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We have developed an all-particle Fock-space relativistic coupled-cluster method to calculate the properties of
two-valence atoms and ions. Using the method we compute the properties associated with a hyperfine-induced
1S0 → 3Po

0 clock transition in Al+. Our result of the 3Po
0 metastable-state lifetime, 20.20 ± 0.91 s, is in excellent

agreement with the experimental value, 20.60 ± 1.4 s [T. Rosenband et al., Phys. Rev. Lett. 98, 220801 (2007)].
Our studies show that the contributions from the triple excitations, and the corrections from the Breit interaction
and QED effects, are essential to obtain accurate clock properties in Al+.
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I. INTRODUCTION

Development of atomic clocks as a frequency standard
provides a road map to study fundamental as well as tech-
nological applications. Some important examples are the
variation of the fundamental constants, probing physics be-
yond the standard model of particle physics, navigation
systems, and the basis for the redefinition of the second
[1–4]. The recent frequency standard experiments [5–9] in
the optical domain have reported the 1S0 → 3Po

0 transition in
Al+ as one of the most accurate clock transitions. Though
the 1S0 → 3Po

0 transition is highly forbidden based on the
selection rule of the total electronic angular momentum J ,
it is possible through hyperfine mixing of the 3Po

0 state with
3Po

1 and 1Po
1 states. The lifetime of the 3Po

0 metastable clock
state was measured with high accuracy by Rosenband and
collaborators [5] using the quantum logic spectroscopy tech-
nique. Three key factors favoring the choice for this transition
as a clock transition are low sensitivity to electromagnetic
fields, narrow natural linewidth, and small room-temperature
blackbody radiation shift. The last is due to small difference
between the polarizabilities of 1S0 and 3Po

0 states [10,11].
A recent work reported the fractional frequency uncertainty
of a (1S0 → 3Po

0 )-transition-based Al+ clock as 9.4 × 10−19

[8]. And, this, perhaps, is the most precise atomic clock in
existence today.

Despite the important applications of the 1S0 → 3Po
0

hyperfine-induced electric dipole transition (E1HFS) and
several experimental investigations in progress, very little the-
oretical data on the associated properties are available. For
example, there are only two results on the lifetime of the
3Po

0 metastable clock state [12,13], and both are based on
the multiconfiguration Dirac-Fock (MCDF) method. To the
best of our knowledge, there are no theoretical results using
the accurate many-body methods like the relativistic coupled-
cluster (RCC) method. It is to be emphasized that the RCC

method is considered to be one of the most accurate many-
body theories for the structure and properties calculations of
atoms and ions. It accounts for the electron correlation effects
to all orders of residual Coulomb interaction, and has been
employed to obtain accurate properties in several closed-shell
and one-valence atoms and ions [14–17]. The implementa-
tion of the RCC method for two-valence atomic systems is,
however, limited to few studies [18–20]. The reason, perhaps,
is the complications associated with its implementation for
two-valence systems. To be more precise, there are three main
hurdles. First, due to the multireference nature of the configu-
ration space, the model wave function is not well defined. This
needs a special treatment through the diagonalization of the
effective Hamiltonian matrix. Second, the atomic states are
the eigenstates of the total angular momentum, which leads to
a complication in the angular factors associated with antisym-
metrized many-electron states. And third, there is divergence
due to intruder states.

It can thus be surmised that there is a clear research gap
in terms of the scarcity of accurate theoretical data on the
1S0 → 3Po

0 transition properties. The aim of this work is to
fill this research gap. To address this in a comprehensive way,
we adopt a three-pronged approach. First, we develop a Fock-
space relativistic coupled-cluster (FSRCC)-based method for
structure and properties calculations of two-valence atoms or
ions. Second, we implement it as a parallel code. This is used
to compute the properties, such as the excitation energies,
hyperfine structure (HFS) constants, oscillator strengths, and,
more importantly, the lifetime of the 3Po

0 clock state, associ-
ated with the 1S0 → 3Po

0 clock transition in Al+. And, third,
we examine in the detail the role and contributions of triple
excitations, Breit interaction, and QED corrections in these
properties.

The remaining part of the paper is divided into five
sections. In Sec. II, we discuss the FSRCC method for two-
valence atomic systems. The properties calculations using the
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two-valence FSRCC method and contributing diagrams are
discussed in Sec. III. The results obtained from our calcula-
tions are discussed and analyzed in Sec. IV. In Sec. V, we
discuss the theoretical uncertainty of our results. Unless stated
otherwise, all results and equations presented in this paper are
in atomic units (h̄ = me = e = 1/4πε0 = 1).

II. TWO-VALENCE FSRCC

The wave function of a two-valence atom or ion, |�vw〉, is
the solution of the eigenvalue equation

HDCB|�vw〉 = Evw|�vw〉, (1)

where Evw is the exact energy. The Hamiltonian HDCB is the
Dirac-Coulomb-Breit no-virtual-pair Hamiltonian,

HDCB =
N∑

i=1

[cαi · pi + (βi − 1)c2 − VN (ri )]

+
∑
i< j

[
1

ri j
+ gB(ri j )

]
, (2)

where α and β are the Dirac matrices, and the last two terms,
1/ri j and gB(ri j ), are the Coulomb and Breit interactions,
respectively. In the FSRCC method, |�vw〉 can be written as

|�vw〉 = eT
[
1 + S1 + S2 + 1

2

(
S1

2 + S2
2
) + R

]|�vw〉. (3)

Here, vw · · · represent the valence orbitals and |�vw〉 =
a†

wa†
v|�0〉 is the Dirac-Fock reference state for the two-valence

atom or ion. And, T , S, and R are coupled-cluster (CC) opera-
tors for the closed-shell, one-valence, and two-valence sectors
of the Hilbert space of the total electrons.

For a two-valence system with N electrons, T , S, and R
operators in principle can have all possible excitations of the
electrons, and therefore can be expressed as

T =
N−2∑
i=1

Ti, S =
N−1∑
i=1

Si, and R =
N∑

i=1

Ri. (4)

However, among all the excitations, the single and double sub-
sume most of the electron correlation effects. And, therefore,
we can approximate T = T1 + T2, S = S1 + S2, and R = R2,
which is referred to as the coupled-cluster with singles and
doubles (CCSD) approximation. The dominant contributions
from the triple excitations are, however, also included in the
present work using the perturbative triples approach, dis-
cussed later in the paper. In the second quantized notation,
these operators can be represented as

T1 =
∑
ap

t p
a a†

paa and T2 = 1

2!

∑
abpq

t pq
ab a†

pa†
qabaa, (5a)

S1 =
∑

p

sp
va†

pav and S2 =
∑
apq

spq
vaa†

pa†
qaaav, (5b)

R2 =
∑

pq

rpq
vwa†

pa†
qawav. (5c)

Here, the indices ab · · · and pq · · · represent the core and
virtual orbitals, respectively. And, t ...

... , s...
..., and r...

... are the
cluster amplitudes corresponding to T , S, and R CC operators,
respectively.

The closed-shell and one-valence CC operators are ob-
tained by solving the set of coupled nonlinear equations
discussed in our previous works (Refs. [15] and [21], re-
spectively). Moreover, the details related to the computational
implementation of the RCC method for closed-shell and one-
valence systems is given in Ref. [22], where we had reported
the details of our RCC codes. The two-valence CC operator
R2 is the solution of the equation [20]

(6)

Here, for compact notation we have used S′ = S(1)
1 + S(1)

2 +
1
2 (S(1)

1
2 + S(1)

2
2
). E att

vw is the two-electron attachment energy
and it is the difference between the correlated energy of
the (n − 2)-electron (closed-shell) sector and the n-electron
(two-valence) sector, Evw − E0. Alternatively, it can also be
expressed as

E att
vw = εv + εw + �E att

vw, (7)

where εv and εw are the Dirac-Fock energies of the va-
lence electrons in |φv〉 and |φw〉, respectively, and �E att

vw =
�E corr

vw − �E corr
0 is the difference of the correlation energies

of closed-shell and two-valence sectors.

III. PROPERTIES CALCULATION USING FSRCC

A. Hyperfine matrix elements

In this section we describe the properties calculation using
the two-valence FSRCC method. For a detailed discussion
we consider the matrix elements of the hyperfine interac-
tion. The approach, however, is also applicable for calculation
of properties associated with other one-body operators with
appropriate selection rules. The hyperfine interaction is the
coupling between the nuclear electromagnetic moments and
the electromagnetic fields of the electrons. And the hyperfine
interaction Hamiltonian [23] is

HHFS =
∑

i

∑
k,q

(−1)qt k
q (r̂i )T

k
−q, (8)

where t k
q (r) and T k

q are the irreducible tensor operators of rank
k in the electronic and nuclear sectors, respectively.

Using the two-valence RCC wave function from Eq. (3),
the hyperfine matrix element in the electronic sector is

〈�i|H e
HFS|� j〉 =

∑
kl

ci
k
∗
c j

l

[〈�k|H̃ e
HFS + H̃ e

HFS(S′

+ R2) + (S′ + R2)†H̃ e
HFS + (S′ + R2)†

× H̃ e
HFS(S′ + R2)|�l〉

]
, (9)

where, H e
HFS is the electronic component of the hyperfine

operator. And, for compact notation, we represent the two-
valence state |�vw〉 with |�i〉. The constants ci

j are the mixing
coefficients corresponding to the configuration state function
|� j〉 for the state |�i〉, and are obtained by diagonalizing the
effective Hamiltonian matrix [20] within the chosen model
space. The dressed hyperfine Hamiltonian H̃ e

HFS = eT †H e
HFSeT

is a nonterminating series of closed-shell CC operators T . In
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FIG. 1. (a) The DF diagram. [(b)–(j)] Some contributing example
diagrams to Eq. (12). The diagrams are given in the same sequence
as the terms in Eq. (12).

our previous work [21] we proposed an iterative scheme to in-
clude a class of dominant diagrams to all orders of T in H̃ e

HFS.
And we also showed that the terms cubic in T and higher
contribute less than 0.1% to the properties. So, in the present
work, we truncate H̃ e

HFS to second order in T and include the
terms H̃ e

HFS ≈ H e
HFS + H e

HFST + T †H e
HFS + T †HHFST in the

properties calculations.
Next, to assess the contributions from different sectors we

group the terms in Eq. (9) as

〈�i|H e
HFS|� j〉 = 〈�i|H e

HFS|� j〉DF + 〈�i|H e
HFS|� j〉1v

+〈�i|H e
HFS|� j〉2v. (10)

Here, the first, second, and third terms denote the contri-
butions from the Dirac-Fock, one-valence, and two-valence
sectors, respectively. The CC terms arising from each of the
sectors are discussed in more detail.

1. Dirac-Fock contribution

The Dirac-Fock (DF) term is expected to have the domi-
nant contribution among the three terms in Eq. (10). It is the
expectation of the bare hyperfine Hamiltonian operator

〈�i|H e
HFS|� j〉DF =

∑
kl

ci
k
∗
c j

l 〈�k|H e
HFS|�l〉. (11)

In terms of Goldstone diagrams, it has only one diagram and
it is shown in Fig. 1(a). Since H e

HFS is a one-body operator,
the contribution is the expectation of H e

HFS with respect to
a valence orbital and then coupled with a spectator valence
orbital. The angular momentum diagram from the coupling is
topologically equivalent to the one in Fig. 2 with the effective
operator H eff,k

HFS replaced by Hk
HFS. The labels jv, jw, . . . (Ji, Jj )

denote the angular momentum quantum numbers of uncou-
pled (coupled) states, and multipole k represents the rank of
the hyperfine operator.

FIG. 2. Angular factor arising from the coupling of the one-body
effective operator and a spectator valence line. The free diagram on
the right-hand side represents the geometrical part in the Wigner-
Eckart theorem.

2. 〈�i|He
HFS|�i〉1v contribution

The contribution in this sector involves both the T and S
operators. From Eq. (9) we can write

〈�i|H e
HFS|� j〉1v =

∑
kl

ci
k
∗
c j

l

[〈�k|
(
H e

HFST1 + T †
1 H e

HFST2

+ H̃ e
HFSS1 + H̃ e

HFSS2 + S1
†H̃ e

HFSS2
) + H.c.

+ T †
1 H e

HFST1 + T †
2 H e

HFST2 + S1
†H̃ e

HFSS1

+ S2
†H̃ e

HFSS2|�l〉
]
. (12)

The above terms lead to 64 Goldstone diagrams and exam-
ple diagrams are shown Figs. 1(b)–1(j). The leading-order
contribution is expected from H̃ e

HFSS and its Hermitian con-
jugate S†H̃ e

HFS. The example diagrams of H̃ e
HFSS are shown

in Figs. 1(d) and 1(e). The next-leading-order contribution is
expected to be from the terms with two orders of S operators,
S†H̃ e

HFSS. The example diagrams corresponding to this term
are shown in Figs. 1(f), 1(i), and 1(j). To compute the con-
tribution from 〈�i|H e

HFS|� j〉1v, first we compute the matrix
elements with respect to uncoupled states and store them in
the form of a one-body effective operator. And then, like in
the DF approach, this effective operator is coupled with a
spectator valence state.

3. 〈�i|He
HFS|�i〉2v contribution

This term has contributions from all types of CC operators,
T , S, and R:

〈�i|H e
HFS|� j〉2v =

∑
kl

ci
k
∗
c j

l

[〈�k|
(
T †

1 H e
HFST2 + H̃ e

HFSS2

+ H̃ e
HFSR2 + S1

†H̃ e
HFSS2 + (S1 + S2)†

× H̃ e
HFSR2 + S2

1
†
H̃ e

HFS(S2 + R2)
)

+ H.c. + T †
2 H e

HFST2 + S2
†H̃ e

HFSS2

+ R2
†H̃ e

HFSR2|�l〉
]
. (13)

Here, we have neglected the terms with more than two orders
in S2 as these will have negligible contribution. There are 68
diagrams which arise from this term. Like in the one-valence
sector, we give selected diagrams from this term in Fig. 3
as an example. The leading-order contribution is expected to
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(a) (b) (c d)

(e) (f) (g

) (

) (h)

(i) (j) (k)

FIG. 3. Some contributing example diagrams to Eq. (13). For
easy identification, diagrams are given in the same sequence as the
terms in Eq. (13).

be H̃ e
HFSR2 and its Hermitian conjugate R2

†H̃ e
HFS. The cor-

responding example diagram from these terms is shown in
Fig. 3(c). This is on account of two important reasons. First,
these are the lowest-order terms in R2. Second, the magnitude
of R2 is larger than the T and S. The next-leading-order contri-
bution is expected to be H̃ e

HFSS2 and its Hermitian conjugate as
these are one order in S. The corresponding example diagram
is shown in Fig. 3(b). Among the terms which are second
or higher order in CC operators, the dominant contribution
is expected from the term R2

†H̃ e
HFSR2. Diagrammatically, an

example is shown in Fig. 3(k). The reason for this is attributed
to the larger magnitudes of R2 operators. The remaining terms
are expected to have negligible contributions. To compute the
contribution from 〈�i|H e

HFS|�i〉2v, all the terms in Eq. (13)
are computed with respect to uncoupled states first and then
stored in the form of a two-body effective operator, as shown
in Fig. 4. And, as indicated in the figure, the angular momenta
of the valence electrons are coupled.

FIG. 4. Angular factor arising from the coupling of two-body
effective operator. The portion in the dashed rectangle is an effective
operator which subsumes the contribution from Eq. (13) in terms of
uncoupled states.

x

v w

q

y a p

(a) (b () c)

FIG. 5. (a) The perturbative R3 diagram. [(b),(c)] The hyperfine
matrix element diagrams from the terms H e

HFSR3 and R†
2H e

HFSR3. The
dashed line represents the two-body residual interaction, gi j , between
the electrons.

B. Contribution from perturbative R3

To account for the electron correlation effects from triple
excitations, we consider the perturbative triples. With this
approach we can incorporate the dominant contributions from
triple excitations, but with far less computational cost than
the full triples. For this, we choose the triples which arise

from the two-valence CC operator R2, and the term is gR2 ,
where gi j = ∑

i< j[
1

ri j
+ gB(ri j )], the two-body residual inter-

action. This has the leading-order contribution to triples, since
the magnitude of R2 is larger than T and S for two-valence

systems. The diagram corresponding to gR2 is shown in
Fig. 5(a), and the algebraic expression is

R3 ≈ 1

�ε
xyp
vwa

a†
xa†

ya†
paaawav

∑
q

〈yp|g|qa〉〈xq|R2|vw〉, (14)

where �ε
xyp
vwa = εv + εw + εa − εx − εy − εp. The operator R3

contracts with other CC operators along with the hyperfine
operator and contributes to the properties through Eq. (9). In
our previous work on two-valence systems [20], the dominant
contribution to the properties involved the cluster operator
R2. So, in the present work, to account for the contribution
from R3 we include the terms H e

HFSR3, R†
3H e

HFS, R†
2H e

HFSR3,
and R†

3H e
HFSR2. There are three diagrams from each of these

terms which contribute to the two-valence properties. And, as
an example, one diagram each from the terms H e

HFSR3 and and
R†

2H e
HFSR3 are shown in Figs. 5(b) and 5(c), respectively.

C. Hyperfine-induced E1 transition

The hyperfine eigenstate |	FMF 〉 is obtained by coupling
the electronic state |�vw〉 with the eigenstate of the nuclear
spin I . Considering the hyperfine interaction HHFS as a pertur-
bation and using the first-order time-independent perturbation
theory,

|	FMF 〉 =
∑

n

[ 〈γnJnγI I|HHFS|γ0J0γI I〉
EJ0 − EJn

]

×|γnJnγI I〉. (15)

The term within the brackets represents the hyperfine mix-
ing of the unperturbed state |γ0J0γI I〉 with an excited state
|γnJnγI I〉. The parameters 	 and γi are additional quantum
numbers to identify the states uniquely, and EJ is the exact
energy. The transition amplitude between two hyperfine states
|	iFiMFi〉 and |	 jFjMFj 〉 is

E1HFS = 〈	iFi||D||	 jFj〉, (16)
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where D is the electric dipole operator. Using the expression
for |	FMF 〉 from Eq. (15) in the above equation, we obtain
the expression for the E1HFS-induced 1S0 → 3Po

0 transition
amplitude as

E1HFS = c(I, J, F, μI )

[〈
1S0||d||3Po

1

〉〈
3Po

1 ||t1||3Po
0

〉
�E3Po

1

+
〈
1S0||d||1Po

1

〉〈
1Po

1 ||t1||3Po
0

〉
�E1Po

1

]
, (17)

where c(I, J, F, μI ) is the angular factor associated with the
hyperfine wave function in Eq. (15), and �E3Po

1
and �E1Po

1
are

the energy differences E3Po
0
− E3Po

1
and E3Po

0
− E1Po

1
.

IV. RESULTS AND DISCUSSIONS

A. Convergence of basis

To obtain accurate results it is crucial to use a basis set
which provides a good description of the single-electron wave
functions and energies. And, to incorporate the effects of finite
charge distribution of the nucleus we use a two-parameter
finite-size Fermi density distribution. In this work, we use
the Gaussian-type orbitals (GTOs) [24] as the single-electron
basis. The orbital as well as the self-consistent-field energies
are optimized to match the GRASP2K [25] data. We achieve
an excellent match and details of the comparison are reported
in our recent work [17]. The orbital basis used in the present
work also incorporates the effects of Breit interaction, vac-
uum polarization, and the self-energy corrections. For Breit
interaction, we employ the expression given in Ref. [26] and
incorporate it in the orbital generation as well as the FSRCC
calculations. The effect of vacuum polarization on single-
electron orbitals is considered using the Uehling potential
[27] modified for the finite-size nucleus [28]. The self-energy
corrections to the orbitals are incorporated through the model
Lamb-shift operator introduced by Shabaev et al. [29], and are
calculated using the code QEDMOD [30].

Mathematically, the GTO bases are incomplete [31] and,
hence, it is essential to check the convergence of results with
basis size. For this, we start with a moderate basis of 86
orbitals (14s, 14p, 9d , 5 f , 4g, 4h) and add orbitals in each
symmetry until the change in the properties is � 10−3 in
respective units of the properties. For illustrative purposes the
convergence trend of the magnetic dipole hyperfine structure
(HFS) constant is shown in Fig. 6(a). It is observed that the
change is less than 10−3 MHz when the basis is augmented
from 167 to 173. So, to optimize the computational time, we
consider the basis set with 167 (23s, 23p, 15d , 12 f , 11g, 11h)
orbitals as optimal, and use it in the properties computations.

B. Excitation energies

In Table I, we list the low-lying energies of Al+ from
our results along with other theory and experimental data
for comparison. From the table it is evident that our re-
sults are in good agreement with experimental as well as
previous theoretical results. The largest and smallest rela-
tive errors in our calculation are 0.9% and 0.004%, in the
case of 3p2 3P2 and 3s3p 3Po

0 states, respectively. It is to be

FIG. 6. The convergence trend of HFS constants as a function of
(a) basis size and of relative errors in (b) the excitation energy and
(c) the energy separation as a function of configurations, and max-
imum percentage contributions from the perturbative triples, Breit
interaction, and QED corrections to HFS constants.

noted that the states with low energy configurations 3s2 and
3s3p, which are key to clock transition, are very close to
the experiment. Among the previous theoretical results, those
from the configuration-interaction+all-order (CI + AO) cal-
culations by Konovalova and collaborators [33] and Safronova
and collaborators [11] are in better agreement with the exper-
imental data. The maximum relative error is ≈ 0.14% in each
of these calculations, in the case of 3s3d 3D2 and 3s3p 1Po

1
states, respectively. The reason for the marginal difference
between these calculations and ours can be attributed to the
different treatment of core-core and core-valence correla-
tions. In Refs. [33] and [11], a linearized CCSD is used in
the calculation. However, in the present work, we include the
nonlinear terms in the CCSD. Hence, our work considers the
electron correlation effects better than the previous works.
This naturally translates to improved overall uncertainty. The
other set of reliable results, in terms of proximity to the
experimental data, is based on the configuration-interaction
with a semi-empirical core potential (CICP) method obtained
by Mitroy and collaborators [34]. The remaining theoretical
results are either based on many-body perturbation theory or
multiconfiguration Dirac-Hartree-Fock (MCDHF) and these
have larger deviations from the experiment. Considering the
contributions from the Breit and QED corrections, we observe
the largest combined contribution of ≈ 0.01% of the total
value in the case of 3Po

0 . The magnitude is consistent with the
previous calculation [33].

To discern the electron correlation effects, the energies are
computed with three different model spaces. We start with the
configurations 3s2 + 3s3p (CF1) in the model space and then
add 3s4s and 3p2 + 3s3d in the two subsequent computations,
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TABLE I. Energy (in cm−1) of the ground state 3s2 1S0 and the
excitation energies of low-lying excited states using the configura-
tions 3s2 + 3s3p + 3p2 + 3s3d + 3s4s in the model space. Listed
energies also incorporate the contributions from the Breit interaction
and QED corrections, and are obtained using the converged basis of
167 orbitals.

States FSRCC Other calculations Expt. [32]

3s2 1S0 379582 381210,a 381331,b 381287c 381308
382024d

3s3p 3Po
0 37395 37392,a 37374,c 37396b 37393

37191d

3s3p 3Po
1 37452 36705,e 35000,f 37454a 37454

36292,g 37516,h 37457b

37818,i 37253,j 37251d

3s3p 3Po
2 37555 37579,a 37572,b 37374d 37578

3s3p 1Po
1 60111 60723,c 63000,f 59855a 59852

59849,c 59427,g 60198h

59768,b 59140,i 60104j

54410d

3p2 1D2 85578 85450,a 85462,b 85678d 85481
3s4s 3S1 91043 91256,a 91289,b 91262c 91274
3p2 3P0 93379 94049,a 94092,b 93672d 94085
3p2 3P1 93380 94112,a 94151,b 93735d 94147
3p2 3P2 93409 94234,a 94265,b 93857d 94269
3s4s 1S0 95156 95336,a 95354b 95350.60
3s3d 3D1 95248 95420,a 95527,b 95532c 95551

95695d

3s3d 3D2 95252 95419,a 95527,b 95697d 95550
3s3d 3D3 95253 95418,a 95524,b 95690d 95549
3s3d 1D2 110382 106270d 110090
3p2 1S0 111598 111637

aReference [33] (CI+AO).
bReference [11] (CI+AO).
cReference [34] (CICP).
dReference [41] Relativistic many-body perturbation theory
(RMBPT).
eReference [35] Configuration interaction Dirac-Fock with core po-
larization.
fReference [36] (MCDF).
gReference [37] Multiconfiguration relativistic random-phase ap-
proximation (MCRRPA).
hReference [38] (MCDHF).
iReference [39] (RMBPT).
jReference [40] (MCDF).

CF2 and CF3, respectively. We could not separate the contri-
bution from 3p2 and 3s3d as the inclusion of any one of these
leads to divergence due to the intruder states. To elaborate,
when only 3p2 is included in the model space, 3s3d 3D1,2,3

states, having energies within the range of the model space,
are the intruder states. This leads to divergence due to a small
energy denominator. Similarly, when only 3s3d is included,
3p2 3P0,1,2 states are intruder states. The trends of the results
from the three model spaces are shown in Figs. 6(b) and
6(c). The plots in the figures show that the inclusion of 3p2,
3s3d , and 3s4s in the model space improves the energies of
the 3s2 1S0 and 3s3p 3Po

0,1,2 states, and the energy difference
�E3Po

1
, = E3Po

0
− E3Po

1
. Obtaining correct values for the energy

difference �E3Po
1

is the key to obtain the accurate lifetime of

the 3Po
0 state. The improvement can be attributed to the in-

clusion of valence-valence correlation effects more accurately
by diagonalizing the effective Hamiltonian in a larger model
space. As a result, �E3Po

1
increases from 8.24 to 57.76 cm−1,

which is in good agreement with the experimental result of
60.88 cm−1. This improves the lifetime of the 3Po

0 state by
about 96%. We, however, observe an opposite trend for the
excitation energy of the 1Po

1 state and, hence, the value of the
energy difference �E1Po

1
as well. But these have a negligible

effect on the lifetime of 3Po
0 as �E1Po

1
is very large, ≈ 22457

cm−1. It must be emphasized that the two-valence coupled-
cluster calculations with larger model space are challenging.
And our present work demonstrates the possibility of doing
this with the FSRCC method without ambiguity by augment-
ing the model space systematically.

C. Hyperfine and dipole reduced matrix elements and
structure constants

The magnetic dipole and electric quadrupole hyperfine
constants, A and B, respectively, obtained from our study are
listed in the Table II. In addition, the off-diagonal reduced
matrix elements required to evaluate the E1HFS amplitude
are presented in Table III. For quantitative assessment the
contributions from the Breit interactions, QED corrections,
and dominant triples are also listed in the table. For all the
states CCSD is the dominant contribution. And the DF term
has the leading-order contribution among the different sectors
in the CCSD: it accounts for more than 90% of the total value.
More importantly, within 2v, H e

HFSR2 + H.c. has the largest
contribution. This can be attributed to the larger magnitude
of the R2 operator. As discernible from Fig. 6(d), the con-
tribution from the perturbative triples R3 is also crucial. For
example, it has ≈ 3% and 5% of the total value of A(1Po

1 )
and B(3Po

2 ), respectively. This implies that the triples must be
included in the FSRCC calculations to obtain accurate results
for hyperfine structure and related properties of Al+. From the
Breit interaction, A(3Po

2 ) has the largest contribution, ≈ 0.9%.
Considering the level of accuracy needed for clock properties,
it is a significant contribution and cannot be neglected. The
contribution from the QED corrections is ≈ 0.02% and negli-
gible compared to the other terms.

To the best our knowledge, there are no experimental data
for comparison. However, there is one theoretical result each
for A and B of 3Po

1 and 3Po
2 using the MCDF method by

Itano and collaborators [42]. Our results of 1389.81, 1174.29,
and 16.65 for A(3Po

1 ), A(3Po
2 ), and B(3Po

1 ), respectively, are
≈ 3.1%, 2.2%, and 5.6% larger than the values given in
Ref. [42]. The reason for this difference can be attributed to
the better accounting of the electron correlations in FSRCC
theory as it includes the residual Coulomb interaction to all
orders. We observe an opposite trend for B(3Po

2 ). Our DF
result, 29.44, is close to the MCDF result, 31.42 [42], but
our total value of 24.23 is 45.7% lower. This is due to the
large cancellation from the 2v sector. For the off-diagonal
reduced matrix elements, there are two previous results for
comparison. The magnitudes of the reduced matrix elements
t30 and t10 from our calculation are smaller than the MCDHF
[13] and CI + MBPT [43] results. The reason for this can be
attributed to the difference in the treatment of the electron
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TABLE II. Magnetic dipole and electric quadrupole hyperfine structure constants (in MHz) for 3Po
1 , 3Po

2 , and 1Po
1 states. The values of the

nuclear magnetic dipole moment μI = 3.6415069(7)μN and electric quadrupole moment Q = 0.1466(10) b are used in the calculation.

Hyperfine structure constants

A B

Methods 3Po
1

3Po
2

1Po
1

3Po
1

3Po
2

1Po
1

CCSD 1385.409 1188.024 292.588 −16.173 25.549 27.876
CCSD(T) 8.316 −3.865 −8.661 −0.473 −1.276 0.432
Breit −4.240 −10.194 2.153 −1.633 × 10−4 1.246 × 10−3 −2.745 × 10−4

Vacuum polarization 0.306 0.306 −4.118 × 10−4 4.069 × 10−5 −3.715 × 10−5 −1.956 × 10−4

Self-energy 0.023 0.023 3.790 × 10−4 2.561 × 10−6 4.323 × 10−5 3.966 × 10−5

Total 1389.814 1174.294 286.0800 −16.646 24.274 28.308
Other calculations 1348a 1149a −15.62a 31.42a

aReference [42] (MCDHF).

correlations in FSRCC and these calculations. For the results
in Ref. [13], there could be two sources of uncertainty in the
matrix elements. First, the active space of configuration state
functions (CSFs) is limited to the single-electron basis with
n = 7 and l = 5 only, where n and l are principal and orbital
quantum numbers, respectively. And second, the core polar-
ization effect is considered only from the 2s and 2p electrons.
In the present work, however, we include a large active space
with orbitals up to n = 25 and l = 6, and CSFs arising from
all core-to-valence, valence-to-virtuals and core-to-virtuals
single and double electron replacements. In addition, we also
include the contribution from triple excitations perturbatively.
Coming to the results in Ref. [43], there is an important differ-
ence in terms of accounting of the core-core and core-valence
correlations. In the present work, these are considered up to
all orders of residual Coulomb interaction. Reference [43],
however, considers these up to third order only. It is to be also
mentioned that the uncertainty in the reduced matrix elements
in Ref. [43] is 3%.

We use the E1 transition reduced matrix elements in Ta-
ble III to compute the oscillator strengths, which are listed
in Table IV. Like hyperfine structure constants, the dominant
contribution is from the CCSD. It contributes more than 94%
of the total value. The contributions from the perturbative
triples and Breit interactions are significant. The maximum
contributions from these are ≈ 6.2% and 0.4%, respectively.
Like the hyperfine case, QED correction has a negligible

contribution. For the oscillator strength of the 1S0 → 3Po
1

transition there is one experimental result and it is based
on the time-resolved technique [44]. Our theoretical result,
2.60 × 10−5 a.u., for this transition has the same order of mag-
nitude as the experimental data, (1.068 ± 0.074) × 10−5 a.u.,
but it is ≈ 128% larger. The other theoretical results, although
based on MCDF or related methods, show wide variation.
The results range from 0.36 × 10−5 [36] to 3.78 × 10−5 a.u.
[35]. For the 1S0 → 1Po

1 transition there are three experimental
results based on the beam-foil technique [45–47]. Despite
the same experimental technique, there is a large variation in
the results. In addition, the uncertainties associated with the
results are large; these are in the range ≈ 4.8% [46] to 15.8%
[45,47]. Our theoretical result of 1.47 lies within the range of
the experimental values. One observation is that the previous
theoretical results are similar in values. The reason for this
could be the similar treatment of the electron correlations as
all are based on MCDF and its variations and have similar
shortcomings in the inclusion of electron-correlation effects.
This highlights the importance of cross-checking with other
methods like we have done with a better method.

D. E1HFS

Using the electric dipole and hyperfine reduced matrix
elements from Table III and the energy differences �E3Po

1 /1Po
1

from Table I in Eq. (17), we calculate the E1HFS amplitude

TABLE III. Magnetic dipole hyperfine and E1 transition reduced matrix elements, t30 = 〈3Po
1 ||t1||3Po

0 〉 and t10 = 〈1Po
1 ||t1||3Po

0 〉, d03 =
〈1S0||d||3Po

1 〉 and d01 = 〈1S0||d||1Po
1 〉, in atomic units.

Methods d03 d01 t30 t10

CCSD −1.425 × 10−2 2.841 −0.095 0.079
CCSD(T) −9.384 × 10−4 −9.159 × 10−4 1.608 × 10−3 −5.667 × 10−4

Breit 6.303 × 10−5 −2.069 × 10−5 4.882 × 10−5 −3.165 × 10−4

Vacuum polarization −9.737 × 10−7 1.181 × 10−5 −4.198 × 10−5 3.035 × 10−5

Self-energy 2.332 × 10−7 5.608 × 10−7 −2.993 × 10−6 2.849 × 10−6

Total −1.513 × 10−2 2.840 −0.094 0.078
Other calculations −0.120a 0.096a

−0.119b

aReference [13] (MCDHF).
bReference [43] (CI+MBPT).
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TABLE IV. Oscillator strengths of the allowed transitions compared with other calculations and experiments.

Method 1S0 → 3Po
1

1S0 → 1Po
1

CCSD(T)+ Breit+QED 2.604 × 10−5 1.473
Other calculations 3.560 × 10−6,a 8.875 × 10−6,b 1.740,a 1.765,c 1.831,b

3.776 × 10−5,d 1.017 × 10−5e 1.850,f 1.746,g 1.751,h

1.76,d 1.775e

Experiments (1.068 ± 0.074) × 10−5i 1.74 ± 0.27,j 1.9 ± 0.3,k

1.26 ± 0.06l

aReference [36] (MCDF).
bReference [34] (CICP).
cReference [37] (MCRRPA).
dReference [35] (MCDF+CP).
eReference [13] (MCDHF).
fReference [48] (RRPA).
gReference [38] (MCDHF).
hReference [40] (MCDF).
iReference [44] (experiment).
jReference [45] (experiment).
kReference [47] (experiment).
lReference [46] (experiment).

of the 1S0 → 3Po
0 transition and the lifetime of the 3Po

0 clock
state. The results from the present and previous works are
listed in Table V. The experimental value of the lifetime is
20.6 ± 1.4 s from Ref. [5]. This is in very good agreement
with our theoretical value of 20.20 ± 0.91 s, identified as
CCSDT) + Breit + QED in the table. Here, one point is to
be noted: the error associated with the experimental value,
≈ 6.8%, is not negligible. As discernible from the table, the
contribution from the perturbative triples to the lifetime is
≈ −6.4% of the total value and is essential to improve the
comparison with the experimental result. The combined con-
tribution from the Breit interaction and QED corrections is
≈ 0.8% of the total value. Considering the current uncer-
tainties of optical atomic clocks, this cannot be neglected to
obtain theoretical results with commensurate uncertainties.
Two previous theoretical works, using the MCDF method,
have reported the lifetime of the 3Po

0 state [12,13]. Between
the two, the recent work of Ref. [13] treats the electron cor-
relation more accurately by considering single and double
electron replacements and larger active space for CSFs. How-
ever, the result of 23.11 s in Ref. [13] has a larger deviation
(≈ 12%) from the experimental data. This indicates inherent

TABLE V. Wavelength (λ) (in nm), E1HFS amplitude (in a.u.) of
the 1S0 → 3Po

0 transition, and the lifetime (τ ) (in seconds) of the 3Po
0

metastable state.

Methods λ E1HFS τ

CCSD 267.44 5.153 × 10−5 21.33
CCSD(T) 5.316 × 10−5 20.04
CCSD(T)+Breit+QED 5.295 × 10−5 20.20 ± 0.91
Other calculations 23.11,a 20.33b

Experiments 267.43 20.6 ± 1.4c

aReference [13] (MCDF).
bReference [12] (MCDF).
cReference [5] (experiment).

shortcomings or inconsistencies of accounting for the electron
correlation properly in the MCDF method. This is resolved in
the present work. In the FSRCC method such inconsistencies
do not arise. As mentioned earlier, we use a converged basis
as the active space in which all possible single and double
electron replacements are included to all orders.

V. THEORETICAL UNCERTAINTY

The theoretical uncertainty in the lifetime of the 3Po
0 state

depends on the uncertainties in the HFS reduced matrix el-
ements t30 and t10, the dipole reduced matrix elements d03

and d01, and the energy denominators �E3Po
1

and �E1Po
1
.

For the reduced matrix elements, we have identified four
sources which contribute to the theoretical uncertainty. The
first source is the truncation of the basis set. As shown in
Fig. 6(a) for the HFS constant, the change in the HFS and
electric dipole matrix elements is of the order of 10−3 or less
on augmenting the converged basis. Since the change is very
small, we can neglect this uncertainty. The second source is
the truncation of the dressed Hamiltonian H̃ e

HFS to second
order in T (0). In our previous work on hyperfine structure
constants [21], using an iterative scheme, we have shown that
the contribution from third- and higher-order terms is less than
0.1%. So, we take 0.1% as an upper bound from this source of
uncertainty. The third source is the partial inclusion of triple
excitations in the properties calculation. Since we consider
the leading-order terms of triple excitation in the perturbative
triples, the contribution from the remaining terms will be
small. Based on our analysis in present and previous works
[17,49], we estimate the upper bound from this source as
0.72%. The fourth source of uncertainty is associated with the
frequency-dependent Breit interaction, which is not included
in the present work. However, in our previous work [50] using
a series of computations with GRASP2K which implements this
interaction we estimated an upper bound on this uncertainty
to be 0.13% in Ra. Although Al+ is a much lighter atom
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TABLE VI. Convergence of excitation energy, hyperfine structure constants, and electric dipole transition amplitudes as a function of basis
size.

Basis size
States or property BS1a BS2b BS3c BS4d BS5e BS6f BS7g BS8h

Excitation energy
3s3p 3Po

0 36880.92 36887.02 36893.38 37050.55 37388.70 37391.43 37391.43 37391.43
3s3p 3Po

1 36941.51 36947.51 36953.75 37109.51 37448.96 37449.19 37449.19 37449.19
3s3p 3Po

2 37050.77 37056.56 37062.55 37215.38 37557.29 37552.51 37552.52 37552.52
3s3p 1Po

1 60174.87 60177.54 60181.35 60186.27 60205.24 60109.38 60109.38 60109.38
3p2 1D2 84935.91 84943.85 84951.80 85142.41 85605.12 85574.35 85574.35 85574.35
3s4s 3S1 90488.94 90494.85 90500.30 90670.08 91019.53 91041.40 91041.40 91041.40
3p2 3P0 92789.16 92801.94 92816.68 92977.64 93367.32 93374.60 93374.59 93374.59
3p2 3P1 92798.39 92810.12 92823.73 92986.81 93380.10 93375.69 93375.69 93375.69
3p2 3P2 92882.82 92894.07 92907.51 93053.81 93411.63 93405.18 93405.18 93405.18
3s4s 1S0 94524.80 94531.58 94537.68 94717.64 95132.51 95154.58 95154.59 95154.58
3s3d 3D1 94950.56 94948.62 94943.20 95034.90 95321.19 95246.39 95246.39 95246.39
3s3d 3D2 94954.45 94952.51 94947.56 95039.24 95325.07 95250.27 95250.27 95250.27
3s3d 3D3 94957.27 94955.31 94950.02 95041.37 95326.47 95251.68 95251.68 95251.68
3s3d 1D2 109929.38 109931.55 109931.47 110085.40 110457.19 110379.43 110379.43 110379.43
3p2 1S0 111441.00 111448.22 111453.87 111532.23 111733.69 111593.71 111593.71 111593.71

HFS constants
A(3Po

1 ) 1345.337 1357.349 1370.930 1376.918 1385.889 1385.409 1385.410 1385.410
A(3Po

2 ) 1147.931 1159.867 1173.480 1178.863 1187.596 1188.024 1188.025 1188.025
A(1Po

1 ) 283.646 283.920 284.187 286.985 291.088 292.588 292.588 292.588
B(3Po

1 ) −15.969 −15.978 −15.980 −16.059 −16.165 −16.173 −16.173 −16.173
B(3Po

2 ) 25.026 25.041 25.045 25.231 25.503 25.549 25.549 25.549
B(1Po

1 ) 27.340 27.355 27.358 27.576 27.825 27.876 27.876 27.876
E1 amplitude

1S0 → 3Po
1 −1.843 × 10−2−1.832 × 10−2−1.820 × 10−2 −1.718 × 10−2 −1.531 × 10−2−1.425 × 10−2−1.425 × 10−2−1.425 × 10−2

1S0 → 1Po
1 2.894 2.893 2.893 2.875 2.845 2.841 2.841 2.841

a86 (14s, 14p, 9d, 5 f , 4g, 4h).
b97 (15s, 15p, 10d, 6 f , 5g, 5h).
c119 (17s, 17p, 12d, 8 f , 7g, 7h).
d141 (19s, 19p, 14d, 10 f , 9g, 9h).
e152 (20s, 20p, 15d, 11 f , 10g, 10h).
f161 (21s, 21p, 15d, 12 f , 11g, 11h).
g167 (23s, 23p, 15d, 12 f , 11g, 11h).
h173 (25s, 25p, 15d, 12 f , 11g, 11h).

and is expected to have a much smaller contribution from the
frequency-dependent Breit interaction, we take 0.13% as an
upper bound from this source. There could be other sources
of theoretical uncertainty, such as the higher-order coupled
perturbation of vacuum polarization and self-energy terms,
quadruply excited cluster operators, etc. But these, in general,
have much lower contributions to the properties and their
cumulative theoretical uncertainty could be below 0.1%. The
theoretical uncertainty associated with energy denominators
�E3Po

1
and �E1Po

1
is calculated from the relative errors in

the excitation energies of 3Po
0 , 3Po

1 , and 1Po
1 states. These are

≈ 0.01% and 0.43%, respectively.
The other theoretical uncertainty which will contribute to

the lifetime is the QED corrections at the level of E1HFS calcu-
lation. To estimate this uncertainty, we refer to Refs. [51,52].
In these works Shabaev and collaborators have implemented
and computed the one-loop QED corrections to the parity-
nonconserving transition amplitudes. Considering that the
magnetic dipole HFS is like the matrix element of the parity-
violating interaction Hamiltonian, the associated theoretical

uncertainty would be similar. Thus, based on these works
we consider 0.3% as the upper bound from this source of
uncertainty. It is, however, to be noted that the actual un-
certainty would be smaller as Al+ is a much lighter system
compared to the Cs and Fr atoms studied in Refs. [51,52].
So, by combining the upper bounds of all the contributions,
the theoretical uncertainty associated with the value of the
lifetime of the 3Po

0 state is 4.5%.

VI. CONCLUSIONS

In conclusion, we have developed an all-particle Fock-
space relativistic coupled-cluster based method to calculate
the properties of two-valence atomic systems. To account for
the relativistic effects and QED corrections we use the Dirac-
Coulomb-Breit Hamiltonian with the corrections from the
Uehling potential and the self-energy. The effects of the triple
excitations are incorporated using the perturbative triples. Us-
ing the method we have calculated the properties such as the
excitation energies, hyperfine structure constants and reduced
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matrix elements, oscillator strengths, and the lifetime of the
3Po

0 metastable state in Al+, which is an important parameter
for the 1S0 → 3Po

0 clock transition. Our results of the exci-
tation energies and oscillator strengths agree well with the
experimental data. Most importantly, our theoretical estimate
of the lifetime of the 3Po

0 state, 20.20 ± 0.91 s, is in excel-
lent agreement with the experimental value, 20.60 ± 1.4 s,
from Rosenband et al. [5]. From our studies we conclude
that the contributions from the triple excitations and Breit
+ QED corrections are essential to obtain accurate clock
properties in Al+. Based on error analysis, the upper bound
on the theoretical uncertainty in the calculated lifetime of
3Po

0 is 4.5%. The level of uncertainty in our results indicates
that the FSRCC method we have developed has the poten-
tial to predict the structure and properties of two-valence
atoms and ions with accuracies commensurate with the
experiments.
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APPENDIX: CONVERGENCE TABLE OF THE
PROPERTIES WITH BASIS SIZE

In Table VI, we provide the trend of the convergence of
excitation energies, magnetic dipole and electric quadrupole
hyperfine constants, and electric dipole transition amplitudes
as a function of basis size. As it is evident from the table,
all the properties converge to the order of 10−3 or less in the
respective units of the properties.
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