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Positive-energy spectra of atomic hydrogen in a magnetic field:
A comparative study between different theoretical approaches
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The problem of photoionization of atomic hydrogen in a white-dwarf-strength magnetic field is revisited
to understand the existing discrepancies in the positive-energy spectra obtained by a variety of theoretical
approaches reported in the literature. Oscillator strengths for photoionization are calculated with the adiabatic-
basis-expansion method developed by Mota-Furtado and O’Mahony [Phys. Rev. A 76, 053405 (2007)]. A
comparative study is performed between the adiabatic-basis-expansion method and our previously developed
coupled-channel theory [L. B. Zhao, O. Zatsarinny, and K. Bartschat, Phys. Rev. A 94, 033422 (2016)]. A
detailed analysis of the positive-energy spectra obtained here and those from other theoretical approaches shows
that the adiabatic-basis-expansion method can produce more accurate positive-energy spectra than other reported
approaches for low field strengths.
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I. INTRODUCTION

Understanding the behavior of atoms in the presence of
magnetic fields has been a subject of considerable inter-
est, since Zeeman experimentally discovered the splitting of
atomic spectral lines in a magnetic field at the end of the 19th
century [1]. From then on, a great deal of effort has been
devoted to the study of magnetized atomic systems. Many
early attempts in this aspect were made within the framework
of classical theory, before the establishment of quantum me-
chanics gave researchers a deeper insight into the dynamics
of magnetized atoms. Perturbation theory achieved prominent
success in quantitatively explaining the splitting of spectral
lines of hydrogen atoms in a weak magnetic field in the early
stages of quantum mechanics. However, it took a long time to
understand the behavior of atoms in a strong magnetic field,
i.e., the so-called quadratic Zeeman effect.

A spectroscopic experiment on highly excited barium
atoms in a strong magnetic field of laboratory strength, re-
ported by Garton and Tomkins [2] in 1969, stimulated interest
in the quadratic Zeeman effect. Such interest was reinforced
by a growing number of subsequent experiments on other
strongly magnetized atoms (see, e.g., Refs. [3,4] and refer-
ences therein). The regular quasi-Landau resonance structures
observed in the negative-energy region close to the ionization
thresholds were interpreted by the semiclassical theory devel-
oped by Du and Delos [5]. The diamagnetic Rydberg spectra
of the alkali-metal atoms in the positive-energy region were
also reproduced by fully quantum-mechanical approaches
[6,7]. Undoubtedly, the study on the structures and dynamics
of atoms in the presence of magnetic fields has made signifi-
cant headway up to the 1990s.

The discovery of superstrong magnetic fields in white-
dwarf stars with field strengths 102–105 T and neutron stars

with field strengths 107–109 T reinforced interest in theoreti-
cal investigations of atoms in the presence of high magnetic
fields [1,8]. In astronomy and astrophysics, spectra from
highly accurate theories are indispensable for determining the
size of magnetic fields in the atmospheres of white-dwarf and
neutron stars. So far, many efforts have been dedicated to
developing nonperturbative theories and numerical methods
to calculate properties of magnetized atoms (see, e.g., Ref. [9]
and references therein). A multiconfiguration Hartree-Fock
method was developed to calculate the properties of magne-
tized hydrogen atoms [10,11]. This method provides a tool
to model spectral lines of bound-bound transitions for hy-
drogen atoms in magnetic fields of both white dwarfs and
neutron stars. More recently, a finite-basis-size method [12]
was extended to calculate discrete spectral lines of the Lyman,
Balmer, and Paschen series for magnetized hydrogen atoms
[13,14].

At this time, it has become possible to model discrete spec-
tra of hydrogen atoms in an arbitrary magnetic field, based
on the above-mentioned theoretical approaches. While this
represents significant progress in astrophysical applications,
theories for describing multielectron atoms in a magnetic field
are still very scarce, and far from satisfying the demands of
analyzing the spectra observed in magnetic white dwarfs and
neutron stars. The origin of the problem can be attributed to
the difficulties of treating electron correlations in a strong
magnetic field. Very recently, the Zeeman splitting lines of
multielectron atoms, such as He, Ca, Mg, Fe, and Na, were
discovered in the atmospheres of magnetic white dwarfs [15].
Consequently, it is inevitable to develop theories and numeri-
cal methods to calculate the properties of strongly magnetized
multielectron atoms.

As mentioned above, identifications of discrete spectra
of some magnetized atoms have been successful. However,

2469-9926/2021/103(2)/022807(9) 022807-1 ©2021 American Physical Society

https://orcid.org/0000-0001-7493-3477
https://orcid.org/0000-0001-6215-5014
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.022807&domain=pdf&date_stamp=2021-02-09
https://doi.org/10.1103/PhysRevA.76.053405
https://doi.org/10.1103/PhysRevA.94.033422
https://doi.org/10.1103/PhysRevA.103.022807


L. B. ZHAO, K. D. WANG, AND K. BARTSCHAT PHYSICAL REVIEW A 103, 022807 (2021)

the analysis of continuum spectra observed from magnetic
celestial objects suffers from the lack of accurate photoioniza-
tion cross sections. To our knowledge, only a few theoretical
approaches have been presented for describing bound-free
transitions of hydrogen atoms in magnetic fields with white-
dwarf-field strengths. Alijah et al. [16] developed a theoretical
approach based on multichannel quantum defect theory to de-
scribe bound-free transitions for magnetized hydrogen atoms.
The wave functions for the continuum states were obtained by
numerically solving the coupled Schrödinger equations. The
photoionization spectrum from the ground state was published
for a magnetic field of 2000 T, and a Rydberg series of reso-
nance states was identified. The authors expressed confidence
that an extension to field strengths lower than 2000 T was
possible with some modifications of their approach.

Delande et al. [17] presented a complex-rotation method
to calculate positive-energy spectra of hydrogen atoms in a
magnetic field. The photoionization spectrum from the ground
state in a magnetic field of 23 500 T was reported. This
spectrum has become the benchmark for testing theories of
bound-free transitions in a strong magnetic field. Merani et al.
[18] developed a complex-coordinate method similar to that
of Delande et al. to produce the vast amount of data on
photoionization cross sections as a function of field strengths
and energies that are required for the analysis of spectra
observed in magnetic celestial objects. Balmer and Paschen
bound-free opacities were determined from the obtained cross
sections. Zhao and Stancil [19] presented a computational
scheme based on the complex-rotation method using a mixed
Slater-Landau basis to yield continuum spectra of magnetized
hydrogen atoms. In order to describe atomic hydrogen dia-
magnetism, Wang and Greene [20] combined R-matrix theory
with multichannel quantum defect theory to construct a theo-
retical approach to calculate photoionization cross sections of
hydrogen atoms in magnetic fields with strengths of 103–104

T. However, this approach did not reproduce the continuum
spectrum at 2000 T published by Alijah et al. [16].

The discrepancies of the continuum spectrum at 2000 T
from the two theoretical studies mentioned above motivated
us to further explore the dynamics of bound-free transitions
in a strong magnetic field. A coupled-channel theory was
developed for this purpose [21], but this theory could repro-
duce neither the spectrum of Alijah et al. [16] nor that of
Wang and Greene [20]. This unexpected result stimulated us
to revisit the problem of photoionization of atomic hydrogen
in a white-dwarf-strength magnetic field. In the present paper,
we adopt the adiabatic-basis-expansion method established
by Mota-Furtado and O’Mahony [22] to perform such an
investigation. Our purpose is to elucidate potential reasons for
the discrepancies in the continuum spectra at 2000 T obtained
in the various calculations.

This paper is organized as follows. Section II is devoted to
outlining the adiabatic-basis-expansion method developed by
Mota-Furtado and O’Mahony [22], which is used to study the
photoionization of hydrogen atoms in a strong magnetic field
in the current paper. Since there appear to be some inconsis-
tencies in the notation of Ref. [22], repeating the information
while adding some details about our treatment seems essential
for making this paper self-contained. In Sec. III, the adiabatic-
basis-expansion method is applied to calculating continuum

spectra of magnetized hydrogen atoms. A comparative study
of these spectra close to the ionization thresholds is performed
between this method and our previously developed coupled-
channel theory [21]. The predicted continuum spectra are
also compared to those from other theoretical approaches. A
detailed analysis of the existing discrepancies among the con-
tinuum spectra obtained by the different theoretical methods
is presented in this section. Section IV summarizes the results
of the current paper and our main conclusions regarding pho-
toionization of hydrogen atoms in strong magnetic fields.

Atomic units are used throughout this paper unless other-
wise noted.

II. THEORETICAL METHOD

The adiabatic-basis-expansion method developed to study
photoionization of hydrogen atoms in the presence of mag-
netic fields was formulated by Mota-Furtado and O’Mahony
in Ref. [22], where more theoretical details can be found. Here
we only outline the general flow of arguments and point out
significant features relevant to the current paper.

Suppose a hydrogen atom in some initial state is placed in
a magnetic field B pointing along the z axis. The Hamiltonian
H for this atomic system is written in the form

Ĥ = −1

2
∇2 − 1

r
+ γ

2
(�̂z + 2ŝz ) + 1

8
γ 2r2 sin2 θ, (1)

where γ = B/B0 is the magnetic field strength in atomic units,
i.e., in multiples of B0 ≈ 2.35 × 105 T; �̂z and ŝz are the z com-
ponents of the orbital and spin angular momenta, respectively;
the third term (linear in γ ) is the paramagnetic potential; and
the fourth term (quadratic in γ ) is the diamagnetic potential.
For this atomic system, the orbital angular momentum is not
a good quantum number specified by �, but its projection
on the z axis is a good quantum number specified by m.
Furthermore, the z parity of the eigenstates, denoted by πz

below, is conserved. Here πz and m are adopted to identify the
hydrogen atomic states, labeled by mπz , in a magnetic field.

When such an atom is irradiated by a beam of polarized
light, it may absorb a photon and then be ionized. The electron
wave produced by the ionization process propagates from
the inner to the outer region. The entire configuration space
is divided into multiple radial sectors with radii a → a1 →
a2, . . . ,→ aN−1 → aN = b, where N is the number of the
sectors, while a and b are the inner and outer radius, respec-
tively. To begin with, the local adiabatic basis is constructed
in each sector, and then the radial wave functions or the R ma-
trices are propagated from the inner region to the asymptotic
region, sector by sector. Finally, a two-dimensional matching
to the R matrix in the asymptotic region, where the solutions
of the coupled Schrödinger equations in cylindrical coordi-
nates are attainable, is performed to extract the reactance
matrices. Throughout this paper, we will use as much as
possible the same symbols as in Ref. [22], where the details
of the adiabatic-basis-expansion method are given.

A. Adiabatic eigenstates

The first step to develop the adiabatic-basis-expansion
method is to construct the local adiabatic basis set. The
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adiabatic Hamiltonian Ĥad is written as

Ĥad
(
rn

a ; θ, φ
) = �̂2

2
(
rn

a

)2 − 1

rn
a

+ 1

8
γ 2(rn

a

)2
sin2 θ, (2)

where �̂ is the orbital angular momentum operator and rn
a is the

radius of the nth sector lying in the interval an−1 < rn
a < an.

It is often taken as the midpoint of the sector. By selecting a
basis set of spherical harmonics and calculating each matrix
element of the adiabatic Hamiltonian in the basis set selected,
one can diagonalize the resulting adiabatic Hamiltonian ma-
trix and thereby obtain the adiabatic eigenstates ϕλ(rn

a ; θ, φ)
and eigenvalues Uλ(rn

a ). The adiabatic eigenvalue curves ob-
tained can be plotted as a function of the radius r. Such curves
illustrate equal energy spacing of Landau states at large r,
which is regarded as the asymptotic region where the two-
dimensional matching can begin.

B. R-matrix propagation

A basis set of orthogonal radial functions is essential in
order to calculate the radial wave functions of the Hamil-
tonian (1) in each sector. Such a basis set was defined by
Mota-Furtado and O’Mahony [22] in terms of Legendre
polynomials, while the full basis set of the Hamiltonian (1)
consists of the product of the orthogonal radial functions,
denoted by f j (r) with j = 1, 2, 3, · · · , and the adiabatic func-
tions in one sector, ϕλ(rn

a ; θ, φ). With the basis set obtained,
the solution of the Hamiltonian equation

(Ĥ − ε)
 = 0 (3)

is practicable by matrix diagonalization. However, Ĥ is not
Hermitian in the individual sectors, due to nonvanishing sur-
face terms. Equation (3), therefore, has to be revised to ensure
the hermiticity of the Hamiltonian operator involved.

Adding L̂
 on both sides of the above equation, Eq. (3) is
rewritten as

(Ĥ + L̂ − ε)
 = L̂
. (4)

Here L̂ is the Bloch operator introduced in Ref. [22] to guar-
antee that Ĥ + L̂ is Hermitian. The above equation can be
formally solved, yielding


 = (Ĥ + L̂ − ε)−1L̂
. (5)

Here (Ĥ + L̂ − ε)−1 is the Green’s function given by

(Ĥ + L̂ − ε)−1 =
∑

k

|ψk〉〈ψk|
Ek − ε

, (6)

where ψk and Ek are eigenfunctions and eigenvalues of the
operator Ĥ + L̂ within one sector. They are obtained in each
sector by diagonalizing the matrix equation of Ĥ + L̂ with
matrix elements calculated in the basis set { f j (r)ϕλ(rn

a ; θ, φ)}.
Then each ψk in the nth sector is expressed as

ψk =
∑

jk

ck
jλ

1

r
f j (r)ϕλ

(
rn

a ; θ, φ
)
. (7)

Substituting Eq. (6) into Eq. (5) yields


 =
∑

k

|ψk〉〈ψk |̂L|
〉
Ek − ε

. (8)

The total continuum wave function 
 at any energy in the
nth sector can be formally written as


 =
∑

λ

1

r
Fλ(r)ϕλ

(
rn

a ; θ, φ
)
. (9)

The right-hand sides of the above two equations are equal.
Substituting the Bloch operator given in Ref. [22] and Eq. (7)
into the resulting equation, multiplying the equation by
ϕ∗

λ′ (rn
a ; θ, φ), and integrating over θ and φ yields equations

to relate the functions and their derivatives at the boundaries
of the nth sector. In compact matrix notation, we write these
equations as

F (an−1) = Rn
2 F ′(an) − Rn

1 F ′(an−1), (10)

F (an) = Rn
4 F ′(an) − Rn

3 F ′(an−1). (11)

Here Rn
i with i = 1, 2, 3, 4 are the sector R matrices defined

in Ref. [22], where rn
i is used instead of Rn

i . While one can
propagate the radial wave functions from one sector to its
adjacent sector using the above two equations, it is more
convenient to propagate the R matrix, which relates the radial
wave function and its derivative, F (an) = R(an)F ′(an). The
relationship between the R matrices on the inner and outer
boundaries of the nth sector is derived from Eqs. (10) and
(11) as

R(an) = Rn
4 − Rn

3

[
Rn

1 + R(an−1)
]−1

Rn
2 . (12)

It should be emphasized that R(an) and R(an−1) are repre-
sented in the same adiabatic basis set as the sector R matrices.
Since the adiabatic basis varies from one sector to another, it
is essential to change the basis representation of the R matrix
for its propagation. The matrix elements of the transformation
matrix are

(T n−1,n)λλ′ = 〈
ϕλ

(
rn

a ; θ, φ
)∣∣ϕλ′

(
rn

a ; θ, φ
)〉
. (13)

The R matrix transformed from one sector to its adjacent
sector is given by

R = T̃ n−1,nRT n−1,n, (14)

where T̃ n−1,n is the transpose of T n−1,n.
Equations (12) and (14) can be used to propagate the R ma-

trix sector by sector. Such a propagation starts at r = a, where
the R matrix of the field-free hydrogen atom can be calculated
using Seaton’s code [23], and stops in the asymptotic region
with r = b.

Mota-Furtado and O’Mahony [22] actually provided an-
other scheme to propagate the radial wave functions or the R
matrices. Their scheme adopts the global sector R matrices
derived in Ref. [24] and denoted by Rn

i in the present paper.
The radial wave function and its derivative on the boundaries
of the first sector and the nth sector are related by

F (a) = Rn
2F ′(an) − Rn

1F ′(a), (15)

F (an) = Rn
4F ′(an) − Rn

3F ′(a). (16)

We note that the sector-by-sector propagation is hidden in
the global sector R matrices. From the above two equations,
one can obtain an expression to relate the R matrices on the
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boundaries of the first sector and the final sector:

R(b) = Rn
4 − Rn

3

[
Rn

1 + R(a)
]−1Rn

2. (17)

In the current paper, we used the scheme with the global sector
R matrices as given in Eq. (17) to propagate the R matrix.

C. Two-dimensional matching in the asymptotic region

Since the electron motion in ρ is bound, the Coulomb
potential for large z can be expanded into a series:

− 1√
z2 + ρ2

= −1

z
+ ρ2

2z3
+ O

(
1

z5

)
+ · · ·. (18)

The Hamiltonian as specified by Eq. (1) becomes separable in
cylindrical coordinates as z → ∞. It is written as

Ĥ = −1

2

d2

dz2
− 1

z
+ ρ2

2z3
+ O

(
1

z5

)
+ ĤL, (19)

where ĤL is the Hamiltonian for the Landau states i(θ, φ).
The potential (18) can be approximated by −1/z for suffi-
ciently large z, where the jth linearly independent solution
of the Hamiltonian system (19) is written as


 j =
∑

i

i(ρ, φ)[si(z)δi j + ci(z)Ki j]. (20)

Here si(z) and ci(z) are the energy-normalized regular and
irregular Coulomb functions defined by Seaton [25], while
Ki j are the matrix elements of the reactance matrix K , which
is determined by a two-dimensional matching procedure. The
functions si(z) and ci(z) are calculated using the code written
in Ref. [21]. We performed the matching on an arc at r = b.

Note that an extra index j was added in Fλ and 
 to label
the solution specified in Eq. (9). We set Eq. (9) with j added
equal to Eq. (20) and then project both sides of the resulting
equation onto ϕλ(r; θ, φ). This yields

1

r
Fλ j (r) =

∑
i

[Pλi(r)δi j + Qλi(r)Ki j], (21)

with

Pλi(r) = r
∫

ϕ∗
λ (r; θ, φ)i(ρ, φ)si(z)d� (22)

and

Qλi(r) = r
∫

ϕ∗
λ (r; θ, φ)i(ρ, φ)ci(z)d�. (23)

The derivatives of Pλi(r), Qλi(r), and Fλ j (r) with respect to r
can be worked out from the above three equations. Using the
definition of the R matrix, one obtains

R = [P + QK][P′ + Q′K]−1, (24)

where the R matrix at r = b is calculated from Eq. (17).
Rearranging the above equation yields

K = −[RQ′ − Q]−1[RP′ − P]. (25)

We note that our two-dimensional matching procedure given
above is similar to that employed by Watanabe and Komine

[7], but it differs from that of Mota-Furtado and O’Mahony
[22].

D. Differential oscillator strength and cross sections

The differential oscillator strength for the photoionization
process from an initial state 
i with energy εi to a final state

−

j with energy ε is given by

df j,i

dε
= 2(ε − εi )|〈
−

j |D|
i〉|2, (26)

where D is the electric dipole operator in the length gauge and

−

j is the energy-normalized incoming wave function. If the
influence of the magnetic field on the atom is negligibly small
in the region close to the nucleus, 
−

j in this region reduces to


−
j =

∑
�

1

r
F−

� j (r)Y�m(θ, φ), (27)

where F−
� j can be written as a product of the field-free solution,

which is the diagonal matrix with elements Si j = siδi j , and
a constant denoted by A−, which should be determined by
means of the asymptotic solution. From Eq. (15), we have[

S(a) + RN
1 S′(a)

]
A− = RN

2 F ′−(b), (28)

where the F ′−(b) are the energy-normalized incoming asymp-
totic solutions, which are constructed from the standing-wave
solutions given in Sec. II C. The physical reactance matrix
is recovered using Seaton’s quantum-defect theory [25] from
the reactance matrix K . The coefficients A− are obtained by
solving the above equation. Note that they are both field and
energy dependent.

Using the obtained coefficients A−, Eq. (26) is rewritten as

df j,i

dε
= |A−

j |2 f j,i

dε

∣∣∣∣
B=0

, (29)

where f j,i

dε
|B=0 represents the field-free differential oscillator

strength. The total differential oscillator strength is an ob-
servable quantity. It is obtained by summing the differential
oscillator strengths for photoionization to the individual states
according to

dfi

dε
=

∑
j

f j,i

dε
. (30)

The photoionization cross section is related to the total differ-
ential oscillator strength by

σi(ε) = 2π2α
dfi

dε
, (31)

where α is the fine-structure constant.

III. RESULTS AND DISCUSSION

This section presents results of our investigation regarding
photoionization of hydrogen atoms in a white-dwarf-strength
magnetic field, as obtained with the adiabatic-basis-expansion
method outlined above. For each atomic state mπz with a given
magnetic field, we diagonalize the adiabatic Hamiltonian Ĥad

in a basis set of spherical harmonics as a function of the radius

022807-4



POSITIVE-ENERGY SPECTRA OF ATOMIC HYDROGEN IN … PHYSICAL REVIEW A 103, 022807 (2021)

FIG. 1. Lowest ten adiabatic eigenvalue curves as a function of
radius for the atomic state mπz = 0− at γ = 0.01 a.u.

and then plot the resulting adiabatic eigenvalue curves. We uti-
lize these curves to determine the asymptotic radius b, where a
two-dimensional matching to the asymptotic solutions is per-
formed. Figure 1 depicts the lowest ten adiabatic eigenvalue
curves for the atomic state mπz = 0− at γ = 0.01 a.u. These
curves begin to display an equal energy spacing of Landau
levels from r ≈ 200 a.u. onwards. We vary r around 200 a.u.
to check the convergence of the predicted photoionization
oscillator strengths and finally fix the outer radius b.

A spectrum for photoionization into the final continuum
state mπz = 0− from the ground state at γ = 0.1 a.u. was
presented by Mota-Furtado and O’Mahony [22]. We recal-
culated this spectrum with energies covering the range from
the first up to the third Landau thresholds using the current
adiabatic-basis-expansion method, while our asymptotic solu-
tions differ from those of Ref. [22]. Nevertheless, one would
expect that our calculations produce similar spectra to theirs.
Unfortunately, we do not have access to their actual data,
and therefore no detailed comparison can be made. However,
visual inspection of their Fig. 6 indeed suggests very good
agreement. Furthermore, we performed a comparison with the
available spectral data from the coupled-channel theory [21]
and found excellent agreement over the entire energy range
covered. Figure 2 displays the part of the Rydberg spectrum
right below the second and third Landau thresholds from the
two methods to illustrate this excellent agreement.

This agreement shows the reliability of the current theoret-
ical method and provides confidence in revisiting the problem
of photoionization of atomic hydrogen in a magnetic field of
2000 T with the adiabatic-basis-expansion method. Note that
the continuum spectra at 2000 T reported in the literature are
in significant disagreement with each other [16,20,21].

We first calculated oscillator strengths for photoionization
into the final continuum state mπz = 1+ from the ground state
of atomic hydrogen in a magnetic field of 2000 T. We sought
the outer radius b by plotting the adiabatic eigenvalue curves
for the atomic state mπz = 1+ and found b ≈ 220 a.u. from the
asymptotic behavior of these curves. As mentioned above, the
convergence of the predicted oscillator strengths was checked

FIG. 2. Comparison of the Rydberg spectrum for photoioniza-
tion into the final continuum state mπz = 0− from the ground state of
hydrogen atoms in a magnetic field with γ = 0.1 a.u., just below the
second (a) and third (b) Landau thresholds. The red solid and blue
dashed curves represent the results from the current adiabatic-basis-
expansion method and the coupled-channel theory [21], respectively.

by varying b in the vicinity of 220 a.u. The stability of the
results was checked further by varying other parameters, such
as the inner radius a, the number of channels involved, and the
number and size of the sectors.

The calculated spectrum from the first to the third Landau
ionization thresholds is shown in Fig. 3(a). The spectrum in
the same energy region was also calculated using the coupled-
channel theory [21] and is plotted in Fig. 3(b) for comparison.
The results from these two methods are in qualitative agree-
ment, but pronounced discrepancies between the two spectra
are clearly visible in the details. A broad resonance structure
underlying the Rydberg resonance peaks right below the third
Landau threshold can be seen in both of these spectra, but their
positions, widths, and heights differ. The broad resonance was
attributed by Alijah et al. [16] to the downward-shifted n = 8
state of the fourth Landau channel.

The level of disagreement displayed in Figs. 3(a) and 3(b)
was unexpected. On the other hand, the current calculations
do not reproduce the part of the spectrum right below the third
Landau threshold reported by Alijah et al. [16] either. Finally,
our Rydberg spectrum below the third Landau threshold also
differs from that of Wang and Greene [20]. Using the R-matrix
approach, which is constructed within the framework of multi-
channel quantum-defect theory, to analyze the close-coupling
calculations of Alijah et al. [16] in detail, Wang and Greene
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FIG. 3. Comparison of photoionization spectra for ground-state
hydrogen atoms in a magnetic field of B = 2000 T obtained with
the current adiabatic-basis-expansion method (a, c) and the coupled-
channel theory (b), (d). The two photoionization processes into the
various final continuum states are labeled mπz = 1+ and 0−, respec-
tively. The ejected-electron energies cover the range from the first to
the third Landau thresholds, indicated by the dashed vertical lines,
for both photoionization processes.

concluded that the box size z0 = 50 a.u. used by Alijah et al.
is too small.

We then calculated photoionization into the final contin-
uum state mπz = 0− from the ground state of hydrogen atoms
in a magnetic field of 2000 T with both the current method
and the coupled-channel theory [21]. The obtained oscilla-
tor strengths are displayed as a function of ejected-electron
energy in Figs. 3(c) and 3(d). We again expected better agree-
ment in the details than what is observed in these figures. Only
qualitative agreement between the results from the two theo-
retical methods is still visible over the entire energy region
covered.

FIG. 4. Same as Fig. 3, but with γ = 0.05 a.u.

In order to better understand the discrepancies of the Ry-
dberg spectra shown in Fig. 3, we calculated photoionization
spectra of hydrogen atoms in magnetic fields with different
field strengths. Figure 4 displays our calculated oscillator
strengths in a magnetic field with γ = 0.05 a.u. as a function
of the ejected-electron energy. We assume that magnetized
hydrogen atoms in the ground state are irradiated by beams of
circularly and linearly polarized light, respectively, and then
ionized into the two final continuum states mπz = 1+ and 0−.
The results from the coupled-channel theory are also shown
in this figure for comparison. Good agreement between the
results from the two methods is evident for both photoion-
ization processes, although some small discrepancies exist.
One readily sees, for example, small shifts of the resonance
positions near ε = 0.078, 0.14, and 0.15 a.u., as well as a
minor discrepancy in the resonance width near ε = 0.078 a.u.

The parts of the spectrum right below the Landau thresh-
olds displayed in Fig. 4 are not sufficiently resolved. It
is, however, helpful to display a detailed comparison of
these parts in order to understand the discrepancies between
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FIG. 5. Detailed comparison of Rydberg spectra, as given in
Fig. 4, between the current adiabatic-basis-expansion method (red
solid curves) and the coupled-channel theory (blue dashed curves).
The relevant energy regions are just below the second (a), (c) and
third (b), (d) Landau thresholds.

FIG. 6. Same as Fig. 4, but with γ = 0.025 a.u.

the Rydberg spectra in Fig. 3. Such a detailed compari-
son right below the second and third Landau thresholds is
presented in Fig. 5. The resonances associated with high-
lying Rydberg states are becoming increasingly narrow as
the ejected-electron energies approach the Landau threshold.
Discrepancies in the heights of these Rydberg resonances ob-
tained by the two theoretical methods can be seen for the two
photoionization processes into the two final continuum states
mπz = 1+ and 0−, but their positions, widths, and overall
energy dependence are in good agreement with each other.

Finally, the spectra for photoionization into the two final
continuum states mπz = 1+ and 0− from the ground state at
a magnetic field with γ = 0.025 a.u. were again calculated
using both the current adiabatic-basis-expansion method and
the coupled-channel theory. The obtained oscillator strengths
as a function of ejected-electron energies covering the re-
gion from the first to third Landau threshold are presented in
Fig. 6. Good agreement between these two approaches can
be seen for photoionization into 0− over the entire energy
region. In particular, we performed a detailed comparison of
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the parts of the spectra right below the second and third Lan-
dau thresholds, as done in Fig. 5. We see that the resonance
positions, widths, and overall energy dependence from the
two methods are in good agreement. For photoionization into
the final state 1+, the spectra from the two methods show
good agreement in the overall energy dependence, but there
are visible shifts in the resonance positions. We note that
Wang and Greene [20] also presented their spectra for this
magnetic-field strength. Our results are found to be in quali-
tative agreement with theirs, but there are discrepancies in the
details.

Note that Wang and Greene [20] expressed caution re-
garding the reliability of their results at relatively low field
strengths. Given the fact that the coupled-channel theory
adopts the cylindrical coordinate system, it should be most
appropriate for relatively high field strengths. The current
results illustrate that this method may approach its limit of va-
lidity for magnetic fields around γ = 0.01 a.u. In contrast, the
adiabatic-basis-expansion method was shown to be reliable
for low field strengths when comparing its predictions with
experimental results at 6.1143 T [6]. We therefore believe that
the spectra for photoionization of magnetized hydrogen atoms
at 2000 T, as calculated in the present paper with the adiabatic-
basis-expansion method, are more accurate than those from
both the coupled-channel theory [21] and the approach used
by Wang and Greene [20].

IV. SUMMARY AND CONCLUSIONS

Since there exist pronounced discrepancies in the predicted
positive-energy spectra of atomic hydrogen in a white-dwarf-
strength magnetic field obtained by a variety of theoretical
approaches reported in the literature, we revisited the prob-
lem using the adiabatic-basis-expansion method developed by
Mota-Furtado and O’Mahony [22], with one significant modi-
fication. Specifically, we adopted a different two-dimensional
matching procedure to exact the reactance matrix in order to
simplify the related calculations. Our test calculations show
that such a procedure does not cause any significant numerical
inaccuracy.

Mota-Furtado and O’Mahony [22] presented positive-
energy spectra for H, He, and Li atoms in a variety of
magnetic-field strengths � 0.1 a.u., and they discussed the
scope of their application. For nonhydrogenic atoms, they
pointed out that the adiabatic-basis-expansion approach is
only valid as long as the field strengths are not significantly
distorting the core, and hence a different treatment would be
required for the core in the presence of large magnetic fields.
We also explored the application scope of the approach for the
hydrogen atom. We found that the adiabatic-basis-expansion
approach is applicable to photoionization from the ground
state in a magnetic field of less than about 0.1 a.u., and from
the excited states 2s0 and 2p0,± in a magnetic field of less
than about 0.05 a.u. For magnetic fields larger than about
0.1 a.u., the influence of the fields on the continuum states
can no longer be neglected, and thus a different treatment of
these states is required. We also emphasize that it is essential
to consider the influence of the magnetic fields on the initial
bound states when treating photoionization from the excited
states 2s0 and 2p0,± in magnetic fields ranging from 0.01 to
0.05 a.u.

We then performed a comparative study between the
current adiabatic-basis-expansion method and our previ-
ously developed coupled-channel theory [21]. Our calculated
positive-energy spectra were also compared to those from
other theoretical approaches. A detailed analysis suggests
that the adiabatic-basis-expansion method can produce more
accurate positive-energy spectra than all the other reported
approaches for relatively low field strengths. While we hope
that the current paper finalizes the problem of photoionization
of atomic hydrogen in a white-dwarf-strength magnetic field,
we would welcome additional studies from other groups.
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