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Optical and spin manipulation of non-Kramers rare-earth ions in a weak magnetic field
for quantum memory applications
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Rare-earth ion doped crystals have proven to be solid platforms for implementing quantum memories. Their
potential use for integrated photonics with large multiplexing capability and unprecedented coherence times is
at the core of their attractiveness. The best performances of these ions are, however, usually obtained when
subjected to a DC magnetic field, but consequences of such fields on the quantum memory protocols have only
received little attention. In this paper, we focus on the effect of a DC bias magnetic field on the population
manipulation of non-Kramers ions with nuclear quadrupole states, both in the spin and optical domains,
by developing a simple theoretical model. We apply this model to explain experimental observations in a
151Eu :Y2SiO5 crystal, and highlight specific consequences on the atomic frequency comb spin-wave protocol.
The developed analysis should allows predicting optimal magnetic field configurations for various protocols.
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I. INTRODUCTION

Processing and distribution of quantum information has
seen tremendous progress in recent years, thanks to the de-
velopment of architectures for quantum computing [1] and
deployment of photonics-based large-scale quantum networks
[2,3]. A crucial ingredient is, however, still missing to fully
synchronize the elementary photonic links in the networks
and implement, for instance, quantum repeaters [4]: the quan-
tum memories [5]. Different platforms exist for implementing
these devices [6–10] but a particularly interesting one has
emerged over the last decade for this purpose: rare-earth
ion doped crystals (REIDCs) [11–17]. Together with the
spin-wave atomic frequency comb (AFC) protocol [18], state-
of-the art performances have been demonstrated with these
elements in terms of storage duration [13,17,19], multiplexing
capacity [12,20], ability to store single photons [14–16], and
potential for high-efficiency storage [21,22]. A fully favorable
regime for operating REIDCs is usually at magnetic fields
that allows reaching a point where the magnetic sensitiv-
ity to environmental fluctuations is minimal (so-called zero
first-order Zeeman points) [13,23,24]. However, this situation
requires a higher degree of control: magnetic field amplitudes
could be high and their direction has to be precisely adjusted
[19]. On the other hand, working with intermediate amplitude
magnetic fields (∼10 to 100 mT) also results in larger effective
coherence times [25] and allowed reaching storage times of
the order of a second [17]. So far, only a few studies have been
conducted to identify side-effects of such a field on the proto-
col at these field intensities and experimental requirements are
still widely unknown. In this paper, we identify phenomena
affecting the performance of population manipulations both
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in the optical and spin domains for REIDCs and identify
consequences on the spin-wave AFC protocol in this regime.

The paper is organized as follows: In Sec. II, we recall the
principle of the spin-wave AFC protocol and its application to
REIDC, and describe the different experimental setups used
for the experiments of this paper. In Sec. III, we focus on the
influence of an external bias field on the spin-level manipula-
tions. The studies are conducted in the case of a 3/2 nuclear
spin, governed by an effective quadrupole Hamiltonian, and
theoretical findings are confronted to experimental observa-
tions. In Sec. IV, the influence of the field on the population
preparation necessary for the AFC protocol is addressed, and
the temporal dependance of the AFC spin-wave efficiency
under such a field is closely studied. In particular, we identify
frequencies that appear in the efficiency curve and associate
them with beatings between different quantum paths linked to
the lift of the Zeeman degeneracy.

II. SPIN-WAVE AFC IN REIDC

A. The AFC protocol

Let us recall the principles of the spin-wave AFC protocol.
The protocol, as described in Ref. [18] and represented on
the left part of Fig. 1, relies on the shaping of the absorption
profile of an ensemble of N absorbers as a series of periodic
teeth (period �AFC) on a |g〉 ↔ |e〉 transition.

The absorption of an input photon by this structure then
brings the ensemble in a so-called Dicke state,

|ψ〉 ∝
N∑

j=1

e−i2πn jt�AFC |g1, . . . , e j, . . . , gN 〉, (1)

where n j is the number of the tooth to which the jth
atom belongs. According to this expression, the excitation
will rephase after a time τAFC = 1/�AFC, leading to the
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FIG. 1. The AFC protocol (left) and its application to nuclear
spin levels of rare-earth ion doped crystals (right). Under the appli-
cation of an external magnetic field BDC, the different Zeeman levels
split.

re-emission of the input photon under the form of an echo. We
will refer to this echo as the AFC echo. In forward emission,
i.e., when the echo is emitted with the same k vector as the
input pulse, the efficiency of retrieval can be written in a
general form [26]:

ηAFC = ηdephd̃2e−d̃ e−4/(T opt
2 �AFC ). (2)

In this expression, ηdeph accounts for the remaining dephasing
process due to the finite width and shape of the teeth of the
comb, d̃ is the effective optical depth of the ensemble, and
T opt

2 is the optical coherence time. One can show that the
optimal shape for the comb is square [27], in which case
d̃ = d/F (d the optical depth, F the comb finesse) and ηdeph =
sinc2(π/F ) [26]. The finesse that maximizes the efficiency is
then F = π/atan(2π/d ) [27].

To make this protocol on-demand, a third shelving level |s〉
can be used for the transfer of the optical coherence (1) into
a long-lived spin coherence. The efficiency of the full AFC
spin-wave memory protocol is

ηsw = ηAFCη2
T e−2Ts/T spin

2 , (3)

where ηT is the transfer efficiency from the optical to the
spin transition, Ts is the storage time, and T spin

2 is the spin
coherence time [26]. Optical pumping techniques can be used
to shape the frequency comb in the absorption profile [26] and,
in this case, a third ground state (that we will denote |aux〉,
not shown in Fig. 1) has to be involved to store the removed
population. These pumping techniques are impacted by the
presence of a bias magnetic field, as we will see in Sec. IV.
Additionally, spin manipulation may have to be performed
between states |g〉 and |s〉 during the storage procedure to
dynamically decouple the ions of interest from external fluc-
tuations [17] or simply to rephase them efficiently due to the
spin inhomogeneous linewidth [28]. These manipulations are
at the core of the study conducted in Sec. IV of the present
paper.

B. Case of the REIDC

Two main systems have demonstrated high performances
regarding the AFC spin-wave protocol, europium (Eu3+) and
praseodymium (Pr3+), by using the optical electronic 4 f ↔
4 f transition together with the nuclear quadrupole spin states.
To be more explicit, the nuclear spin Hamiltonian of both
electronic ground (noted G) and excited (noted E ) states can
be written in the form [24,29–31]

HE = IQE I + B(t )ME I, (4a)

HG = IQGI + B(t )MGI, (4b)

where I is the nuclear spin vector, QX are the effective pseudo
quadrupole interaction tensors, MX the Zeeman tensors, and
X stands for E or G. B(t ) is the applied magnetic field vector
that can be decomposed into a constant component and an
oscillatory component that drives the transitions between the
states: B(t ) = BDC + BAC(t ). Then, the Hamiltonians (4) can
be decomposed as the sum of a time-independent and a time-
dependent interaction Hamiltonian, respectively,

HX = H0
X + H int

X (t ), (5a)

with

H0
X = IQX I + BDCMX I, (5b)

H int
X (t ) = BAC(t )MX I. (5c)

In the case where BDC = 0, the two Hamiltonians (5b) give
rise to n = (2I + 1)/2 doubly degenerate states that can be
used for the AFC protocol. This is shown in the central part of
Fig. 1, where two of these doubly degenerate states have been
represented for the ground state (| ± k/2〉G and | ± n/2〉G),
and one for the excited state (| ± m/2〉E ). For rare-earth ions
with nuclear spin I above or equal to 5/2, the spin-wave AFC
protocol can be implemented by using the three doubly degen-
erate ground states as |g〉, |s〉, and the auxiliary level |aux〉.
Then, given the typical order of magnitude of the nuclear
spin splittings, the spin manipulations can be performed by
using radiofrequency (rf) pulses for inversion on the |g〉 ↔ |s〉
transition. Interestingly, the application of a magnetic field of
the order of ∼10 mT to the ensemble leads to an increase
in the coherence times [25] and allowed us to demonstrate
spin-wave storage of classical optical pulses for about a sec-
ond [17]. The focus of the paper will be to understand how
the spin and optical manipulation necessary for the memory
protocols are affected by this external field by only relying on
the structure (4) of the Hamiltonians, with a particular glimpse
at the spin-wave AFC protocol. It has to be noted that most of
the derivations that are performed throughout this paper are
not restricted to a specific ion in a given host crystal, but are
valid for each system described by Hamiltonians of the form
(4), with I � 3/2. Experimental verifications of the theoretical
results have been conducted with a setup that we will now
describe.

C. Experimental setup

Our system is sketched in Fig. 2. We use a 1000 ppm
doped isotopically pure 151Eu : Y2SiO5 crystal, whose energy
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FIG. 2. Experimental system. (a) Energetic structure of 151Eu : Y2SiO5 at zero field. Application of a DC bias field will lift the degeneracy
of the states, as shown on the right part of Fig. 1. (b) Experimental apparatus. The b-cut 151Eu : Y2SiO5 crystal is placed in a cryostat at
4K, and optically addressed with three beams: preparation (red), input (orange), and control (blue). The rf coil (green) allows us to apply the
required rf fields. Three pairs of coils then allow us to apply the required DC bias field to the crystal (the coils in the D1 direction have not
been represented here for clarity). The optical signal is detected with a variable gain photodiode in the input path. (c) Experimental sequences
used throughout the paper. The measured optical signal is surrounded with a dashed box. (i) Optically detected nuclear magnetic resonance:
The spins are polarized in one of the ground states and spin flops are performed with a constant amplitude rf field applied with the coil.
Oscillations are detected with a simple absorption measurement with the input beam. (ii) Simple AFC echo experiment: After preparation by
optical pumping, an input pulse with a Gaussian temporal shape is sent to the ensemble and the intensity of the echo is measured. (iii) Full
spin-wave AFC protocol: Same as in (ii) but with a transfer of the optical coherence in the spin domain, using the control fields (ctrl, in blue).
rf pulses are applied during the spin-wave storage for rephasing of the inhomogeneous ensemble. (d) Definition of the three DC bias magnetic
field directions I, II, and III.

structure at zero field is shown in Fig. 2(a). The host matrix
Y2SiO5 is a biaxial crystal with polarization eigenaxes D1,
D2, b [32]. The crystal is cut along these axes, and all optical
beams are sent along the b axis, with their polarization along
D1 to maximize the absorption coefficient (α = 2.6 cm−1).
It is then placed on a homebuilt low-vibration mount in a
closed-cycle helium cryostat at 4 K. The 4f-4f 7F0 ↔5 D0

atomic transition is addressed with a laser at 580.04 nm.
The setup around the cryostat is shown in Fig. 2(b). Thanks

to acousto-optic modulators, the laser is split into three optical
beams with arbitrary amplitude and phase control: the prepa-
ration, the input and the control. The preparation beam allows
us to shape the ensemble thanks to optical pumping techniques
and to prepare pits of absorption or complex structures like
AFCs [26,33]. In particular, we use it prior to all our experi-
ments to apply a class cleaning sequence, which allows us to
pump away all the atoms that are resonant on an unwanted
transition. Therefore, after application of this sequence, indi-
vidual | ± k〉G ↔ | ± l〉E optical transitions can be addressed.
Details of this procedure are given in Refs. [26,33] and shall
not be discussed here. Then, the input beam is used either to
probe the absorption of the ensemble or to send input pulses
to be stored in it. Finally, the control beam allows us to apply
the optical transfer pulses that are required in the spin-wave
AFC protocol. A six-turn coil wrapped around the crystal then
allows us to apply the radio-frequency AC field along the b
axis for spin manipulation. To enhance the generated AC field,

a resonator outside of the cryostat consisting in one capacitor
in parallel and one in series is used [16,17,34].

An external magnetic field can then be applied with
three pairs of coils in Helmholtz configuration around the
cryostat. With our setup, a maximum field amplitude of
∼15 mT can be achieved. We label the direction of the
field with the two angles θDC and ϕDC, such that BDC =
BDC[cos(θDC) cos(ϕDC), cos(θDC) sin(ϕDC), sin(θDC)] in the
D1, D2, b basis. A particularity of the Y2SiO5 matrix subject to
such a field is that there exists two magnetically inequivalent
subsites for the ions, such that in general applying a DC bias
field does involve four times as many levels as in the zero
field case. However, due to the symmetries of the crystal,
if BDC is applied along b or in the (D1, D2) plane, the two
sites behave equivalently and the system is simpler to handle
[31]. In the rest of the paper, three particularly interesting
field configurations within the (D1, D2) plane (θDC = 0) are
explored, and shown in Fig. 2(d):

(1) Direction I, for which ϕDC = 0 (field aligned along
D1), where the effective gyromagnetic ratio of the ground state
| ± 1/2〉G is minimal (∼4 kHz/mT)

(2) Direction II, for which ϕDC = 65◦, where the effec-
tive gyromagnetic ratios of the ground states | ± 1/2〉G and
| ± 3/2〉G are equal (∼ 14 kHz/mT)

(3) Direction III, for which ϕDC = 120◦, where the ef-
fective gyromagnetic ratio of the excited state | ± 5/2〉E is
minimal (∼2.5 kHz/mT)
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III. EFFICIENT POPULATION INVERSIONS
IN FOUR-LEVEL SYSTEMS

To perform spin echo sequences with high retrieval ef-
ficiency, high-quality rephasing sequences must be used. A
common way to implement these sequences is to apply
a series of inverting π − pulses. Among other parameters,
the quality of inversion directly impacts the quality of the
rephasing [35]. In this section, we are interested in un-
derstanding how one can perform efficient spin inversions
between the |g〉 and |s〉 states. We will first answer this
question for the zero-field case and generalize it for the pres-
ence of a field. To simplify the calculation, we will only
consider the restriction of the spin Hamiltonian HG given
in Eq. (4b) to the subspace of dimension 4 spanned by
{| − k/2〉G, | + k/2〉G, | − n/2〉G, | + n/2〉G}, eigenvectors of
H0

G. In the following, and as shown in Fig. 1, this basis will
now be noted as {|s−〉, |s+〉, |g−〉, |g+〉} for simplicity. We will
note the restriction of all operators to this subspace via an ex-
ponent {4}. This restriction is equivalent to assuming that the
population is constrained within the considered subspace and
that there is no leakage, by spontaneous emission, crosstalk,
or any other process.

A. Case BDC=0

1. Hamiltonian

When no external bias field is applied to the ions, the time-
independent Hamiltonian [H0

G]{4} reads

[
H0

G

]{4} = [IQGI]{4} = − h̄

2

[
ω0

(
11 0
0 −11

)]
, (6)

where h̄ω0 is simply the energy gap between the two doubly
degenerate states |s±〉 and |g±〉 depicted in Fig. 1 and 11 is the
2 × 2 identity matrix. As BDC = 0, the magnetic field only
consists of the driving radiofrequency field of the form

B(t ) = BAC(t ) = BAC cos(ωrott + ϕ)eAC, (7)

where BAC, ωrot, ϕ, and eAC are, respectively, the field ampli-
tude, frequency, phase, and direction (||eAC|| = 1). One can
show that in the same basis as in (6), [B(t )MGI]{4} takes the
form (see Appendix A)

[BAC(t )MGI]{4} = −BAC cos(ωrott + ϕ)

(
Gss Gsg

G†
sg Ggg

)
, (8)

where Gxy = μxy

2 Uxy. In this expression, μsg = 2
√| det(Gsg)|

is the effective magnetic transition moment of the s ↔ g
transition and Uxy are unitary matrices. Up to unitary transfor-
mations in the subsequent 2 × 2 subspaces, one can choose
Usg ∈ SU(2) (see Appendix A). For simplicity, we will now
use the notation Usg := U and μsg := μ.

2. Solution to the Schrödinger equation

To understand the dynamics of the spin manipulation, we
simply have to solve the Schrödinger equation

ih̄
d|ψspin(t )〉

dt
= H {4}

G |ψspin(t )〉, (9)

with H {4}
G = [IQGI]{4} + [BAC(t )MGI]{4}. Then, in the rotating

frame,

|ψspin(t )〉 =
(

ei ωrot t
2 11 0
0 e−i ωrot t

2 11

)∣∣ψ ′
spin(t )

〉
, (10)

and after doing the rotating wave approximation, (9) becomes

d
∣∣ψ ′

spin(t )
〉

dt
= i

2
A
∣∣ψ ′

spin(t )
〉
, (11)

where

A =�

(
11 0
0 −11

)
+ �0

(
0 eiϕU

e−iϕU † 0

)
, (12)

� = ωrot − ω0 and �0 = μBAC/(2h̄). In the case � = 0, the
propagator associated with Eq. (11) is (see Appendix C)

U0(t ) = cos

(
�0t

2

)
11 + i sin

(
�0t

2

)(
0 eiϕU

e−iϕU † 0

)
.

(13)

This propagator is similar to the case of a two-level drive,
except each level is replaced by a doubly degenerate one.
Consequently, perfect Rabi flops can be performed and ideal
spin rephasing sequences can be applied. This means that the
ground state depicted in Fig. 1 for BDC = 0 can indeed be
treated as a two-level system regarding the population behav-
ior during driving.

3. Optical transitions

Interestingly, a similar reasoning can be applied for the
optical transition. Indeed, given the very different orders of
magnitudes of the interactions, the nuclear spin contribution
can be considered as a perturbation of the electronic part [36],
which in turn allows us to write the wave function of the ion
as a tensor product between the electronic and the spin parts:

|ψ〉 = |ψopt〉 ⊗ |ψspin〉. (14)

This allows us to write the electric dipole interaction Hamil-
tonian for the optical fields following the notations in Fig. 1
in the reduced basis {|s−〉, |s+〉, |g−〉, |g+〉, |e−〉, |e+〉},

H {6}
opt = dEopt cos

(
ω

opt
rot + ϕopt

)⎛⎝ 0 0 Gse

0 0 Gge

G†
se G†

ge 0

⎞
⎠, (15)

where Gke (k standing for g or s) are 2 × 2 matrices that we
write of the form Gke = bkeVke. As for the magnetic transition,
b2

ke = | det Gke| is the branching ratio of transition k ↔ e, and
Vke are unitary matrices, of the form

Vse = 1

bse

(〈s−|e−〉 〈s−|e+〉
〈s+|e−〉 〈s+|e+〉

)
, (16a)

Vge = 1

bge

(〈g−|e−〉 〈g−|e+〉
〈g+|e−〉 〈g+|e+〉

)
. (16b)

The dynamics of the atom on the optical transition is then
the one of a two-level system, as in (13). Notice that in the
present example, only one excited state and two ground states
are considered, even if n = (2I + 1)/2 nuclear states in each
electronic state are present. In practice, all eigenstates are then
vectors with 2n components.
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B. Case BDC �= 0

1. Hamiltonian

When subject to a constant DC magnetic field, the degen-
eracy of the doubly degenerate nuclear spin states is lifted. In
the linear Zeeman regime, i.e., when first-order perturbation
theory applies to the system (regime δx � ω0), the Hamil-
tonian (5b) in the basis {|s−〉, |s+〉, |g−〉, |g+〉} reads (see
Appendix A)

[
H0

G

]{4}= − h̄

2

[
ω0

(
11 0
0 −11

)
+δs

(
σz 0
0 0

)
+δg

(
0 0
0 σz

)]
, (17)

where 11 is the 2 × 2 identity matrix and σz is the usual
Pauli matrix. Notice that we choose an increasing order in the
eigenvalues, such that δs and δg are always positive. In the
linear Zeeman regime, these splittings linearly depend on the
field as δx = gx |BDC| (see Appendix A).

Then, following the same reasoning as in the previous
paragraph, we have to solve the same Eq. (11) with

A = �

(
11 0
0 −11

)
+ δs

(
σz 0
0 0

)
+ δg

(
0 0
0 σz

)

+ �0

(
0 eiϕU

e−iϕU † 0

)
(18)

and �0 = μBAC/(2h̄). U can be chosen in SU(2), similarly as
in paragraph III A (see Appendix A). It can then be written in
the general form

U =
(

u1 u2

−u∗
2 u∗

1

)
, (19)

with |u1|2 + |u2|2 = 1.

2. Solution to the Schrödinger equation

The solution of (11) is found by determining the four
eigenvalues of A, which in the general case is a nontriv-
ial problem. Fortunately, as shown in Appendix B, we can
derive their approximate expression under the assumption
(gs − gg)2/|gsgg| � 1, where gg (respectively gs) is the ef-
fective gyromagnetic ratio of the |g〉 (respectively |s〉) state.
This condition is fulfilled as soon as all gyromagnetic ra-
tios are of the same order of magnitude, which is the case
in most of the experimental situations for europium and
praseodymium. In the case � = 0, a good approximation of
the eigenvalues is given by

ζ1 =

√√√√δ2
g + δ2

s

2
+ �2

0 + (δg + δs)

√(
δg − δs

2

)2

+ |�1|2,

(20a)

ζ2 =

√√√√δ2
g + δ2

s

2
+ �2

0 − (δg + δs)

√(
δg − δs

2

)2

+ |�1|2,

(20b)

ζ3 = −ζ2, (20c)

ζ4 = −ζ1, (20d)
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FIG. 3. Eigenvalues of the A matrix given in Eq. (18) as a func-
tion of the applied static magnetic field applied along direction II.
A driving rf field, resonant with the spin transition and with 3 mT
amplitude is applied along the b axis. Solid lines are numerical
solutions, black dashed lines are analytical approximations, given by
Eq. (20). Colored dashed lines are uncoupled eigenvalues (|u2| = 0,
see Appendix B).

where �1 = u1�0. The approximate values in the case � 
= 0
are given in Appendix B by Eqs. (B13).

If we apply this formula to our system with |s〉 = | ± 3/2〉G
and |g〉 = | ± 1/2〉G, we find the magnetic-field dependency
of the ζi shown in Fig. 3. In the case chosen here, the BDC field
is applied along direction II (θDC = 0, ϕDC = 65◦), the angle
for which gg = gs = 14 kHz/mT, and the radio-frequency
field is applied on resonance along the b axis of the crystal
(where μ/(2h) = 10 kHz/mT), with an amplitude of 3 mT,
leading to a zero-field Rabi frequency of �0 = 2π × 30 kHz.
For this field direction, the coupling terms are |u1| = 0.856
and |u2| = 0.517.

This behavior reveals an anticrossing of amplitude 2|�2|,
where �2 = u2�0, at a magnetic field Bcross for which |�1| =√

δgδs (namely, Bcross = BAC|u1|μ/
√

gggs). Intuitively, this
new regime is entered when the system cannot be considered
as a two-level system anymore: the Rabi frequency becomes
comparable with the geometrical average of the splittings.
The exact eigenvalues are represented in solid lines, while
the approximations given by Eqs. (20) are represented with
dashed black lines, revealing the validity of the approxima-
tion. This figure also allows us to define three regions for the
field amplitude that we will denote as

(1) BDC � Bcross: weak field regime
(2) BDC � Bcross: strong field regime
(3) BDC ∼ Bcross: intermediate field regime.
As we will see later, the behavior of the atoms in these three

regions will be very different when attempting to perform
population inversions.

Finally, the solution for Eq. (11) can be written in general
as

|ψspin(t )〉=αs− (t )|s−〉+αs+ (t )|s+〉 + αg− (t )|g−〉+αg+ (t )|g+〉,
(21)
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FIG. 4. ODNMR traces for a DC bias magnetic field at (a) point II and (b) point III. In each case, (i) gives the experimental temporal traces
as a function of the bias field and (iii) its Fourier transform, (ii) gives the expected analytical time trace as predicted by Eq. (23), and (iv)
gives the Fourier transform of the theoretical curve. The experimental frequency trace is also overlapped with dashed lines, which indicate the
expected positions of the frequency components.

where

αx(t ) =
4∑

k=1

B(k)
x ei

ζk
2 t . (22)

In this expression, the B(k)
x coefficients are uniquely deter-

mined by the initial conditions.

3. ODNMR

To measure experimentally the previous parameters and
validate the model, a simple method is to perform a drive
of the spin population and follow the population dynam-
ics by applying a constant amplitude rf field to the atoms.
A common optically detected nuclear magnetic resonance
(ODNMR) technique for this purpose consists of driving the
spin transition (|s〉 ↔ |g〉 in Fig. 1) while monitoring the ab-
sorption on an optical transition (e.g., |g〉 ↔ |e〉 in Fig. 1).
Oscillations in the optical transmission directly give access
to the spin population in the probed level and thus allows
determining the population dynamics.

Referring to the previous analysis, the optical measurement
will turn into measuring one population term |αx(t )|2 from
Eq. (22) or a sum of these populations when they cannot
be discriminated. It directly becomes apparent that all the
angular frequencies ωkl = |ζk − ζl | could in principle appear
in the observed oscillations. In the general case, this gives
the possibility to observe up to six frequencies in the spin
dynamics (ω12, ω13, ω14, ω23, ω24, ω34), which reduces to four
in the case � = 0 [ω12 = ω34 and ω13 = ω24, see Eqs. (20)].

We have performed the ODNMR protocol with our setup,
of which the time sequence is shown in Fig. 2(c)(i). After
the class-cleaning procedure, the population was polarized
into the |g〉 = | ± 1/2〉G state with the preparation beam, and
the coil generated a rf field at 34.54 MHz, resonant with the
|g〉 ↔ |s〉 = | ± 3/2〉G transition (� = 0) at BDC = 0. With
our setup, a Rabi frequency at zero DC bias magnetic field of

�0 = 2π × 30 kHz could be achieved. The optical input beam
was then set to be resonant with the |g〉 ↔ |e〉 = | ± 5/2〉E
transition. Notice that here, class cleaning is not performed
at the Zeeman level, and thus the optical input beam simulta-
neously addresses four classes of atoms, each resonant with a
different Zeeman transition. The two directions II and III were
explored here. In particular, for direction III, the |u2| parame-
ter in Eq. (19) is minimal, such that the avoided crossing has
the smallest gap 2|�2| for a given AC field amplitude.

Figures 4(a)(i) and 4(b)(i) show the time traces of the
ODNMR experiments as a function of the applied magnetic
field BDC. The expected anticrossing is made visible by per-
forming the Fourier transform of the time traces, as shown in
the Figs. 4(a)(iii) and 4b(iii). Over these experimental curves,
the four previously mentioned frequencies ωkl are represented
by black dashed lines, revealing a very good match with the
measurement. However, it clearly appears that only two of
them (ω12 and ω13) have a nonzero contribution. To under-
stand this, we have used the analytical model developed in
the previous paragraph [Eqs. (21) and (22)] and made two
hypotheses. The first one is that, as no class cleaning is per-
formed for the Zeeman levels, we suppose that the input beam
simultaneously probes a class of atoms in |g−〉 (noted C−) and
a class of atoms in |g+〉 (noted C+), such that the intensity of
the transmitted input is proportional to

I (t ) ∝ |αC−,g− (t )|2 + |αC+,g+ (t )|2, (23)

the sum of the populations in the two states of the two classes,
given by Eq. (22). The second hypothesis concerns the initial
state of the spins: Even if optical pumping is performed prior
to the experiment to polarize the spins in |g〉, it does not
discriminate between the Zeeman sublevels, such that we start
with an initially mixed state between |g−〉 and |g+〉 for both
classes C− and C+:

ρC− (t = 0) = ρC+ (t = 0) = 1
2 (|g−〉〈g−| + |g+〉〈g+|). (24)
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The corresponding theoretical time traces are shown in
Figs. 4(a)(ii) and 4(b)(ii) and show good agreement with
the experimental ones, Figs. 4(a)(i) and 4(b)(i). The theoret-
ical Fourier components are displayed in Figs. 4(a)(iv) and
4(b)(iv) and reveal indeed that the contributions for frequen-
cies ω14 and ω23 of both classes of atoms annihilate,

B(1)
C−,g−

(
B(4)

C−,g−

)∗ + B(1)
C+,g+

(
B(4)

C+,g+

)∗ = 0, (25a)

B(2)
C−,g−

(
B(3)

C−,g−

)∗ + B(2)
C+,g+

(
B(3)

C+,g+

)∗ = 0, (25b)

even if they are nonzero for each class. We note that this is
true for � = 0 only.

It should finally be noted that in the experimental trace, the
oscillations fade after ∼100 μs while they don’t in the the-
oretical trace. Indeed, the spin manipulations are performed
on an inhomogeneously broadened ensemble, such that each
spin oscillates with its own Rabi frequency. Therefore, this
decay depends both on the inhomogeneous broadening of the
spin transition and on applied AC field (the spin homoge-
neous broadening contribution can be neglected at ∼100 μs
timescales). This decay gives the width of the frequency
traces (iii) in Figs. 4(a) and 4(b). However, in the theoretical
model, the spin transition is considered to be perfectly ho-
mogeneously broadened and the theoretical frequency traces
should consequently be infinitely thin. To make them visible,
we have simply enlarged them with a Gaussian profile with
700 Hz standard deviation width.

An important conclusion of this model is that if no care
is taken about the magnetic field direction, amplitude, and

rf field detuning, up to 12 frequencies (six per magnetic
subsite) can simultaneously coexist in the population dynam-
ics, clearly lowering the transfer efficiency of the rf pulses
and altering their rephasing capabilities. In the two next para-
graphs, we will address two possible strategies to circumvent
this problem: one can either diminish the amplitude of the DC
bias field to neglect its influence or one can use complex adi-
abatic pulses that manage to drive the population efficiently.

4. Efficient inversions in the weak field regime

According to our previous considerations, if one applies a
field BDC � Bcross, perfect inversions between the two states
can be performed. This is what we observe experimentally
from Figs. 4(a)(i) and 4(b)(i): At low fields, the population
oscillates between |g〉 and |s〉 with a single frequency and with
a very good transfer efficiency. Let us prove mathematically
this observation. In the weak field regime, we can derive
an analogous formula to Eq. (13) for the propagator (see
Appendix C),

Uprop(t ) � cos

(
ε|�1|t

2

)
U0(t ) + sin

(
ε|�1|t

2

)
Upert (t ),

(26)

where ε = δg+δs

2�0
� 1, U0(t ) is the propagator at zero field,

given in Eq. (13),

Upert (t ) = i cos

(
�0t

2

)⎛
⎜⎜⎝

|u1| −u2eiφ1 0 0
−u∗

2e−iφ1 −|u1| 0 0
0 0 |u1| u2e−iφ1

0 0 u∗
2eiφ1 −|u1|

⎞
⎟⎟⎠

+ sin

(
�0t

2

)⎛
⎜⎜⎝

0 0 −ei(ϕ+φ1 ) 0
0 0 0 ei(ϕ−φ1 )

−e−i(ϕ+φ1 ) 0 0 0
0 e−i(ϕ−φ1 ) 0 0

⎞
⎟⎟⎠, (27)

and eiφ1 = u1/|u1|. By choosing a pulse duration of τl = (2l +
1)π/�0, the 2 × 2 diagonal blocks of Uprop vanish:

Uprop(τl ) �i(−1)l

(
0 eiϕ (clU − islV )

e−iϕ (clU † − islV †) 0

)
,

(28)

with cl = cos ( ε|�1|τl

2 ) and sl = sin ( ε|�1|τl

2 ) and

V =
(−eiφ1 0

0 e−iφ1

)
. (29)

This form proves the aforementioned experimental observa-
tion, as no population remains in the initial state. It is also
worth noticing that at first order the field does not induce an
error on the quality of the inversion (the error is not equivalent
to an imperfect rotation of angle π + δθ ) [35]. However, this
expression also reveals that the inversion induces some inter-
mixing in both |g±〉 and |s±〉 doublets. To be more explicit, up

to a global phase and in the case ϕ = 0, the top antidiagonal
term reads

clU − islV = (R(u1)cl − sin φ1sl )11

+ iI (u2)clσx

+ iR(u2)clσy

+ i(I (u1)cl + cos φ1sl )σz. (30)

This matrix, also writable in the form

exp (iαn · σ̂/2) = cos
α

2
11 + in · σ̂ sin

α

2
, (31)

corresponds to a rotation on the Zeeman Bloch sphere with an
angle −α

sin
α

2
=

√
|u2|2c2

l + (I (u1)cl + cos φ1sl )2, (32a)

cos
α

2
= R(u1)cl − sin φ1sl , (32b)
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(a) Population in |−1/2〉G (b) Population in |+1/2〉G

(c) Population in |−3/2〉G (d) Population in |+3/2〉G

FIG. 5. Numerical simulations of temporal spin population dynamics for a continuously driven transition, as a function of applied DC bias
magnetic field. Note that Fig. 4(a)(ii) is simply a sum of plots (a) and (b) here. The white dashed lines in (c) and (d) represent the condition at
which the crosstalk between Zeeman sublevels vanishes as in Eq. (34) for k between 0 and 3, highlighting regions where high quality inversions
can be performed. The dashed-dotted lines in (a) and (b) represent twice the duration of the previous condition, highlighting regions where
high-quality identity operation can be performed.

around the vector

n = 1

sin α
2

⎛
⎝ I (u2)cl

R(u2)cl

I (u1)cl + cos φ1sl

⎞
⎠. (33)

In the general case (|u2| 
= 0), this expression clearly in-
dicates that a (2l + 1)π -pulse also mixes the population of
the Zeeman doublet: the rotation in the Bloch sphere does not
occur around the z axis. This is quite intuitive, as |u2| in the U
matrix is a coupling term between the two Zeeman states. To
illustrate our mathematical finding, we plot in Fig. 5 the pop-
ulation evolution of an ion initially prepared in the | − 1/2〉G
state as a function of time and applied magnetic field, for
| − 1/2〉G, | + 1/2〉G, | − 3/2〉G, and | + 3/2〉G. In this sim-
ulation, all parameters are identical to those of Fig. 4(a), and
note that Fig. 4(a)(ii) is simply the sum of Figs. 5(a) and 5(b).
A striking fact that appears here is that opposed to Fig. 4(a)(ii),
the visibility of the Rabi oscillations is strongly affected by the
field. Therefore, perfect transfer from | − 1/2〉G to | − 3/2〉G
cannot be realized with a basic π pulse at low field (see the
first temporal population maximum in | − 3/2〉G in Fig. 5(c),
which is not 1).

The consequence of such a phenomenon is that the ap-
plication of an even number of π pulses together with free
evolutions does not bring the spins back into their initial
state in general, which is of crucial importance for rephas-
ing sequences like spin-echo techniques [28] or dynamical
decoupling sequences [17,35]. Fortunately, Fig. 5 also reveals

that under specific conditions, near-perfect inversions without
crosstalk can be performed in the weak field regime (regions
simultaneously at maximal population for | − 3/2〉G and min-
imal population for | + 3/2〉G). This is confirmed by Eqs. (28)
and (33): If cl = 0, the cross terms in the clU − islV matrix
vanish. This condition reads

ε|�1|τl

2
= (2k + 1)

π

2
, k ∈ Z. (34)

and is plotted in Figs. 5(c) and 5(d) with dashed lines for k
between 0 and 3. In a way, the grid of peaks in the transfer
efficiency is identified with an index (l, k), where l is the line
number (from bottom to top), and k is the column number
(from left to right). Two points have, for instance, been high-
lighted in Fig. 5(c), one at l = 1, k = 0 and one at l = 7,
k = 2. As expected, the model leads to a good prediction
accuracy in the upper left corner of the plot, where

ε = (2k + 1)π

|�1|τl
= 2k + 1

|u1|(2l + 1)
� 1, (35)

where k is small and l is large. However, experimentally there
will obviously be a tradeoff between quality of the theoretical
inversion and duration of the pulse, due to the finite coher-
ence time. As an illustration, we see that our experimental
curves have a contrast in the oscillations that vanish after ∼2
complete population inversions [see Figs. 4(a)(i) and 4(b)(i)],
limiting l in practice to 1 or 2. In summary, to perform in-
versions without crosstalk, we simply have to set the pulse
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FIG. 6. Numerical simulations of the population in |g〉 after adi-
abatic transfer from |s〉, with a secant hyperbolic profile (37) where
FWHM = 120 μs, as a function of �rf and the applied magnetic field
along (a) direction II (ϕDC = 65◦) and (b) direction I (ϕDC = 0◦).

duration to τl = (2l + 1)π/�0 and to adjust the DC bias
field to

BDC = 2(2k + 1)�0

(2l + 1)(gg + gs)|u1| . (36)

For validation of our reasoning, we also plot in Figs. 5(a) and
5(b) the expected position of the population after two optimal
pulses, for k = 0 to 2 with dash-dotted lines, and see that the
population can be brought back with very high efficiency in
| − 1/2〉G.

5. Adiabatic transfer of population: Transfers in all the regimes

If we now release the constraint on the magnitude of the
DC bias magnetic field, Figs. 4(a)(ii) and 4(b)(ii) show that
the pulse duration should be chosen very carefully to perform
good quality inversions due to the particularly messy transfer
pattern around the anticrossing point. Performing high quality
inversions and rephasing [37] is, however, usually possible by
using adiabatic pulses and we have numerically studied their
application to an ion subject to a DC bias field. As before, we
have focused on the simulation of our system, with the spin
transition |g〉 = | ± 1/2〉G ↔ |s〉 = | ± 3/2〉G at 34.54 MHz.
The adiabatic pulses were chosen of the form [26,38,39]

BAC(t ) = sech(βt ) cos

[
ωrott + π�rf

2β
ln(cosh (βt ))

]
, (37)

where β relates to the pulse full width at half maximum
(FWHM) like β = 2 arch(2)/FWHM, �rf is the pulse band-
width (in Hz), and ωrot is the central angular frequency.

Figure 6 shows the transfer map that can be achieved with
such an adiabatic pulse of 120 μs FWHM and various chirps
�rf as a function of the applied DC bias field. In the simu-
lation, the population was initially set to an equal statistical
mixture between |s−〉 and |s+〉, and we plot |αg+ (∞)|2 +
|αg− (∞)|2, the sum of the populations long after the pulse in
|g−〉 and |g+〉. A first striking fact is that imperfect inversion
cannot simply be linked with the position of the previously
described avoided crossing. Indeed, for a field oriented along
direction II [Fig. 6(a)], imperfect inversion does not only
occur for a magnetic field amplitude of BDC ∼ 1.7 mT as
predicted in Fig. 3, but instead forms a complex pattern, which

depends on the total pulse chirp �rf . We recall, however, that
along direction II, gg = gs such that perfect inversion can be
performed if the field amplitude is high enough: both parallel
transitions (|s−〉 ↔ |g−〉 and |s+〉 ↔ |g+〉) remain resonant,
independently of the field intensity. However, if one goes out
of this configuration, for instance, with a DC bias field applied
along direction I (along D1, ϕDC = 0◦), one finds the pattern
shown in Fig. 6(b), for which transfer efficiency drops to zero
if the applied DC field is too high, while still following a com-
plex shape for higher chirp. In this case, the splitting is such
that the applied field separates all the transitions too much,
making it impossible to address all of them simultaneously
with good efficiency.

It then clearly appears that to perform good quality pop-
ulation inversion with adiabatic pulses, one has to carefully
adjust the different pulse parameters. Fortunately, it seems that
in the regime of field explored here, there is always a set of
parameters that allows performing arbitrarily good population
inversions.

IV. AFC PROTOCOL AT BDC �= 0

In this section, we will focus on the influence of the field
on the AFC protocol efficiency by studying the preparation
sequence and the spin-wave decay curves for a system subject
to an external field.

A. Comb shaping

As a reminder of what was briefly said in Sec. II A, the
preparation of an AFC relies, in general, on two steps: First,
the ensemble is polarized in the |g〉 state using optical pump-
ing techniques and, second, spectral hole burning is used to
burn the transparency regions of the AFC [26]. To this extent,
ions at the corresponding frequencies are repeatedly excited to
|e〉 until all of the unwanted population has relaxed to |aux〉. If
the degeneracy of |g〉 and |e〉 is lifted by an external magnetic
field, the preparation of an AFC becomes more involved.
To understand why, let us first consider the simple case of
hole burning in an inhomogeneously broadened ensemble, as
sketched in Fig. 7. We will first assume that the ensemble is
only subject to an excited state splitting δe. In this ensemble,
any atom that is absorbing at frequency f0 will also be ab-
sorbing either at frequency f0 + δe or at frequency f0 − δe.
Consequently, optical pumping at frequency f0 will not only
generate a transparency region at frequency f0 (dark blue in
Fig. 7), but also at frequencies f0 ± δe (light blue) [31]. These
additional transparency regions are usually referred to as side
holes. If the bandwidth of the frequency comb is larger than δe,
then the side holes of the transparency regions of the AFC may
overlap with the absorptive regions of the AFC. In this case,
the optical depth of the comb is reduced and, consequently, its
efficiency is decreased [see Eq. (2)]. However, if the excited
state splitting is a multiple of the periodicity �AFC of the
frequency comb

δe = n�AFC ⇐⇒ �AFC = BDCge

n
n ∈ N, (38)

where ge is the effective gyromagnetic ratio of the excited
state, then every side hole will coincide with a transparency
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FIG. 7. Hole burning in a four-level system. Pumping with a sin-
gle frequency (wide dark blue arrow) creates a central transparency
peak (large blue) as well as side transparency peaks at δe (thin blue,
associated with blue dashed arrows). The pumped ions then lead to
an increased absorption at frequencies δg around transparency peaks
(orange, associated with orange dashed arrows).

region of the comb. In this case, we expect no decrease of the
memory efficiency compared to the degenerate case.

Let us second consider the effect of a split ground state
with splitting δg. Population that is excited can then relax
into the other ground state instead of |aux〉 (see Fig. 7).
Consequently, hole burning at frequency f0 will result in
additional absorption at the frequencies f0 ± δg (two orange
central peaks in Fig. 7). One usually refers to these regions as
antiholes. Analogous to the scenario with a split excited state,
one might expect that the efficiency of the comb is reduced
if these antiholes coincide with the transparent regions of the
frequency comb. Consequently, an efficient comb can only be
prepared if the antiholes coincide with absorptive regions of
the comb, leading to the condition

δg =
(

n − 1

2

)
�AFC ⇔ �AFC = BDCgg

n − 1
2

n ∈ N,

(39)
where gg is the effective gyromagnetic ratio of the ground
state.

Unlike the effect of side holes, this does not necessarily
pose a fundamental limitation. The comb preparation consists
of many repeated cycles of excitation and relaxation, such
that a population that has relaxed back to |g〉 instead of |aux〉
will be excited in the following cycles until it finally reaches
|aux〉. In this fashion, the effect of antiholes can be completely
negated by repeating the preparation sequence sufficiently
often, provided that |aux〉 is long-lived enough that reflux
from |aux〉 to |g〉 can be neglected. In contrast to this, side
holes share the ground state with their respective central hole,
such that transparency at the central hole position inevitably
comes with increased transparency at the side-hole positions
with a ratio between the two given purely by branching ratios,
independently of the particulars of the preparation procedure.
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FIG. 8. Experimental efficiency ratio of AFCs prepared with and
without an external field along direction I (D1 direction, ϕDC = 0◦).
We mark with dashed lines conditions (38) for n = 1, ..., 6 using an
effective gyromagnetic ratio of ge = 24 kHz/mT, as determined in
Ref. [31].

Finally, if one considers a system with both a split ground
as well as excited state, additional absorption occurs at the
frequencies f0 ± |δg + δe| and f0 ± |δg − δe| (four orange
satellite peaks in Fig. 7). These anti-holes correspond to the
transitions for which neither the ground state nor the excited
state is shared with the central hole. Conditions similar to
Eq. (39) may be formulated for these features but, for the
same reason as mentioned previously, we do not expect to be
fundamentally limited by these antiholes.

To validate the previous prediction, we have performed
simple optical AFC echo experiments under magnetic field
with our system, by choosing |g〉 = | ± 1/2〉G and |e〉 =
| ± 5/2〉E . We have run the experiments with a field along
direction I, where ge = 24 kHz/mT � gg = 4 kHz/mT, al-
lowing us to test the validity of relation (38), and with a
field along direction III, where gg = 12 kHz/mT � ge = 2
kHz/mT, allowing us to test the validity of relation (39). The
experimental time sequence that we use is shown in Fig. 2(c)
at line (ii), and simply consists in the preparation of an AFC
and measurement of the two-level echo intensity for different
values of the field applied during the whole sequence. To
understand the relative effect of this field, we recorded the
ratio between the AFC efficiency with and without it.

The data recorded along direction I are shown in Fig. 8
and reveal a very clear modulation of the efficiency: For some
regions, the efficiency is close to zero, while in other regions
no decrease of the efficiency as compared to without bias field
is observed. If we superimpose on the plot the condition that
we have found for minimizing the disturbance of the prepara-
tion process (38), we find that there is a very good agreement
between the data and our expectation. Additionally, there is
a region for low fields where the efficiency remains mainly
unchanged. In this regime δe � �AFC, such that the side hole
is sufficiently close to the central hole and its detrimental
effect can be neglected. It finally has to be noted that as gg is
very small for direction I, condition (39) is never met within
the measured region.
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FIG. 9. Experimental efficiency ratio of AFCs prepared with and
without an external field along direction III (ϕDC = 120◦). Compared
to the previous case, ge < gg such that the detrimental side holes are
pushed away from the figure. A slight modulation is still visible that
we attribute to side antiholes at f0 ± δg. The dashed lines indicate
their expected positions, according to Eq. (39), for n = 1, ..., 4 with
gg = 12 kHz/mT, as determined in Ref. [31].

Along direction III, the measured ratios are shown in Fig. 9
and clearly indicate a strongly reduced sensitivity of the ef-
ficiency on the magnetic field compared to point I, for all
comb spacings. While the modulations that we expect from
Eq. (38) are outside of the observed parameter space, we
notice another, much more faint modulation: Comparing with
the prediction from Eq. (39) seems to indicate that these mod-
ulations might be connected to the antihole at f = f0 ± δg, as
depicted by the dashed lines. However, the strongly reduced
strength of the modulation clearly corroborates our intuition
that the side antiholes do not play a role that is as detrimental
as side holes.

A simple way to link the two plots is that at point III, we
remain in the zone δe << �AFC for all fields under consid-
eration, whereas the corresponding region was limited to the
left part of the plot at point I. Following these observations,
we note that efficient AFCs can be prepared in the presence
of an external bias field even if their bandwidth is exceeding
the Zeeman splitting that is induced by the field, provided that
the periodicity of the comb is matched with the excited state
splitting. The AFC preparation is therefore not fundamentally
limiting the viability of AFC memories at low field in the
REID systems that we consider.

B. Spin-wave storage under weak magnetic field

Now that we have identified a favorable regime for the
amplitude of the magnetic field regarding AFC preparation,
let us focus on its influence on the full AFC spin-wave storage
efficiency. Remember from Fig. 2(c)(iii) the principle of the
experiment: In addition to the two-level AFC protocol, optical
control fields are used to store the coherence in a long-lived
spin state.

1. Optical transfer pulses

A question that arises is the influence of the field on the
optical transfer pulse efficiency. Indeed, given the form of the
optical interaction Hamiltonian (15), one should observe ex-
actly the same phenomena as described in Sec. III for the spin
inversions. Fortunately, we can derive the same kind of condi-
tion as defined in previous section: For an optical drive on the
|g〉 ↔ |e〉 transition, the anticrossing occurs at �

opt
1 = √

δgδe,
where �

opt
1 = 〈g−|e−〉dEopt/h̄. Notice the similarity with the

writing �1 = u1μBAC/h̄ for the spin transition, where μ =
μsg can be identified to bged and u1 [first diagonal element
of U = Usg in Eq. (19)] can be identified to 〈g−|e−〉/bge [first
diagonal element of Vge in Eq. (16)]. Experimentally verifying
this behavior in the optical domain is, however, more involved
than in the spin domain as we have performed in Sec. III due to
the much more limited coherence times: Spin coherence times
are, for instance, around three orders of magnitude larger than
optical ones, whereas the Rabi frequencies are at best one
order of magnitude better in the optical domain. We then only
expect to see a decrease in the efficiency when approaching
the avoided crossing point.

To be far from this region, one simply has to consider
〈g−|e−〉dEopt � √

gggeBDC, which is easily realized with
optical field powers of ∼100 mW focused on ∼10 μm, lead-
ing for instance to optical Rabi frequencies of the order of
∼100 kHz for europium. Then, one has to limit the BDC field
to get splittings smaller than this value or use guided designs
to confine the optical field more and push the Rabi frequency
even higher [40]. With this in mind, we investigated the shape
of the decays of AFC spin-wave echoes.

2. AFC spin-wave echoes

Motivated by our recent study of dynamical decoupling
under small magnetic field in the AFC spin-wave storage
protocol [17], we have investigated the shape of the mea-
sured decay more deeply. For this purpose, we have used
our europium sample in a slightly different experimental ap-
paratus and selected | ± 5/2〉G as |g〉, | ± 3/2〉G as |s〉, and
| ± 1/2〉E as |e〉 to implement the protocol (see Figs. 1 and
2 for notations). The spin manipulation now occurs at a rf
frequency of 46.2 MHz and is performed in the same way as
depicted in the previous part. Due to technical reasons, we had
to use a different experimental apparatus as compared with
previous section, and the field could only be applied along D1

(direction I), and with a maximal amplitude of 1.4 mT. The
AFC parameter for this experiment is 1/�AFC = 20 μs, and
adiabatic optical transfer pulses were used [26].

The time sequence that we have used in our protocol
is shown in insets of Figs. 10(a) and 10(b). The overall
efficiency (3) of the protocol is ηsw � 5 % in both cases,
explained as follows. With our experimental parameters, the
AFC echo efficiency (2) is ηAFC = 16%. Then, in the AFC
spin-wave memory efficiency formula (3), two additional ef-
ficiency terms enter into play: the transfer efficiency ηT and
the spin dephasing term. In Figs. 10(a) and 10(b), we plot
the efficiency of the spin-wave AFC echo as a function of the
total storage time Ts under a magnetic field of BDC = 1.4 mT,
and it clearly appears that the monotonically decreasing de-
phasing term does not play a role at the timescales we are
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FIG. 10. AFC spin wave echo modulations. (a), (b) Echo efficiency as a function of the spin-wave storage time Ts under 1.4 mT bias
magnetic field along direction I with a XX rf sequence that is (a) centered and (b) shifted by Ts/8. (c), (d) Fourier transforms of (a) and (b),
respectively. Numerical simulations are shown in red.

considering here. Therefore, the remaining contribution
should come from the transfer efficiency, which would be
estimated to be ηT = √

ηsw/ηAFC � 56 % according to Eq.(3).
However, the transfer pulses manage to reduce the amplitude
of the AFC echo by 90%. Even if this value only gives an
upper bound for its efficiency, the discrepancy between these
two values is still unexplained and requires further inves-
tigations. Two scenarios are envisaged for the rf rephasing
pulse configurations: In both cases, a XX rf sequence is used
(two π pulses with the same phase [28]), but in Fig. 10(a)
it is centered around Ts/2 whereas in Fig. 10(b) it is shifted
by Ts/8. It clearly appears that the echo decays contain a
complex oscillatory pattern, whose richness is made visible
by their respective Fourier transforms in Figs. 10(c) and 10(d)
in black. We propose here a simple numerical analysis to
partially explain this shape based on the study that we have
performed in Sec. III. We have considered a single initial spin
in the | − 5/2〉G initial state, and have applied to it a series of
operators linked with Hamiltonian (15) for optical transfers,
(28) for spin transfers, and free evolution operators in between
to simulate the whole spin-storage sequence. Namely, we
simulate the output state as

|ψout〉 =U π
opt2U

free
spin (t3)Uprop(τ0)U free

spin (t2)Uprop(τ0)U free
spin (t1)

× U π
opt2U

π/2
opt1 |ψin〉. (40)

The initial coherence is simulated by a π/2 pulse for sim-
plicity. Finally, the echo will be emitted with an amplitude
proportional to the coherences weighted by their branching
ratios.

We have plotted the numerical results in red for 2t1 = t2 =
t3 = Ts/2 in Fig. 10(c) and for t1 = Ts/8, t2 = Ts/2 and t3 =
3Ts/8 in Fig. 10(d). We see with these plots that each experi-
mentally observed peak can be associated with a numerically
predicted one, and that the numerical simulation accounts for
the difference between the two rf rephasing sequences. Given
that the only difference between the two sequences is a phase

accumulation difference, this clearly gives a solid hint that
the oscillations originate from interferences between different
quantum paths during spin storage. Similar oscillations ob-
served in stopped-light experiments in Pr:Y2SiO5 have also
been interpreted as being due to nuclear Zeeman states split
by small applied magnetic fields [41].

The data presented in Fig. 10 shows that the weights of the
different frequency components are not well reproduced by
the numerical model, even if actual branching ratios both in
the optical and the spin domain have been taken into account.
Also, unobserved additional high frequency components are
predicted by the model. These discrepancies could be due
to specificities of the AFC protocol and dephasing during
optical evolutions. The model also considers that the whole
ion coherence contributes to the emission of the echo, which
is not strictly true for the AFC protocol, as the echo emission
consists of the interference of the field emitted by many ions
with different detunings: the single ion model is probably
too simplistic here. Also, the optical control pulses that are
actually used in the experimental setup are adiabatic pulses
(see Sec. III B 5), and the inversion dynamics is more complex
than the one of a π pulse as used in the numerical model.
Despite these discrepancies, our simple toy model shows that
the modulations in the echo have components that mostly
originate from interferences between different Zeeman paths
of a single ion.

These echo modulations originate from different phe-
nomena as the ones witnessed with Kramers ions mostly
originating from superhyperfine splitting [42]. Indeed, as eu-
ropium does not possess an electronic spin, we expect this
coupling to be of much smaller amplitude. However, oscilla-
tions due to superhyperfine interaction between Pr and Y ions
have been observed in spin-echo measurements in Pr:Y2SiO5

[43]. We note that Pr ions have larger nuclear magnetic mo-
ment than Eu ions in Y2SiO5. As the gyromagnetic ratio of
Yttrium is γY = 209 Hz/G [43], if observable the associ-
ated oscillations should appear around 2 kHz in our case. In
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Fig. 10(c), we indeed see a weak amplitude peak at 2 kHz
that is not explained by the previous numerical model, but in
Fig. 10(d) other peaks linked with the numerical model hide
its possible presence. To confirm this, we have also performed
measurements with the same experimental apparatus as the
one used in Sec. IV A for a DC bias magnetic field of 1 mT
magnitude oriented along directions I an III and in each mea-
surement a peak at ∼2 kHz was indeed present.

As a remark, this study also highlights the fact that minimal
crosstalk both in the spin and in the optical transitions has to
be investigated together to find a fully favorable configuration:
Condition (36) exhibited for the spin should hold simultane-
ously for the optical transition.

V. CONCLUSION

We have investigated the effect of a DC bias magnetic field
on different aspects of the manipulation of rare-earth ions,
both in the optical and in the spin domain. After reminding
the Hamiltonian of the considered category of ions, we have
derived the solution of the Schrödinger equation for a four-
level driven system and have identified three field regimes
(weak, strong, intermediate) that lead to different population
dynamics. The theoretical model was compared to experimen-
tal realizations and allowed us to predict specific regimes in
which perfect inversions could be performed. The effects of a
DC bias magnetic field on the particular case of the spin-wave
AFC protocol were then tackled both for the preparation of
the structure as well as for the explanation of complex oscilla-
tory patterns in spin-wave echoes experiments. The developed
model should help to identify optimal field configuration in
protocols involving optical or spin manipulation under mag-
netic field.
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APPENDIX A: FORM OF THE INTERACTION MATRIX

In this Appendix, we prove the form of the 2 × 2 block ma-
trices that appear in the interaction matrix BMX I [see Eq. (8)],
once written in the eigenspace of IQX I.

Notice that the demonstration performed here does not
require us to assume the restriction to the space of dimension
4, but is valid for all half-integer spins. From now on, we also
drop the index X to simplify the writing.

Let us place ourselves in the eigenbase of Q such that it can
be written [31]

Q =
⎛
⎝−E 0 0

0 E 0
0 0 D

⎞
⎠. (A1)

Then, IQI takes the simple form

IQI = −EI2
x + EI2

y + DI2
z , (A2)

where the Ii are the usual spin matrices, for a spin of value
I = n − 1/2, n ∈ N∗.

1. Rewriting of the spin matrices

The first and most important step of this calculation is to
group the spin z − projections 2 × 2, thanks to the transfor-
mation

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1

1 0
. . . 1

. . .

1 0
0 1

0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)

Intuitively, this transformation exchanges the even indexes
with respect to the end indexes (index 2 is exchanged with
index 2n, index 4 is exchanged with index 2n − 2, etc.) while
leaving the odd indexes untouched. In this way, the eigenval-
ues of the spin z projection are grouped 2 × 2, and we can
find similarities of the spin matrices with the 1/2-spin Pauli
matrices. To illustrate the effect of this transform, let us focus
on the spin-3/2 case. Here, the transformation reads

F =

⎛
⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎠, (A4)

such that the spin matrices are modified according to (remem-
ber that F−1 = F )

FIxF = 1

2

⎛
⎜⎜⎝

0 0 0
√

3
0 0

√
3 0

0
√

3 0 2√
3 0 2 0

⎞
⎟⎟⎠,

= 1

2

(
0

√
3√

3 2

)
⊗ σx, (A5a)

FIyF = 1

2

⎛
⎜⎜⎝

0 0 0 −i
√

3
0 0 i

√
3 0

0 −i
√

3 0 2i
i
√

3 0 −2i 0

⎞
⎟⎟⎠,

= 1

2

(
0

√
3√

3 −2

)
⊗ σy, (A5b)

FIzF = 1

2

⎛
⎜⎝

3 0 0 0
0 −3 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠,

= 1

2

(
3 0
0 −1

)
⊗ σz. (A5c)
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This clearly shows that after the transform F , each spin matrix is composed of blocks of 2 × 2 matrices that are simply
multiples of Pauli matrices. This writing can then easily be generalized to arbitrary spin I = n − 1/2,

FIxF = 1

2

⎛
⎜⎜⎜⎜⎝

a2n−1

0 a2n−3 a2n−2
...

...

a3 a4 0
a1 a2

⎞
⎟⎟⎟⎟⎠ ⊗ σx := Ax ⊗ σx, (A6a)

FIyF = 1

2

⎛
⎜⎜⎜⎜⎝

a2n−1

0 a2n−3 −a2n−2
...

...

a3 −a4 0
a1 −a2

⎞
⎟⎟⎟⎟⎠ ⊗ σy := Ay ⊗ σy, (A6b)

FIzF = 1

2

⎛
⎜⎜⎜⎜⎝

c1

c3 0
. . .

0 c2n−3

c2n−1

⎞
⎟⎟⎟⎟⎠ ⊗ σz := Az ⊗ σz, (A6c)

where

ak =
√

k(2n − k) = a2n−k, (A7a)

ck = 2(n − k) + 1, (A7b)

and where the σi are the Pauli matrices.

2. Diagonalization of the quadrupole Hamiltonian

Once written under the previous form, the squared spin
matrices that appear in Eq. (A2) simply read

FI2
x F = A2

x ⊗ 11, (A8a)

FI2
y F = A2

y ⊗ 11, (A8b)

FI2
z F = A2

z ⊗ 11, (A8c)

which gives the simple expression for the quadrupole compo-
nent in the new basis:

FIQIF = (−EA2
x + EA2

y + DA2
z

) ⊗ 11. (A9)

Then, to find the eigenvalues of this Hamiltonian, one just has
to find the eigenvalues of the real symmetric matrix −EA2

x +
EA2

y + DA2
z . In other words, the matrix that will diagonalize

FIQIF will only act on the left part of the tensor product and
can be written of the form P ⊗ 11, where P is a real orthogonal
matrix of size n. This means that

P−1(−EA2
x + EA2

y + DA2
z

)
P ⊗ 11 (A10)

is diagonal, with n doubly degenerate eigenvalues. This is the
result that we expect, as plotted in Figs. 1(right) and 2(a) for
the case of europium.

3. Rewriting of the interaction Hamiltonian in the case BDC = 0

Let us now see the effect of these transforms on the in-
teraction Hamiltonian BAC(t )MI. According to the general
writing of BAC(t ) of Eq. (7), the interaction matrix form will
be determined by the direction of the magnetic field eAC.

Mathematically, it can always be written as

eACMI = αAC
x Ix + αAC

y Iy + αAC
z Iz, (A11)

where αi are real coefficients. Then, the transformation F
will simply affect the spin operators according to the (A6)
equations:

FeACMIF = αAC
x Ax ⊗ σx + αAC

y Ay ⊗ σy + αAC
z Az ⊗ σz.

(A12)

Then, the transformation P ⊗ 11 which diagonalizes FIQIF
acts on FeACMIF according to(
P−1 ⊗ 11

)
FeACMIF (P ⊗ 11)

= αAC
x P−1AxP ⊗ σx + αAC

y P−1AyP ⊗ σy + αAC
z P−1AzP ⊗ σz

:= AAC
x ⊗ σx + AAC

y ⊗ σy + AAC
z ⊗ σz. (A13)

Formally speaking, the generic form of each 2 × 2 submatrix
in Eq. (A13) is then simply

GAC
kl = (

AAC
x

)
klσx + (

AAC
y

)
kl
σy + (

AAC
z

)
klσz (A14a)

= μkl

2
U AC

kl , (A14b)

with

μkl = 2
√

− det
(
GAC

kl

)
= 2

√(
AAC

x

)2

kl + (
AAC

y

)2

kl
+ (

AAC
z

)2

kl (A15)

the effective magnetic moment of the transition,

U AC
kl = (

CAC
x

)
klσx + (

CAC
y

)
kl
σy + (

CAC
z

)
klσz, (A16)

and (CAC
i )kl = 2(AAC

i )kl/μkl such that Ukl is a unitary matrix
with determinant −1.

It is worth noticing that one can also perform arbitrary
unitary transforms Ui in each of the 2 × 2 subspaces, resulting
in the redefinition of the U AC

kl matrices:(
U AC

kl

)′ = U
†
kU

AC
kl Ul . (A17)
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In particular, in the body of the paper, we chose Usg (k = 1
and l = 2 in the spin 3/2 case) such that Usg ∈ SU (2). This
can be done from Eqs. (A16) and (A17) by using Uk = 11 and
Ul = σz such that

(
U AC

kl

)′ = −i
(
CAC

x

)
klσy + i

(
CAC

y

)
kl
σx + (

CAC
z

)
kl11, (A18)

which clearly has a determinant +1.

4. Influence of a magnetic field

The application of an external magnetic field BDC =
BDCeDC on our system modifies the Hamiltonian according
to Eq. (5b):

H0 = IQI + BDCeDCMI. (A19)

If we suppose that the applied magnetic field is sufficiently
small, i.e., that the Zeeman splittings are all small compared
to the quadrupolar splittings, then one can perform first-order
perturbation theory to estimate the effect of the field on the
eigenlevels as well as eigenstates. To this extent, we simply
have to diagonalize the 2 × 2 submatrices of BDCMI cor-
responding to the eigenspaces of IQI, found in the previous
paragraphs. We recall that the diagonal matrix that we found
is (P−1 ⊗ 11)FIQIF (P ⊗ 11).

In the same way as what was derived in the
previous paragraph, each diagonal 2 × 2 matrix of
(P−1 ⊗ 11)FeDCMIF (P ⊗ 11) can be written as

GDC
kk = gk

2
Vk, (A20)

with

gk = 2
√

− det
(
GDC

kk

)
, (A21)

and

Vk = (
CDC

x

)
kσx + (

CDC
y

)
k
σy + (

CDC
z

)
kσz, (A22)

such that V DC
k is unitary with determinant −1. Now the di-

agonalization of this matrix gives the modification of the
eigenvalues of IQI and gives a preferential direction for its
eigenvectors due to the lift of degeneracy. If (CDC

z )k = 1, then
Vk = σz is diagonal; if not, all the unitary matrices of the form

PDC
k = Vk − σz[

2 − 2
(
CDC

z

)
k

]1/2 eiϕDC
k (A23)

then allow us to diagonalize Vk , with eigenvalues −1 and +1,
where ϕDC

k can be chosen arbitrarily.
Eigenvalues: Formally speaking, this means that the per-

turbation matrices of the eigenenergies are simply given by

BDCP
†
kGDC

kk Pk = −gk

2
BDCσz. (A24)

In the body of the text, we have simply noted |gkBDC| = h̄δk ,

such that gk = 2
√

− det (GDC
kk ) is the effective gyromagnetic

ratio of level k.

Eigenvectors: This new basis now allows us to rewrite the
interaction 2 × 2 submatrices U AC

kl such that(
U AC

kl

)′ = P
†
kU

AC
kl Pl , (A25)

where we recall that U AC
kl is given by Eq. (A16).

Even if now only a restricted set of unitary transforms are
allowed, they still allow us to bring the determinant equal to 1.
Indeed, as det(U AC

kl ) = −1, we only have to choose the phases
ϕk = −ϕl = π/2 [in (A23)] such that det [(U AC

kl )′] = 1.

APPENDIX B: DIAGONALIZATION OF THE A MATRIX

In this Appendix, we prove the approximate form of the
eigenvalues of the A matrix in the regime (gs−gg)2/|gsgg|�1
given in Eq. (20).

To this extent, let us rewrite the A matrix given by expres-
sion (18) in a more suitable basis, that makes it explicit that
u1 couples spins of the same sign and u2 couples spins of
opposite sign. For that, let us simply swap vectors 2 and 3
to define a new matrix A′,

A′ =

⎛
⎜⎜⎝

� + δs eiϕ�1 0 eiϕ�2

e−iϕ�∗
1 −� + δg −e−iϕ�2 0

0 −eiϕ�∗
2 � − δs eiϕ�∗

1
e−iϕ�∗

2 0 e−iϕ�1 −� − δg

⎞
⎟⎟⎠, (B1)

where �1 = u1�0 and �2 = u2�0, following the notations of
Eq. (19).

We then decompose this matrix in three terms:

A′ = Afree + Apar + Across, (B2a)

with

Afree =

⎛
⎜⎝

� + δs 0 0 0
0 −� + δg 0 0
0 0 � − δs 0
0 0 0 −� − δg

⎞
⎟⎠,

(B2b)

Apar =

⎛
⎜⎜⎝

0 eiϕ�1 0 0
e−iϕ�∗

1 0 0 0
0 0 0 eiϕ�∗

1
0 0 e−iϕ�1 0

⎞
⎟⎟⎠, (B2c)

Across =

⎛
⎜⎜⎝

0 0 0 eiϕ�2

0 0 −e−iϕ�2 0
0 −eiϕ�∗

2 0 0
e−iϕ�∗

2 0 0 0

⎞
⎟⎟⎠. (B2d)

The interpretation of these matrices is simple: Afree charac-
terizes the ion level without interaction, Apar the coupling of
the levels with no spin flip, and Across the interaction with a
spin flip. To conduct our study, we will first diagonalize the
sum Afree + Apar alone and see in which regime Across remains
unchanged by this diagonalization process.

It is straightforward to see that

Afree + Apar =

⎛
⎜⎜⎝

� + δs eiϕ�1 0 0
e−iϕ�∗

1 −� + δg 0 0
0 0 � − δs eiϕ�∗

1
0 0 e−iϕ�1 −� − δg

⎞
⎟⎟⎠

(B3)
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has the eigenvalues

ζ 0
1 = 1

2

(
δs + δg +

√
(2� + δs − δg)2 + 4|�1|2

)
, (B4a)

ζ 0
2 = 1

2

(
δs + δg −

√
(2� + δs − δg)2 + 4|�1|2

)
, (B4b)

ζ 0
3 = −1

2

(
δs + δg −

√
(2� + δg − δs)2 + 4|�1|2

)
, (B4c)

ζ 0
4 = −1

2

(
δs + δg +

√
(2� + δg − δs)2 + 4|�1|2

)
, (B4d)

and corresponding eigenvectors

P1 =

⎛
⎜⎜⎝

cos θ1 −ei(ϕ+φ1 ) sin θ1 0 0
e−i(ϕ+φ1 ) sin θ1 cos θ1 0 0

0 0 cos θ2 −ei(ϕ−φ1 ) sin θ2

0 0 e−i(ϕ−φ1 ) sin θ2 cos θ2

⎞
⎟⎟⎠, (B5)

where

cos θ1 = 2� + δs − δg + √
(2� + δs − δg)2 + 4|�1|2

N1
,

(B6a)

sin θ1 = 2|�1|
N1

, (B6b)

cos θ2 = 2� + δg − δs + √
(2� + δg − δs)2 + 4|�1|2

N2
,

(B6c)

sin θ2 = 2|�1|
N2

, (B6d)

eiφ1 = u1/|u1|, N1, and N2 are real normalization factors. As
an indication, these four eigenvalues are represented with
colored dashed lines in Fig. 3 in the main text. An important
point is that the two eigenvalues ζ 0

2 and ζ 0
3 have the possibility

to cross at the point where

|�1|2 + 4�2 δsδg

(δs + δg)2
= δsδg. (B7)

Another way of formulating (B7) is that the two eigenvalues
cross for a magnetic field of amplitude

BDC =
√

|�1|2
gsgg

+ 4�2

(gs + gg)2
, (B8)

where gi is the effective gyromagnetic ratio of state i.
If we now add the cross-interaction term Across, the eigen-

values will be modified. This modification will be noticeable
only at the point where the ζ 0

i values cross, that is, at zero
field and at the crossing point. In general, Across is modified
according to

P−1
1 AcrossP1 =

(
0 R

R† 0

)
, (B9)

where

R = �2

(
eiφ1 sin(θ2 − θ1) eiϕ cos(θ2 − θ1)

−e−iϕ cos(θ2 − θ1) e−iφ1 sin(θ2 − θ1)

)
. (B10)

The cross-interaction matrix Across can then be considered as
unchanged by the transformation P1 in the condition where
the ratio between the diagonal terms and the antidiagonal ones
in R is � 1. This can simply be rewritten as | tan(θ1 − θ2)| �

1, which translates as

|�1||δs − δg|
δsδg

� 1, (B11)

which at the crossing point can be rewritten, thanks to (B8)
like

Q = (gs − gg)2

gsgg + 4�2g2
sg2

g

|�1|2(gs+gg)2

� 1. (B12)

This condition is the one given in the body of the text, with
� = 0. When Across can be considered as unchanged by the P1

matrix, the eigenvalues of A′ are simple to calculate and can
be approximated by

ζ1 = 1

2

(
ζ 0

1 + ζ 0
4 +

√(
ζ 0

1 − ζ 0
4

)2 + 4|�2|2
)

, (B13a)

ζ2 = 1

2

(
ζ 0

2 + ζ 0
3 +

√(
ζ 0

2 − ζ 0
3

)2 + 4|�2|2
)

, (B13b)

ζ3 = 1

2

(
ζ 0

2 + ζ 0
3 −

√(
ζ 0

2 − ζ 0
3

)2 + 4|�2|2
)

, (B13c)

ζ4 = 1

2

(
ζ 0

1 + ζ 0
4 −

√(
ζ 0

1 − ζ 0
4

)2 + 4|�2|2
)

. (B13d)

Notice that we have not performed perturbation theory on
�2: the results presented here hold for arbitrary values of
�2. However, the reasoning that we have applied here is not
symmetric in �1 and �2 as seen with Eqs. (B13): the reason
for this is that condition (B12) introduces some asymmetry
in the role of �1 and �2. Namely, if one first diagonalizes
Afree + Across, Apar will be strongly affected by the transforma-
tion.

As a sanity check, let us ensure that condition (B12) is
relevant for the approximation of the eigenvalues of A′. The
most sensitive eigenvalues are the one that are the most af-
fected by the avoided crossing, namely, ζ2 and ζ3. Following
this remark, Fig. 11(a) shows the relative distance between
ζ2 given by (B13b) with the actual second eigenvalue of A′:
|ζ2 − eig2(A′)|/ζ2 as a function of ϕDC and θDC, angles of the
BDC field, in the same practical case as in Sec. III, for site I of
151Eu3+ : Y2SiO5 for the 7F0 | ± 3/2〉G ↔ | ± 1/2〉G nuclear
spin transition. On the other hand, if one plots the Q parameter
given by Eq. (B12), one obtains the dependency shown in
Fig. 11(b). The similarity of the two plots clearly validates
the condition that we have found.
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FIG. 11. Validity of condition (B12) for site I [44] of our system.
(a) Relative error |ζ2 − eig2(A′)|/ζ2 between estimated [ζ2, given by
Eq. (B13b)] and actual [eig2(A′)] second eigenvalue. A maximal rela-
tive error of ∼20% can be seen. (b) Q parameter (B12). As expected,
when the condition is not well satisfied (large Q), the relative error
on the eigenvalue is maximal.

APPENDIX C: EXPRESSION OF THE PROPAGATOR
AT LOW FIELD

In this Appendix, we derive the expression of the prop-
agator at low field. To simplify the calculations, we place
ourselves in the resonant case (� = 0).

Given that the Schrödinger equation simply reduces to
(11), the propagator reads

Uprop = eiAt/2 = P · eiDt/2 · P−1, (C1)

where P is the transfer matrix that diagonalizes A to D:

D =

⎛
⎜⎝

ζ1 0 0 0
0 ζ3 0 0
0 0 ζ2 0
0 0 0 ζ4

⎞
⎟⎠ =

⎛
⎜⎝

ζ1 0 0 0
0 ζ3 0 0
0 0 −ζ3 0
0 0 0 −ζ1

⎞
⎟⎠.

(C2)

Remember that the eigenvalues obtained in Appendix B are
the ones of A′, for which vectors 2 and 3 were exchanged (we
note the corresponding flip matrix P23), hence a change in the
indexes of the eigenvalues in D. Then, at zero detuning, we
simply have ζ2 = −ζ3 and ζ4 = −ζ1. The transfer matrix is
then given by

P = P23P1P2, (C3)

where P1 is given in Eq. (B5) and P2 is the transfer matrix
from the base in which Afree + Apar is diagonal to the base
where A′ is diagonal. In the case � = 0, it simply reads

P2 =

⎛
⎜⎜⎝

cos θ4 0 0 −ei(φ2+ϕ) sin θ4

0 cos θ3 −ei(φ2−ϕ) sin θ3 0
0 e−i(φ2−ϕ) sin θ3 cos θ3 0

e−i(φ2+ϕ) sin θ4 0 0 cos θ4

⎞
⎟⎟⎠, (C4)

where

cos θ3 =
−ζ 0

2 +
√(

ζ 0
2

)2 + |�2|2
N3

, (C5a)

sin θ3 = |�2|
N3

, (C5b)

cos θ4 =
ζ 0

1 +
√(

ζ 0
1

)2 + |�2|2
N4

, (C5c)

sin θ4 = |�2|
N4

, (C5d)

and eiφ2 = u2/|u2|. Now that we have the explicit expression
of the matrices, we can write the propagator. However, its
general expression without approximation is not so trivial.

As we are interested in its expression at low fields, we can
consider that ε = δg+δs

2�0
� 1. Under this approximation,

ζ1 � �0 + ε|�1|, (C6a)

ζ3 � −�0 + ε|�1|, (C6b)

cos θ1 � cos θ2 � sin θ1 � sin θ2 � 1/
√

2, (C7a)

cos θ3 � cos θ4 � �0 + |�1|√
2�0(�0 + |�1|)

:= c0=
√

1

2

√
1 + |u1|,

(C7b)

sin θ3 � sin θ4 � |�2|√
2�0(�0 + |�1|)

:= s0=
√

1

2

√
1 − |u1|.

(C7c)

The transfer matrix then simply reads

P � 1√
2

⎛
⎜⎜⎝

c0 −c0ei(φ1+ϕ) s0ei(φ1+φ2 ) −s0ei(φ2+ϕ)

−s0e−i(φ1+φ2 ) s0e−i(φ2−ϕ) c0 −c0e−i(φ1−ϕ)

c0e−i(φ1+ϕ) c0 −s0ei(φ2−ϕ) −s0ei(φ2−φ1 )

s0e−i(φ2+ϕ) s0e−i(φ2−φ1 ) c0ei(φ1−ϕ) c0

⎞
⎟⎟⎠ (C8)

and

exp
( i

2
Dt

)
�

⎛
⎜⎜⎜⎝

e
i
2 �0t e

i
2 ε|�1|t 0 0 0

0 e− i
2 �0t e

i
2 ε|�1|t 0 0

0 0 e
i
2 �0t e− i

2 ε|�1|t 0
0 0 0 e− i

2 �0t e− i
2 ε|�1|t

⎞
⎟⎟⎟⎠. (C9)
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Injecting (C8) and (C9) into (C3) and (C1), we get the expression of the propagator,

Uprop(t ) � cos

(
ε|�1|t

2

)
U0(t ) + sin

(
ε|�1|t

2

)
Upert (t ), (C10)

with U0(t ) the propagator at zero field:

U0(t ) = cos

(
�0t

2

)
11 + i sin

(
�0t

2

)(
0 eiϕU

e−iϕU † 0

)
(C11)

and

Upert (t ) = i cos

(
�0t

2

)⎛
⎜⎜⎝

|u1| −u2eiφ1 0 0
−u∗

2e−iφ1 −|u1| 0 0
0 0 |u1| u2e−iφ1

0 0 u∗
2eiφ1 −|u1|

⎞
⎟⎟⎠,

+ sin

(
�0t

2

)⎛
⎜⎜⎝

0 0 −ei(ϕ+φ1 ) 0
0 0 0 ei(ϕ−φ1 )

−e−i(ϕ+φ1 ) 0 0 0
0 e−i(ϕ−φ1 ) 0 0

⎞
⎟⎟⎠. (C12)
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