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Theoretical prediction for the muonium hyperfine-structure interval and its accuracy
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Because there are new projects on the determination of the hyperfine interval in the ground state of muonium,
we revisit different approaches to constructing its theoretical prediction and comparison with experimental
data. We discuss a controversy in the accuracy of two recent predictions [Mohr et al., Rev. Mod. Phys. 88,
035009 (2016), and Eides, Phys. Lett. B 795, 113 (2019)] and produce a constraint on possible systematic errors
in the determination of the muonium hyperfine-structure interval interval theoretically or experimentally. In
particular, a possible additional theoretical term, that may be either a missing “regular” theoretical contribution
or a contribution due to new physics, is estimated as −0.14(52) kHz. The constraint is based on all available
data through a least-squares-adjustment procedure, including all their correlations. The result is close to the one
of Eides [Phys. Lett. B 795, 113 (2019)].

DOI: 10.1103/PhysRevA.103.022805

I. INTRODUCTION

Theoretical predictions play important roles in physics,
serving different purposes. Sometimes it is important to
predict a possible value of a certain quantity prior its mea-
surement which may simplify a related experiment, e.g., by
reducing a possible region of scanning. Sometimes it serves as
an overall consistency check of the data and theory. It is also
important to compare theory and experiment in order to look
for a possible systematic error in both of them or to constrain
a possible new physics term.

Depending on the purpose, one has to perform different
procedures. The central value and the accuracy of a prediction
depends on its purpose. For example, if for a new experiment
one needs to estimate a value of the muonium hyperfine-
structure (HFS) interval as accurately as possible, the best
estimate is its previous experimental value. No theoretical
calculation can produce a better prediction.

For muonium, the most interesting purposes of a com-
parison of theory and experiment include a constraint on a
parameter space available for new physics and to check the
overall consistency of the related theory and data.
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Two theoretical predictions of the 1s muonium HFS inter-
val were published recently:

�νth = 4463 302.868(271) kHz [6.1 × 10−8] [1], (1)

�νth = 4463 302.872(516) kHz [1.2 × 10−7] [2], (2)

which have quite different uncertainties (by approximately a
factor of 2). In addition to the uncertainty given in parenthe-
ses, we also present a fractional uncertainty in square brackets.
The prediction (1) (from Ref. [1]) was recently criticized in
Ref. [2]. The prediction in Ref. [2] is perfectly consistent with
predictions published in theoretical reviews (see Refs. [3,4]
for recent ones; see also Ref. [5] for an older one) before the
publication of Ref. [1].

Often a comparison of a theory and an experiment presents
a “clean” case when the experimental input required for the
theoretical expression comes from other fields. The specifics
of the muonium HFS interval is that the input for the theory
comes from the same experiment that the theoretical predic-
tion is supposed to be compared with. That concerns both
predictions mentioned above, which may create certain com-
plications in their interpretation.

In this paper, we examine the legitimacy and accuracy
of these two predictions. We demonstrate that both are le-
gitimate but are most suitable for different purposes. We
demonstrate that although they have uncertainties different
by approximately a factor of 2, they constrain a possible
new physics term at roughly the same level [as −0.17(52)
and −0.13(52) kHz, respectively]. [To make the results com-
parable, we apply the same theoretical expression, which
marginally shifts the central value of prediction (2).] Both
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predictions also constrain a possible systematic error in
experimental determination of the muonium HFS interval as
0.09(27) and 0.08(27) kHz, respectively. Notably, that level is
somewhat different from the level of the theoretical constraint.
We also consider other evaluations of the data for consistency
tests and comparison of theory and experiment for muonium.

II. DATA AND RELATIONS

Prior a discussion on the numerical values of the predic-
tions, let us review the structure of the related theoretical
expression and the scope of the available data.

The leading term for the 1s HFS interval, the so-called
Fermi energy, is defined here as

νF = 16

3
R∞c α2 μμ

μp

μp

μB

(
1 + me

mμ

)−3

, (3)

where we use a standard notation for masses and magnetic
moments of the involved particles, the fine structure constant,
the Bohr magneton, the speed of light, and the Rydberg con-
stant. The presence of the proton magnetic moment is dictated
by the method of the calibration of the magnetic field at
the intermediate stages. Following notation in Ref. [1], we
consider μμ and μp as positive values and μe as a negative
one. Elementary charge e and Bohr magneton μB are positive.
The choice of the signs for the magnetic moments in, e.g.,
original (experimental) papers [6,7] is all positive, which is
more consistent with a relativistic consideration. However,
publication [1] presents a comprehensive summary on theory
and experiment, which we rely on, while the rival publication
[2] has also chosen the same convention about the signs, so
we follow it here.

There are different definitions applied in the literature. The
Fermi energy is a splitting related to a nonrelativistic energy
of the interaction of the magnetic moments of an electron and
a nucleus. One may use Dirac’s value of the electron magnetic
moment or a complete one. The nucleus in muonium, a bound
system of an electron and a (positively charged) muon, is a
lepton and therefore its anomalous magnetic moment is also
small aμ ≈ ae ≈ α/2π . One may define the Fermi energy
with the Dirac’s value of its magnetic moment eh̄/2mμ or a
complete one,

μμ = (1 + aμ)
eh̄

2mμ

.

The definition of the Fermi energy in Ref. [1] uses the
Dirac’s value for the magnetic moments of both particles,
while the effects due to the anomalous magnetic moments of
the constituents are to be considered as corrections to the lead-
ing term. Here, following Ref. [2], we use Dirac’s value of the
electron magnetic moment and a complete one for the muon
magnetic moment. That makes the quantum electrodynamics
(QED) part of the expression applicable for the hydrogen
atom. We present the Fermi energy in (3) as a combination of
μμ/μp, which may be directly extracted from experiment (see
below), and several fundamental constants, which are known
more accurately than any determinations of μμ/μp. For all the
values in (3), except μμ/μp, we apply values of the constants
following Ref. [1]. Their uncertainty is very small and has
been neglected by us.

We consider various procedures which may lead to very
close results. We are to give various numerical values with
a somewhat superficial accuracy in order to show how they
are affected by modifications of the procedure. Neglecting
uncertainties of various fundamental constants, involved in νF

in (3), in particular we neglect the uncertainty in the reduced
mass factor there and the uncertainty in gp and aμ, required
to transfer μμ/μp to me/mμ (see below). Those effects could
affect the uncertainty of values considered here at the level of
a percent of their uncertainties. Such an accuracy in the uncer-
tainty is of no interest by itself, but it may be interesting to see
how the uncertainty changes once we alternate our approach.

All the values of the fundamental constants in νF are
known more accurately than μμ/μp and me/mμ, which are
directly related through the identity

μμ

μp
= 2(1 + aμ)

gp

mp

me

me

mμ

,

with all the factors but μμ/μp and me/mμ, known with a neg-
ligible uncertainty. Either of those two mentioned constants,
μμ/μp or me/mμ, could be chosen as a base constant to be
found by an evaluation of the data, while the other is to be
derived from it. The choice is a matter of taste and has no prac-
tical consequences since, at the current level of accuracy in
determination of μμ/μp and me/mμ, they are related through
an (almost) exact relation.

The theoretical expression for the 1s Mu HFS interval may
be presented as

�νMu = νF (1 + QQED + Qhadr + Qweak ), (4)

where QQED is the QED correction to the Fermi energy, Qhadr

stands for various hadronic contributions (through intermedi-
ate states), and Qweak presents a small contribution due to the
weak interactions.

As for the theoretical contributions, we follow here a con-
sideration in Ref. [1]. In principle, we do not completely agree
with it; however, the purpose of this paper is to consider
different approaches to a calculation of a theoretical predic-
tion, while various rather minor corrections will be considered
elsewhere. The theoretical expression contains α, me/mμ, ae,
aμ, etc., in various small corrections, beside νF . For their cal-
culations, we apply the values of constants following Ref. [1].
The uncertainty of the calculation of the corrections due to
that is negligible. In particular, we neglect the uncertainty of
me/mμ in the reduced-mass factor (1 + me/mμ)−3 in (3).

Theory by itself contains an uncertainty due to uncalcu-
lated terms. It is estimated in Ref. [1] as

δMu = ±85 Hz. (5)

All that leaves the theoretical expression with two free
parameters, namely, μμ/μp (or me/mμ) and δMu, which is
convenient to consider as a free parameter, for which we have
a pseudodatum (5). We treat the pseudodatum as a result of an
estimation on the same ground as we treat results of measure-
ments (cf. Ref. [1]). Following Ref. [1], we use me/mμ as a fit
parameter.

The experimental data include results of two papers, which
present two runs of an experiment at Los Alamos Meson
Physics Facility (LAMPF) performed by an international col-
laboration. We refer to those runs as to experiment (exp.) 1 [6]

022805-2



THEORETICAL PREDICTION FOR THE MUONIUM … PHYSICAL REVIEW A 103, 022805 (2021)

FIG. 1. The Breit-Rabi sublevels of the 1s hyperfine manifold
in muonium in the presence of a magnetic field [8]. The magnetic
field B is parameterized with the related free-proton spin-precession
frequency fp = 2μpB/h, as done in Refs. [6,7]. The zero energy
is defined as the center of gravity of the HFS multiplet (which
does not depend on the value of the applied magnetic field). The
measurements of small splitting ν12 and ν34 were performed at f (1)

p =
57 972.993 kHz [6] and f (2)

p = 72 320.000 kHz [7].

and exp. 2 [7]. The experiments measured transitions between
the Breit-Rabi sublevels of the HFS manifold (see Ref. [8] for
details as well as the experimental papers [6,7] and references
therein) of the ground state in muonium in the presence of a
magnetic field (see Fig. 1). Two small intervals, ν12 and ν34,
were measured in Refs. [6,7] by detecting the muon’s spin
flip. The values of two measured frequencies were correlated
within each experiment.

The magnetic field was calibrated by measuring the proton
spin precession in water. The absolute probe with water uti-
lized in Ref. [7] had fractional uncertainty of 3.4 × 10−8 [9].
(In the earlier experiment [6], it was less accurate.)

To arrive at a free-proton frequency from a water one,
one has to introduce corrections due to molecular shield-
ing [10,11], temperature dependence [12], bulk diamagnetic
shape correction [13], and other effects [9]. Some of those
corrections were improved later on. In particular, the water
shielding factor was measured in Refs. [10,11] in com-
parison to atomic hydrogen shielding factor, which was
calculated. The theory of it in comparison with the one used
in Refs. [9–11] was marginally improved (see, e.g., Ref. [14])
and the corrections have been used in the other parts of the
evaluation in Ref. [1]. For example, the shielding factor for
the magnetic moment of the proton in water at 25◦ C applied
in the probe is 2.5692(14) × 10−5, while it is 2.5687(15) ×

10−5 according Ref. [15] and 2.5691(11) × 10−5 following
Ref. [1]. The variations in the uncertainty and central value are
tiny. Such marginally important details should be either ex-
plicitly neglected (for a reason) at the data-selection stage, or
included into the whole least-squares-adjustment (LSA) pro-
cedure in such a way that then the procedure should determine
whether any particular correction is to be ignored (say, being
smaller than the rounding errors). That is important because
from measurement to measurement the situation may change,
and the algorithm should be prepared for such a change.

The restored would-be free-proton spin-precession fre-
quency fp has a different uncertainty in exp. 1 and exp. 2.
The one due to the calibration of the probe [9] (for Ref. [7])
is roughly two in the units in the last presented digit (i.e.,
approximately 2 Hz). However, since the dependence of ν12/34

on fp is known (see below), one may transfer corrections and
uncertainties in fp to the values of measured ν12/34. All the
involved parameters are known with an accuracy sufficient to
calculate a shift and/or uncertainty of ν’s due to a correction
and/or uncertainty of fp. That allows ones to operate with
exactly known free-proton spin-precession frequencies. (Each
of two big measurements [6,7] consisted of a large number of
runs. The effects of the magnetic field were considered on a
run-by-run basis.)

The measured quantities, ν12 and ν34 (see Fig. 1), were
evaluated in the original experimental papers [6,7] and their
results are cited in Ref. [2]. Meanwhile, in publications of the
CODATA task group on fundamental constants, starting with
Ref. [15], the data have been rearranged as

ν( fp) = ν34 − ν12 ,
(6)

�νMu = ν12 + ν34,

and the values of ν( fp) and �νMu have further been treated as
(correlated) experimental data. Their correlation coefficients
have been calculated in a proper way and such a rearrange-
ment is an identity transformation (except of rounding errors).

The result on the rearranged data are given in Table I,
following Ref. [1]. The input in the last line is the uncertainty
of the theoretical expression which is presented as a pseudo-
datum constraint by an estimation.

The data evaluation is based on an LSA procedure, i.e.,
on a multivariate least-squares evaluation of correlated data,
which is described, e.g., in publications of the Particle Data
Group (see, e.g., Ref. [16]) as well as in a CODATA task group
publication [15]. The data are compared with a fit, i.e., with
an expression that contains the fit parameters. Following [1],
those parameters are me/mμ and δMu. The method is a stan-
dard generalization of the LSA procedure for correlated data,
which we have to use once we intend to present a theoretical
constraint as a single number, after accumulating information
from five measured or estimated input, two pairs of which are
correlated as seen from Table I.

Now we have to discuss observational equations that ex-
press measured quantities in terms of the fit parameters. They
are summarized in Table II. We note that for this paper we
consider all the fundamental constants that are known with
the accuracy essentially better than the one of determination
of me/mμ as exactly known ones.
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TABLE I. Experimental and theoretical input data for the evaluation of mμ/me. Here, r(a, b) is the correlation coefficient for quantities a
and b.

Quantity Value Comment

ν( f1) = ν
(

f (1)
p

)
627 994.77(14) kHz Exp. 1 at f (1)

p = f1 = 57 972.993 kHz, [6]
�ν

(1)
Mu 4463 302.88(16) kHz r

(
�ν

(1)
Mu, ν( f1)

) = 0.227

ν( f2) = ν
(

f (2)
p

)
668 223.166(57) kHz Exp. 2 at f (2)

p = f2 = 72 320.000 kHz, [7]
�ν

(2)
Mu 4463 302.765(53) kHz r

(
�ν

(2)
Mu, ν( f2)

) = 0.195

δ
(3)
Mu 0 ± 0.085 kHz Theoretical estimation, following Ref. [1]

We also have to note that the observational equations are
not standard mathematical identities but a presentation of de-
tails of a related LSA procedure, i.e., have a meaning similar
to some lines of a code. Their left-hand part is presented
by the observable quantities. It is expected that within the
least-square procedure we put there the related experimental
or theoretical results, i.e., the data. The right-hand part of the
observational equations presents functions of the fit parame-
ters. Together, the central values of the observable quantities,
their uncertainty and correlations, and the fit functions are
used to construct the value of χ2 to be minimized.

We have already discussed �νth(me/mμ, δMu), the theoret-
ical expression for the muonium HFS interval [see (4)]. The
other expression, mentioned in Table II, describes ν( fp) in
observational equation I. It is of the form (see, e.g., Ref. [8])

ν( fp)
.=

(
g′

μ(Mu)

gμ

μμ

μp
+ se

)
fp

+
√

(�νMu)2 + f 2
p

(
se − g′

μ(Mu)

gμ

μμ

μp

)2

, (7)

where

se = g′
e(Mu)

ge

μe

μp
.

Here, g′
e(Mu), g′

μ(Mu) are the g factors of the bound electron
and muon in the 1s state of muonium. They are considered

TABLE II. Observational equations. The equations are not stan-
dard mathematical identities but a presentation of details of a related
LSA procedure. Their left-hand part is presented by the observable
quantities and suggests that within an LSA fitting we put there the
related experimental or theoretical results, i.e., the data. We number
the equations as I, II, and III and the data pieces as 1 [related to exp. 1
[6]), 2 (related to exp. 2 [7]), and 3 (an estimation of theoretical
uncertainty in (5)]. The right-hand part presents functions of the fit
parameters. We use here the output values from Ref. [1] for all the
involved fundamental constants except of me/mμ, which acts as one
of two fit parameters of our evaluation. The other fit parameter of our
consideration is, following Ref. [1], a value of δMu.

No. Equation

I1, I2 ν( fp)
.= ν( fp, �νth (me/mμ, δMu))

II1, II2 �νMu
.= �νth (me/mμ, δMu)

III3 δMu
.= δMu

with sufficient details in Ref. [1]. As we mentioned μe and ge

(following [1]) are negative, which makes se also negative.
To apply (7) as an observational equation in Table II,

we have to express it in terms of the fit parameters, i.e., to
substitute �νth(me/mμ, δMu) for �νMu, which is an identity
transformation as far as we consider also observational equa-
tion II.

The last observational equation (III) also needs a comment.
We mentioned referring to (5) that δMu is a theoretical un-
certainty for the muonium-HFS-interval theory. That is not
entirely correct. The quantity stands for a deviation of a trun-
cated (with unknown terms ignored) theoretical expression
with only central values of the coefficients for the related
known terms from the actual (true) value of �νMu. Such a
truncated expression is incomplete and should deviate from
the actual value of muonium HFS. If the theory is well un-
derstood, the deviation can be estimated theoretically and the
input datum for the deviation is a theoretical estimation of the
uncertainty of the truncated expression with central values,
denoted as δ

(3)
Mu. In Table I, we give such an input value, while

the observational equation in Table II contains δMu both in the
left- and right-hand parts. The one on the left indicates that
the quantity δMu is measurable and a datum for it is available.
The one on the right is a fit parameter and indicates that with
performing a (standard) LSA we are to find an output value of
δMu as a deviation, which depending on relation between the
accuracy of the overall data may be dominated by theoretical
estimation (as it has happened) or by a certain comparison
of the truncate theory and experiment [which could be if the
experiment would be more accurate and produce an accurate
value of me/mμ through (7)].

If we would suggest that new physics is possible or that
a certain theoretical term has been missing, the deviation of
the truncated result for the HFS interval from its actual value
should consist of two terms ε + δMu, where the second term
presents an estimated uncertainty of the (standard) theory,
while the first term is supposed to describe a missing theo-
retical piece to be constrained.

III. TWO THEORETICAL PREDICTIONS

We have already given the numerical values of the predic-
tions in (1) and (2). Now we first describe them below and
then analyze them.

As we see from the consideration above, the muonium
case is a very specific one. A theoretical prediction speaks
in the terms of the Fermi energy (3), a calculation of which
requires a value of me/mμ (or μμ/μp). To determine the latter,
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we have to use ν( fp) (measured in the same experiment as
�νMu) and a certain presentation of �νMu [cf. (7)], which
is not an ordinary situation for a theoretical prediction. That
means that while calculating a theoretical prediction it is un-
avoidable to use at least one datum [on ν( fp)] from the same
experiment as determines �νMu. That also means that one has
to deal somehow with the value of �νMu on an early stage
of calculating its theoretical prediction. The possibilities are
either to use its experimental value (to which the theoretical
prediction is to be eventually compared) (cf. Ref. [2]) or the
theoretical expression (4) (cf. Ref. [1]), which would make
the dependence of the theoretical prediction on the details of
the theoretical expression quite complicated. The problem is
solved differently in the discussed predictions.

The prediction (2) from Ref. [2] was obtained by directly
using original evaluation in the experimental papers [6,7] to
determine me/mμ. The expression (7) converted to

μμ

μp
= (�νMu)2 − [ν( fp)]2 + 2se fpν( fp)

4se f 2
p − 2 fpν( fp)

gμ

g′
μ(Mu)

(8)

allows one to determine me/mμ (through μμ/μp) directly
from the experimental data as has been done in original exper-
imental papers [6,7]. To do that in each paper, they used the
measured value of �νMu instead of its presentation in terms
of the fit parameters.

The next step was a calculation of the value of the theo-
retical Q coefficients in (4). The theoretical state of the art
could be found in both cited papers [1,2]. Theory is presented
there somewhat differently but the difference in the central
value and the uncertainty is not of big importance. There is
also a number of small additional corrections to the original
experimental results which should be introduced for a proper
procedure, but all of them are marginal.

A list of marginal effects, which should be revisited while
applying the results from experimental papers [6,7], includes
an update of the corrections to the shielding in muonium, i.e.,
the value of g′(Mu)/g [17–20], an update on aμ [21], and an
update on various values of involved fundamental constants,
the most important of which for HFS in muonium are updates
on gp [14] (see also a calculation of the shielding factor in
hydrogen [17,22] to correct the related experiment [23]) and
me/mp [24,25].

In addition to the updates, one has to mention that the
result of each paper applied a value of �νMu measured within
the same experiment. The physical value of �νMu does not
depend on an experiment and a proper procedure should
somehow combine the results of both experiments for �νMu.
However, the accuracy of evaluation of me/mμ from each
experiment is limited by the value of ν( fp), essentially less
accurate than �νMu. By combining two results on �νMu, we
improve the accuracy of a quantity which is already known
with a superficial accuracy and therefore the changes would
be minimal.

A more rigorous procedure (following the same logics)
would be first to dismiss the pseudodatum δ

(3)
Mu and find

me/mμ. Technically that means the use of the experimental
results on �νMu in observational equation I. With that value
of me/mμ in hand and now with the estimation from (5), the
next stage is to obtain a value of a theoretical prediction. Such

a value is marginally different from (2). Here, referring to
results on base of the prediction from Ref. [2], we mean that
rigorous procedure.

The rival prediction [see (1)] [1] was obtained in a different
way. An evaluation was performed with the experimental data
on �νMu excluded. Technically, that means that to extract a
value of me/mμ from ν( fp) one has to apply a theoretical
expression for �νMu. Afterward, with a value of me/mμ (and
all necessary correlation coefficients) one may find theoretical
prediction (1). The value of me/mμ and a theoretical value
on �νMu calculated with this mass ratio have been obtained
without any use of the experimental data on �νMu and there-
fore the outcome may be compared with those experimental
values, which makes the comparison legitimate.

The uncertainty of two predictions is different by approx-
imately a factor of 2. As we explain below, both are in a
certain sense legitimate and both deal with certain elements
of circling. The latter, if properly understood, does not make
the predictions incorrect or useless, but makes their use not a
straightforward one.

One of the most important applications of a theoretical
prediction is a comparison of theory and experiment in order
to constrain a new physics or to look for a doubtful theoretical
term of a regular theory within standard physics. If we add
an additional term to a theoretical expression, the value of
a theoretical prediction will be shifted. In the case of the
prediction (2) [2], the shift will be by the same value as we
add to the expression. In the case of (1) [1], a value of the
shift of the theoretical prediction is a subject of a certain cal-
culation because there are two contributions to the sensitivity
coefficient. One is a correction to the theoretical expression
by itself, which is shifted by the new possible term, while the
other is a shift in me/mμ, since the theoretical expression (with
a possible new term) is to be applied to find me/mμ. If such a
sensitivity is not given, those who use prediction (1) could be
confused and produce an incorrect constraint.

Another issue one has to remember that either theoretical
prediction is correlated with experimental values of �νMu.
The result [2] is correlated because it is based on the use
of experimental values of �νMu to which the comparison is
to be made. The other issue is that the values of ν( fp) are
correlated with values for �νMu from the same experiment
anyway (see Table I). It would be more useful together with a
theoretical prediction for the muonium HFS interval to present
its correlation coefficient with the experimental value(s) of
�νMu in order to correctly calculate the uncertainty of the
comparison of theory and experiment.

It is useful to neglect a less accurate experiment [6] and
derive the related predictions from a single more accurate
measurement [7]. Both predictions are based in this case on
explicit equations which follow from (8). For the theoretical
prediction νth, which is of the same functional form [see (4)],
they use different values of me/mμ, namely

me

mμ

= F
(
ν( f2), �ν

(2)
Mu

)
, (9)

for a prediction similar to the one from Ref. [2] and

me

mμ

= F
(
ν( f2), �νth

(
me/mμ, δ

(3)
Mu

))
(10)

022805-5



KARSHENBOIM AND KORZININ PHYSICAL REVIEW A 103, 022805 (2021)

TABLE III. Results of different evaluations following the logic of Ref. [2]. The results of exp. 1 and exp. 2 on me/mμ are obtained by
using (8) with the experimental values of �νMu as the input. That is, me/mμ is an output datum of certain evaluations, which was subsequently
applied to obtain a value of the muonium HFS interval. The theoretical estimation δ

(3)
Mu was omitted while extracting me/mμ, but included while

subsequently calculating �νth. LSA′ is an LSA with pseudodatum on δMu dismissed. Compared to the original results, the evaluation of the
data from exp. 1 [6] and exp. 2 [7] is slightly updated, following Ref. [1].

Evaluation mμ/me �νth

(
me/mμ, δ

(3)
Mu

)
[kHz] Comment

Exp. 1 206.768 220(77) [3.7 × 10−7] 4463 304.1(17) × 109 [3.7 × 10−7]
Exp. 2 206.768 283(25) [1.2 × 10−7] 4463 302.78(56) × 109 [1.2 × 10−7]
Average 206.768 276(24) [1.2 × 10−7] 4463 302 91(52) × 109 [1.2 × 10−7]

LSA′ 206.768 276(24) [1.2 × 10−7] 4463 302.91(52) × 109 [1.2 × 10−7] LSA w/o δ
(3)
Mu

for the one similar to the prediction from Ref. [1]. Here me/mμ

in the right-hand part of the second equation is the same as in
the left-hand part, which makes this determination legitimate
but indirect.

Function F , which follows from (8), is the same for the
both determinations, but its arguments are different. Both
identities perfectly determine the value of me/mμ, but the
values which result from those two equations have different
central values, uncertainties, correlations with experimental
value ν

(2)
Mu, and (crucially for a comparison of theory and

experiment) sensitivities to modification of the theory. Conse-
quently, similar differences appear when one calculates �νth

using the related values of me/mμ.
Below we consider two predictions in more detail and sug-

gest an appropriate procedure. The purpose of the following
sections is to find the sensitivity coefficients (for the addi-
tional terms) and to check the strength of these constraints
which rely on nontrivial sensitivity coefficients. It is clear
that a comparison of the theoretical predictions above and the
experimental data relies on the same set of theoretical and
experimental information but uses different compositions of
it. We also discuss which is the best procedure to combine all
the available information and produce the strongest constraint
on additional terms and which is the best way to compare the
theory and the experiment.

IV. ACCURACY OF DIFFERENT EVALUATIONS AS A
FUNCTION OF THEORETICAL UNCERTAINTY

Let us consider now the predictions more accurately. We
start with the prediction in (2) [2]. It utilizes a value of
me/mμ which may be obtained from an LSA procedure with
theoretical data piece in (5) removed from a consideration.
A subsequent calculation of �νth with such a value of me/mμ

contains the estimation of (5). Since only one source of the un-
certainty dominates, namely the uncertainty of ν( fp), one may
perform a simplified procedure which has outcome marginally
different from the mentioned LSA. One may evaluate both
experiments separately without any use of theory and derive
related values of me/mμ (see Table III) and �νMu. To not use
the theory for the extraction of me/mμ means that one has to
apply relation (7) while using an experimental value of �νMu

in it. The weighted average (over two experiments) of me/mμ

allows one to reproduce prediction (2), while the average of
�νMu gives the experimental value to compare to.

An element missing within such a consideration is a cor-
relation between the values of the prediction and of the
experimental results on �νMu, described by correlation co-
efficient r(�νMu,�νth ) for �νth from Ref. [2] that requires
comparing the theory and the experiment. Within a marginal
correction, it coincides with

r(�νMu, me/mμ) = 0.109. (11)

The correlator in (11) basically follows the value related to
the most accurate experiment [7]. If we include only its data,
the result is r = 0.110 instead of r = 0.109. In the case of a
single experiment, we may use explicit formulas for me/mμ

[cf. (8)] and find contributions to the correlator due to the
presence of �νMu in (8) and due to a (known) correlation
between �νMu and ν( fp) within the same experiment. The re-
sult is r = −0.088 + 0.198 = 0.110, which demonstrates that
both sources of the correlation are important. The correlation
coefficient is required to find the uncertainty of the eventual
comparison of the theoretical prediction and the experimental
result. Since the predicted value of �νMu is essentially less
accurate than the experimental one, the correlation plays a
marginal role.

If the predicted and experimental results are consistent (and
they are), then any constraint for new physics or any additional
theoretical term of any other nature is to be consistent with
zero. If the results would not agree, the nonzero correlation
is not as important as the fact that both numerical values
in (11) are extracted from the same experiment(s) and any
discrepancy would equally compromise both of them. The
interpretation depends on how a possible systematic error,
theoretical or experimental, is involved. We will return to this
question later on, but first we consider the other prediction [1],
which seems more accurate.

Prediction (1) is derived in Ref. [1] by using an LSA
procedure from which the data pieces, related to a direct ex-
perimental determination �νMu, are removed. We reproduce
it below by using two procedures with a rearrangement of the
data and a subsequent calculation of averages, which allows
for a direct transparent interpretation. Those procedures are
helpful to explain various properties of prediction (1). (The
average of a few individual values for the same quantity
in case of their correlations is understood here as their lin-
ear combination which has the minimal possible uncertainty.
Such a value can be in particular found through a certain
least-square procedure.)
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TABLE IV. Results of different evaluations following logics of [1]. The results marked with Exp. 1 and 2 are obtained by using (8) with
a theoretical expression of �νth for �νMu. LSA′′ is an LSA with the experimental data on �νMu dismissed. With those data dismissed, δMu,
being a fit parameter, has its output value equal to δ

(3)
Mu. Evaluation of the data from Exp. 1 [6] and Exp. 2 [7] is consistent with the procedure

described in Ref. [1].

Evaluation mμ/me �νth

(
me/mμ, δ

(3)
Mu

)
[kHz] Comment

Exp. 1 206.768254(33) [1.6 × 10−7] 4463 303.4(7) [1.6 × 10−7]
Exp. 2 206.768283(14) [6.6 × 10−8] 4463 302.77(30) [6.6 × 10−8]
Average 206.768279(13) [6.1 × 10−8] 4463 302.863(272) [6.1 × 10−8]

LSA′′ 206.768279(13) [6.0 × 10−8] 4463 302.864(271) [6.1 × 10−8] LSA w/o �ν
(1)
Mu,�ν

(2)
Mu

A. Procedure 1

Similarly to the reproduction of (2) above, let us consider
two experiments separately. We again rely on (8). Following
Ref. [1], we decline to use the experimental data on �νMu at
this stage. Therefore, the only way to make relation (8) useful
(after dismissing the experimental data on �νMu) is to apply a
theoretical description of �νMu in terms of the fit parameters,
i.e., �νth(me/mμ, δMu). The results of such an evaluation are
given in Table IV.

The individual results in Table IV derived from two ex-
periments separately are correlated through δMu. That only
marginally affects their average value. It is interesting to see
how the fractional uncertainty of me/mμ and correlation coef-
ficient r(me/mμ, δ

(3)
Mu) evolve while changing δMu. (We denote

the running input value as δ
inp
Mu, while δ

(3)
Mu stands for its actual

value.)
As one might anticipate, if we increase the (estimated)

uncertainty of theory, the uncertainty of each experimental
determination of me/mμ increases and the correlation coef-
ficient r(me/mμ, δMu) is not negligible (see Figs. 2 and 3
for detail). That definitely proves that the value of me/mμ

obtained in such a way is theory dependent, which means that
prediction (1) [1] has a nontrivial dependence on details of the

1 5 10 50 100 500 1000

1 10 7

2 10 7

5 10 7

1 10 6

2 10 6

5 10 6

1 10 5

FIG. 2. Fractional uncertainty of determination of me/mμ fol-
lowing procedure 1 for Exp. 1 (green dotted), Exp. 2 (blue solid),
and their combined value (through LSA′′) (red dashed) (with their
correlation taken into account) as a function of the uncertainty mag-
nification factor δ

inp
Mu/δ

(3)
Mu, where δ

inp
Mu a magnified uncertainty of the

theoretical input estimation, while δ
(3)
Mu is its actual value. The black

dot-dashed line relates to an asymptotic limit (12).

theoretical expression and its sensitivity to a modification of
theory should be studied additionally.

One can note from the plots that once the uncertainty
magnification factor δ

inp
Mu/δ

(3)
Mu leads to a theoretical uncertainty

δ
inp
Mu which exceeds the level of uncertainty of me/mμ extracted

from the both experiments, the uncertainty of each separate
extraction increases with δ

inp
Mu, while their average value (with

all the correlations taken into account) reaches a limit with a
finite accuracy

(
me

mμ

)average

δMu→∞
= 206.768 41(16) [7.7 × 10−7]. (12)

The presence of such a limit means that the individual results
of two experiments become strongly correlated. Apparently,
the correlation comes from the fact that with a magnified
theoretical uncertainty, in some moment it starts to dominate
in the uncertainty of each individual values of me/mμ. The
correlation is a positive one. Since the individual results are
positively correlated, an outcome for the average, more accu-
rate than the individual results by themselves, is possible if the
linear combination for the average has coefficients with op-
posite signs. Counterintuitive negative weights for a weighed
average are possible for correlated data.

To explain such a behavior, we are to perform an equivalent
procedure, which has different intermediate steps.

5 10 50 100 500 1000

1.0

0.5

0.0

0.5

1.0

FIG. 3. Correlations coefficients as a function of the uncertainty
magnification factor δ

inp
Mu/δ

(3)
Mu: r[(me/mμ)Exp.1, (me/mμ)Exp.2] (blue

solid), r(me/mμ, δ
inp
Mu) (red dashed), and r[(me/mμ)dep, (me/mμ)ind]

(green dotted), where me/mμ without any superscripts is a combine
value from two experiments, obtained within LSA′′.

022805-7



KARSHENBOIM AND KORZININ PHYSICAL REVIEW A 103, 022805 (2021)

B. Procedure 2

The key data used for determination of me/mμ are the
results on ν( fp) which can be evaluated by using (8). Above,
we did the evaluation for each experiment separately and
averaged the outcome. Apparently in the case of evaluation
of an experiment in order to apply the identity (8) to deter-
mination to me/mμ, we have to use a certain input for �νMu,
theoretical or experimental. However, once we evaluate the
data of two measurements simultaneously, we have another
option. Identity (8), applied to two different magnetic fields
(at different fp’s), allows ones without any other input (for
�νMu) to derive a certain value of μμ/μp (and consequently
of me/mμ),

μ′
μ

μp
= [−ν2( f1) + 2se f1ν( f1)] − [−ν2( f2) + 2se f2ν( f2)][

4se f 2
1 − 2 f1ν( f1)

] − [
4se f 2

2 − 2 f2ν( f2)
]
,

(13)
and of �νMu,

(�νMu)2 = −
−ν2( f1 )+2se f1ν( f1 )

4se f 2
1 −2 f1ν( f1 )

− −ν2( f2 )+2se f2ν( f2 )
4se f 2

2 −2 f2ν( f2 )

1
4se f 2

1 −2 f1ν( f1 )
− 1

4se f 2
2 −2 f2ν( f2 )

. (14)

The former of these two equations, after use of numerical
values of the shielding factor g′

μ(Mu)/gμ and fundamental
constants gp and aμ, gives a theory-independent value of the
mass ratio which we denote here as (me/mμ)ind. The latter
of the identities produces a value of the Mu HFS interval,
which together with a theoretical expression gives us a theory-
dependent value of the mass ratio, which we denote here as
(me/mμ)dep. The values in the left-hand part of the identities
are explicitly defined through the measurable quantities and
we can easily find their correlation:

r

(
μ′

μ

μp
,�νMu

)
= −0.988. (15)

With the actual sources of the uncertainties [with the uncer-
tainty due to ν( fp) strongly dominating], one can also write
(within the rounding error)

r[(me/mμ)ind, (me/mμ)dep] = r

(
μ′

μ

μp
,�νMu

)
, (16)

where the values in the right-hand part are defined through
(13) and (14), respectively.

The value of μ′
μ/μp in (13) depends neither on a theoretical

expression nor on experimental data for �νMu. One can use it
to immediately find a theory-independent value of the mass
ratio (

me

mμ

)
ind

= 206.768 409(159). (17)

In the meantime, the value of �νMu in (14) is a kind of an
indirect experimental result on the muonium HFS interval

(�νMu)ind = 4463 305.8(3.6) kHz. (18)

Being combined with a known theoretical expression,
�νth(me/mμ, δMu), it allows one to find a theory-dependent
value: (

me

mμ

)
dep

= 206.768 143(165). (19)

Those two indirect values of me/mμ and �νMu are com-
plementary to the results on �νMu in Table I and to the result
on me/mμ in Table III. They are independent of the results
obtained in a standard evaluation in original experimental
papers [6,7] and prediction paper [2] (and given in the men-
tioned tables) in a sense that cannot be expressed in their
terms, but they are correlated with the results in the mentioned
tables. While the results in experimental papers and in Ref. [2]
present the results of each experiment in terms of �νMu and
me/mμ, the indirect values use a part of the results of each of
two experiments [namely, their ν( fp)] and take advantage of
the known shape of their dependence of fp. Importance of the
indirect results depends on the composition of the data (the
uncertainties and their correlations, the overall consistency,
and the values of the applied magnetic field, parameterized
with fp).

It is crucial that all the input is the same as for LSA with
omitted data on �νMu in Ref. [1] and in procedure 1 above,
while all the rearrangements are identities. The average of
two results obtained here should coincide with prediction (1)
[1], which is counterintuitive, because the intermediate pre-
dictions of procedure 2 are very inaccurate. Their fractional
uncertainty is about 8 × 10−7 for both values [cf. (17) and
19]. However, the value of their correlation coefficient in (16)
indicates that those two results are strongly anticorrelated and
their combination should be essentially more accurate than
both of them. Since the uncertainties are roughly the same,
their half sum should be a good estimation of their aver-
age. The correlation coefficient r[(me/mμ)ind, (me/mμ)dep] by
approximately 1% deviates from minus unity [cf. (15)] and
thus we expect that the uncertainty of our estimation with
the half sum should be an order of magnitude smaller than
the individual uncertainties of the considered values, which
is in a reasonable agreement with our expectation. (The cor-
relation coefficient enters an expression with squares of the
uncertainties and therefore the uncertainty of the half sum
squared should be two orders of magnitude below the squared
individual uncertainties.)

We note that the very presence of a theory-independent
value of me/mμ in procedure 2 delivers an explanation of
what happens if we increase the uncertainty magnification
factor within procedure 1. Within the latter, both individual
results (the results per experiment) become less accurate, be-
ing strongly correlated. Since two procedures are identical in
terms of their input and output, both the theory-independent
value and the theory-dependent one are certain linear com-
binations of the results per experiment. With the increase
of the uncertainty magnification factor, the theory-dependent
contribution (me/mμ)dep becomes very uncertain, while the
theory-independent one (me/mμ)ind becomes dominant in the
determination of the average, and, in particular, determines
the limit in (12). In other words, the uncertainty of the aver-
age of the individual results cannot be less accurate that the
uncertainty of the theory-independent value in (18).

Now, let us consider in detail how two inaccurate results of
procedure 2 could produce an accurate average in the case of
the current theoretical uncertainty δ

(3)
Mu as an input. It is helpful

to consider the dependence of their fractional accuracy and
their correlation coefficient as a function of the uncertainty
magnification factor (see Figs. 4 and 3 for details).
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FIG. 4. Fractional uncertainties of various values of me/mμ

as function of the uncertainty magnification factor: for theory-
dependent (green dotted), theory-independent (blue solid), and
combined (red dashed) values.

While the magnification factor is relatively close to unity,
the anticorrelation produces an accurate average of two in-
accurate results, while with increase of the magnification
factor the theory-independent value becomes dominant. The
behavior of the correlator r(me/mμ, δMu) changes as well.
The correlation with theory r(me/mμ, δMu) is important in the
transition area but unimportant for large and low values of the
magnification factor.

Procedure 2 allows one easily to find the sensitivity of
outcome for me/mμ on an additional theoretical term. We can
adapt the individual me/mμ results to a calculation of theo-
retical prediction of the HFS interval and its sensitivity to a
theoretical addition. First, we note that in procedure 2 we have
to combine two correlated values of me/mμ. The correlator
is known [see (15)]. In such a case, we have two alternative
procedures with the same result. One of them is a mini-LSA
when we have to find an average with two data points. The
other is to present the outcome as a linear combination of
two correlated input values with arbitrary coefficients and to
choose them to minimize the uncertainty of the combination.
The results should be the same. Minimizing the uncertainty,
we find(

me

mμ

)
aver

� 0.510

(
me

mμ

)
ind

+ 0.490

(
me

mμ

)
dep

= 206.768 279(13) [6.1 × 10−8]. (20)

The theoretical prediction linearly depends on me/mμ in a
sense that the numerical value of all the corrections beyond
the linear term are small and indistinguishable to use of any
me/mμ which appears through the paper and, in particular,
for (me/mμ)ind and (me/mμ)dep. Applying the combination in
(20), we find

�νaver
th � �νth

[
0.510

(
me

mμ

)
ind

+ 0.490

(
me

mμ

)
dep

]

= 0.51�νth

[(
me

mμ

)
ind

]
+ 0.49�νth

[(
me

mμ

)
dep

]

� 4463 302.863(272) kHz [6.1 × 10−8]. (21)

TABLE V. The output data of a simplified version of LSA from
Ref. [1]. Here, ν = 3 is the number of degrees of freedom of the data
evaluation.

Quantity Value

mμ/me 206.768 2826(46) [2.2 × 10−8]
δMu −4(83) Hz

χ 2 1.24
χ 2/ν 0.41
�νMu 4463 302.776(50) kHz [1.1 × 10−8]

Here, the first term in the middle line is a calculation of a
theoretical prediction with a value me/mμ which does not
depend on theory, while the other one depends on it. If we
add an additional term to theory

�νth → �ν ′
th = �νth + ε, (22)

we shift the prediction in the first term in the middle line by ε.
In the meantime, the second value is a result of a calculation
of the muonium HFS interval with a value of me/mμ extracted
from an indirect measurement of �νMu with a use of a theory
[see (14)]. Indeed, such a calculation should reproduce the
value of �νMu we started with. If we modify the theory, the
value of me/mμ would be shifted in such a way that ensures
that we reproduce �νMu from (14). That means that only the
first term can be affected by a modification of the theory.
Therefore, we find

d �νaver
th

dε
= 0.510. (23)

The result has been also confirmed by a direct calculation.
Adding an additional term to the theoretical expression

does not change its uncertainty and the shift affects only the
central value of the outcome. While presenting the theoretical
predictions in (1) and (2), we noted that they have uncer-
tainties different by approximately a factor of 2. Now we
see that their sensitivity to an additional theoretical term is
also different by approximately the same factor, which makes
the constraints on the additional theoretical term of the same
strength.

V. MODEL-INDEPENDENT CONSISTENCY TEST

As already mentioned, there are two basic reasons to com-
pare theory and experiment. One is to make a consistency
check and the other is to constrain a possible missing term
in the theoretical expression which may be either a result of
an error in current calculations or a result of new physics. We
start here with the former problem. One of the possibilities
to make a consistency check is to perform an LSA, which is
to be a simplified version of the one in Ref. [1]. Since the
muonium sector does not interfere too much with an accu-
rate determination of the involved constants (such as α, R∞),
except for me/mμ, we may adopt their numerical value from
Ref. [1] and perform a fit with two parameters only, me/mμ

and δMu. The result is summarized in Table V and the value of
χ2/ν confirms perfect overall consistency.

Performing an LSA does not mean a direct comparison
of theory and experiment, but it produces a good consistency
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check. An inconsistency could show up in different ways and
we should consider them one by one.

First of all, we have to be sure that the experimental results
(without involvement of any theory) are consistent, and only
next we have to look for consistency of theory and experiment.
The direct experimental results on �νMu contain two values
(one from each experiment [6,7]) obtained by rearrangement
of their results in terms of ν( fp) and �νMu (see Table I). There
is one more value, given in (18), obtained by the probing the
field dependence by combining ν( fp) from two experiments.
All three values are perfectly consistent.

Next, consider a determination of me/mμ without any use
of the theoretical expression for �νMu. We again have three
values. Two of them are obtained through (8) from each ex-
periment separately. The third value is an indirect one from
(17). All three determinations are in a perfect agreement.

The indirect values in both triads are independent of two
others in a sense discussed above.

After concluding that the experimental results have a per-
fect internal consistency, we turn to a model-independent
comparison of theory and experiment. The theoretical expres-
sion for the value of the HFS interval expresses the value of
the HFS interval in muonium, �νMu, in terms of certain fun-
damental constants. A prediction therefore contains a value
of μμ/μp (or, which is equivalent, a value of me/mμ), the
uncertainty of which dominates in the numerical value of any
prediction. The value of me/mμ is in one or the other way
obtained from the same experiment as the experimental value
of �νMu to be compared with. (A determination of me/mμ

from an experiment of a different type is possible (see, e.g.,
Refs. [26,27]), but such a method is less accurate than the
method applied in Refs. [6,7].

The most clean model-independent way to compare theory
and experiment is to perform a comparison of a pure exper-
imental value (or values) and a pure theoretical one, where
the uncertainty of the latter does not contain any experimental
contribution, while the uncertainty of the former is determined
by the experimental uncertainties only. The value the best
suited such a comparison is �νMu/νF .

A theoretical expression for the muonium HFS interval
anyway expresses a theoretical prediction in units of the Fermi
energy νF [cf. (4)]. On the experimental side, the value of
νF by definition [see, e.g., (3)] is just a symbol for a certain
combination of values of several fundamental constants. It
is not a theoretical construct in a sense that it is not based
on theoretical assumptions. A theoretical assumption is that
it is the leading contribution to the muonium HFS interval
and it is useful to express theory in terms of νF , but that
does not relate to the numerical value of νF by itself. To
obtain an experimental value of νF , one has to evaluate the
experimental data without any use of the theory which is close
to the evaluation in Ref. [2].

In principle, �νMu and νF , determined from an experiment
without any use of the theory for the muonium HFS interval,
have correlated uncertainties which are not of any practical
importance here, since the different individual fractional un-
certainties are not comparable and one (for νF ) is essentially
larger than the other (for �νMu). A summary of the experi-
mental and theoretical determination of �νMu and νF is given
in Fig. 5. The theoretical value here follows [1].

FIG. 5. Consistency test: determination of �νMu/νF . Here super-
script a is the experimental result from Ref. [6], superscript b is from
Ref. [7]; and superscript c is the combined result of two experiments
with using indirect values (18) and (17). The band presents the value
obtained by the theoretical evaluation following Ref. [1].

In addition to the correlations parameterized with corre-
lation coefficient r(ν( fp),�νMu), there may be an overlooked
systematic effect that affects the result of all the measurements
within the same experiment. Therefore, possible systematic
errors in �νMu and νF , a search of which is one of the
reasons for a comparison of theory and experiment, are also
correlated. We summarize individual experimental results and
their average in Table VI. The theoretical result is also pre-
sented there.

The plot and Table VI contain a relatively inaccurate ex-
perimental value of �νMu/νF , obtained from a comparison of
two values of ν( fp) obtained at different fp. The numerator,
�νMu, is from (18), while the denominator, νF , is obtained
with help of (17). To find their ratio, one has to take their
strong anticorrelation [see (15)] into account.

The ratio �νMu/νF discussed above is also suitable to con-
strain a new physics or any other additional theoretical term
of interest, since a modification of theory [as parameterized
in (22)] simply shifts the theoretical value of �νMu/νF by

TABLE VI. Experimental and theoretical values of �νMu/νF .
The average value is an average over two values from different
experiments. The “Exp. c” value is related to data point c in Fig. 5.
The theoretical value here is found following Ref. [1]. The εLSA
value is a result of a modified LSA evaluation, considered below in
Sec. VI.

Source �νMu/νF ur

Exp. 1 1.000 957 54(37) 3.7 × 10−7

Exp. 2 1.000 957 82(12) 1.2 × 10−7

Exp. c 1.000 9591(16) 16 × 10−7

Average 1.000 957 792(116) 1.16 × 10−7

εLSA 1.000 957 791(116) 1.16 × 10−7

Theory 1.000 957 82(2) 1.9 × 10−8
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ε/νF . Actually, ε/νF is the fractional value of the would-be
new-physics term.

The ratio �νMu/νF may be also used to constrain possibly
missed experimental systematic effects. As mentioned, the
correlation between the uncertainties of the numerator and
denominator (for the results from individual experiments) has
no practical importance for a calculation of the uncertainty
of their ratio. In the meantime, the correlations are closely
related to the problem of sensitivity to various possibly missed
systematic effects. The interpretation of the comparison of the
experimental values of �νMu/νF to the theory is very close
to the approach in Ref. [2]. We consider the sensitivity of
its prediction to the presence of an overseen experimental
systematic error in Sec. VI.

There is another rigorous way to constrain new physics or
possible missing systematic effects that is considered in the
next section.

VI. MODIFIED LSAS

As far as our concern is muonium physics, the LSA per-
formed by CODATA [1] could be reduced for muonium data
to a smaller LSA, described in Sec. II. We refer to it as a
standard LSA. It allows us to perform an overall consistency
test of muonium data and theory, as explained in Sec. V. If
we intend to compare two values, say, theory and experiment,
we may remove a part of data from the LSA procedure, to
find an adjusted value and compare it with the remaining data
(cf. LSA′ in Table III and LSA′′ in Table IV). The labels
“theory” and “experiment” are not unambiguous, because a
theoretical prediction usually needs an experimental input. In
particular, to obtain theoretical prediction �νth in Ref. [1],
it was suggested to remove direct experimental values on
�νMu but to keep all theory available. The outcome is to
be compared to the direct experimental values of �νMu. An
alternative procedure, close to the one applied in Ref. [2],
was to remove a theoretical datum on δMu, which disables
any application of theory, in order to find a value of me/mμ

and to compare the theoretical expression with such a value of
me/mμ to the direct experimental values on �νMu. In Ref. [1],
such a value of me/mμ is also found through a rigorous LSA
procedure [see Eq. (227) there] and it nearly coincides with
the related value from Ref. [2].

Instead of splitting the data into two parts in order to
compare one to the other, we use another approach for a com-
parison. We note, that because of a variety of the data, their
correlations, and their different sensitivities to various effects,
many meaningful constraints are rather model dependent.
Therefore, we choose to directly introduce a model-dependent
correction, say, an additional theoretical term ε [see (22)] and
to perform an LSA with one more fit parameter. The LSA
procedure should take into account all the correlations and the
sensitivities to ε and produce a direct result on the additional
term. Note that by observing the outcome from the constraints
based on two different theoretical predictions we have found
that they are rather comparable since the twice smaller uncer-
tainty in prediction (1) is compensated by a halved sensitivity
in (23) to modifications of theory. The uncertainties of two
predictions are strongly correlated because the uncertainty
of ν( fp) from the best experiment of two [6,7] strongly

dominates and first determines the uncertainty of the extracted
me/mμ and next of any reasonable present-day theoretical pre-
diction. Combining two strongly correlated predictions cannot
improve their accuracy but somewhat shifts the central value.
For a correct procedure to combine them, it is necessary to
consider a modified LSA with the introduction of ε.

Below we consider two modified LSA procedures. They
deal with the standard data, but their observational equations
are modified. Different theoretical predictions have different
sensitivities to various hypotheses on a new term. Techni-
cally, such a hypothesis means an introduction of a shift to
certain values, which, in a practical sense, models a certain
overseen systematic effect. If more than one value is shifted,
the correlation of the shifts should be presented explicitly.
In the simplest case, either only one value is a subject of a
shift or all the shifts are expressed in the terms of a single
parameter. The resulting LSA has one additional parameter
and its outcome includes a constraint on it. Here we first
consider a modification of the theory according to (22). That
would have a sense under a suggestion of new physics or of a
large overseen contribution from a regular QED theory. Since
the parameter is denoted as ε, we refer to such an evaluation
as to εLSA. The related observational equations are given in
Table VII.

Note that ε is not a model-independent difference of the
theory and the experiment but a modification of the theory
while the experiment remains intact. That is set by (7). Both
experimental and theoretical values of �νMu may contain an
error we intend to constrain, but Eq. (7) contains the ac-
tual value of �νMu and therefore we have to introduce the
theoretical correction ε, e.g., due to a possible contribution
of new physics, explicitly. If we are to constrain a possible
experimental systematic error, we should introduce another
substitution,

�νMu → �ν ′
Mu = �νMu + ε′, (24)

where we have data available on �νMu, while the true value
of the Mu HFS interval, which should be compared with the
theory and be introduced in observational equation II in Ta-
ble VII, is �ν ′

Mu. We refer to such an evaluation as to ε′LSA.
The observational equations are given in Table VII.

The εLSA differs from a standard LSA because of the
observational equation II in Table VII. Appearance of ε

breaks the relation between the standard theoretical expres-
sion �νth(me/mμ, δMu) and the observable value �νMu for
which direct experimental data are available. In the meantime,
a theoretical value, related to the actual HFS interval, which
enters observational equation I, contains ε. εLSA should bring
all these things together.

One can understand how the evaluation is done without
running any least-squares evaluation. �νth(me/mμ, δMu) + ε

presents the actual value of the HFS interval, for which ex-
perimental data are available. They are not really available for
�νth(me/mμ, δMu) and ε separately. Therefore the LSA pro-
cedure should basically put the experimental values of �νMu

in equation I. Equation III determines the output value for δMu

which should coincide with the input value, while equation II
serves to find ε by comparing �νth(me/mμ, δMu) + ε with
�νMu. This logical line agrees with the way of a determination
of me/mμ and a subsequent theoretical prediction as done
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TABLE VII. Observational equations for εLSA and ε′LSA. εLSA is defined as an LSA with an additional parameter ε introduced by a
substitution in (22). ε′LSA is an LSA with an additional parameter ε′ introduced by a substitution in (24).

No. Equations for εLSA Equations for ε′LSA

I1, I2 ν( fp)
.= ν( fp; νth (me/mμ, δMu) + ε) ν( fp)

.= ν( fp; νth (me/mμ, δMu))
II1, II2 �νMu

.= νth (me/mμ, δMu) + ε �νMu
.= νth (me/mμ, δMu) − ε′

III3 δMu
.= δMu

in Ref. [2]. εLSA involves some correlations and updates
ignored in Ref. [2], but they are of reduced numerical impor-
tance.

The most important issue is that, as discussed above, there
is another logical line, related to the CODATA’s prediction
[1], and if the sensitivity to ε is introduced correctly (which is
unavoidable within εLSA where it is done automatically—see
equation II), then the constraint on ε is comparable with one
from Ref. [2] (see explanations in Sec. IV). A comparison
of the constraints is given in Table VIII. Since the prediction
from Refs. [2] and [1] have different sensitivities and therefore
are differently affected by the substitution (22), their compari-
son allows for one more constraint, which is given in the same
table.

Two constraints obtained from the original predictions
of Refs. [1,2] have almost the same uncertainty, which is
dominated by the uncertainty of ν( fp), with the difference
invisible because of their rounding. Combining all the con-
straints within εLSA cannot really improve the strength of the
constraint.

A naïve constraint on new-physics term ε, which would be
derived following the prediction from Ref. [1] and ignoring
the sensitivity (23), would be

ε = −0.09(27) kHz, (25)

which apparently has the uncertainty incorrect by a factor
of 2.

The observational equations for ε′LSA are in certain re-
spect similar to those for εLSA, but in some respects they are
quite different and suggest different logics of the evaluation.
The physical meaning of ε′ introduced according (24) is an
additional term for experimental values, such as a missing
systematic effect which affects the results on �νMu, but not
on ν( fp). Technically, that means that the measured value of
�νMu deviates by ε′ from the actual value of the interval, as
indicated in observational equation II. Meanwhile, expression
νth(me/mμ, δMu) correctly describes the actual value of the

TABLE VIII. Constraint on an additional theoretical term ε de-
fined in (22). The constraint following the theoretical prediction from
Ref. [1] is obtained with the sensitivity coefficient (23) taken into
account.

Constraint on ε [kHz] Ref.

−0.134(523) Following Ref. [2]
−0.172(523) Following Ref. [1]
−0.094(523) Comparing Eqs. (1) and (2)
−0.135(523) From εLSA

HFS interval. Therefore equation I is the same as for the
standard LSA.

While observational equation II breaks the relation be-
tween the measured value �νMu and the theoretical expression
(with appropriated values of the parameters) in the same way
for εLSA and ε′LSA, observational equation I requires the
actual value of the HFS interval as a quantity. In the case of
εLSA, the theory is uncertain because of a possible additional
term, but we could use the data from the experiments for the
Mu HFS interval. In the case of ε′LSA, in contrast, the uncer-
tain part is with the measurements of �νMu, while the theory
is reliable. That is what produces a technical asymmetry in a
comparison of the theory and the experiment.

The results are summarized in Table IX. To find the results
arising from the original constraints in Refs. [1,2], one has
to calculate the related sensitivities, first of the mass ratio
∂ (me/mμ)/∂ε′ and next of the theoretical prediction. In the
case of the CODATA’s constraint (1) it is zero. For (2), we
obtain

∂ ln �νth(me/mμ, δMu)

∂ε′ =
∂ ln(me/mμ)

∂ε′ = −2.189 × 10−10 Hz−1. (26)

As well as in the case of the constraint on ε, we find that
all the constraints have the same accuracy (after rounding), but
slightly different central values. One of the constraints (based
on the prediction from Ref. [1]) is easy to obtain while the
prediction from Ref. [2] requires additional calculations [of
the related sensitivity]. In particular, a naïve constraint using
the prediction (2) while ignoring the sensitivity (26) produces
the result

ε′ = −0.13(52) kHz, (27)

with a twofold larger uncertainty than a correct constraint
shown in Table IX.

We note that the constraint on missing experimental error
significantly differs from the one on an additional theoret-
ical term. That is not a surprise. A comparison of theory
and experiment is symmetric when those two values can be

TABLE IX. Constraint on a missing systematic error ε′ intro-
duced in (24). The constraint following the theoretical prediction
from Ref. [2] is obtained with the sensitivity coefficient (26).

Constraint on ε′ [kHz] Ref.

0.084(267) Following [2]
0.088(267) Following [1]
0.084(267) From ε′LSA
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found completely independently of each other. In the case of
muonium, in addition to their comparison in observational
equation II of Table VII, the actual value of �νMu enters
also observational equation I, without which a theoretical
prediction is not possible. That means that a calculation of
a prediction requires a value of me/mμ, for which either
a theoretical value of �νMu or an experimental one could
be applied, depending on our purpose. As we have learned
above from a comparison of the theoretical predictions from
Refs. [2] and [1], that makes a difference. A quantitatively
meaningful model-independent comparison of the theory and
the experiment is not possible with the current composition
of muonium data. The uncertainty of constraints on overseen
experimental and theoretical systematic errors is different, and
so is the sensitivity of the predictions [1,2] to different effects.

VII. CONCLUSIONS

Theoretical predictions may serve different purposes, on
the base of which we form a model of modification of standard
equations by introducing certain additional terms to be con-
straints. The outcome is model dependent and it is important
to state the purpose of a particular theoretical prediction. A
constraint on an additional theoretical term (such as a new-
physics contribution or a disputed term of a regular theory)
and on an additional experimental term (such as a possible
source of a systematic error) may be at a somewhat different
level of accuracy (cf., e.g., constraints in Tables VIII and IX).
Different predictions can be optimized for different purposes.

A prediction as a numerical value and its uncertainty may
be not sufficient by itself for an efficient comparison to the
experiment. In the meantime, the muonium experimental data
has demonstrated a perfect overall consistency and once it is
established a comparison of the theory and the experiment
serves as a final consistency check. In particular, both recent
theoretical predictions (from Refs. [2] and [1]), discussed in
this paper, are equally suitable for such a test and they confirm
the consistency at the same level of significance. The related
deviation of the theory from the experiment is at the level of
0.25–0.32 σ .

However, for further applications of the predictions, it is
required to present the sensitivity of the predictions to the
targeted phenomena. For instance, to constrain an additional
theoretical term it is necessary to explain what happens with
the prediction once we add such a term to the theoretical
expression. Such an effect can be not obvious (see the inter-
pretation of the CODATA’s prediction in (1) of the muonium
HFS interval in Sec. IV). Naïve comparisons ignoring the
sensitivity coefficients lead in certain cases to incorrect results
for both recent theoretical predictions [1,2] [cf. (25) and (27)].
One of the naïve evaluations [starting from (1)] produces an
incorrect constraint for an additional theoretical term, and
the other [starting from (2)] an incorrect constraint for an
overseen experimental error.

The other important issue is that a prediction is usually
supposed to be compared with experimental values. In the
case of the already existing experimental values, a correlation
coefficient relating the uncertainties of the prediction and of
the experiment is required. The optimized prediction for an

additional theoretical term is close to that of Eides [2] [see
(2)]. A correlation between the theoretical prediction and the
experiment is present in our evaluations, but fortunately it is
only marginally important.

Speaking about the existing results on muonium, we note
that none of the mentioned values of �νth is perfectly suited
for a comparison of theory and experiment. Use of such values
is limited by the accuracy of the input parameter me/mμ or,
alternatively, μμ/μp. A value which can be found from theory
and applied for a comparison with a future experiment is a
value of �νMu/νF . This quantity can be determined experi-
mentally in a measurement of the HFS interval at magnetic
field. (Dealing with a value of νF determined without any
theoretical input is close to the logics of Ref. [2]; however, to
make a comparison for future more accurate experiments we
will apparently use their νF , i.e., we are to produce a new theo-
retical prediction of Mu HFS interval in Hz.) Until an accurate
independent determination of me/mμ appears (through, e.g., a
measurement of the 1s–2s transition in muonium), it is better
to operate with �νMu/νF . One can compare results on such
a value, extracted from different experiments, and compare
experimental and theoretical results (see Fig. 5 and Table VI).

Above, we have described a rigorous approach to constrain
a parameter space left for a new-physics term. Theory can
be almost continuously updated, and sometimes it is. New
experimental results can appear as well. For this reason, it is
important to deal with estimations that should be simple for
understanding and would allow for modifications and updates.
A value of �νMu/νF , calculated rigorously from all available
experimental data, has a fractional uncertainty of 1.16 × 10−7.
If we ignore the correlations between �νMu and νF , the un-
certainty is increased to 1.17 × 10−7. Excluding correlation
between ν( fp) and �νMu within the same experiments would
change the uncertainty to 1.19 × 10−7. If we consider only
the most accurate experiment [7] and ignore the related cor-
relations the uncertainty of �νMu/νF , it is 1.25 × 10−7. In
other words, a rigorous consideration is capable of providing
a marginal improvement of the uncertainty compared with a
straightforward evaluation of the data of the best experiment
only. A comparison of two experiments [6,7] is necessary to
check their consistency, but once the consistency is estab-
lished, one may use the data only from the more accurate
experiment.

We have to emphasize that a short answer to a controversy
of two theoretical predictions (from Refs. [2] and [1]) is that
to constrain a new-physics term or a possible missing term
of QED theory, the prediction (2) [2] can be directly used
and the required corrections are rather marginal. Prediction
(1) [1] is not incorrect, but it is confusing and cannot be used
in a straightforward way. Any straightforward use of it leads
to incorrect results with the central value and the uncertainty
underestimated by approximately a factor of 2 [cf. (25) and
Table VIII]. All the constraints on new physics derived fol-
lowing the theoretical prediction from Ref. [1] and ignoring
the sensitivity coefficient of (23) should be corrected.

The central values of all the individual predictions in Ta-
ble VIII are somewhat different but still roughly the same
because of a good overall consistency of the muonium data
(see Table V). The latter means that all the possible additional
terms, whatever they are, should be consistent with zero.
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As explained, the strongest and the most rigorous con-
straint can be obtained with a complete use of the available
information through a relatively complicated procedure. With
an experimental progress in muonium physics (see, e.g.,
Refs. [28,29]), a difference of its outcome and a simplistic
approach of Ref. [2] may be important.

To conclude, we have also to mention that the theoreti-
cal uncertainty in Refs. [2] and [1] is somewhat different,
which is not that important as far as it is essentially below
the uncertainty due to determination of νF . In this paper, we
deliberately avoided any discussion of its value. The paper
is focused on a comparison of various procedures to produce
theoretical predictions on the muonium HFS interval and on
their subsequent use for a comparison of theory and experi-
ment. We have applied a theoretical expression from Ref. [1],
where all the related contributions are fully described. Having
in mind a possible experimental progress, the theoretical un-
certainty should be revisited, which is a completely separate
issue.

Personally, we believe that a real theoretical uncertainty
should be somewhat larger than that in Refs. [2] and [1].
However, as one can see from plots in Figs. 2 and 4, even
a magnification of the uncertainty by a factor of 5 would

weakly affect the accuracy of the average value of me/mμ

and therefore of the theoretical prediction for the muonium
hyperfine interval.

The choice of an appropriate approach to produce a the-
oretical prediction, whatever it is, and to constrain a space
for an additional theoretical term, becomes a key question
for the interpretation of the muonium HFS data because of
differences in existing predictions. This question is revisited in
this paper. Our constraint for the new theoretical term (and in
particular a new-physics one) is −0.14(52) kHz. The result is
consistent with a result based on Ref. [2]. It is also consistent
with a result based on the prediction from Ref. [1] once its
sensitivity factor is taken into account. Such a result is also
derived in this paper.
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