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The confined variational method is used to study S-, P-, and D-wave positronium-hydrogen scattering with the
scattering energy between 0.068 and 3.333 eV. Accurate phase shifts and S-wave scattering lengths are calculated
and compared with other theoretical methods. Existing discrepancies for the D-wave phase shifts are resolved.
According to collision momentum, total orbital angular momentum, and spin configuration, the distortion effects
of positronium are quantitatively studied. Finally, the finite nuclear mass effects are investigated.
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I. INTRODUCTION

Positronium (Ps) is a two-body system composed of an
electron and a positron. Since the composition of Ps is purely
leptonic, it plays a significant role in testing the theory of
quantum electrodynamics (QED) [1–5]. For example, the re-
cent measurement of a fine-structure splitting in Ps has shown
a puzzling discrepancy with the QED prediction [5]. In addi-
tion, the γ -ray lasers based on a Ps Bose-Einstein condensate
have attracted considerable attention and have been exten-
sively investigated [6–9]. The study of Ps-matter scattering is
essential to understand the Ps-matter interaction [10–14], as
well as the similarities and differences between matter-matter
and matter-antimatter interactions [15–21]. Ps beam experi-
ments with He, Ar, Kr, Xe, H2, N2, O2, and SF6 have revealed
electronlike scattering of Ps at intermediate energies [21].

There are many theoretical studies of Ps-H scattering
using various approaches, including the Kohn variational
method [22–24], the inverse Kohn variational method [22,23],
the complex Kohn variational method [25,26], the diffusion
Monte Carlo method [27], the stochastic variational method
(SVM) [28,29], the close-coupling method [30–36], the static
exchange method [37–39], the many-body theory [40], and
the confined variational method (CVM) [41]. To handle the
complicated short-range correlations in Ps-H scattering, cor-
related basis functions (Hylleraas-type basis [25], explicitly
correlated Gaussian (ECG) basis [41], and others [24,27])
have been adopted in previous variational calculations.

To date, the most accurate elastic phase shifts for Ps-H scat-
tering have been given by Walters et al. [30], Blackwood et al.
[35], Zhang et al. [41], Woods et al. [25], and Wu et al. [45]. In
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the CVM calculation of Zhang et al., however, only the singlet
and triplet S-wave phase shifts at the momenta k = 0.1 and
0.2 a.u. are evaluated. The CVM phase shifts beyond S-wave
scattering at higher energies need further investigation. In the
CVM calculation of Wu et al., however, only the triplet P-
wave phase shift at k = 0.1 a.u. and the singlet D-wave phase
shift at k = 0.4 a.u. are evaluated. Accurate S- and P-wave
phase shifts with momentum up to k = 0.7 a.u. are obtained
by Woods et al. [25] using the complex Kohn variational
method with Hylleraas-type correlation terms. However, the
convergences of their singlet D-wave phase shifts at k = 0.2–
0.7 a.u. are not as good as those of their S- and P-wave
phase shifts. Moreover, their extrapolations of the 1D-wave
phase shift at k = 0.1 a.u. and all 3D-wave phase shifts are
not reliable [25].

The CVM approach, first proposed by Mitroy et al. [42]
and further developed by Zhang et al. [41], is an ab initio
method to study low-energy elastic scattering problems. It
has been successfully applied to investigate e-H, e+-H, e-He,
e+-He, Ps-H, and Ps-H2 scattering at k � 0.2 a.u. [41–44].
Recently, we have developed a strategy that can effectively
eliminate nonphysical confinement effects while extending
the CVM to non-S partial wave scattering and scattering at
higher energies [45]. In addition, contrary to the original
CVM, the strategy of using a smaller confining radius R0 can
greatly reduce the computational cost.

The purpose of the present work is to apply the CVM
we have developed to extend our previous results on Ps-H
scattering to higher partial waves at higher energies, and to
provide more benchmark results for other theoretical methods.
This paper is organized as follows. In Sec. II the advanced
CVM is introduced. The computational results are presented
in Sec. III, where the phase shifts for the Ps-H scattering of
1,3S-, 1,3P-, and 1,3D-waves below the Ps excitation threshold
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are given in Sec. III A, the distortion effects in Ps-H scattering
are discussed in Sec. III B, and the calculations of the S-wave
scattering lengths are given in Sec. III C. Finally, Sec. IV is
a summary. Phase shifts are expressed in radians, and atomic
units (a.u.) are used throughout unless otherwise stated.

II. THEORY

A. Infinite nuclear mass

For a many-body scattering problem, especially for a com-
posite projectile and target, the scattering phase shift extracted
directly from the scattering wave function usually has limited
accuracy. The key idea of the CVM is that it converts an
original many-body scattering problem into a modified many-
body bound-state problem so that it can be solved by applying
well-established bound-state techniques, and the scattering
phase shift can then be extracted by solving an equivalent
quasi-one-dimensional central-potential problem [42].

We first perform a many-body calculation by adding a
confining potential Vcp to the Hamiltonian of the Ps-H system
so that it becomes a bound-state eigenvalue problem,

(H + Vcp)�(r, s) = E�(r, s), (1)

H = −1

2

3∑
i=1

∇2
i +

3∑
i=1

Qqi

ri
+

3∑
i, j = 1
i < j

qi q j

|r j − ri| , (2)

where the nuclear mass of hydrogen is assumed to be infinity,
r1, r2, and r3 are, respectively, the position vectors of the two
electrons and the positron relative to the fixed nucleus, r de-
notes (r1, r2, r3) collectively, and s denotes (s1, s2, s3) of the
three lepton spins. Additionally, qi is the charge of the electron
or positron, and Q is the charge of the nucleus. �(r, s) is
the eigenfunction of H + Vcp corresponding to E , where E
is the total energy of the original scattering system, including
the bound-state energies of the projectile and target, as well as
the kinetic energy of the projectile. The eigenfunction �(r, s)
can be expanded in terms of the ECG basis

φn(r, s) = |v|2K+L exp

(
−1

2
rTAnr

)
YLM (v)χ (s), (3)

where v = uTr, with uT = (u1, u2, u3) being a global vector,
χ (s) is the spin function, K is an integer that describes the
number of nodes of the wave function, An is a parameter
matrix, L and M are, respectively, the total orbital angular
momentum and its z component, and YLM is a spherical har-
monics. The confining potential used here is

Vcp =
2∑

i=1

vcp(ρi), (4)

where

vcp(ρi ) =
{

0, ρi < R0,

G(ρi − R0)2, ρi � R0.

ρi = |ri + r3|/2 is the distance between the hydrogen nucleus
and the center-of-mass of Ps, and R0 is chosen to ensure that
the complicated short-range interaction between Ps and H can

be ignored outside the sphere of radius R0. To eliminate un-
physical confining effects, we define the following judgment
index between two basis functions φn and φm:

snm
i = 〈φn|�(ri3 − R1)(ri3 − R1)2|φm〉

〈φn|�(ρi − R0)(ρi − R0)2|φm〉 , (5)

where ri3 = |ri − r3| is the distance between the electron and
positron in a confined Ps, R1 is an adjustable number greater
than 2a0, with a0 being the Bohr radius, and � is the Heaviside
step function. If the confining potential acts on the pseudo Ps
formed by the positron and the electron of the hydrogen, ri3

will be much larger than the characteristic size 2a0 of Ps. This
means that snm

i will be a large number when R1 is set to 2a0 or
slightly larger. We discard 〈φn|Vcp(ρi )|φm〉 when snm

i exceeds
a specific threshold. In this work, R1 is set to be 15a0, and the
specific threshold for snm

i is set to be 1.0.
The confining potential in Eq. (1) is tuned to ensure that

a specific total energy is yielded. For example, if a ground-
state projectile Ps of momentum k = 0.1 is scattering with
a ground-state target H, then E = −0.7475. With the con-
fining potential vcp(ρ) thus determined, we then solve the
one-dimensional bound-state problem(

− 1

2μ
∇2 + Vm(ρ) + vcp(ρ)

)
�(ρ) = E ′�(ρ), (6)

where μ is the reduced mass between Ps and H, which is
equal to 2 for the case of infinite nuclear mass, and �(ρ)
is the eigenfunction with the associated eigenvalue E ′ that is
equal to the scattering energy. Also in the above, Vm(ρ) is the
tunable model potential that has the form

Vm(ρ) = λe−αρ − C6

ρ6

(
1 − e−(ρ/β )6

)
, (7)

where λ, α, and β are adjustable parameters, and C6 is the
van der Waals coefficient between Ps and H that is equal to
34.784 73 [46]. It should be pointed out that the inclusion
of −C6/ρ

6 in Vm(ρ) is to correctly describe the interaction
between Ps and H in the asymptotic region [47], i.e., the
region outside the sphere of radius R0. In this work, we fix
α = 0.5 and β = 5, and we adjust λ so that the bound-state
problem Eq. (6) can yield the eigenvalue E ′ = k2/2μ for
a given k. Finally, we solve the scattering equation for the
potential Vm(ρ) only,(

− 1

2μ
∇2 + Vm(ρ)

)
�′(ρ) = E ′�′(ρ), (8)

by applying an integration procedure, and we determine the
scattering phase shift δ�(k) with a least-squares fit between
�′(ρ) and AYlm(ρ̂) sin[kρ − �π/2 + δ�(k)]/(kρ) for ρ → ∞.
It should be emphasized that the essence of these transfor-
mations from the original many-body scattering problem to
Eqs. (1), (6), and then (8) is that the logarithmic derivatives of
the wave functions determined by these equations are guaran-
teed to be equal to each other at the radial boundary R0 [42].

B. Finite nuclear mass

For the case of finite nuclear mass, three main modifi-
cations should be made. The first modification is that the
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TABLE I. Comparison of S-wave phase shifts (in radians) among the present confined variational method (CVM), the complex Kohn
method (cKohn) [25], the Kohn method (Kohn) [22], and the close-coupling method (CC, [30] for singlet and [35] for triplet), where δ+

0 stands
for spin singlet and δ−

0 stands for spin triplet.

k δ+
0 (CVM) δ+

0 (cKohn) δ+
0 (Kohn) δ+

0 (CC, 14Ps+14H+H−) δ−
0 (CVM) δ−

0 (cKohn) δ−
0 (Kohn) δ−

0 (CC, 14Ps+14H)

0.3 −1.161 −1.161 −1.161 −1.167 −0.645 −0.645 −0.645 −0.624
0.4 −1.446 −1.446 −1.446 −1.453 −0.849 −0.849 −0.850 −0.838
0.5 −1.678 −1.677 −1.677 −1.685 −1.041 −1.040 −1.040 −1.037
0.6 −1.858 −1.857 −1.857 −1.867 −1.216 −1.214 −1.215 −1.213
0.7 −1.965 −1.963 −1.964 −1.992 −1.374 −1.372 −1.373 −1.367

Hamiltonian in Eq. (2) should be changed to

H = −1

2

3∑
i, j=1

�i j∇i · ∇ j +
3∑

i=1

Qqi

ri
+

3∑
i, j = 1 i < j

qi q j

|r j − ri| ,

(9)
where �i j = ∑4

k=1 UikUjk
1

mk
, mk = 1 in this work, and U

is a 4 × 4 transformation matrix [48]. The second modi-
fication is that the confining potential in Eq. (4) should
include the degrees of freedom between the center-of-mass
of H and the center-of-mass of Ps. The third modification
is that the reduced mass μ in Eq. (6) should be changed to
1.997 825 085, where the hydrogen nuclear mass is taken to
be 1836.152 672 45 [49]. For C6, however, we still use the in-
finite nuclear mass value, because its effect on the long-range
polarization potential is negligibly small.

III. RESULTS

A. Phase shifts

Tables I and II list, respectively, the S- and P-wave phase
shifts obtained by the present CVM with R0 = 15, and a
comparison with the results from the complex Kohn (cKohn)
method [25], the Kohn method [22], and the close-coupling
(CC) method [30,35], where δ+

L stands for the phase shift of
the singlet spin configuration of the L-wave, and δ−

L for the
triplet. Since the S-wave phase shifts at k = 0.1 and 0.2 have
been reported by Zhang et al. [41], here we only show the
S-wave results at k � 0.3. Note that the cKohn phase shifts
given in Tables I and II are extrapolated using the empirical
formula tan δ±

L (ω) = tan δ±
L (ω → ∞) + c/ωp, where ω is a

non-negative integer that determines the maximum number
of terms in the basis set, and c and p are parameters. For
our CVM phase shifts in Tables I and II, the overall level of

convergence of the calculated values (with N = 1800, where
N is the size of basis set) is better than 0.16% for S-wave
scattering and 0.40% for P-wave scattering. It can be seen
that an excellent agreement has been achieved for all the S-
and P-wave phase shifts among the CVM, cKohn method,
and Kohn method. However, some discrepancies can be found
between the CVM and CC results, with the largest being 4.0%
for δ−

0 at k = 0.3 and 44.6% for δ−
1 at k = 0.1. In general, the

S-wave phase shifts of the CC method have better agreement
with the CVM values than the P-wave phase shifts, which may
be due to the fact that more pseudostates are contained in the
S-wave calculations.

Table III shows a comparison of the D-wave phase shifts
among the present CVM, the cKohn method [25], and the
CC method [30,35]. The short-range mixed-symmetry terms
are not included in the trial wave functions of Woods et al.
[25]. The cKohn results of δ+

2 at k = 0.2–0.7 are obtained
by extrapolating to ω → ∞, while δ+

2 at k = 0.1 and all δ−
2

are obtained from ω = 6. The percentage difference in phase
shift between ω → ∞ and ω = 6 is 6% for δ+

2 at k = 0.2,
and it is less than 2% for δ+

2 at k = 0.3–0.7. For δ−
2 the

percentage difference between ω → ∞ and ω = 6 is 140%
at k = 0.1, and it is less than 25% at k = 0.2–0.7, except for
k = 0.4, where it is 40%. For our CVM D-wave phase shifts
in Table III, the overall level of convergence is better than
0.3% at k = 0.1–0.2, while it ranges from 0.6% to 1.3% at
k = 0.3–0.7. Table IV shows a convergence test of our δ−

2
at k = 0.4, as the size of the basis set N increases. One can
see that for N = 1800 the phase shift is converged to the
second significant digit. The extrapolated cKohn phase shifts
are close to the CVM values, with the percentage difference
ranging from 1.8% to 2.5%. There is, however, divergence
between the cKohn phase shifts at ω = 6 and the correspond-
ing CVM values, with the percentage difference ranging from

TABLE II. Comparison of P-wave phase shifts (in radians) among the present confined variational method (CVM), the complex Kohn
method (cKohn) [25], and the close-coupling method (CC, [30] for singlet and [35] for triplet), where δ+

1 stands for spin singlet, δ−
1 stands for

spin triplet, and ab ≡ a × 10b.

k δ+
1 (CVM) δ+

1 (cKohn) δ+
1 (CC, 9Ps+9H+H−) δ−

1 (CVM) δ−
1 (cKohn) δ−

1 (CC, 9Ps+9H)

0.1 0.228−1 0.227−1 0.221−1 −0.172−2 −0.172−2 −0.953−3

0.2 0.192 0.192 0.183 −0.165−1 −0.165−1 −0.122−1

0.3 0.612 0.611 0.580 −0.540−1 −0.540−1 −0.456−1

0.4 0.997 0.996 0.956 −0.114 −0.114 −0.104
0.5 1.143 1.142 1.106 −0.182 −0.182 −0.178
0.6 1.164 1.163 1.134 −0.247 −0.246 −0.247
0.7 1.154 1.154 1.133 −0.289 −0.288 −0.295
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TABLE III. Comparison of D-wave phase shifts (in radians) among the present confined variational method (CVM), the complex Kohn
method (cKohn) [25], and the close-coupling method (CC, [30] for singlet and [35] for triplet), where δ+

2 stands for spin singlet, δ−
2 stands for

spin triplet, and ab ≡ a × 10b.

k δ+
2 (CVM) δ+

2 (cKohn) δ+
2 (CC 9Ps+9H+H−) δ−

2 (CVM) δ−
2 (cKohn) δ−

2 (CC 9Ps+9H)

0.1 1.64−4 1.36−4 2.02−4 9.46−5 5.81−5 8.48−5

0.2 3.11−3 3.18−3 3.49−3 8.13−4 7.12−4 1.15−3

0.3 1.65−2 1.62−2 1.73−2 1.51−3 1.10−3 2.84−3

0.4 5.15−2 5.04−2 5.22−2 −4.52−4 −1.80−3 2.37−3

0.5 1.17−1 1.14−1 1.16−1 −7.50−3 −1.07−2 −4.66−3

0.6 2.14−1 2.09−1 2.08−1 −2.00−2 −2.54−2 −1.85−2

0.7 3.40−1 3.33−1 3.24−1 −3.34−2 −4.28−2 −3.27−2

12% to 298%. Another interesting point is that for the CVM
and cKohn method, δ−

2 changes sign from positive at k = 0.3
to negative at k = 0.4, whereas for the CC method it changes
sign from positive at k = 0.4 to negative at k = 0.5, implying
that the revealed D-wave interaction is more repulsive for the
CC method than for the CVM and cKohn method.

The effect of the short-range mixed-symmetry terms has
been investigated by Van Reeth and Humberston in their study
of e−-H scattering, and it has been found to be more important
for the singlet than for the triplet D-wave phase shifts [25,50].
On the other hand, through a comparison between the CVM
and cKohn results in Table III, one can see that the short-range
mixed-symmetry terms are more important for the triplet than
for the singlet. It is noted that these terms are included in our
CVM calculations. To better understand this phenomenon, we
calculate the singlet and triplet D-wave phase shifts at k = 0.1
by excluding the terms. The obtained phase shifts at k = 0.1
are 1.38 × 10−4 for δ+

2 and 7.72 × 10−5 for δ−
2 , which are

larger than the corresponding cKohn values. Thus, taking
the short-range mixed-symmetry terms into consideration in-
creases the phase shifts by 18.8% and 22.5%, respectively.
In addition, we see that the absolute values of the D-wave
phase shifts are smaller than those of the S- and P-wave phase
shifts, and they are more sensitive to the choice of the basis
functions. The nonlinear parameters of the basis functions
appear to be k-dependent and should be carefully optimized.

B. Distortion effects

In an atomic scattering process, the wave functions of the
target and projectile will be distorted when they get close to
each other. A quantitative study of the distortion effects is
difficult but important [51]: For example, in probing material
defects, the radius of the Ps confined in small pores is a crucial

TABLE IV. Convergence test of λ in Eq. (7), total energy E of Ps-
H scattering, and D-wave δ−

2 (in radians) at k = 0.4, i.e., E = −0.71,
for the case of infinite nuclear mass, as the size of the basis set N
increases (in atomic units; ab ≡ a × 10b).

N λ E δ−
2

1200 1.24260525−4 −0.70999994 −0.482−3

1400 1.24261425−4 −0.70999993 −0.463−3

1600 1.24261755−4 −0.70999992 −0.455−3

1800 1.24261925−4 −0.70999993 −0.452−3

parameter for understanding the complicated annihilation-
lifetime spectroscopy [13,52]. In all the existing calculations
of Ps-H scattering, the distortion effects are handled by two
methods: One is the expansion of the scattering wave func-
tion in terms of correlated short-range basis functions, and
one is the inclusion of pseudostates describing Ps, H, and
H−. In Table III, for example, nine pseudostates of Ps, nine
pseudostates of H, and one pseudostate of H− are included in
the CC calculations. In this work, we define three distortion
distances RH

d , RPs
d , and RPs-H

d , where RH
d and RPs

d are measures
of the distance between Ps and H when the distortion of H and
Ps can be ignored, respectively, and RPs-H

d is a measure of this
distance when the distortion of both H and Ps can be ignored
so that the long-range polarization potential dominates. Since
the polarizability of Ps is larger than that of H, the distortion
of Ps dominates over that of H, indicating RPs

d > RH
d . Thus, we

have RPs−H
d = max(RH

d , RPs
d ) = RPs

d .
The distortion distance RPs

d for Ps can be calculated as
follows. For the electron, the probability density distribution
is

f i
e (R) =

∫
d�R〈�|δ(ri − R)|�〉R2, (10)

where i = 1, 2, 〈· · · 〉 means the integration over the relative
coordinates r1, r2, and r3, and

∫
d�R · · · is the integration

over the solid angle of R. f i
e (R) can be evaluated, since the

matrix element for the Dirac δ function can be analytically
calculated using the ECG basis. For the two electrons, we
have f 1

e (R) = f 2
e (R) ≡ fe(R). For the positron, the probability

density distribution is

fe+ (R) =
∫

d�R〈�|δ(r3 − R)|�〉R2. (11)

The distortion distance RPs
d can be obtained according to

fe+ (R) = 2 fe(R) , R � RPs
d (12)

because of the electric neutrality requirement of Ps at R � RPs
d .

A comparison of the probability density distributions for
singlet scattering at k = 0.1 is shown in Fig. 1. We find for
fe(R) with R < 5 high peaks for S-, P-, and D-wave scattering.
For fe+ (R) with R < 5, however, due to the repulsive interac-
tion between the positron and the hydrogen nucleus, there is a
low peak for S-wave scattering and no peak for P- and D-wave
scattering. For R > 5, the probability density distributions of
the electron and positron become similar. In this work, RPs

d is
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FIG. 1. Probability density distributions fe(R) and fe+ (R) for S-,
P-, and D-wave singlet Ps-H scattering at k = 0.1a−1

0 , where a0 is
the Bohr radius.

determined according to the criterion∣∣∣∣ fe+ (R) − 2 fe(R)

fe+ (R)

∣∣∣∣
R=RPs

d

< 1%. (13)

This yields RPs
d to be 7.7, 7.8, and 10.0 for S-, P-, and D-wave

singlet scattering at k = 0.1, respectively, which indicates
that RPs

d increases with the total orbital angular momentum
L for the same k and spin configuration. RPs

d is determined
analogously for other k, L, and spin configurations. We find
for the same L and spin configuration that RPs

d decreases as
the Ps momentum k increases. For example, for L = 0 and
singlet scattering we obtain RPs

d = 7.7, 7.3, 6.8, 6.7, 6.5, 6.2,
and 5.7 at k = 0.1–0.7 with increments of 0.1. RPs

d of singlet
and triplet scattering is similar for the same k and L.

C. S-wave scattering lengths

Though the CVM scattering phase shifts δ±
0 at k = 0.1

and 0.2 have been reported by Zhang et al. [41], the CVM
scattering lengths have not been reported. In this work, the
S-wave scattering lengths are obtained by fitting the calculated
phase shifts to the effective range theory,

k cot δ±
0 = − 1

a± + r±
0 k2

2
, (14)

where a+ and a− are, respectively, the singlet and triplet
S-wave scattering lengths, and r±

0 are the corresponding ef-
fective ranges. If we take into account the long-range van
der Waals interaction, we should use the modified formula of
Flannery et al. [53],

k cot δ±
0 = − 1

a± + r±
0 k2

2
− 4πC6k3

15(a±)2
− 16C6

15a± k4 ln k. (15)

These two effective range formulas are more suitable for low-
k scattering so that higher-order terms in the expansions can
be neglected.

To extract more accurate scattering lengths in the case of
infinite nuclear mass (INM), the S-wave phase shifts at k =
0.04–0.08 are calculated, and the results are given in Table V.

TABLE V. Singlet δ+
0 and triplet δ−

0 (in radians) S-wave phase
shifts at k = 0.04–0.08 for the cases of infinite nuclear mass (INM)
and finite nuclear mass (FNM).

k δ+
0 (INM) δ+

0 (FNM) δ−
0 (INM) δ−

0 (FNM)

0.04 −1.7107−1 −1.7124−1 −8.4648−2 −8.4653−2

0.05 −2.1532−1 −2.1553−1 −1.0686−1 −1.0687−1

0.06 −2.5801−1 −2.5826−1 −1.2833−1 −1.2834−1

0.07 −3.0049−1 −3.0078−1 −1.4983−1 −1.4985−1

0.08 −3.4272−1 −3.4308−1 −1.7138−1 −1.7140−1

Table VI shows a convergence test for δ+
0 at k = 0.05, as

the size of the basis set N increases. One can see that for
N = 1800, the phase shift is converged to the fifth significant
digit. The scattering lengths determined by Eqs. (14) and
(15) are given in Table VII, together with a comparison with
other theoretical values. We can see that the CVM scattering
lengths obtained by Eqs. (14) and (15) are very close to each
other, whereas the CVM effective ranges are not, indicating
that the addition of the k3 and k4 ln k terms from the van
der Waals interaction has little effect on a± but a significant
effect on r±

0 . There are also noticeable differences between
our CVM values and the cKohn values of 1.1%. In addition,
the cKohn results are closer to those of the SVM. In general,
it is preferable to extract the scattering lengths from the low-
k range, where the complicated short-range correlations are
more important. Thus, the nonlinear parameters in the basis
functions must be carefully optimized for each value of k, as
we did for k = 0.04–0.08.

All previous Ps-H scattering calculations have been per-
formed under the INM approximation. The finite nuclear mass
(FNM) effect is studied here in detail, and the phase shifts and
scattering lengths obtained are shown in Tables V and VII,
respectively. An important advantage of the present calcula-
tion method is that the Hamiltonian and its matrix elements
in the FNM case preserve their functional form under the
general linear transformation U entering Eq. (9). Thus, the
extension from INM to FNM is natural but results in addi-
tional computational complexity. Comparing the FNM and
INM phase shifts in Table V, we find that the FNM effect
is more important for singlet than for triplet scattering with
percentage differences of 0.1% and 0.01%, respectively. This
can be explained by the S-wave probability density distribu-
tions fee+ (R) and fe+ (R), ee+ denoting the center-of-mass of
the electron-positron pair, for singlet and triplet scattering at
k = 0.05 shown in Fig. 2. We find low peaks at R < 5 for

TABLE VI. Convergence test of λ in Eq. (7), total energy E of
Ps-H scattering, and S-wave δ+

0 (in radians) at k = 0.05, i.e., E =
−0.749 375, for the case of infinite nuclear mass, as the size of the
basis set N increases (in atomic units, ab ≡ a × 10b).

N λ E δ+
0

1200 2.95617617−7 −0.749374994 −0.21539
1400 2.95631417−7 −0.749374994 −0.21535
1600 2.95640417−7 −0.749374995 −0.21532
1800 2.95642417−7 −0.749374995 −0.21532
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TABLE VII. S-wave scattering lengths (a+ for singlet and a− for
triplet) and effective ranges (r+

0 for singlet and r−
0 for triplet) for the

cases of infinite nuclear mass (INM) and finite nuclear mass (FNM),
obtained by the present confined variational method (CVM), the
complex Kohn method (cKohn) [25], and the stochastic variational
method (SVM) [29], in atomic units.

Model k a+ r+
0 a− r−

0

INM CVM Eq. (14) 0.04–0.08 4.2841 3.1032 2.1133 3.9563
INM CVM Eq. (15) 0.04–0.08 4.2854 3.0645 2.1126 4.4759
INM cKohn Eq. (14) 0.1–0.5 4.308 2.275 2.162 1.343
INM cKohn Eq. (14) 0.001–0.009 4.331 2.197 2.137 2.035
INM cKohn Eq. (15) 0.001–0.009 4.331 2.221 2.137 2.139
INM SVM Eq. (14) 0–0.5 4.34 2.39 2.22 1.29
FNM CVM Eq. (14) 0.04–0.08 4.2881 3.1117 2.1134 3.9694

singlet scattering, but not for triplet scattering. In the case of
singlet scattering, the positron or electron-positron pair can
get closer to the hydrogen nucleus and thus it is more sensitive
to the nuclear mass effect than in the case of triplet scattering,
which can be seen from Table VII, as the FNM effect increases
the singlet scattering length by 0.1% but the triplet scattering
length only by 0.005%.

IV. SUMMARY

Using the confined variational method combined with an
explicitly correlated Gaussian basis, the phase shifts of 1,3S-,
1,3P-, and 1,3D-wave Ps-H scattering below the Ps excitation
threshold have been calculated. Our S- and P-wave phase
shifts agree well with the results of the complex Kohn method
of Woods et al. The large discrepancy in the literature for
D-wave scattering has been resolved. Comparing the proba-
bility density distributions of the positron and the electron,
we have found that the distortion distance of Ps decreases
with the Ps momentum and increases with the total orbital
angular momentum. Using the effective range theory, the S-
wave scattering lengths have been extracted at k = 0.04–0.08

FIG. 2. Probability density distributions fee+ (R) and fe+ (R), ee+

denoting the center-of-mass of the electron-positron pair, for S-wave
singlet and triplet Ps-H scattering at k = 0.05a−1

0 , where a0 is the
Bohr radius.
for both infinite and finite nuclear mass. In the case of infinite
nuclear mass, the obtained scattering length is smaller than
that predicted by the complex Kohn and stochastic variational
methods. We have also demonstrated that the finite nuclear
mass effect increases both the singlet and triplet scattering
lengths, with a more significant impact in the case of singlet
scattering.
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