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Spin exchange in scattering with polarized orthopositronium beams
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We study electron and positron exchange without a spin flip in a single collision between two polarized
orthopositronium beams. We use angular-momentum coupling and density-matrix techniques to calculate the
probabilities of obtaining only parapositronium, both para- and orthopositronium or only orthopositronium, after
the collision. The probabilities are functions of the angle between the polarization vectors of the beams and
scattering amplitudes labeled with total electron spin and total positron spin. The real parts of the scattering
amplitudes and products of the polarization tensors for the beams are given in terms of the probabilities for
certain angles and initial spin orientations. We show that quenching probabilities for different transitions and the
spin-exchange quenching cross section depend on the angle, but the ratio of the total quenching probability to
the total probability for positronium scattering does not.
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I. INTRODUCTION

In this work, we study the effect of spin exchange in a sin-
gle collision between two orthopositronium beams. Para- and
orthopositronium are electron-positron bound states. Para-
positronium has a spin of 0 and a lifetime of 0.125 16 ns
[1]. Orthopositronium has a spin of 1 and a lifetime of 142.05
ns [2]. When an electron or positron from one beam is ex-
changed with an electron or positron from the other beam,
without a spin flip, final states with only parapositronium,
only orthopositronium, or a combination of both can be pro-
duced. The conversion of the longer-lived orthopositronium to
parapositronium is referred to as quenching. The quenching
of orthopositronium after electron exchange with either of the
unpaired electrons of an oxygen molecule has been studied
[3]. As noted [4,5], such an exchange without a spin flip is
labeled Majorana exchange.

Scattering experiments with positronium (Ps) beams as
well as theoretical studies of positronium formation and
quenching are extensively reviewed in Refs. [6,7]. Schrader
formulates the spin analysis required in the construction of
the positronium-molecule wave function [8]. The production
of a positronium molecule and spin-exchange quenching to
para Ps in experiments with polarized ortho-Ps beams are
described in Refs. [9–12]. Measurements of a spin-exchange
cross section for nonthermalized positronium in porous sil-
ica [10] and the production in vacuum of polarized ortho
Ps with spin magnetic quantum numbers of ±1 [11] have
been reported. Numerous theoretical methods have been used
for calculating scattering lengths and cross sections in Ps-Ps
collisions [13–21]. Shumway and Ceperley use a quantum
Monte Carlo technique and give cross sections for triplet-
triplet exciton scattering as well as triplet to singlet exciton
conversion [13]. S-wave scattering lengths for Ps-Ps inter-
actions are obtained semiempirically through the solution of
the Schrödinger equation by Oda et al. [14]. The stochastic

variational method is used to calculate the s-wave scattering
length for spin-aligned ortho Ps–ortho Ps scattering [15] and
scattering lengths as well as cross sections for Ps-Ps scattering
[16]. A comparison of our probabilities to the expressions in
Ref. [16] is presented in Sec. III. Other studies include the
coupled-channel approach of Ref. [17], the close coupling
model of Ref. [18], and the first Born approximation and
Born-Oppenheimer model of Ref. [19]. More recently, a static
exchange model was applied to ortho Ps–ortho Ps scattering
and s-, p-, d-wave and quenching cross sections have been
calculated [20]. In 2019, cross sections for transitions between
specific positronium spin states were obtained from a four-
body hyperspherical coordinate calculation of Ps-Ps scattering
[21].

We use angular-momentum coupling to calculate the scat-
tering matrix which contains amplitudes for transitions from
the spin states of the initial two-orthopositronium system
to those of the final two-positronium system. The total spin
of the electrons, the total spin of the positrons, the total
spin of the two-orthopositronium system, and the total spin
magnetic quantum number are conserved. All the spin depen-
dence in the scattering matrix elements is in the recoupling
coefficients and the contribution of spin-dependent terms in
the Hamiltonian is assumed to be negligible. The proba-
bilities of producing only parapositronium, either type of
positronium, or only orthopositronium in the final system
are obtained from the diagonal elements of a spin-density
matrix. We have used the density-matrix techniques described
in Refs. [22–25] to study positron and orthopositronium colli-
sions in Refs. [26–28].

II. METHOD

In our collision process, the initial orthopositronium atoms
as well as the final para- or orthopositronium products are in
the 1s state. We begin by constructing the scattering matrix.
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The collision between the beams is described by A + B →
C + D, where the states A and B represent the incoming
orthopositronium while the outgoing states C and D repre-
sent either type of positronium. The initial states A and B
interact to form intermediate states in which electron and/or
positron exchange can occur without a spin flip. After the
exchange, the intermediate states develop into final states of
either type of positronium C and D. During the evolution of
the system from A and B to C and D, the total electron spin
Se, the total positron spin Sp, the total spin St , as well as the
total spin magnetic quantum number Mt , are all conserved.
The intermediate states are labeled |[SeSp]St Mt 〉 and complex
scattering amplitudes f SeSp which are independent of St and
Mt , are defined as follows:

f SeSp = 〈[SeSp]St Mt |M|[SeSp]St Mt 〉, (1)

( f SeSp )∗ = 〈[SeSp]St Mt

∣∣M†
∣∣[SeSp]St Mt 〉. (2)

The spin assignments are (i) St = 0, Mt = 0 with Se =
Sp = 0, (ii) St = 1, Mt = 0, ±1 with Se = 0 and Sp = 1 or
Se = 1 and Sp = 0, and (iii) St = 0, 1, 2 and Mt = 0, ±1, ±2
with Se = Sp = 1. The elements of M contain the amplitudes
for transitions from particular states of A and B to particular
states of C and D and are given as

〈SCMC |〈SDMD|M|SAMA〉|SBMB〉
= 〈SCMC |〈SDMD|

∑
St Mt

|[SeSp]St Mt 〉 f SeSp

× 〈[SeSp]St Mt ||SAMA〉|SBMB〉. (3)

We use angular-momentum coupling to calculate the
matrix elements in four steps: (i) couple the initial or-
thopositronium states [Eq. (4)], (ii) transform the coupled
initial states into intermediate states [Eq. (5)], (iii) transform
the intermediate states into coupled final states [Eq. (6)],
and (iv) uncouple the coupled final states [Eq. (7)]. Clebsch-
Gordan coefficients are used in steps (i) and (iv) and 9- j
coefficients are used in steps (ii) and (iii). The 9- j symbol used
in coupling the four angular momenta, j1, j2, j3, and j4, is de-
fined with curly brackets in Eq. (6.4.2) on p. 101 of Ref. [29].
The 9- j coefficients with the square brackets used in Eqs. (5)
and (6) below include the factors

√
(2 j12 + 1),

√
(2 j34 + 1),√

(2 j13 + 1) and
√

(2 j24 + 1), where j12, j34, j13, and j24 are
obtained by coupling j1 and j2, j3 and j4, j1 and j3, and j2
and j4, respectively.

|SAMA〉|SBMB〉 =
∑
St Mt

〈SAMASBMB|St Mt 〉|[SASB]St Mt 〉, (4)

|[SASB]St Mt 〉 =
∑
SeSp

⎡
⎢⎣

1
2

1
2 Se

1
2

1
2 Sp

SA SB St

⎤
⎥⎦|[SeSp]St Mt 〉, (5)

|[SeSp]St Mt 〉 =
∑
SC SD

⎡
⎢⎣

1
2

1
2 SC

1
2

1
2 SD

Se Sp St

⎤
⎥⎦|[SCSD]St Mt 〉, (6)

|[SCSD]St Mt 〉 =
∑

MC MD

〈SCMCSDMD|St Mt 〉|SCMC〉|SDMD〉.
(7)

z
z' 

β

x

x'
FIG. 1. The spin quantization vector �S = Sx′ î

′ + Sy′ ĵ
′ + Sz′ k̂

′

and the coordinate axes. The y and y′ axes point into the plane of the
page. The primed coordinate system is rotated by an angle β about
the y (y′) axis. The components of the spin quantization vector in
the unprimed coordinate system are obtained with Sx = �S · î, Sy =
�S · ĵ, and Sz = �S · k̂.

The incoming spins are SA = SB = 1 and MA = MB = 0,
±1. The outgoing system can consist of only parapositro-
nium (SC = SD = 0 and MC = MD = 0), both para- and
orthopositronium (SC = 0, SD = 1 and MC = 0, MD = 0, ±1
or SC = 1, SD = 0 and MC = 0, ±1, MD = 0), or only or-
thopositronium (SC = SD = 1 and MC = MD = 0, ±1). The
scattering matrix with 9 columns and 16 rows is shown in
Table I.

The spin-density matrix for the incoming system ρin,
is constructed as in Refs. [23,27,28], with unit matrix E ,
spin matrices Si and Si j for i, j = x, y, z, and Si j =
3
2 (SiS j + S jSi ) − 2δi jE . The polarization vectors Pi and ten-
sors Pi j are defined by Pi = Tr(ρinSi ) and Pi j = Tr(ρinSi j ).
The polarization vector of beam I is along the positive z axis
(see Fig. 1) and the polarization tensor has only a pure z
component. The density matrix for beam I is

ρI
in = 1

3

(
E I + 3

2 PI
z Sz + 1

2 PI
zzSzz

)
, (8)

with PI
z = ±1, PI

zz = 1 or PI
z = 0, PI

zz = −2. The polarization
vector of beam II is along positive z′ which is obtained by a
rotation about the y axis by angle β (see Fig. 1). The density
matrix for beam II in the unprimed coordinate system with i,
j = x, y, z, is given following Ref. [23] as

ρII
in = 1

3

(
E II + 3

2

∑
i

PII
i Si + 1

3

∑
i j

PII
i j Si j

)
. (9)

To express the matrix in terms of PII
z′ and PII

z′z′ , we first relate
the components of the spin quantization vector for beam II in
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TABLE I. Spin scattering matrix for the process A + B → C + D with matrix elements 〈SCMC |〈 SDMD|M|SAMA〉|SBMB〉. The column
labels I to IX represent the initial-state basis vectors |SAMA〉|SBMB〉, where A and B represent orthopositronium with SA = SB = 1. Specifically,
I = |11〉|11〉, II = |11〉|10〉, III = |11〉|1−1〉, IV = |10〉|11〉, V = |10〉|10〉, VI = |10〉|1−1〉, VII = |1−1〉|11〉, VIII = |1−1〉|10〉, and IX =
|1−1〉|1−1〉. The rows are labeled with final-state basis vectors 〈SCMC |〈 SDMD| where C and D represent either parapositronium with SC =
SD = 0 or orthopositronium with SC = SD = 1. The total electron spin Se = 0, 1. The total positron spin Sp = 0, 1. We define combinations of
the scattering amplitudes f SeSp as follows: f 1100 = 1

4 f 11 + 1
4 f 00, g1100 = 1

4 f 11 − 1
4 f 00, f 0110 = 1

4 f 01 + 1
4 f 10, and g0110 = 1

4 f 01 − 1
4 f 10.

I II III IV V VI VII VIII IX

〈00|〈00| −g1100 g1100 −g1100

〈00|〈11| g0110 −g0110

〈00|〈10| g0110 −g0110

〈00|〈1−1| g0110 −g0110

〈11|〈00| −g0110 g0110

〈11|〈11| f 11

〈11|〈10| 0.5 f 11 + f 0110 0.5 f 11 − f 0110

〈11|〈1−1| f 1100 + f 0110 g1100 f 1100 − f 0110

〈10|〈00| −g0110 g0110

〈10|〈11| 0.5 f 11 − f 0110 0.5 f 11 + f 0110

〈10|〈10| g1100 0.5 f 11 + f 1100 g1100

〈10|〈1−1| 0.5 f 11 + f 0110 0.5 f 11 − f 0110

〈1−1|〈00| −g0110 g0110

〈1−1|〈11| f 1100 − f 0110 g1100 f 1100 + f 0110

〈1−1|〈10| 0.5 f 11 − f 0110 0.5 f 11 + f 0110

〈1−1|〈1−1| f 11

the unprimed and primed systems (see Fig. 1) as

Sx = Sx′ cos β + Sz′ sin β, Sy = Sy′ ,

Sz = −Sx′ sin β + Sz′ cos β. (10)

Then we calculate the polarization vectors as

PII
x = PII

z′ sin β, PII
y = 0, PII

z = PII
z′ cos β (11a)

and the polarizations tensors as

PII
xx = PII

z′z′
(

3
2 sin2β − 1

2

)
, PII

yy = − 1
2 PII

z′z′ ,

PII
zz = PII

z′z′
(

3
2 cos2β − 1

2

)
,

PII
xz = PII

zx = PII
z′z′

(
3
2 sinβ cos β

)
,

PII
xy = PII

yx = PII
yz = PII

zy = 0. (11b)

The formulas in Eq. (11) are consistent with Eqs. (4.21)
and (4.22) on p. 741 of Ref. [22] which relate polarization
vectors and tensors in two coordinate systems. Finally, substi-
tuting Eq. (11) in Eq. (9) and using Sxx + Syy + Szz = 0, we
get

ρII
in = 1

3

(
E II + 3

2 PII
z′ [Sx sin β + Sz cos β]

)
+ 1

3

(
1
2 PII

z′z′ [Sxx sin2β

+ Szz cos2β + Sxz(2 sin β cos β )]
)
, (12)

with PII
z′ = ±1, PII

z′z′ = 1 or PII
z′ = 0, PII

z′z′ = −2. The density
matrix for the incoming system of the two beams obtained by
taking the direct product of the matrices in Eqs. (8) and (12)
is

ρI+II
in = 1

9 (E I × E II ) + 1
6 PII

z′ [ (E I × Sx ) sin β + (E I × Sz ) cos β]

+ 1
18 PII

z′z′ [(E I × Sxx ) sin2β + (E I × Szz ) cos2β + (E I × Sxz )(2 sin β cos β )]

+ 1
6 PI

z (Sz × E II ) + 1
4 PI

z PII
z′ [(Sz × Sx ) sin β + (Sz × Sz ) cos β]

+ 1
12 PI

z PII
z′z′ [(Sz × Sxx ) sin2β + (Sz × Szz ) cos2β + (Sz × Sxz )(2 sin β cos β )]

+ 1
18 PI

zz(Szz × E II ) + 1
12 PI

zzP
II
z′ [(Szz × Sx ) sin β + (Szz × Sz ) cos β]

+ 1
36 PI

zzP
II
z′z′ [(Szz × Sxx ) sin2β + (Szz × Szz ) cos2β + (Szz × Sxz )(2 sin β cos β )]. (13)

The matrix for the outgoing system is

ρout = M ρI+II
in M†. (14)

The projection operators P(Ps) which are used to select
outgoing positronium states with specific spin are defined

such that only certain matrix elements in Eq. (15) nonzero,
namely, those with (i) SC = MC = SD = MD = 0 and operator
P(para), (ii) SC = MC = 0, SD = 1, MD = 0, ±1 and operator
P(para−ortho), (iii) SC = 1, MC = 0, ±1, SD = MD = 0 and op-
erator P(ortho−para), and (iv) SC = SD = 1, MC = MD = 0, ±1
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and operator P(ortho).

〈SCMC |〈SDMD|ρoutP
(Ps)|SCMC〉|SDMD〉

=
∑

MAMB

∑
MA′ MB′

〈SCMC |〈SDMD|M|1MA〉|1MB〉

× 〈1MA|〈1MB|ρI+II
in |1MA′ 〉|1MB′ 〉

× 〈1MA′ |〈1MB′ |M†|SCMC〉|SDMD〉. (15)

The probabilities for positronium states with specific spins
are calculated from the diagonal elements of ρoutP(para),
ρoutP(para−ortho), ρoutP(ortho−para), and ρoutP(ortho). From the
traces, Tr (ρoutP(para)), Tr (ρoutP(ortho)), Tr (ρoutP(para−ortho) +
ρoutP(ortho−para)), and Tr (ρoutP(para) + ρoutP(para−ortho) +
ρoutP(ortho−para) + ρoutP(ortho)), we get the probabilities for
final states with only parapositronium, only orthopositronium,
a combination of para- and orthopositronium and the total
probability, respectively.

III. RESULTS

The probabilities for specific outgoing positronium spin
states are given in Table II. All the expressions are functions
of β, the angle between the polarization vectors of the two
beams and the real parts of the complex scattering am-
plitudes, f SeSp , which have units of length. The complex
scattering amplitudes f SeSp correspond to specific geometries
of the scattered and initial beam directions. Differential scat-
tering cross sections could be obtained from the trace Tr
(( f SeSp )( f SeSp )∗ρout) and integrated to obtain total scattering
cross sections. We calculate the total probability for positro-
nium scattering from the trace Tr (ρout). As noted earlier Se

and Sp can be 0 or 1. With f SeSp = rSeSpeiθSeSp , the probabil-
ities are functions of (r00)2, (r11)2, and (r01)2 + (r10)2. The
angle-integrated total scattering cross sections reported in the

literature are proportional to the probabilities and can be used
to estimate the values of (r00)2, (r11)2 and (r01)2 + (r10)2.
We define a2 = 1

64 (r00)2, d2 = 1
64 (r11)2, and b2 + c2 =

1
64 (r01)2 + 1

64 (r10)2.

A. Total probabilities

The total probability for positronium scattering is

Pt = 4
3 PI

zzP
II
z′z′ (3 cos2β − 1)[a2 + d2 − (b2 + c2)]

− 8PI
z PII

z′ cos β[a2 − 3d2 + (b2 + c2)]

+ 16
3 [a2 + 7d2 + 2(b2 + c2)]. (16)

The probability for producing final states with only para-
positronium (Pp), a combination of para- and orthopositro-
nium (Pb) or only orthopositronium (Po) are given below in
Eq. (17). Note that Pp + Pb + Po = Pt .

Pp = [
4
3 − 2PI

z PII
z′ cos β + PI

zzP
II
z′z′

(
cos2β − 1

3

)]
(a2 + d2),

(17a)

Pb = [
16
3 − 4PI

z PII
z′ cos β − 2PI

zzP
II
z′z′

(
cos2β − 1

3

)]
(b2 + c2),

(17b)

Po = 3Pp + Pb + (
PI

z PII
z′ cos β + 1

)
(32 d2). (17c)

A method for measuring the tensor polarizations is pre-
sented in Ref. [30]. We use the β dependence to obtain
expressions for the products of the polarization vectors and
tensors of the incoming beams. We set β = 0◦ and 90◦ in
Eqs. (16) and (17) and manipulate the results to get

PI
z PII

z′ = 2
(
Pβ=0

o − Pβ=0
p

) − Pβ=0
t

2
(
Pβ=90

o − Pβ=90
p

) − Pβ=90
t

− 1. (18)

We set β = 90◦ and 54.7◦(cos−1
√

1
3 ≈ 54.7◦) in

Eq. (17a), use Eq. (18), and rearrange to get

PI
zzP

II
z′z′ = 4 − Pβ=90

p

Pβ=54.7
p

[
4 −

√
12

(
2
(
Pβ=0

o − Pβ=0
p

) − Pβ=0
t

2
(
Pβ=90

o − Pβ=90
p

) − Pβ=90
t

− 1

)]
. (19)

The four possible choices for the polarization vector and ten-
sor products are as follows: (i) the spin magnetic quantum
number M of each beam is 1 or −1 (spins aligned), PI

z PII
z′ = 1,

PI
zzP

II
z′z′ = 1, (ii) the spins are oppositely aligned, PI

z PII
z′ = −1,

PI
zzP

II
z′z′ = 1, (iii) the M value for one of the beams equals zero,

PI
z PII

z′ = 0, PI
zzP

II
z′z′ = −2, and (iv) the M values for both beams

equal zero, PI
z PII

z′ = 0, PI
zzP

II
z′z′ = 4. The tensor-product values

for the four choices add as follows: (1) + (1) − (−2) − (4) =
0. The probabilities given in Eqs. (16) and (17) also add in the
same way, for example,

P(i)
t + P(ii)

t − P(iii)
t − P(iv)

t = 0, (20a)

P(i)
p + P(ii)

p − P(iii)
p − P(iv)

p = 0. (20b)

P(i)
t is the value of the total probability for choice (i) with

PI
z PII

z′ = 1, PI
zzP

II
z′z′ = 1 and P(i)

p is the value of the probabil-

ity for producing final states with only parapositronium for
choice (i).

It is difficult to calculate the scattering amplitudes directly.
Instead, we set β = 0◦ in Eq. (16), substitute the values of
PI

z PII
z′ and PI

zzP
II
z′z′ for choices (i), (ii), and (iii) and derive

(r11)2 = P(i)
t , (21a)

(r01)2 + (r10)2 = 4P(iii)
t − 2P(i)

t , (21b)

(r00)2 = P(i)
t + 4P(ii)

t − 4P(iii)
t . (21c)

B. Probabilities for specific spins

The probabilities for all possible final states are given in
Table II. Here, we focus on the cases in which the spins of
the initial beams are aligned, represented by the basis vectors
|11〉|11〉 and |1−1〉|1−1〉, or oppositely aligned, with vectors
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TABLE II. Probabilities for all possible final states just after a single collision between two orthopositronium beams. Initial states with
spins SA = SB = 1 and M values equal to 1, 0, or −1 are given in column 2. Final states with only parapositronium (SC = SD = 0 and M
values equal to 0), a combination of para- and orthopositronium (SC = 0, SD = 1 or SC = 1, SD = 0 and M values equal to 1, 0, or -1) or only
orthopositronium (SC = 1, SD = 1, and M values equal to 1, 0, or -1), are listed in column 3. The values of |�M| = |(MC + MD ) − (MA + MB )|
are in column 4. The probabilities are functions of β, the angle between the polarization vectors of the two beams and scattering amplitudes
defined as follows: a2 = 1

64 (r00)2, d2 = 1
64 (r11)2 and b2 + c2 = 1

64 (r01)2 + 1
64 (r10)2.

Initial Final |�M| Probabilities

1 |11〉|11〉 〈00|〈00| 2 (a2 + d2)(1 − cos β )2

2 |1−1〉|1−1〉 〈00|〈00| 2 (a2 + d2)(1 − cos β )2

3 |11〉|10〉 〈00|〈00| 1 2(a2 + d2)(1 − cos2β )
4 |1−1〉|10〉 〈00|〈00| 1 2(a2 + d2)(1 − cos2β )
5 |10〉|11〉 〈00|〈00| 1 2(a2 + d2)(1 − cos2β )
6 |10〉|1−1〉 〈00|〈00| 1 2(a2 + d2)(1 − cos2β )
7 |11〉|1−1〉 〈00|〈00| 0 (a2 + d2)(1 + cos β )2

8 |1−1〉|11〉 〈00|〈00| 0 (a2 + d2)(1 + cos β )2

9 |10〉|10〉 〈00|〈00| 0 4(a2 + d2)cos2β

10 |11〉|11〉 〈00|〈10|, 〈10|〈00| 2 (b2 + c2)(1 − cos β )2

11 |1−1〉|1−1〉 〈00|〈10|, 〈10|〈00| 2 (b2 + c2)(1 − cos β )2

12 |10〉|11〉 〈00|〈1−1|, 〈1−1|〈00| 2 (b2 + c2)(1 − cos β )2

13 |10〉|1−1〉 〈00|〈11|, 〈11|〈00| 2 (b2 + c2)(1 − cos β )2

14 |11〉|11〉 〈00|〈11|, 〈11|〈00| 1 2(b2 + c2)(1 − cos2β )
15 |1−1〉|1−1〉 〈00|〈1−1|, 〈1−1|〈00| 1 2(b2 + c2)(1 − cos2β )
16 |11〉|1−1〉 〈00|〈11|, 〈11|〈00| 1 2(b2 + c2)(1 − cos2β )
17 |1−1〉|11〉 〈00|〈1−1|, 〈1−1|〈00| 1 2(b2 + c2)(1 − cos2β )
18 |11〉|10〉 〈00|〈10|, 〈10|〈00| 1 2(b2 + c2)(1 − cos2β )
19 |1−1〉|10〉 〈00|〈10|, 〈10|〈00| 1 2(b2 + c2)(1 − cos2β )
20 |10〉|10〉 〈00|〈11|, 〈00|〈1−1| 1 2(b2 + c2)(1 − cos2β )
21 |10〉|10〉 〈11|〈00|, 〈1−1|〈00| 1 2(b2 + c2)(1 − cos2β )
22 |11〉|1−1〉 〈00|〈10|, 〈10|〈00| 0 (b2 + c2)(1 + cos β )2

23 |1−1〉|11〉 〈00|〈10|, 〈10|〈00| 0 (b2 + c2)(1 + cos β )2

24 |10〉|11〉 〈00|〈11|, 〈11|〈00| 0 (b2 + c2)(1 + cos β )2

25 |10〉|1−1〉 〈00|〈1−1|, 〈1−1|〈00| 0 (b2 + c2)(1 + cos β )2

26 |11〉|10〉 〈00|〈11|, 〈11|〈00| 0 4(b2 + c2)cos2β

27 |1−1〉|10〉 〈00|〈1−1|, 〈1−1|〈00| 0 4(b2 + c2)cos2β

28 |11〉|11〉 〈11|〈1−1|, 〈1−1|〈11| 2 [a2 + d2 + (b2 + c2)](1 − cos β )2

29 |1−1〉|1−1〉 〈11|〈1−1|, 〈1−1|〈11| 2 [a2 + d2 + (b2 + c2)](1 − cos β )2

30 |11〉|11〉 〈10|〈10| 2 (a2 + d2)(1 − cos β )2

31 |1−1〉|1−1〉 〈10|〈10| 2 (a2 + d2)(1 − cos β )2

32 |11〉|1−1〉 〈11|〈11| 2 16d2(1 − cos β )2

33 |1−1〉|11〉 〈1−1|〈1−1| 2 16d2(1 − cos β )2

34 |10〉|11〉 〈10|〈1−1|, 〈1−1|〈10| 2 (4d2 + b2 + c2)(1 − cos β )2

35 |10〉|1−1〉 〈10|〈11|, 〈11|〈10| 2 (4d2 + b2 + c2)(1 − cos β )2

36 |11〉|11〉 〈11|〈10|, 〈10|〈11| 1 2[4d2 + (b2 + c2)](1 − cos2β )
37 |1−1〉|1−1〉 〈1−1|〈10|, 〈10|〈1−1| 1 2[4d2 + (b2 + c2)](1 − cos2β )
38 |11〉|1−1〉 〈11|〈10|, 〈10|〈11| 1 2[4d2 + (b2 + c2)](1 − cos2β )
39 |1−1〉|11〉 〈1−1|〈10|, 〈10|〈1−1| 1 2[4d2 + (b2 + c2)](1 − cos2β )
40 |10〉|10〉 〈10|〈11|, 〈10|〈1−1| 1 2[4d2 + (b2 + c2)](1 − cos2β )
41 |10〉|10〉 〈11|〈10|, 〈1−1|〈10| 1 2[4d2 + (b2 + c2)](1 − cos2β )
42 |11〉|10〉 〈11|〈1−1|, 〈1−1|〈11| 1 2(a2 + d2 + b2 + c2)(1 − cos2β )
43 |1−1〉|10〉 〈11|〈1−1|, 〈1−1|〈11| 1 2(a2 + d2 + b2 + c2)(1 − cos2β )
44 |11〉|10〉 〈10|〈10| 1 2(a2 + d2)(1 − cos2β )
45 |1−1〉|10〉 〈10|〈10| 1 2(a2 + d2)(1 − cos2β )
46 |10〉|11〉 〈11|〈1−1|, 〈1−1|〈11| 1 2(a2 + d2)(1 − cos2β )
47 |10〉|1−1〉 〈11|〈1−1|, 〈1−1|〈11| 1 2(a2 + d2)(1 − cos2β )
48 |11〉|10〉 〈11|〈11| 1 32d2(1 − cos2β )
49 |1−1〉|10〉 〈1−1|〈1−1| 1 32d2(1 − cos2β )
50 |10〉|11〉 〈10|〈10| 1 2(a2 + 9d2)(1 − cos2β )
51 |10〉|1−1〉 〈10|〈10| 1 2(a2 + 9d2)(1 − cos2β )
52 |11〉|11〉 〈11|〈11| 0 16d2(1 + cos β )2

53 |1−1〉|1−1〉 〈1−1|〈1−1| 0 16d2(1 + cos β )2
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TABLE II. (Continued.)

Initial Final |�M| Probabilities

54 |11〉|1−1〉 〈11|〈1−1|, 〈1−1|〈11| 0 [a2 + d2 + (b2 + c2)](1 + cos β )2

55 |1−1〉|11〉 〈11|〈1−1|, 〈1−1|〈11| 0 [a2 + d2 + (b2 + c2)](1 + cos β )2

56 |11〉|1−1〉 〈10|〈10| 0 (a2 + d2)(1 + cos β )2

57 |1−1〉|11〉 〈10|〈10| 0 (a2 + d2)(1 + cos β )2

58 |10〉|11〉 〈11|〈10|, 〈10|〈11| 0 (4d2 + b2 + c2)(1 + cos β )2

59 |10〉|1−1〉 〈1−1|〈10|, 〈10|〈1−1| 0 (4d2 + b2 + c2)(1 + cos β )2

60 |11〉|10〉 〈11|〈10|, 〈10|〈11| 0 4(4d2 + b2 + c2)cos2β

61 |1−1〉|10〉 〈1−1|〈10|, 〈10|〈1−1| 0 4(4d2 + b2 + c2)cos2β

62 |10〉|10〉 〈11|〈1−1|, 〈1−1|〈11| 0 4(a2 + d2)cos2β

63 |10〉|10〉 〈10|〈10| 0 4(a2 + 9d2)cos2β

|11〉|1−1〉 and |1−1〉|11〉. For the collision A + B → C + D,
|�M| = |(MC + MD) − (MA + MB)|.

Consider first the final states with only parapositronium.
When the incoming spins are aligned (rows 1 and 2 of
Table II), the probabilities equal (a2 + d2)(1 − cos β )2 and
|�M| = 2. When the spins are oppositely aligned (rows 7 and
8), the probabilities equal (a2 + d2)(1 + cos β )2 and |�M| =
0. For the probabilities in rows 7, 8, and 9 to be equal, cos β =
− 1

3 . This value of cos β gives probabilities of 16
9 (a2 + d2) for

|�M| = 1 or 2, which are higher by a factor of 4 than the
values for |�M| = 0.

Next, consider the final states with a combination of para-
and orthopositronium. When the incoming spins are aligned
and |�M| = 2 (rows 10 and 11), the probabilities equal
(b2 + c2)(1 − cos β )2. With |�M| = 1, and the spins either
aligned (rows 14 and 15), or oppositely aligned (rows 16
and 17), the probabilities equal 2(b2 + c2)(1 − cos2β ), and
for |�M| = 0, with oppositely aligned spins (rows 22 and
23), the probabilities equal (b2 + c2)(1 + cos β )2. For the
probabilities in rows 24 and 25 to equal those in 26 and 27,
respectively, cos β = − 1

3 . This value of cos β gives probabil-
ities of 16

9 (b2 + c2) for |�M| = 1 or 2, which are higher by a
factor of 4 than the values for |�M| = 0.

Finally, consider the final states with only orthopositron-
ium. When the incoming spins are aligned, the probabilities
are [a2 + d2 + (b2 + c2)](1 − cos β )2 (rows 28 and 29) or
(a2 + d2)(1 − cos β )2 (rows 30 and 31) for |�M| = 2,
2[4d2 + (b2 + c2)](1 − cos2β ) (rows 36 and 37) for |�M| =
1 and 16d2(1 + cos β )2 (rows 52 and 53) for |�M| = 0. On
the other hand, with oppositely aligned spins, the probabil-
ities are 16d2(1 − cos β )2 (rows 32 and 33) for |�M| = 2,
2[4d2 + (b2 + c2)](1 − cos2β ) (rows 38 and 39) for |�M| =
1 and [a2 + d2 + (b2 + c2)](1 + cos β )2 (rows 54 and 55) or
(a2 + d2)(1 + cos β )2 (rows 56 and 57) for |�M| = 0. For
the probabilities in rows 58 and 59 to equal those in 60 and
61, respectively, cos β = − 1

3 . With this value of cos β, for
either aligned or oppositely aligned spins the probabilities
when |�M| = 0 are lower than the probabilities for |�M| = 2
by a factor of 4, but for |�M| = 1, the probabilities are the
same.

C. Quenching probabilities

The quenching probability is the probability of produc-
ing parapositronium from the conversion of the incoming

orthopositronium, just after the collision. We consider two
possibilities, final states with only para Ps or with a combina-
tion of para- and ortho Ps. Final states with only para Ps were
discussed earlier. The probability of finding both types of Ps
in the final state equals (b2 + c2)(6 − 4 cos β − 2 cos2β ) (add
rows 10, 11, 14, and 15 of Table II), when the initial ortho-Ps
spins are aligned and (b2 + c2)(6 + 4 cos β − 2 cos2β ) (add
rows 16, 17, 22, and 23 of Table II) when the initial spins are
oppositely aligned.

The total probability for final states with only para Ps, both
para and ortho Ps, and only ortho Ps, equals 12(a2 + d2),
48(b2 + c2) and 36 (a2 + 9d2) + 48 (b2 + c2), respectively,
that is, there is no β dependence. Using these expressions,
we get the ratio of the quenching probability to the total
probability for positronium scattering as

R = a2 + d2 + 4(b2 + c2)

4[a2 + 7d2 + 2(b2 + c2)]
. (22)

D. Comparisons with published work

As noted in the Introduction, cross sections for specific
transitions in positronium-positronium scattering have been
reported in the literature. The differential cross section for a
polarized beam is equal to the trace of the outgoing density
matrix (see p. 749, Ref. [22] or p. 523, Ref. [25]). The prob-
abilities for the production of specific spin states, listed in
Table II, were obtained from the diagonal elements of the out-
going density matrix [Eqs. (14) and (15)]. In our comparisons,
we assume that the reported cross sections are proportional
to the probabilities by a factor �. We focus on the work of
Ivanov et al. [16].

For a process with two positronium atoms, an antisym-
metric four-particle total wave function is required. With two
electrons and two positrons, each with a spin of 1

2 , this is a
complicated process (see p. 723, Ref. [25]). The spin-wave
function can be totally symmetric as shown in the Young
tableaux (i), below, or have intermediate symmetry as shown
in (ii) and (iii).
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Orbital wave functions that match each of the three symme-
tries must be properly combined with the spin-wave functions
to get the total wave function. We are only interested in
the total spins, which using the sign conventions for Young
tableaux, are (i) St = 1

2 + 1
2 + 1

2 + 1
2 = 2, (ii) St = 1

2 + 1
2 +

1
2 − 1

2 = 1, and (iii) St = 1
2 + 1

2 − 1
2 − 1

2 = 0.
In our analysis, a total spin St = 1 can be obtained with to-

tal electron spin Se = 0 and total positron spin Sp = 1 or with
Se = 1 and Sp = 0. In Refs. [13,14,16,21], s-wave scattering
is considered and transitions with St = 1 are not allowed. We
include St = 1 transitions; therefore, the scattering amplitudes
for Se = 0, Sp = 1 or Se = 1, Sp = 0 are nonzero, and the
probabilities for transitions containing these amplitudes are
functions of (b2 + c2).

We have studied ortho Ps–ortho Ps scattering represented
by A + B → C + D, not Ps–Ps scattering as in Ref. [16];
therefore, we do not have any transitions with para Ps in the
initial states. However, the probabilities for transitions with
ortho Ps in the initial states, specifically those in rows 7–9
and rows 52–63 of Table II, do correspond to specific cross
sections in Eqs. (13), (16), and (18–21) of Ref. [16]. In making
our comparisons, we set β = 0◦ and adopt the convention of
Ref. [16] for the spin magnetic quantum numbers, namely,
that MA � MB and MC � MD. We find that the cross sections
σ11→11 in Eq. (20) and σ11→00 in Eq. (21) of Ref. [16] equal
6(a2 + 9d2) � and 2(a2 + d2) �, respectively. Using the val-
ues of σ11→11 = 1.11 × 10−14 cm2 (see Fig. 3, Ref. [16]) and
σ11→00 = 6.51 × 10−16 cm2 (see text below Fig. 5, Ref. [16]),
we get

(r11)2 = 1.22 × 10−14 �−1 cm2, (23a)

(r00)2 = 8.6 × 10−15 �−1 cm2. (23b)

We calculate a2 = 1
64 (r00)2 and d2 = 1

64 (r11)2, set (b2 +
c2) = 0, and substitute the values in Eq. (22) to get R = 0.055.
We note that the transitions not listed in Ref. [16] correspond
to transitions in Table II with probabilities that equal zero for
β = 0◦ or (b2 + c2) = 0.

The time taken for an initial ensemble of partially po-
larized orthopositronium atoms to be converted to a fully
polarized one is important for experiments attempting to make
a positronium Bose-Einstein condensate [31]. An estimate for
the time is made using the cross section for mutual spin con-
version of orthopositronium to parapositronium via electron
exchange [32]. The spin-exchange quenching cross section
σSEQ is defined by Cassidy and Mills and calculated to be
5.2 × 10−15cm2 [10] using values from Ref. [16]. In terms of
the probabilities from Table II, with β = 0◦,

σSEQ = σ1−111→0000 + σ1−111→1010 = 16(a2 + d2)�. (24)

An increase in this cross section will result in a smaller
conversion time [32]. If the possibility of quenching to a final
state involving both para- and orthopositronium is included,
then

σSEQ = σ1−111→0000 + σ1−111→1010 + σ1−111→0010

+ σ1−111→1000

= 4(1 + cos β )2(a2 + d2 + b2 + c2)�. (25)
Measurement of this cross section can be used to obtain the

amplitudes (r01)2 + (r10)2.
Ps–Ps scattering was also studied in 2019 by Higgins et al.

[21]. The transitions from initial ortho-Ps states, with nonzero
cross sections, shown in Table III of Ref. [21], correspond to
transitions in rows 7–9, 52–57, 60–61, and 63 of Table II of
our work. The transitions in rows 58, 59, and 62 of Table II
are missing in Ref. [21].

IV. SUMMARY

Angular-momentum coupling is used to determine all
possible final spin states in a single collision between two
orthopositronium beams in which both electron and positron
exchange can occur without a spin flip. The scattering matrix
for the transitions is given. The probabilities for the pro-
duction of para- and orthopositronium are calculated from
the diagonal elements of the density matrix for the outgo-
ing system. The probabilities for all possible final states are
given in terms of the scattering amplitudes and the angle
β between the polarization vectors of the two beams. We
show that for certain values of β, (i) the real parts of the
scattering amplitudes can be obtained from measurements of
total probabilities for specific initial orthopositronium spins,
(ii) values for the polarization vector and tensor products can
be obtained from measurements of probabilities, (iii) nonzero
probabilities can be obtained for all possible final states, (iv)
the probabilities are lower when the sum of the spin magnetic
quantum numbers of the initial states equals that of the final
states, and (v) the probability for the quenching of the in-
coming orthopositronium is larger when the beam spins are
aligned than when they are opposite. We give an expression
for the ratio of the quenching probability to the total probabil-
ity which is independent of β. We compare our work to that
of Ref. [16] and obtain numerical estimates for the real parts
of the scattering amplitudes and the ratio of the quenching
probability to the total probability. We expand the definition of
spin-exchange quenching given in Ref. [10]. The techniques
used in this work can be applied to positronium ion formation
in the process Ps + Ps → e+ + Ps−.
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