d220

(8V0/mec2)3/2(
1 − β2

z

)5/4 = 97.7765 eV. (20)

Therefore, total energy loss of the electron beam �E =
�Ei + �Er = 606.4622 eV is utterly negligible in compari-
son to Ek = 255 MeV, and can be safely neglected.

Note that harmonic approximation is inadequate for the
analysis of the rainbow effect, since it allows only point
caustic, i.e., point singularities [30]. According to Whitney’s
theorem, the slightest perturbation transform point into the
structurally stable line singularities [43,44].

A. The classical solution

In the classical approach, Hamilton’s equations (8) were
solved numerically by the Runge-Kutta method of the fourth
order [45]. Figures 2(a) and 2(b) show obtained spatial and an-
gular trajectory families whose impact parameters uniformly
cover the interval −d220/2 � x � d220/2. Dotted lines show
caustics generated by the respective trajectory families. The
caustic pattern consists of a repeated appearance of pairs of
caustic lines. In Fig. 2(a), there are four pairs of caustic lines
labeled (μ1, μ′

1), . . . , (μ4, μ′
4), respectively. Lines of each

pair are joined at points M1, . . . , M4 forming the shape equiv-
alent to the bifurcation set of the cusp catastrophe [9]. Spatial
distribution is large on caustic lines, and electron beam is
focused to the maximal extent at points M1, . . . , M4. Caustic
pattern in Fig. 2(b) consists of line pairs (ν1, ν

′
1), . . . , (ν3, ν

′
3)

joined at points N1, . . . , N3. Note that only the cusp point
N4 of the forth caustic pair is visible in Fig. 2(b). The line
pair (ν0, ν

′
0) is slightly different in origin. It exists because

the initial electron beam is parallel. Besides the coordinate
origin, the beam’s angular divergence is very small at points
N1, . . . , N4. Although the evolution of the electron beam is
aperiodic, new cusped caustic lines appear with perfect pe-
riodicity. The time interval required for the birth of a new
caustic pair is equal to 0.5. Therefore the evolution of the
caustic lines progresses cyclically with each repetition called
the rainbow cycle [46].

Figures 2(c) and 2(d) show the spatial and angular de-
flection functions for τ = 2. In both cases, the obtained
functions have eight extrema. They are labeled μ1, . . . , μ4

and ν0, . . . , ν3, respectively while symmetrical extrema are
additionally marked by prime. Note that the ordinate of each
rainbow point is equal to the ordinate of the corresponding
point on the caustic line.

In Refs. [12], morphological properties of the trajectory
family were investigated in detail. For positively charged
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FIG. 2. Family of the classical electron trajectories in (a) spatial and (b) angular space for 0 � τ � 2. The dotted black lines show caustic
lines of respective families. (c) The spatial and (d) angular deflection function. The thin dashed black lines show locations of (220) planes.

particles, the interaction potential is given by equation
Vp(x) = −V (x − d220/2). Although potentials V (x) and Vp(x)
are very similar, their caustic patterns are very different. For
potential Vp(x) caustic pattern consist of a repeated appear-
ance of the bifurcation set of the A5 catastrophe, called the
butterfly [9] (see Fig. 2 of Ref. [12]). Caustic pattern shown
in Fig. 2 is equivalent to caustics generated by the harmonic
potential Vh(x) = V0 cos(kxx) [36,47].

The observed difference between caustic patterns can be
explained by the fact that the dependence of the period of
electron trajectory T on the impact parameter b, defined by
the integral

T (b) =
√

8mr

∫ b

0

dx√
V (b) − V (x)

, (21)

has only one critical point, while in the case of the poten-
tial Vp(x) the corresponding dependence Tp(b) have thee. In
Appendix A, it has been shown that number of cusps of
the caustic pattern is equal to the number of extrema of the
function T (b).

Note that rainbow condition ∂bx(τ ; b) = 0 defines a lim-
iting curve formed by intersection points of neighboring
trajectories [48]. It is a property of the ensemble of trajecto-
ries not reducible to the property of any individual ensemble
member. Therefore it is no surprise that information about the
shape of the caustic pattern is contained in the function T (b)
which describes the behavior of the ensemble.

Any perturbation of the potential, regardless of its size,
produces the caustic pattern topologically equivalent to the
unperturbed case. To change the shape of the caustic pat-
tern it is necessary that perturbation forces bifurcation of
extrema of the function T (b). Since this process is discrete,
the change of the caustic shape can happen only abruptly,
i.e., it is structurally stable. This is a deep topological reason
why analysis of the caustic pattern for the parallel beam is
useful for analysis of the more complicated case when energy
loss and beam divergence are not neglected [12,23,31]. Here,
we will demonstrate its usefulness for the explanation of how
classical structures emerge out of the quantum dynamics of
ensemble members.

B. The quantum solution

First, we will analyze the transmission of an electron beam
having angular divergence � = 0.25	c, which is approxi-
mately equal to the beam divergence reported in Ref. [31].
The longitudinal wave vector is kz = 1.2948 fm−1, giving the
initial spatial standard deviation σx = 5.1816 pm and the size
parameter ς = kzd220 ≈ 250 000.

In the case of positrons, the largest contribution to the
quantum rainbow peak in the ensemble distribution comes
from the wave packet having an impact parameter of the clas-
sical rainbow [13,29]. Thus, we have followed the evolution
of the wave packet of impact parameter corresponding to
an abscissa of the rainbow point μ′

1 from Fig. 2(c) equal to
b0 = d220/3. The time-dependent Schrödinger equation (9)
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FIG. 3. Evolution of the wave packet b = d220/3 in the (a) spatial and (b) angular representations. The thin dashed black lines show
locations of (220) planes. The thin dot-dashed black lines show the corresponding trajectory of the classical particle. (c) The blue (dark gray)
lin: section though exact probability density form Fig. 3(a) for τ = 2. The red (gray) line: the corresponding semiclassical result.

was solved numerically by the method of Chebyshev global
propagation [49,50], and obtained evolution is shown in
Fig. 3.

Self-interference effects are not visible for τ � 1, while
for τ > 1 they are very pronounced. At the same time,
the dominant maximum of the wave packet roughly follows
the trajectory of the corresponding classical electron. Since
the system is conservative and quantum mechanical tunneling

is negligible, the maximal negative deflection of the wave
packet is equal to its maximal positive deflection.

Since the size parameter ς is large, an excellent approx-
imation of the numerically obtained solution is given by
the semiclassical approximation. In Appendix B, it has been
shown that for τ = 2 semiclassical probability density of
the wave packet from Fig. 3(a) is given by the following
expression

|ψb0 (x)|2 ≈
√

π |p1|2
2�2|γ1|4 exp

[
− p1

4γ 3
1 �

(
x − q0 − 2

3
γ2

)]
Ai2

[
− p1

2γ1�
(x − q0 − γ2)

]
, (22)

here γ1 = − 3
√|r3|/8�3k2

z is dimensionless parameter while
parameter γ2 = �/8γ 3

1 p1 have the same physical dimension
as the spatial coordinate. Parameter r3 = 2p1q2/2, p1 is the
first derivative of the angular deflection function 	x(b) at
the point b0, while q0 = X (b0), and q2 is second derivative
of the spatial deflection function X (b) at the point b0. Note
that p1 is negative while q2 is positive [see Fig. 2(b)] and
γ2 is small comparable to q0. As a consequence, for x > q0

oscillations of the Airy function are damped by the exponen-
tial factor, while for x < q0 a growth of the exponential factor
is overcompensated by super-exponential decay of the Airy
function. Figure 3(c) shows that the obtained approximate so-
lution corresponds perfectly to the behavior of the numerically
obtained solution.

One heuristic interpretation of the size parameter claims
that ς gives a number of excited transverse states needed to be

taken into account when calculating scattering amplitudes [1].
On the grounds of the correspondence principle [3,51], one
can be tempted to assume that both exact and semiclassical
solution should resemble very closely the classical solution.
However, this is not necessarily true. Energy eigenvalues and
eigenvectors are solutions of the equation[

− h̄2

2mr
∂2

x + V (x)

]
ψn(x) = Enψn(x). (23)

Any quantum state can be represented as a superposition
ψ (x) = ∑

n cnψn(x), where
∑

n |cn|2 = 1. Explicit expan-
sion of the state ψb0 in the numerically obtained states
ψn shows that truncated basis 0 � n � 1001 is almost
complete. The norm of the state in the orthogonal com-
plement is

∑∞
1002 |cn|2 � 3×10−10. However, out of 1001

states considered explicitly, 26 of them have |cn|2 � 10−6,
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FIG. 4. An evolution of a probability density of the electron beam for � = 0.25	c transmitting through planar channels {220} of the Si
crystal in the (a) spatial and (b) angular representations, respectively. Dashed black lines show locations of (220) planes. Thick black lines
show classical caustic lines from Fig. 2.

(n ∈ {1, . . . , 30, 33}), while only states n ∈ {12, . . . , 15} have
|cn|2 � 0.1. Therefore, the number of excited states is far
smaller than ς = 250 000, and the correspondence principle
can not be invoked.

If examined carefully the classical results can be obtained
only in the limiting process kz → ∞. In the Appendix C
it was shown that semiclassical wave function (22) has the
correct classical limit. The space between zeros of the Airy
function shrinks by the factor k2/3

z while the amplitude of the
largest maximum grows asymptotically as k1/4

z . For x 
= q0

values of the Airy function are damped asymptotically by the
exponential factor whose exponent is proportional to kz. In
the limit kz → ∞ for x 
= q0, |ψb0 |2 → 0 while for x = q0,
|ψb0 |2 = O(k1/2

z ) → ∞. Therefore the considered value of the
kz is by far too small that |ψb0 |2 from Fig. 3 that can be
approximated by the dot-dashed line from the same figure.

Another heuristic interpretation of the size parameter is
that θ0 = ς−1 is roughly proportional to the angular size of
the smallest feature of the far-field diffraction pattern [52,53].
For example, the size of the diffraction peak, generated by
scattering on an obstacle of width d , is equal to πς−1.

If maxima of the angular probability density, visible for
τ > 1, were produced by the constructive interference of
diffracted waves, then their positions should be given by
the Bragg’s law. According to it positions of the diffracted
maxima (for n = 0,±1,±2, . . .) should be located at θn =
nπς−1 ≈ 0.0126 n mrad. Figure 3(b) shows that there are no
maxima at Bragg’s angles θn. Note that the resolution of the
numerical solution is sufficiently high to reveal if any of such
peaks is present.

We shall now show that it is possible to give a simple
explanation of the size of typical peaks shown in Fig. 3(b).
The crucial parameter to be examined is the transverse energy
of electrons defined by the following expression

Et (b, σx ) = h̄2

8mrσ 2
x

+
∫ ∞

−∞
V (x)|ψ0(x)|2dx. (24)

Explicit evaluation for the state ψb gives Et ≈ E14. Now we
make very crude approximation that average size of peaks of
the distribution |ψ (x)|2 is equal to average peak size of the
distribution |ψ14(x)|2 [36,54]. This eigenstate has 14 nodes
so the size of its typical peak is approximately given by
δx = d220/15 = 0.0128 nm. Dominant peaks in the probabil-
ity distribution shown in Fig. 3(a) are labeled 1, . . . , 4. Their
average width is δx̄ = 0.0129 nm, which is very close to the
estimated value. In the case of probability distribution in the
angular representation |ϕ(θx )|2, the dominant part of the state
norm comes from the interval [−	c,	c]. Applying the same
logic as in the case of spatial representation the size of the
typical peak should be δθx = 2	c/15 = 0.0397 mrad. This
value is remarkable close to the average size of dominant
peaks, labeled 1, . . . , 7 in the Fig. 3(b) which is equal to
δθ̄x = 0.0409 mrad.

Figure 4 shows probability density of the electron beam
obtained by adding probability densities of 301 wave packets,
according to Eq. (15). Dominant peaks of the spatial dis-
tribution, shown in Fig. 4(a), follow classical caustic lines
almost perfectly. As in the classical case, the electron beam
is the most focused at points M1, . . . , M4. Widths at the half
maximum of quantum caustic peaks are approximately 19%
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narrower than the corresponding width of the initial Gaussian
wave packet. Note that any manifestations of the electron
wave nature are not visible. In the case of the angular dis-
tribution, the situation is slightly different. The shape of the
obtained distribution still reflects the shape of the correspond-
ing classical caustic pattern. For τ � 1, the correspondence
between prominent peaks of the distribution and the classical
caustic line is almost perfect. Besides the coordinate origin,
the electron beam is the most focused near cusp points of
classical caustic lines N1 and N2. For τ > 1, the wave na-
ture of electrons starts to manifests itself. In the vicinity of
classical caustic lines ν2 and ν ′

2, there are now two close
quantum peaks in place of one. Caustic lines ν3 and ν ′

3 enclose
a faint interference pattern consisting of three overlapping
peaks forming a “V” shape ridge that runs parallel to the
classical caustic line. The largest of these maxima, located at
the τ axis, is significantly shifted from the point N3 where
the corresponding classical distribution has maximum. Inter-
estingly, the evolution of the electron beam produces peaks
whose widths are significantly smaller than the initial width
of wave packets. Therefore obtained quantum distributions are
not simply blurred versions of classical densities, obtained by
convolution with the Gaussian kernel of standard deviations
σx or σθ , respectively.

If finite resolution and dynamical range of real detectors
are taken into the account, it is reasonable to assume that an
experimentalist would not be able to identify all those fine
details. Observation of the quantum caustic pattern in the full
range would require a large number of measurements which
may not be practical. Most probably, an experimentalist would
have recorded only a few angular distributions correspond-
ing to different values of the τ variable. Only on some of
them, he would notice shifts of observed peaks from positions
predicted by the classical mechanics, which are only manifes-
tations of the electron wave nature. Such behavior could be
easily attributed to an experimental error and disregarded.

To test is it possible to observe described behavior ex-
perimentally, an experiment was designed at SAGA Light
Source. A schematic representation of the experimental setup
is shown in Fig. 5(a) [31]. The monocrystalline Si membrane
was fabricated from a silicon-on-insulator wafer by an etching
procedure. The quality of the obtained sample was inspected
by x-ray diffraction. The crystal was installed on a two-axis
goniometer in a vacuum chamber and rotated to make its
(220) planes horizontal. The crystal thickness in the direction
of the beam was 470 nm which corresponds to the reduced
time τ = 1.33. The 255-MeV electron beam was transmitted
through the round-shaped collimator made of tungsten, placed
upstream of the target, which produced a beam of constant
intensity at the target with the vertical angular standard de-
viation � ≈ 0.09 mrad. Angular distributions were measured
using a detector consisting of a scintillating screen and a CCD
camera placed at D = 5.12 m downstream of the crystal. The
acquisition of the data from the CCD chip was triggered by
beam injection. The angular resolution of the detector was
�θx = 0.0139 mrad.

The black line in Fig. 5(b) shows a normalized vertical
slice through measured angular distribution. The correspond-
ing classical result is in Fig. 5(b) shown by the red line. It
was constructed from 200 000 solutions of Eq. (8) where

FIG. 5. (a) Schematic of the electron channeling experiment at
SAGA Light Source. An angular divergence of the electron beam was
� = 0.09 mrad ≈0.3	c. The thickness of the Si crystal was 470 nm,
corresponding to τ = 1.33. (b) Normed angular probability densities
of the transmitted electron beam: the black line: an experimental
result; the red (gray) line: a result of the classical Monte-Carlo sim-
ulation; and the blue (dark gray) line: a result of the corresponding
quantum simulation.

impact parameters were sampled uniformly from the inter-
val |b| < d220/2, while initial angles were sampled from a
Gaussian distribution of the standard deviation �. The blue
line in Fig. 5(b) shows the corresponding result of a quantum
simulation constructed from 301 solutions of Eq. (9) accord-
ing to Eq. (15). Note that the quantum curve fit much better
experimental result than the corresponding classical curve,
while both of them have essentially the same shape.

IV. DISCUSSION

We have firmly established that the behavior of individual
electrons is quantum, i.e. wavelike, while the behavior of the
electron beam is classical. To resolve this apparent paradox
we need to investigate how self-interference of different wave
packets is correlated.

Figure 6 shows the dependence of probability densities on
the impact parameter in the spatial and angular representa-
tion. For τ = 0, 1, and 2 obtained spatial distributions in the
(b, x) space are shown in Figs. 6(a)–6(c), while correspond-
ing angular distributions in the (b, θx ) space are shown in
Figs. 6(d)–6(f). All distributions are invariant on the coor-
dinate transformation (b, x) → (−b,−x). These distributions
reveal numerous self-interference maxima which confirms the
previous finding that the behavior of each electron is wavelike.
Maxima of the probability distribution are organized around
the classical deflection functions shown by dot-dashed black
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FIG. 6. [(a)–(c)] The quantum spatial deflection maps |ψ (x, b)|2 for � = 0.25	c, at τ = 0, 1, and 2, respectively. (d)–(f) Corresponding
angular quantum deflection maps |ϕ(θx, b)|2. Yellow (light gray) dashed lines show coordination lines. The thick black dot-dashed line shows
the classical deflection function. Black dashed lines show locations of (220) planes.

lines. Therefore maps shown in Fig. 6 represent the quantum
generalizations of classical deflection functions, and they will
be called quantum deflection maps.

Note that wave packets of close impact parameters have
almost identical shapes that are slightly shifted. This results
in the formation of peaks, elongated in certain directions. The
length and direction of the dominant peaks are in Fig. 6 shown
by the straight dashed yellow lines, called coordination lines.
Their straightness can be explained by the week dependence
of the function |ψ (x, b)|2, and |ϕ(θx, b)|2 on the impact pa-
rameter. What is remarkable that in any of Figs. 6(b), 6(c),
6(e), or 6(f) angles between coordination lines and the b axis
are equal. Each of Figs. 6(b), 6(c), 6(e), or 6(f) have its own
preferable orientation. This angle will be denoted by the letter
φ and called the coordination angle.

Since statistical weights of all states are equal, relations
given by Eq. (15) can be rewritten in the form

ρx(x) = 1

d220

∫ d220
2

− d220
2

|ψ (x, b)|2db,

(25)

ρθ (θx ) = 1

d220

∫ d220
2

− d220
2

|ϕ(θx, b)|2db.

These expressions of distributions show more clearly the sig-
nificance of the coordination lines. Their projections on the
vertical axis give information about the location and the width
of the peak contributing locally to the total distributions of
the transmitted electrons. Their projection on the b axis gives

information on which wave packets are locally strongly co-
ordinated, i.e., it gives information about the height of the
resulting local contribution to the distribution of the electron
beam. In that regard, there are two possible extreme cases.
One corresponds to the coordination angle φ = 0 (or π ). In
this case, the integral projection of the coordination line pro-
duces a peak of the same shape as the considered wave packet
peak, while the amplitude of the integral projection is ampli-
fied to the maximal possible extent. The opposite extreme case
corresponds to the coordination angle φ = π/2 (or −π/2).
The local integral projection then distorts the shape of the
examined wave packet peak to the maximal extent, producing
almost no amplification of its amplitude.

Now we can explain the sequence of quantum deflection
functions shown in Fig. 6. The collimation system produces
the ensemble of electron wave packets which are coordinated
globally. The coordination angles of ensembles in Figs. 6(a)
and 6(d) are φ = π/4 and φ = 0, respectively. They are equal
to the angle between the respective classical deflection func-
tion and the b axis. As a result, the integral projection gives a
uniform spatial distribution in the region of the channel, thus
effectively erasing information about the initial shape of wave
packets. On the contrary, the shape of the resulting angular
distribution is equal to the initial shape of any of the wave
packets. Over time the global coordination gets broken into
local domains of strongly coordinated behavior. Figures 6(b),
6(c), 6(e), and 6(f) show that over time the number of co-
ordination lines increases while their length decreases. Note
that the coordination angle of lines in Figs. 6(b) and 6(c)
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FIG. 7. The quantum deflection maps for � = 0.03	c at τ = 2 in (a) spatial and (b) angular representations, respectively. Yellow (pale
gray) dashed lines show coordination lines. Thick dot-dashed black lines show classical deflection functions. Dashed black lines show locations
of atomic planes.

changes only slightly, while in the case of lines in Figs. 6(e)
and 6(f) the change of the coordination angle is significant.
Additionally, the number of coordination lines in the angu-
lar representation is greater than in the case of the spatial
representation. While widths of self-interference peaks in the
spatial representation are smaller than widths of peaks in
the angular representation. This explains why evolution erases
the information about the shape of individual wave packets
more effectively in the case of spatial than in the case of angu-
lar distributions and provides an explanation why distributions
of the electron beam shown in Fig. 4 are essentially classical.

To justify the presented interpretation we have investigated
an evolution of the electron beam of the same energy but of
much smaller angular divergence � = 0.03	c. The resulting
initial spatial standard deviation of the Gaussian wave packet
is σx = 43.18 pm. The total width of the wave packet 6σx is
now considerably larger than the width of the planar channel
d220. For this quantum ensemble, the dynamics of electron
wave packets should depend only slightly on the impact
parameter b.

For τ = 2 quantum deflection maps in the spatial and
angular representation are shown in Figs. 7(a) and 7(b), re-
spectively. Dashed yellow lines show coordination lines only
of prominent peaks. Note that all coordination lines are very
long (much of them are even longer than d220/2) while all
coordination angles are φ ≈ 0. Because of the extremely weak
dependence of the dynamics on the impact parameter, it is not
possible to recognize classical deflection functions in quan-
tum deflection maps.

The corresponding evolution of the electron beam in spa-
tial and angular representation are shown in Figs. 8(a) and
8(b), respectively. According to the semiclassical interpreta-
tion, a cusp canonical diffraction pattern is associated with
each pair of caustic lines [1,36,37]. This is clearly visible for
τ < 0.75 in Fig. 8(a) and for τ < 0.5 in Fig. 8(b) since then
there are no overlapping of neighboring canonical diffraction

patterns. Therefore obtained waveform can be understood as
a superposition of four canonical cusp diffraction patterns,
each associated with the respective classical caustic line pair.
Figure 9 confirms that for φ = 0, amplitudes of characteristic
peaks formed by the self-interference are amplified by the
ensemble. In this case, behavior of individual electrons and
electron beam are both wavelike, as was expected from the
start.

V. CONCLUSIONS

We have investigated the classical and the quantum dynam-
ics of the 255-MeV electron beam transmitting through {220}
planar channels of thin Si crystal.

In the classical approach, we have investigated how the
period of the electron trajectories T depends on the impact
parameter b and its relationship with the caustic pattern gen-
erated by the rainbow scattering. It has been shown that the
repeating caustic motif consists of cusped lines. Their number,
orientation, and position are determined by the number, type,
and distribution of the function T (b) critical points. Their in-
terconnection is governed by the requirement that the overall
pattern is structurally stable.

In the quantum approach, the electron beam was repre-
sented by the ensemble of the quantum wave packets which
allowed us to investigate how beam divergence influences
the dynamics of the electron beam. As a consequence elec-
tron beam also behaves wavelike. This is surprising since
the dependence of the wave packet dynamics on the impact
parameter was found to be weak but not negligible, and there
are no a priory guarantees that small changes of the shape
of wave packets would behave coherently. The situation is
much more interesting in the case of an electron beam of
moderate angular divergence. In that case, self-interference
peaks of individual wave packets are mostly absent from the
distributions of the ensemble. As a result, the shape of the
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FIG. 8. The evolution of the probability density of the electron beam for � = 0.03	c transmitting through planar channels {220} of the Si
crystal, in (a) spatial and (b) angular representations, respectively. Dashed black lines show locations of (220) planes. Thick black lines show
classical caustic lines from Fig. 2.

resulting distributions of the electron beam reflects almost
perfectly the shape of the classical caustic pattern. Thus the
behavior of the electron beam is essentially classical. We
have shown that the driving force behind this behavior is the
tendency of the dynamics to induce the coherent change of
the wave packet self-interference pattern for a small change

of its impact parameter. As a result wave packets self-interfere
in a mutually coordinated way.

Note that the emergence of the classical structures is usu-
ally interpreted as a property of the high energy limit. It has
been shown theoretically and confirmed experimentally that
classical structures can emerge out of the underlying quantum

FIG. 9. The dependence of the period T of trajectory on the impact parameter b for 255-MeV (a) electrons and (b) positrons, transmitting
through {220} planar channels of the Si crystal. (c) Schematic representation of the graphical method for the solution of the transcendental
Eq. (A2).
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dynamics without the need for the quantum behavior of wave
packets to become classical. The quantum-classical transition
happens in the ensemble for the fixed energy and represents
an example of the deducible emergent property [55].
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APPENDIX A: ANHARMONICITY OF THE POTENTIAL
AND THE CAUSTIC PATTERN

In the anharmonic potential, a period of the particle tra-
jectory depends on the impact parameter. This dependency,
defined by the integral (21), is called the anharmonicity func-
tion. Figures 9(a) and 9(b) show the anharmonicity functions
Te(b) and Tp(b) in the case of 255-MeV electron and positron
beams, respectively. The function Te(b) has one minimum
at the coordinate origin, while the function Tp(b) have two
symmetrical minima and one maximum at the coordinate ori-
gin. We shall show that a distribution of the anharmonicity
function extrema directly determines the shape of the caustic
pattern.

To simplify the analysis, we will model the trajectory fam-
ily of the parallel beam by the relation

xb(τ ) = b cos

[
2πτ

T (b)

]
. (A1)

The caustic condition ∂bxb(τ ) = 0 then reduces to the follow-
ing transcendental equation:

2π
∂bT (b)

T 2(b)
bτ = − cot

[
2πτ

T (b)

]
. (A2)

For any fixed value of the parameter b the left-hand side
of Eq. (A2) represents a linear function η = α(b)τ with a
impact parameter dependent slope α(b) = 2πb∂bT (b)/T 2(b).
The right-hand side of Eq. (A2) represents a negative cotan-
gent function η = − cot[2πτ/T (b)] of period T (b)/2. Note
that if the considered range of the impact parameters is finite,
as a consequence the range of values of the function T (b) is
also finite. Let us denote the shortest period in the range by Tm

and the longest by TM , and re-parameterize function families
from Eq. (A2) by the variable T .

The right-hand side of Eq. (A2) defines now a family
o negative cot functions continuously filling the space be-
tween function − cot(2πτ/Tm) and − cot(2πτ/TM ), and their
periodic equivalents. These areas are in Fig. 9(c) shown
schematically by the shaded regions between the red (gray)
and the blue (dark gray) lines, respectively, labeled by an
order of the periodic cycle. Because it is TM − Tm > 0 sizes
of shaded areas grow with the order of the cycle, and several
neighboring regions can overlap with each other.

For clarity schematic representation in Fig. 9(c) is not
drawn in any particular scale. In the case of positrons TM ≈
1.7Tm. Region I is not overlapping with any other region, re-

gion II overlaps with region III, while region III overlaps with
regions IV, V, VI,etc. In the case of electrons TM ≈ 18Tm. This
implies that region I overlap with regions II, III, . . . ,XVII,
XVIII, etc.

In this new parametrization, a slope of lines defined by the
left-hand side of Eq. (A2) is given by the expression α(T ) =
2πb(T )/∂T b(T )T 2. Note that map T → b is multivalued. For
any point T , mentioned map is specified by a set of functions
bs(T ), s ∈ 1, . . . M(T ), where M(T ) is a local multiplicity of
the map. Therefore the left-hand side of Eq. (A2) define a set
of straight lines η = αs(T )τ , for s ∈ 1, . . . M(T ).

In the case of electrons, M(T ) = 2 for all T . Because of
the inversion symmetry of the potential it is always b1(T ) =
−b2(T ), and α1(T ) = α2(T ) � 0. This double degenerate line
is in Fig. 9(c) shown by the thick yellow (pale gray) line. In
the case of positrons M(T ) can be 2 or 4 depending whether
T > 1 or T < 1. When M(T ) = 2 the situation is identical as
in the case of electrons. When M(T ) = 4, let four correspond-
ing impact parameters be ordered in the following way b1 <

b2 < b3 < b4. The symmetry of the potential requires that
b1(T ) = −b4(T ), b2(T ) = −b3(T ), and α1(T ) = α4(T ) > 0
while α2(T ) = α3(T ) < 0. This additional double degenerate
line of the negative slope is in Fig. 9(c) shown by the thick
green (silver gray) line.

The M(T ) straight lines cross the curves − cot[2πτ/T ]
in regions I, II, . . . at points τ I

s (T ), τ II
s (T ), . . . , for s ∈

1, . . . , M(T ). In the τ -x space, this sequence generate points
(τ I

s , xbs (τ
I
s )); (τ II

s , xbs (τ
II
s )), . . . As a result, each of the regions

I, II, . . .gives maxT (M(T )) branches of the caustic lines. In
the case of electrons, each region gives two symmetrical
branches of the caustic lines.

When the multiplicity of the map changes the number of
the caustic lines also must change. To understand how this
process happens, we need to investigate the behavior of the
family (A1) in the vicinity of the extremum of the function
T (b). Let the local extremal value of the function T (b) be
T0 located at point b0. In a neighbourhood of the point b0,
function T (b) can be represented by the following quadratic
function T (b) ≈ T0 + γ (b − b0)2. Taylor expanding the mul-
tivariate function xb(τ ) up to the third-order around points
(b0, T0/4) gives

xb(τ ) ≈ 2π

T0

(
T0

4
− τ

)
(b − b0) + πγ

2T0
(b − b0)3. (A3)

It is easy to show that the behavior of the obtained family
is equivalent to the behavior of the A3 catastrophe defined by
the relation [9,10]

A3(ζ ; c1, c2) = ζ 4

4
+ c2

ζ 2

2
+ c1ζ , (A4)

where ζ represents the state variable while c1 and c2 are
system parameters. The equilibrium set of the catastrophic
family, defined by the equation ∂ζ A3(ζ ) = 0, can be under-
stood as an implicit definition of the following map

c1 = −ζ 3 − c2ζ . (A5)

It is clear that substitutions ζ = − 3
√

πγ /2T0(b − b0), c1 =
xb and c2 = 3

√
16π2/T 2

0 γ (τ − T0/4) make families (A3) and
(A5) identical. Caustic lines of the family (A3) are equivalent
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to the bifurcation set ∂2
ζ A3(ζ ) = 0 of the A3 catastrophe,

which is in the parametric space given by the equation

c2
1

42
+ c3

2

33
= 0, (A6)

and know as an equation of the cusp. Therefore, for T →
T0/4, two branches of the caustic are born out of the cusp
singular point or are annihilated at it, depending on whether a
change of the multiplicity is +2 or −2.

Now it is possible to explain the shape of the caustic
pattern from Fig. 2(a). Since only minimum of the function
Te(b) occurs for b0 = 0 and T0 = Tm = 1, symmetrical pairs
of caustic lines emerge out of cusps points located at the
axis of the planar channel which appear at times τ = 0.25,
0.75, 1.25, . . .. Each pair is generated by intersection points
of the green line from Fig. 9(c) and regions I, II, . . .. When
intersection points reach the curve cot(2π/TM ) the caustic line
terminates. In this particular case, the first caustic pair should
exist at least for τ < 9. A similar explanation applies to the
evolution of other caustic lines.

In the case of positrons, the function Tp(b) have three
extrema. Therefore the repeating motif consists of three cusps.
As in the previous case, four caustic branches emerge out of
two symmetrically placed cusp points. The cusp correspond-
ing to the maximum T0 = 1 at b0 = 0 must lye at the axis
of the channel. In this case, two out of four branches must
approach the τ axis, form a cusp for τ = 0.25, and disappear
afterward. The simplest elementary catastrophe composed of
three cusps which satisfy the above stated constrains is the
symmetrical family A5 given by the relation

A5(ζ , c1, c2, c3) = ζ 6

6
+ c4

ζ 4

4
+ c2

ζ 2

2
+ c1ζ , (A7)

also known as the butterfly. Its bifurcation set is com-
pletely identical with the caustic pattern obtained numerically
(see Fig. 2 of the Ref. [12]).

In the case of caustics in the angular space, one could start
from the following approximative function family

θx(τ ; b) = − 2πb

h̄kzT (b)
sin

[
2πτ

T (b)

]
. (A8)

The analysis has shown that the same procedure applies to the
analysis of angular caustic lines.

APPENDIX B: SEMICLASSICAL WAVE FUNCTIONS

For τ = 2, spatial and angular deflection functions are
in the vicinity of the impact parameter b0 = d220/3 approx-
imated by the following polynomials:

	x(b) = p1(b − b0) + p0,

X (b) = q2

2
(b − b0)2 + q0,

(B1)

where p0 = −0.0858 mrad, p1 = −23 mrad/nm, q0 =
−0.0636 nm, and q2 = 1 3964 nm−1. The corresponding re-
duced angular Hamilton’s principal function is given by the
following cubic polynomial:

S̄θ (b) = r3

3
(b − b0)3 + r1(b − b0) + r0, (B2)

whose coefficients are given by expressions r1 = p1q0 and
r3 = p1q2/2, respectively. The constant r0 is physically unim-
portant and it will be set to zero. To calculate integral (14)
it is more convenient to make substitution b − b0 = u. Using
Eqs. (14) together with the initial distribution (11), it can be
shown that the resulting integral is of the form

ψb0 (x) =
√

kz p1

4
√

8π3σ 2
x

∫ ∞

−∞
exp

[
−ikz

(
r3

3
u3 + i

4σ 2
x kz

u2 + (r1 + p1x)u + p0x

)]
du. (B3)

Because of the rapid decrease of the Gaussian (11) validity of Eq. (B1) was extended to infinity. Using the following integral
representation of the Airy function of the first kind

Ai(β − α2) = 1

2π
exp

[
−iα

(
2

3
α2 − β

)]∫ ∞

−∞
exp

[
i

(
1

3
ζ 3 + αζ 2 + βζ

)]
dζ , (B4)

which is convergent for purely imaginary parameter α [56] the semiclassical wave function becomes

ψb0 (x) = 4

√
π |p1|2

2�2|γ1|4 ei π
2 exp

[
1

96γ 6
1

− p1(x − q0)

8γ 3
1 �

+ ikz p0x

]
Ai

(
1

16γ 4
1

− p1(x − q0)

2γ1�

)
, (B5)

where γ1 = − 3
√|r3|/8�3k2

z is dimensionless parameter.

APPENDIX C: THE CLASSICAL LIMIT OF
THE SEMICLASSICAL WAVE FUNCTION

We shall now demonstrate, that the quantum wave func-
tion (B5) has the correct classical limit. In the semiclassical
approach, the classical result is obtained as kz → ∞ limit.
However, it is not correct to evaluate the limit in Eq. (B5)
directly. The first thing to notice is that according to Eq. (7)
parameter ω is kz dependent. Therefore a larger value of the

variable kz requires longer flight time t to keep the reduced
time τ constant. This procedure makes parameters p0, p1, q0,
and r3 constant.

The second thing to notice is that the critical channeling
angle 	c is also kz dependent. If � is kept fixed then for some
kz it will be � > 	c, which makes Eq. (B5) invalid. To have
equivalent physical reality for all values of the variable kz it is
necessary to assume that � = κ	c, with κ kept constant.

The third thing to notice is that h̄kz p0 is the quantum-
mechanical mean value of the transverse linear momentum of
the quantum state (B5), which is not affected by the change
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of the shape of the wave function happening for different
values of the kz. The obtained value is precisely equal to the
transverse linear momentum relativistic particle would have in
the classical limit. Therefore it can be safely neglected from
the further consideration of the classical limit of the wave
function (B5).

Using the fact that in ultra-relativistic limit it is Ek = ch̄kz

Eq. (B5) can be rewritten in the following way

ψb0 (x) =
4
√

2π |p1|1/2

λ1/2|r3|1/3
k5/12

z

× exp

[
kz

4λ2|r3|2/3
(ζ − ζ0)

]
Ai

(
k2/3

z ζ
)
, (C1)

where

λ = 1

2κ

√
h̄c

V (d220/2)
, ζ =− |p1|

|r3|1/3

(
x − q0 − 1

16λ4|p1||r3|
)

,

ζ0 = 1

48λ4|r3|4/3
, (C2)

while physically unimportant constant phase factor has been
neglected.

For ζ < 0, i.e., for x > q0 + 1/16λ4|p1||r3|, the slowly
decreasing amplitude of the Airy function oscillations are
additionally damped by an exponential function. In the limit
kz → ∞, the spacing between subsequent zeros of the airy
function decreases by the factor k2/3

z . As a consequence

ψb0 (x) approaches the constant function 0 in the interval
q0 + 1/16λ4|p1||s3| < x < ∞.

In the Ref. [56], it has been proven that for ζ > 0

Ai
(
k2/3

z ζ
)

� exp
[− 2

3 kzζ
3/2

]
2
√

πk1/6
z ζ 1/4

. (C3)

Therefore there is ζ̄ , which is solution of the equation
− 2

3ζ 3/2 + (ζ − ζ0)/4λ2|s3|2/3 = 0. For ζ > ζ̄ the growth of
an exponential factor in Eq. (C1) is overcompensated by a
super-exponential decrease of the Airy function, while for
ζ < ζ̄ argument of the exponential factor is negative which
completely overpowers very slow growth of the airy function
for small arguments. In the limit kz → ∞, the wave function
ψb0 (x) tends again to the constant function 0 in observed inter-
vals with a possible exception of the region in the vicinity of
the point ζ̄ . Since the norm of the state must be conserved the
nonzero interval of the function ψb0 must shrink to zero while
the corresponding value of the function ψb0 must increase. To
estimate the rate of the divergence, it is sufficient to examine
the behavior of the wave function at the point ζ̄ . Using esti-
mate (C3), we can conclude that in the limit kz → ∞ wave
function ψb0 (x) behaves as k1/4

z . Therefore singularity indices
β, σ1, and γ , introduced by Arnold and Berry to describe
scaling of the amplitude, fringe spacing, and hypervolume in
the parametric space are β = 1/4, σ1 = 2/3, and γ = 2/3,
respectively [57,58].
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ing of Charged Particles in Crystals and Nanotubes (Springer,
Berlin, 2017).
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