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Quantum low-density-generator-matrix (QLDGM) codes are known to exhibit great error correction capa-
bilities, surpassing existing quantum low-density-parity-check (QLDPC) codes and other sparse-graph schemes
over the depolarizing channel. Most of the research on QLDPC codes and quantum error correction (QEC)
is conducted for the symmetric instance of the generic Pauli channel, which incurs bit flips, phase flips, or a
combination of both with the same probability. However, due to the behavior of the materials they are built from,
some quantum devices must be modelled using a different channel model capable of accurately representing
asymmetric scenarios in which the likelihood of a phase flip is higher than that of a bit flip. In this work, we
study the design of QLDGM CSS codes for such Pauli channels. We show how codes tailored to the depolarizing
channel are not well suited to these asymmetric environments and we derive methods to aptly design QLDGM
CSS codes for this paradigm.
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I. INTRODUCTION

In the realm of classical communications, turbo codes [1]
and low-density-parity-check (LDPC) codes [2–4], are known
to exhibit capacity-approaching performance at a reasonable
decoding computational complexity. Turbo codes offer great
flexibility in terms of their block length and rate. The first
quantum codes based on turbo codes appeared in Refs. [5,6],
and have since been modified and improved [7–12]. Aside
from their block length and rate flexibility being on par
with that of turbo codes, the sparse nature of LDPC codes
guarantees that their quantum equivalents will require small
numbers of quantum interactions per qubit during the error
correction procedure [13], avoiding additional quantum gate
errors and facilitating fault-tolerant decoding. These traits
make QLDPC codes especially well suited for quantum error
correction.

Out of the existing types of LDPC codes, low-density-
generator-matrix (LDGM) codes [14] provide a seamless
manner for code design in the quantum domain. LDGM codes
are a specific subset of LDPC codes whose generator ma-
trices are also sparse, and thus their encoding complexity is
similar to that of turbo codes, and much smaller than for
standard LDPC codes. Given that LDGM codes form a spe-
cial subclass of the LDPC code family, they can be decoded
in the same manner and with the same complexity as any
other LDPC code. LDGM codes have been extensively stud-
ied [3,14–16] and used in classical communications [17,18].
In Ref. [3], regular LDGM codes, which are a specific type
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of LDGM code whose parity check matrices have the same
number of nonzero entries per row and the same amount of
nonzero entries per column, were studied and shown to be
asymptotically bad, displaying error floors that do not de-
crease with the block length. In Refs. [15,16], a concatenated
LDGM scheme was shown to achieve performance similar
to irregular LDPC codes at a very low encoding/decoding
complexity.

The first Quantum LDPC codes were built by casting clas-
sical LDPC codes in the framework of stabilizer codes [19],
which enabled the design of quantum codes from any arbitrary
classical binary and quaternary codes. Later, in Ref. [20],
design methodologies for classical LDPC codes where stud-
ied in the context of quantum error correction. In this work,
numerous construction and decoding techniques along with
their flaws and merits are analyzed. Among the discussed
methods, the construction of QLDPC codes based on LDGM
codes stands out because it maintains good performance at
a reduced decoding complexity. This method was originally
proposed in Refs. [21,22], where Calderbank-Steane-Shor
(CSS) [23,24] quantum codes based on regular LDGM clas-
sical codes were shown to surpass the best quantum coding
schemes of the time. The performance of these chemes was
significantly improved in Refs. [25,26] by using a parallel
concatenation of two regular LDGM codes. Later, the codes
proposed in Refs. [27–30] were shown to outperform LDGM-
based CSS quantum codes over the depolarizing channel.
Recently, the non-CSS inspired LDGM-based stratagem pro-
posed in Ref. [31] was shown to outperform all other CSS and
non-CSS codes of similar complexity. These codes were also
analyzed for the case of a misidentified depolarizing channel
in Ref. [32].

Most of the research related to the performance of quantum
error correcting codes considers the symmetric Pauli channel,
generally referred to as the depolarizing channel, which incurs
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bit flips, phase flips, and bit-and-phase flips with the same
probability. However, realistic quantum devices, given the
nature of the materials used to construct them, often exhibit
asymmetric behavior, where the probability of a phase flip
taking place is orders of magnitude higher than the proba-
bility of a bit flip [12,33,34]. The behavior of these quantum
devices is governed by the single-qubit relaxation time and
the dephasing time of the device itself, the former sometimes
being orders of magnitude larger than the latter. Generally, re-
laxation causes both bit flips and phase flips, while dephasing
only leads to phase-flip errors. This difference in relaxation
and dephasing times gives rise to the aforementioned asym-
metric behavior, where bit-flip errors are much less likely
to occur than phase flips, and it can be accurately modelled
by the general Pauli channel [34–39]. Naturally, it stands to
reason that the best QEC schemes for this asymmetric channel
must somehow be able to exploit its asymmetry. In Ref. [40],
the authors introduce an EXIT-chart based methodology to
design quantum turbo codes (QTCs) specifically for the gen-
eral Pauli channel. This work is extended in Ref. [12], where
an online estimation protocol to decode QTCs over general
Pauli channels is proposed. These results speak to the merit
of constructing a coding scheme tailored to the asymmet-
ric characteristics of the quantum channel in question, since
performance of the QTCs varies depending on the degree of
asymmetry of the channel.

In this paper, we study the performance of quantum CSS
LDGM codes when they are applied over a Pauli channel. We
show how although they are not the best known codes for the
depolarizing channel, their simplicity allows for them to be
almost seamlessly adapted to the general Pauli channel. Based
on this result, we introduce a simple yet effective method to
derive CSS QLDGM codes that perform well over channels
with varying degrees of asymmetry. Such a strategy is neces-
sary because CSS codes designed for the depolarizing channel
perform poorly over its asymmetric counterpart. To the extent
of our knowledge and at the time of writing, the research on
designing quantum codes specifically for asymmetric quan-
tum channels is quite limited [41], especially when compared
to results regarding the depolarizing channel. Thus this work
represents one of the first attempts at designing QLDPC codes
specifically for asymmetric quantum channels.

The remainder of this paper is structured as follows. We
commence with an overview of some important preliminary
topics in Sec. II. We proceed by presenting the quantum chan-
nel model in Sec. III. In Sec. IV, we compare the performance
of CSS QLDGM codes over the depolarizing channel to other
state-of-the-art codes and explain why we have chosen them
to build codes for the general Pauli channel. Additionally,
we discuss and propose a method to modify CSS QLDGM
codes so that they are capable of exploiting the asymmetry
of the considered quantum channel. In Sec. V, we show the
simulation results for our proposed design and compare them
to other strategies that have been proposed in the literature.
Section VI concludes the paper.

II. PRELIMINARIES

In this section, a brief review of the concepts, definitions,
and notation used in this paper is provided.

A. Basic concepts

1. Quantum Information

The simplest quantum mechanical system and the basic
unit in quantum information is known as the qubit. In the state
vector formulation, it is denoted by |ψ〉 = α |0〉 + β |1〉 ∈ H2;
where α, β ∈ C, |α|2 + |β|2 = 1 and H2 refers to the complex
Hilbert space of dimension 2. Another formulation of quan-
tum mechanics can be given in terms of the so-called density
matrices ρ, which is useful in order to describe systems whose
state is not completely known in state vector terms.

2. The Pauli group and the effective Pauli group

The Pauli group is a mathematical group of significant
interest for quantum stabilizer codes. Let � be the set of Pauli
operators {I, X,Y, Z}, and �⊗N = {I, X,Y, Z}⊗N denote the
set of N-fold tensor products of single-qubit Pauli operators.
Then, �⊗N together with the possible overall factors ±1,±i
forms a group known as the N-fold Pauli group GN , defined as
GN = {β1I, β2X, β3Y, β4Z}⊗N , where βk = {±1,±i}.

Now let [A] = {βA|β ∈ C, |β| = 1} be the equivalence
class of matrices equal to A up to a phase factor. Then the
set [ḠN ] = [�⊗N ] = {[I], [X ], [Y ], [Z]}⊗N forms an Abelian
group under the multiplication operation defined by [A][B] =
[AB]. This group is called the effective N-fold Pauli group.

B. Stabilizer codes

Quantum stabilizer codes are a class of QECCs that can
be efficiently designed based on existing classical codes. A
stabilizer code C(S) is defined by a set of operators S that
generate an abelian subgroup of the N-fold Pauli group GN

under multiplication. The codespace defined by the stabilizer
group is

C(S) = {|ψ〉 ∈ H⊗N
2 : Si|ψ〉 = |ψ〉,∀i

}
,

i.e., the simultaneous +1-eigenspace defined by the elements
of the stabilizer group S, where Si denotes each generator of
the stabilizer group.

A generator of a stabilizer code, or more generally any
Pauli operator on N qubits, can be described in terms of
its symplectic representation [42]. Using this representation,
each element of the N-fold Pauli group can be written as a
unique binary string of length 2N , which is built by joining
two separate binary strings1 of length N . Individually, each of
the length N binary strings will represent the presence of a
Z or X operator on each of the N qubits. Considered jointly,
the strings also represent I and Y operators. More explicitly,
given an element of GN represented by the length 2N string
U = (Uz|Ux ), where Uz and Ux are length N strings, zero
entries in the same position of both length N strings represent
a single qubit I operator, a nonzero entry in Uz and a zero
entry in the same position of Ux will represent a single qubit
Z operator, a zero entry in Uz and a nonzero entry in the same

1Note that by doing so, the global phase is lost, and so the map
is between the effective Pauli group and the binary field. Global
phase has no observable consequences, so neglecting it makes good
physical sense.
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position of Ux will represent a single qubit X operator, and
nonzero entries in the same position of both strings represent
a single qubit Y operator. Applying this representation to the
generators Si of a stabilizer code enables the definition of
the quantum parity check matrix (QPCM) for the code. The
QPCM of a stabilizer code will be in the form HQ = (Hz|Hx ),
where row i of matrix HQ is the symplectic representation of
stabilizer generator Si.

Using this QPCM notation, the requirement that stabilizer
generators must commute can be re-expressed for the entire
stabilizer code as

Hz � Hx = (
HzH

T
x + HxHT

z

)
mod2 = 0 , (1)

where the � operator, known as the symplectic product, rep-
resents the operation itself. This expression, referred to as
the symplectic criterion, is significant because it determines
which existing classical codes can be used to design stabilizer
codes.

In most quantum channels, decoherence is modelled by
means of errors that belong to the N-fold Pauli group, which
either commute or anticommute with each of the stabilizer
generators Si of a given stabilizer code C(S) [42]. An error
operator E can be described using the symplectic representa-
tion as the length 2N binary string e. If we write e as (ez|ex ),
when multiplying e in terms of the symplectic product (mod2)
by a row of the parity check matrix of a stabilizer code, 0
will be obtained if E and the generator associated to that row
commute, whereas 1 will be obtained if they anticommute. As
is shown in (2), multiplying this symplectic representation of
the error operators by the quantum parity check matrix of a
stabilizer code will yield the quantum syndrome s. We will
later use this syndrome in the decoding process to estimate
the error pattern e.

s = HQ � e = (Hzex + Hxez )mod2 , (2)

where e = (ez|ex ) is the symplectic representation of the error
pattern, HQ = (Hz|Hx ) is the quantum parity check matrix of
a stabilizer code, and s represents the quantum syndrome.

C. CSS codes

Two binary classical LDPC codes can only be used to
construct a stabilizer code if they satisfy the symplectic crite-
rion (1). The first design strategy one could devise to construct
stabilizer codes would be the random selection of pairs of
classical LDPC codes. However, finding two LDPC codes
of reasonable block size that satisfy (1) is highly unlikely.
Calderbank-Shor-Steane (CSS) codes [23,24], provide a more
efficient design strategy than random selection of classical
codes. The quantum parity check matrix of these codes is
written as

HQ = (Hz|Hx ) =
(

H ′
z 0

0 H ′
x

)
, (3)

where Hz = (H ′
z

0 ) and Hx = ( 0
H ′

x
).

In this construction, H ′
z and H ′

x are the parity check ma-
trices of two classical LDPC codes C1 and C2, respectively,
where each matrix is used to correct either bit flips (H ′

z)
or phase flips (H ′

x). The classical codes are chosen so that
C⊥

2 ⊆ C1, where C⊥
2 is the dual of the classical LDPC code

C2. This design constraint, generally referred to as the CSS
condition, reduces (1) to (H ′

zH ′T
x )mod2 = 0.

D. Systematic classical LDGM codes

Systematic LDGM codes are useful, both in classical and
quantum environments, because of the particular structure of
their generator and parity check matrices. Let C be a system-
atic LDGM code. Then, its generator matrix G̃ and its parity
check matrix H̃ can be written as

G̃ = (I P), H̃ = (PT I), (4)

where I denotes the identity matrix, and P = [plm] is a sparse
matrix.

Because LDGM codes belong to the family of lin-
ear block codes, these matrices will satisfy (G̃H̃T )mod2 =
(H̃G̃T )mod2 = 0. Those systematic LDGM codes in which
the rows and columns of the PCM have degrees2 X and Y ,
respectively, will be denoted as (X,Y ) regular LDGM codes.
Regular LDGM codes are known to be asymptotically bad [3],
displaying error floors that do not decrease with the block
length. However, in Ref. [43], codes built via the parallel
concatenation of two regular LDGM codes3 were shown to
yield significant reduction in these error floors. The parallel
concatenation of two regular LDGM codes with generator
matrices G1 = [I P1] and G2 = [I P2], where P1 and P2

have degree distributions (y1, y1) and (y2, z2), is the irregular
LDGM code with generator matrix G = [I P1P2]. We can rep-
resent such a scheme using the notation P[(y1, y1); (y2, z2)].
Generally, this concatenation is accomplished by using a high
rate code G2 that is able to reduce the error floor of G1, while
also causing negligible degradation of the original conver-
gence threshold.

Classical LDPC decoding is performed by solving the
equation s = Hce, where s represents the received syndrome,
Hc is the PCM of the code, and e is the error pattern we wish
to recover. Given that LDGM codes are a specific subset of
LDPC codes, they are decoded in exactly the same manner
as generic LDPC codes. However, LDGM decoding can also
be interpreted as a method to solve equation c = Pu, where
c is the vector of parity bits generated at the encoder, P is
the constituent sparse matrix of the LDGM generator matrix,
and u is the information message we want to obtain. Thus
the decoding algorithm for LDGM codes can be implemented
by applying belief propagation (BP) [44] or the sum-product
algorithm (SPA) [45] over the graph associated to the equation
c = Pu.

III. QUANTUM CHANNEL MODEL

The effects quantum decoherence has on quantum informa-
tion are usually described by means of quantum channels, N .

2The degree of the columns is the number of nonzero entries per
column of the PCM. The degree of the rows is given by the number
of nonzero entries per row of the PCM. An LDGM code is said to
be regular when all the rows of its PCM have the same number of
nonzero entries, X , and so do its columns, Y .

3The parallel concatenation of regular LDGM codes is equivalent
to an LDGM code with an irregular degree distribution.
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A widely applied quantum channel model used to represent
the decoherence effects suffered by quantum information de-
scribed by a density matrix ρ, is the generic Pauli channel NP.
The effect of the Pauli channel NP upon an arbitrary quantum
state is described by

NP(ρ) = (1− px − py− pz )ρ+ pxXρX + pyY ρY + pzZρZ.

A qubit then experiences a bit flip (X operator) with prob-
ability px, a phase flip (Z operator) with probability pz or
a combination of both (a Y operator) with probability py.
When quantum states of N qubits are considered, the errors
that take place belong to the N-fold Pauli group4 GN . We
define p = px + py + pz � 1 as the gross flip probability of
the generic Pauli channel.

A. Symmetric Pauli channel

In most of the work conducted on quantum error correc-
tion, the symmetric Pauli channel model, also known as the
depolarizing channel, is considered [5,7,46]. This model is a
specific instance of the Pauli channel in which the individual
flip probabilities are all equal, i.e., px = pz = py, and the
channel is completely characterized by the gross flip proba-
bility p, commonly referred to as the depolarizing probability.
When considering this symmetric instance of the Pauli chan-
nel, errors will act independently on each qubit causing an X ,
Z , or Y error with probability p/3 and leaving it unchanged
with probability (1 − p).

B. iid X/Z channel

In some scenarios, it is useful to employ a simpler channel
model than the depolarizing channel. The standard flipping
channel or iid X/Z channel, is introduced in Ref. [13], where
Z and X errors are modelled as independent events identically
distributed according to the flip probability fm. This quantum
channel model is analogous to two independent Binary Sym-
metric Channels (BSCs) with marginal bit-flip probability
fm = 2p/3, where the separate BSCs can be seen as Z and X
error channels, respectively. Given that Y errors occur when
both a phase flip and a bit flip happen to the same qubit, the
simplified notion of the iid X/Z channel ignores any correla-
tion that exists between X and Z errors in the depolarizing
channel.

C. Realistic Pauli channel model

As has been mentioned throughout this paper, quantum de-
vices are constructed employing specific materials that cause
these devices to exhibit asymmetric behavior. This asymmetry
is embodied by the probability of a bit flip px being orders
of magnitude smaller than the probability of a phase flip pz.
To build a Pauli channel model that accurately represents this
phenomenon the asymmetric relationship between px, py, pz,
and p must be established. This is achieved by introducing the
parameter α, known as the channel’s ratio of asymmetry [40],
which arises due to the twirling of the channel [34]. This

4Given that the global phase has no observable consequence, the
instances of considered errors will be the elements of ḠN .

parameter represents the ratio of the phase-flip probability and
the bit-flip probability as [47,48]

α = pz

px
= 1 + 2

e
−t
T1 − e

(
−t
2T1

− 2t
T2

)

1 − e
−t
T1

, (5)

where T1 is the relaxation time, T2 represents the dephasing
time, and t is the coherent operation duration of a physical
quantum gate [49]. In Refs. [34,47] expressions for px, py,
and pz are given (6), where the bit-flip probability and bit-
and-phase-flip probability can be considered to be equal.

px = py = 1 − e
−t
T1

4
, pz = 1

2
− px − e

−t
T2

2
. (6)

If the coherent operation duration t is assumed to be rea-
sonably short, i.e., t << T1 [47], then from (5) the ratio of
the phase and bit-flip probabilities can be approximated by
α ≈ 2 T1

T2
− 1. In consequence, this model allows us to com-

pletely determine the values of pz, px, and py from α and
p. Common values for the ratio of asymmetry are given in
Refs. [12,34,40], with most materials used to build quan-
tum devices having α = [102, 104, 106]. Notice that, if we
select α = 1, we obtain the depolarizing channel model that
is considered in most circumstances and that satisfies px =
py = pz = p

3 . This last value of α exists for specific types of
devices, hence the depolarizing channel can sometimes also
provide a realistic representation of the behavior of a quantum
machine.

IV. QLDGM CSS CODE DESIGN
FOR ASYMMETRIC CHANNELS

In this section, as is done in Ref. [31], we introduce
the design technique for symmetric CSS QLDGM codes of
Refs. [25,26]. Following this, we justify why we have chosen
symmetric CSS QLDGM codes as the basis to design QEC
strategies for more realistic quantum channels by comparing
their performance with other QLDPC codes. Having provided
the necessary context, we then propose a scheme that op-
timizes these CSS codes for the asymmetric Pauli channel
introduced in Sec. III C.

A. Symmetric QLDGM CSS codes

The first intuition to derive the QPCM of a QLDGM
CSS code would be to select any classical LDGM code
with parity check and generator matrices H̃ and G̃, and set
H ′

z = H̃ and H ′
x = G̃ in (3), since the property (G̃H̃T )mod2 =

(H̃G̃T )mod2 = 0 would ensure the fulfillment of the symplec-
tic criterion. However, this results in a QPCM HQ of size
N×2N , which cannot be used for encoding purposes as it
would produce a code of RQ = 0. In order to build a valid
quantum code, the number of rows in HQ must be reduced,
while ensuring that the CSS condition is fulfilled. in Ref. [21],
the authors successfully reduce the number of rows of the
generator and parity check matrices of a classical LDGM
code via linear row operations while showing that the CSS
condition is kept. They achieve this by applying the following
theorem.

Theorem 1. Given the generator and parity check ma-
trices of a systematic LDGM code (4), define Hm1×N =
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FIG. 1. Decoding graph for a symmetric QLDGM CSS scheme.
The dashed line is included to emphasize the separation of the two
constituent subgraphs. The leftmost subgraph decodes the X errors
while the one on the right decodes the Z errors. We have assumed
that m1 = m2 = m

2 , n1 = n2 = N
2 , and m = m1 + m2.

[M1]m1×n1 [H̃]n1×N and Gm2×N = [M2]m2×n2 [G̃]n2×N , where
n1 + n2 = N and M1 and M2 are low-density full-rank binary
matrices whose number of rows satisfy m1 < n1 and m2 < n2,
respectively. Then, the quantum PCM shown in (7), obtained
by setting H ′

z = H and H ′
x = G in (3), is the quantum PCM of

an LDGM-based CSS code with rate RQ = N−m1−m2
N .

HQ = (Hz|Hx ) =
(

H 0
0 G

)
=

(
M1H̃ 0

0 M2G̃

)
. (7)

Quantum CSS LDGM codes are decoded by applying the
SPA over the factor graph defined by the QPCM in (7). The
derivation of this factor graph is performed as in Ref. [21], by
splitting the symplectic representation of the error pattern into
two parts, e = (ez|ex ), and relating it to the syndrome via a two
step process.5 As a result of the structure of CSS codes, the
syndrome can also be split into two parts, s = (sx|sy), where
each part of the syndrome contains information regarding
either bit or phase flips and is directly related to either ex or ez.
In the following, we illustrate this derivation for ex, the part of
the symplectic representation of the error sequence related to
the X operators. The procedure for ez is identical but using G
instead of H in (8).

sx = Hex = M1H̃ex = M1[PT I]ex. (8)

If we now split the symplectic representation of the error
pattern of the X operators into ex = (ex1 ex2 )T , we can write

dx = [PT I]ex = [PT I]n1×N

(
ex1

ex2

)
N×1

= PT
n1×n2

[ex1 ]n2×1 + [ex2 ]n1×1. (9)

We then relate dx to the syndrome as

sxm1×1 = M1m1×n1
dn1×1. (10)

The factor graph shown in Fig. 1 is obtained based on
expressions (9) and (10), as well as their equivalents when
using ez and G in (8).

5The syndrome is obtained as shown in (2).

Upon closer examination of the QPCM in (7), it is easy
to see that decoding for the H and G matrices can be done
separately. This is also visible in Fig. 1, where the leftmost
subgraph is associated to the decoding of matrix H (ex or X
containing operators) and the rightmost subgraph is associated
to the decoding of matrix G (ez or Z containing operators).
Separate decoding of these matrices is made possible by the
nature of CSS constructions, which, as was mentioned earlier,
results in syndrome nodes containing information only of
either X or Z operators. This is reflected on the factor graph
by the fact that each type of s node (sx or sz nodes) connects
to either a dx or a dz node. The graph is constructed by setting
m1 = m2, which ensures that the same number of syndrome
nodes is used to decode the X and Z operators: m

2 s nodes
are connected strictly to dx nodes and the other m

2 s nodes
only connect to dz nodes. This equal distribution of syndrome
nodes for each type of error operator is logical given that the
code is designed for the depolarizing channel, where X , Y ,
and Z errors are equally likely. Asymmetric channels like the
Pauli channel model of Sec. III C present a different quandary,
in which, as will be shown later, using more syndrome nodes
to decode more likely error operators and less syndrome nodes
to decode less likely error operators can have a positive impact
on performance.

The matrix multiplications used to perform the linear row
operations on H̃ and G̃ (7) generate a middle layer, repre-
sented by the c and d nodes, in both decoding subgraphs
of Fig. 1. This new layer hampers the decoding algorithm,
especially during the initial decoding iterations, since a priori
information regarding the aforementioned middle layer nodes
is not available. in Ref. [21], the authors circumvent this
lack of information by using the so-called doping technique
of [50]. This method introduces degree-1 syndrome nodes
into the decoding graph. These degree-1 nodes, which we will
refer to as sA nodes, send exact6 information to the d nodes
they are connected to. The transmission of correct syndrome
information from the sA nodes to the d nodes represents a
passing down of accurate knowledge to lower layers of the
factor graph that should make up for the lack of information
regarding c and d nodes during initial decoding iterations.
This should have a positive impact on decoding performance
and ultimately push the entire process in the right direction.
The degree-1 syndrome vertices are embodied within the M1

and M2 matrices as rows with a single nonzero entry, which
corresponds to the edge that connects a given sA node to a d
node. The other rows of matrices M1 and M2, which corre-
spond to the rest of the s nodes, have as many nonzero entries
as required to guarantee the regularity7 of the d nodes and the
necessary number of sA nodes. This results in matrices M1 and
M2 having a special degree distribution which is described by
means of the notation (y; 1, x) and the parameter t , where y

6These messages are exact because, as required by the SPA update
rule and the fact that sA nodes are degree-1 nodes, the messages they
send are strictly dependent on the syndrome information available at
each sA node.

7Regularity in this context implies that all the d nodes have the
same degree, i.e., that they are all connected to the same number of s
nodes.
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FIG. 2. Achievable coding rate at a WER of 10−3 for different
types of QLDPC codes.

represents the degree of the d nodes, t is the number of syn-
drome nodes that are forced to have degree 1 (they become sA

nodes), and x represents the degree of the remaining syndrome
nodes, referred to as sB nodes.

Given the particular structure of the M1 and M2 matrices,
and the number of different types of nodes that are present in
the factor graph shown in Fig. 1, the sum-product decoding
of these quantum LDGM CSS codes becomes relatively nu-
anced. In Ref. [26], a technique known as discretized density
evolution (DDE) [4] is applied to optimize quantum LDGM
CSS codes, which also provides a complete description of how
the decoding process unfolds over the graph shown in Fig. 1.

1. Performance comparison with other QLDPC codes

Based on the discussion given in this section, it is easy to
see that designing LDGM-based CSS quantum codes is not
a complex task. In fact, all that is needed to build the factor
graphs of such codes is a set of matrices comprised of the gen-
erator and parity check matrices of a classical LDGM code,
G̃ and H̃ , and the matrices M1 and M2 given in theorem 1.
This set of matrices will define code parameters such as the
rate RQ or distance of the code, and given how straightforward
it is to modify these matrices, it will be relatively simple to
adapt the construction of QLDGM CSS codes to different
requirements to those of the depolarizing channel. As will
be shown in the following section, this comes in handy when
designing codes for the asymmetric Pauli channel.

Nonetheless, given that CSS QLDGM codes were origi-
nally designed to operate over the depolarizing channel, it
is important to analyze how symmetric LDGM-based CSS
codes perform over the depolarizing channel when compared
to other existing QLDPC codes. As is done in Ref. [20], in
Fig. 2, we show the highest possible coding rate at which var-
ious QLDPC codes that have been proposed in the literature
can achieve a word error rate of 10−3 over the depolariz-
ing channel. In this figure, we compare the performance of
two symmetric CSS QLDGM codes based on the structure
M(3; 1, 11.04) and P[(8, 8); (8, 160)] with blocklength n =
19014 and rates RQ = 1

2 and RQ = 1
4 to the following codes:

(1) The K = 32 bicycle code with block length n = 19014
and rate RQ = 1

4 proposed in Ref. [13].
(2) The Spatially Coupled (SC) Quasi-Cyclic (QC)

QLDPC code of rate RQ = 0.49 and blocklength n = 181000
given in Ref. [51].

(3) The nonbinary QC-QLDPC GF(210) code of rate RQ =
1
2 and block length n = 20560 proposed by Kasai et al. in
Refs. [27,28].

(4) The SC-QLDGM code of RQ = 1
4 and block length

n = 76800 proposed in Ref. [29].
(5) The QTC-assisted SC-QLDGM code of RQ = 1

4 and
block length n = 821760 of [30].

(6) The non-CSS concatenated code (code C) of RQ = 1
4

and block length n = 138240 of [46].
(7) The t = 5000, q = 500, M(3; 1, 11.04),

P[(8, 8); (8, 160)] non-CSS QLDGM code of RQ = 1
4 and

block length n = 19014 of [31].
As can be seen in Fig. 2, at both of the considered rates,

the symmetric CSS QLDGM code is outperformed by some
of the other codes. At a rate of RQ = 1

4 , the symmetric CSS
QLDGM code is beaten by the non-CSS implementation of
Ref. [31], the SC-QLDGM code of [29], and the QTC-assisted
SC-QLDGM code of Ref. [30]. However, this comes as no
surprise, since all three of these codes take a symmetric CSS
QLDGM code as their starting point and then modify it (by
changing the factor graph or combining them with a QTC)
with the purpose of improving performance. For a rate of
RQ = 1

2 , the symmetric CSS QLDGM code is once again
outperformed by the nonbinary QC-QLDPC GF(210) code
of [27,28]. We can further expand this comparison by looking
at the distance of each code to the Hashing bound. This can
be done as in Ref. [31], by computing

δ = 10 log10

(
p∗

p

)
, (11)

where p∗ is the noise limit of the depolarizing channel for a
specific quantum rate RQ, and p is the highest depolarizing
probability at which the code in question can operate with a
WER of 10−3.

At a rate of RQ = 1
2 , the QC-QLDPC code of [27,28] is

δQC-QLDPC = 1.9 dB away from the Hashing bound. At this
same rate, the distance for the symmetric CSS QLDGM code
is δCSS-QLDGM = 2.86 dB. Based on these values, it is clear that
when RQ = 1

2 , QC-QLDPC codes significantly outperform
CSS QLDGM codes. In contrast, at a rate of RQ = 1

4 , the
symmetric CSS QLDGM code is δCSS-QLDGM = 1.95 dB away
from the Hashing bound. This means that the performance
of CSS QLDGM codes is better at a lower rate, which may
entail that a different optimization strategy must be adopted to
improve the performance of higher rate CSS QLDGM codes,
similar to what is done classically in Ref. [52]. Once more,
the non-CSS and the SC-QLDGM codes of Refs. [29,31],
which exhibit approximately the same distance to the Hash-
ing Bound δnon-CSS ≈ δSC-QLDGM = 1.69 dB, outperform the
CSS QLDGM code. However, at this rate, the difference in
performance is notably less significant than when RQ = 1

2 .
At this point, it should be noted that these improvements

in performance come at the expense of the complexity of
the error correction schemes. This is especially true for the
best known code for RQ = 1

4 , the QTC-assisted SC-QLDGM
code of Ref. [30], which requires a QTC and a large block
length in order to get closer to the Hashing bound. Herein
lies the main appeal of CSS QLDGM codes, because al-
though they are slightly worse than the state-of-the art codes
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at RQ = 1
4 , the simplicity with which their design parameters

can be manipulated allows for them to be seamlessly adapted
to different channels. Doing so for the other codes included
in this discussion is a much more difficult task, since their
increased complexity does not allow direct modifications like
those permitted by CSS QLDGM codes. For this reason, and
knowing that performance of CSS QLDGM codes over the
depolarizing channel is acceptable at RQ = 1

4 , we use these
codes in the following section as the basis to design asym-
metric CSS QLDGM codes for a more realistic Pauli channel
model.

B. Asymmetric QLDGM CSS codes

Over Pauli channels that model practical quantum devices,
a phase flip is generally much more likely to occur than a bit
flip. Therefore it is reasonable to assume that for a quantum
error correction scheme to be optimal for this type of channel,
it must be capable of appropriately exploiting the channel’s
asymmetry. To be more precise, attaining the best perfor-
mance over such channels requires a more complex strategy
(by modifying the code construction) than just decoding as is
done over the depolarizing channel with the only difference
that the flip probabilities will no longer be 2p

3 . This means that
decoding a symmetric QLDGM CSS scheme by feeding the
a priori bit and phase error probabilities f 1

m = px and f 2
m = pz

of an asymmetric channel to the corresponding bit and phase
error decoders, while certainly an improvement to decoding
over an asymmetric channel based on the mismatched prob-
ability of the original iid channel fm = 2p

3 , will not result
in noticeable performance improvements. This is shown in
the following section, which also portrays the significant im-
provement yielded by asymmetric CSS schemes that tailor
specifically to the Pauli channel model for asymmetry.

The QLDGM CSS scheme introduced in the previous sub-
section can be adapted to an asymmetric channel by increasing
the number of syndrome nodes used to decode the Z operators
and decreasing the number of syndrome nodes used to decode
the X operators. In this way, the decoder can take advantage
of the channel’s asymmetric behavior and improve the perfor-
mance of the error correcting scheme. The factor graph of a
QLDGM CSS code tailored to the Pauli channel model for
asymmetry is shown in Fig. 3.

Despite how intuitive the idea appears, it is worth dis-
cussing why utilizing more syndrome nodes to decode Z
operators and less syndrome nodes to decode X operators
is beneficial when the considered channel is asymmetric.
The asymmetry-integrating Pauli channel model causes phase
flips (Z errors) with much higher probability than bit flips
or bit-and-phase flips (X and Y errors, respectively). Thus
the symplectic error representation8 of a pattern induced by
this asymmetric channel will have a much higher number
of nonzero elements in its ez string than in its ex string. In
contrast, when e represents an error induced by a depolarizing

8Recal that the symplectic representation of an error pattern e =
(ez|ex ) is a length 2N binary string where ez and ex are length N
binary strings that describe the presence of phase flips and bit flips
with nonzero entries, respectively.

FIG. 3. Decoding graph for an asymmetric QLDGM CSS
scheme. The dashed line is included to emphasize the separation of
the two constituent subgraphs. The leftmost subgraph decodes the
X errors while the one on the right decodes the Z errors. We have
assumed that n1 = n2 = N

2 and m = m1 + m2.

channel, ex and ez will, on average, have the same number
of nonzero entries. This presence of similar amounts of X
and Z errors in error sequences produced by the depolarizing
channel is the very reason why the decoding graph of Fig. 1
uses the same amount of syndrome information to decode
the ex and ez nodes. However, such a graph will more than
likely not be optimal for an asymmetric scenario in which the
distribution of nonzero entries over the length N constituent
strings of the symplectic representation of an error pattern is
not equal like for the depolarizing channel.

Let edep = (edep
z |edep

x ) and easym = (easym
z |easym

x ) denote the
symplectic representations of two error patterns induced by
a depolarizing channel and a Pauli channel that models a
realistic quantum device, respectively. Let us also define the
operator σ (a), which computes the number of nonzero entries
in a binary string a. Finally, assume that the asymmetry co-
efficient of the assymetric Pauli channel in question satisfies
α � 102. For the same value of p, σ (edep) ≈ σ (easym). How-
ever, while σ (edep

z ) ≈ σ (edep
x ), the same does not occur for

the asymmetric channel, σ (easym
z ) ≫ σ (easym

x ). Additionally,
σ (easym

z ) � σ (edep
z ) and σ (easym

x ) � σ (edep
x ). In consequence,

it is quite obvious that a decoder tasked with decoding error
patterns induced by a general Pauli channel will benefit from
an uneven decoding graph in which more syndrome informa-
tion is employed to decode ez and less syndrome nodes are
utilized to decode ex.

The design of such a decoding graph, an example of which
is shown in Fig. 3, gives rise to a whole new set of questions.
The first and most significant one is how can the optimum
values for m1 and m2 be determined, where m1 and m2 denote
the number of syndrome nodes used to decode the X and Z
operators, respectively. It is evident that m2 > m1, with said
difference growing larger as the asymmetry of the channel
increases. Ideally, we would like to devise a mathematical
formulation from which the values of m2 and m1 that yield
the best possible performance could be obtained.

Another important matter, of which little insight is pos-
sessed, is which configuration of the M1 and M2 matrices will
yield the best results. However, establishing which values of
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(y; 1, x) and t for each of these matrices is optimal, further
augments the complexity of the asymmetric design procedure
when compared to the symmetric scenario. This increase in
complexity is caused by the fact that exploiting the asymmetry
of the channel requires M1 
= M2, which theoretically allows
for myriads of different configurations in terms of the values
chosen for mi, yi, xi, and ti, where i = 1, 2. Finding the opti-
mum configuration through a brute force search requires such
a plethora of simulations that the issue becomes computation-
ally intractable.

In order to simplify our search for these matrices, we re-
cover the design methodology of [25,26,53] used to construct
symmetric CSS codes. In this work, the construction proce-
dure of the M1 and M2 matrices is simplified by the fact that,
since the codes are designed for the symmetric Pauli channel,
m
2 = m1 = m2 holds and M1 = M2 = M. This means that in-
stead of building two different matrices, the same matrix M is
used to define the upper layers of both CSS subgraphs.

The methodology to construct [M(y; 1, x)] m
2 × N

2
begins by

defining the values of m, the total number of syndrome nodes
of the decoding graph, and N , the block length of the code. N
is chosen to be sufficiently large so as to ensure the code will
possess good error correcting capabilities, while m is selected
to guarantee that the code has the desired quantum rate, which
for these CSS QLDGM codes is given by RQ = N−m

N [31].
Once again, since these codes are built for the symmetric
Pauli channel, m

2 syndrome nodes are assigned to each CSS
subgraph. Following this, y is set as a natural number to make
sure that the d nodes of the CSS subgraphs have the same
number of edges, and the number of sA nodes is chosen as
t � m

2 . Finally, x is obtained from the following equation:(
m

2
− t

)
x + t = y

N

2
. (12)

In Refs. [25,26,31,53], where RQ = 1
4 codes with N =

19014 and m = 14262 are considered, the configurations of
[y, x, t] that achieved the best performance were [3,8.72,4161]
and [3,11.04,5000]. These configurations were also shown to
be slightly dependant on the characteristics of the underlying
parallel-concatenated classical LDGM code.

Finding the combination of the parameters involved in (12)
that produces the code with best possible performance is no
easy task. Nonetheless, as is done in Refs. [25,26,31], certain
assumptions can be made in order to reduce the complexity
of this endeavour. To begin with, we know that N and m are
fixed in order to define the desired rate of the code. If N is
appropriately chosen (it is large enough to guarantee good
error correction potential of the code), this simplifies matters
and reduces the number of parameters from (12) that must be
studied. Now, recall that y must be set as a natural number to
ensure the regularity of the d nodes. In Refs. [25,26,31] results
showed that only a single value of this parameter yielded
positive outcomes9, y = 3. Given that the codes introduced

9Choosing y = 2 resulted in too little syndrome information being
propagated throughout the graph and applying y = 4 resulted in
worse and slower decoding due to the large amount of messages
exchanged over the graph.

in this paper are based on the structures proposed in the
aforementioned work, it is reasonable to adopt the same value
for y in our constructions. In consequence, this results in N ,
m, and y being fixed to specific values, implying that the only
parameters in Eq. (12) that can actually be modified are t ,
the number of sA nodes, and x, the degree of the sB nodes.
Several insights regarding the value of these parameters can
be obtained by analyzing our previous discussion and the
aforementioned equation.

(1) For large values of x, the reliability of the messages
transmitted by the sB nodes in the decoding process is signif-
icantly reduced. This occurs because when nodes have many
edges in SPA-based decoding, the messages that are consid-
ered in the computations of each of these nodes are numerous
enough to have an “averaging” effect and reduce the impact
of any one given message. Naturally, this should hinder the
overall performance of the code.

(2) As the values of x grow, given that the RHS of (12)
is fixed, the value of t will also be larger. Note that this is
intuitive: the more degree-1 syndrome nodes that there are (the
larger the value of t), the larger the degree of the remaining sB

nodes (the larger the value of x) will be because the degree y
of the lower layer d nodes must remain the same, which can
only be guaranteed by adding more edges to the sB nodes.
Growth in the value of t should have a positive impact on
performance, as having more sA nodes in the decoding graph
means that more “perfect” information from these degree-1
syndrome nodes will be transmitted to the lower layer nodes
in the initial decoding iterations.

Against this backdrop, it seems likely that the optimum
values of x and t will be dictated by a trade-off between these
two effects and that the choice of x will be inherently linked
to the choice of t .

As was mentioned previously, this search for the best com-
bination of t and x is further complicated by the fact that our
goal is to design asymmetric CSS codes. This is more difficult
than building CSS QLDGM codes for the depolarizing chan-
nel because the matrices M1 and M2 must now be different
in order to exploit the asymmetry of the channel. Because
more syndrome nodes are used to decode phase flips and less
syndrome nodes are used to decode bit flips, m1 
= m2, the x
and t parameters corresponding to each of these matrices must
now be optimized. Therefore, to appropriately design LDGM-
based CSS codes for the Pauli channel model of Sec. III C,
we have to adapt Eq. (12) into the new verison shown
below

(
mi

2
− ti

)
xi + ti = yi

N

2
, (13)

where i = 1, 2. Essentially, two designs have to be opti-
mized instead of one: we must now find the configurations of
Mm1× N

2
(y1; 1, x1) and t1 and Mm2× N

2
(y2; 1, x2) and t2 that yield

the CSS codes with the best performance. Recall that the rate
of the scheme will remain fixed since the sum m = m1 + m2

does not change. The demands of this process are discussed
in the following section, where we show how in reality, most
of the parameter optimization is only needed for one of these
matrices.
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V. SIMULATIONS

In this section, we study the performance of the pro-
posed asymmetric CSS scheme over the Pauli channel model
for asymmetry. First, we perform simulations to analyze the
behavior of a variety of asymmetric schemes over a Pauli
channel with a specific degree of asymmetry and compare
these results to the performance of a symmetric CSS code
when it is applied over that same channel. Based on these
results, we proceed by studying those schemes that yield
the best performance and narrowing down the search for the
optimum size and configuration of the M1 and M2 matrices.
Then, we propose a methodology to design asymmetric CSS
QLDGM codes based on the asymmetry coefficient of the
channel. Finally, we compare the performance of the proposed
asymmetric schemes to the theoretical limits of the Pauli
channel and study how they measure up against other codes
that are found in the literature.

A. Performance over the asymmetric Pauli channel

Realistic Pauli channel models for quantum devices in-
duces phase flips (Z errors) with much higher probability than
bit flips (X errors) [34]. Asymmetric CSS QLDGM schemes
can exploit this phenomenon by utilizing more syndrome
nodes to decode Z errors and employing less syndrome in-
formation to decode X errors. Given that the only design
guideline we possess to begin this analysis is that m2 should
be larger than m1, we start by fixing the asymmetry coef-
ficient of the channel to α = 102, and simulating different
configurations of the proposed asymmetric CSS scheme. For
comparison purposes, we also simulate a symmetric CSS
code [25,26] over the Pauli channel with α = 102. We select
the value α = 102 because it is the smallest out of the set
of realistic values for the asymmetric coefficient provided
in Refs. [34,40]. Performance of the proposed schemes for
channels with other degrees of asymmetry is studied in the
last part of this section.

For our simulations, we build codes of quantum rate RQ =
1
4 and block length N = 19014 that encode k = 4752 qubits
into N qubits. The pseudorandom matrix P of the underly-
ing LDGM code has size 9507×9507, has the same degree
distribution as its transpose PT , and corresponds to a rate 1

2
classical irregular LDGM code. The generator matrices of the
irregular LDGM code, G̃ and H̃ , have size 9507×19014. The
irregular LDGM code is designed via the parallel concatena-
tion of two regular LDGM codes.10 As is done in Ref. [31], we
use the particular concatenation P[(8, 8)(3, 60)] because of its
relatively small number of degrees, which reduces simulation
time substantially. Once the optimum M1 and M2 configura-
tion has been found, a parallel concatenated LDGM code of
larger degrees can be used to improve performance. Figure 4
shows the performance of the simulated schemes and Table I
outlines the details of each specific design. The results are de-
picted using the qubit error rate (QBER) and the WER. QBER

10The parallel concatenation of two regular LDGM codes results
in a new LDGM code with an irregular degree distribution that
outperforms the original regular codes that make it up.
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FIG. 4. Simulated QBER for different CSS QLDGM schemes.
p represents the gross flip probability of the Pauli channel with
asymmetry coefficient α = 102.

represents the fraction of physical qubits that experience an
error, while WER is the fraction of blocks that have at least
one physical qubit error.

As was expected, the results shown in Fig. 4 portray how
the asymmetric CSS schemes outperform the symmetric CSS
code over the Pauli channel with α = 102. This can be ap-
preciated by observing how the QBER and WER curves of
the symmetric CSS code (code S1) enter the waterfall region
and experience significant degradation at a substantially lower
value of p than the asymmetric codes.

The simulation outcomes depicted in Fig. 4 also serve to
provide insight regarding the performance determining fac-
tors of our asymmetric schemes. For instance, defining an
increasingly unbalanced configuration of the upper layer of
the decoding graph by selecting larger values of m2 and de-
creasing the values of m1 appears to have a positive impact
on our construction. This is reflected by the betterment in
QBER/WER results of the codes of Table I as m2 grows.
However, the performance curves of code A4, which has the
largest value of m2, exhibit a higher error floor than all the
other simulated codes. This may occur because selecting such
a large value for m2 reduces the number of syndrome nodes
leftover to decode the X operators to such an extent that the
corresponding decoder, despite the low probability of bit flips
over the channel, sees an inevitable increase in its error rate.
At the same time, it may also be that for such a small value
of m1, the choice of [t1, x1, y1] is so critical that inappropriate

TABLE I. Parameter values and configurations of the CSS codes
simulated over an Pauli channel with α = 102. The results of these
simulations are shown in Fig. 4.

Code Type No. [m1, t1, x1, y1] [m2, t2, x2, y2]

Symmetric S1 [7131, 4161, 8.22, 3] [7131, 4161, 8.22, 3]
Asymmetric A1 [6262, 3000, 7.82, 3] [8000, 5100, 6.33, 3]
Asymmetric A2 [4262, 2487, 14.66, 3] [10000, 5835, 5.44, 3]
Asymmetric A3 [3262, 1500, 12.49, 3] [11000, 8497, 8, 3]
Asymmetric A4 [1262, 750, 54.24, 3] [13000, 9507, 6.9, 3]
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selection of these values degrades performance significantly.
Thus, although large values of m2 provide more syndrome
information to decode the Z operators and improve the ability
of the code to correct phase flips, they come at the expense
of using less information to correct bit flips (values of m1 that
are too low), which results in increased error floors and worse
overall performance if the bit-flip decoder is not correctly
designed.

Another aspect of the proposed asymmetric CSS scheme
that is integral to its performance and which was discussed
in the previous section, is the relationship between the degree
of the sB nodes of the CSS decoding subgraphs, denoted by
xi, and the number of degree-1 syndrome nodes ti, where
i = 1, 2. The impact of this relationship, and specifically
its aforementioned trade-off nature, is significant, as it ties
into the selection of mi. For the symmetric CSS schemes
of Refs. [25,26] the best performance was obtained for
codes that utilized M1 = M2 = M(3; 1, 11.02)7131×9507 and
t = 5000. Let us assume that the optimal degree of x for
matrix M of a symmetric CSS code will still be optimal for
the M1 and M2 matrices used to build each of the subgraphs of
an asymmetric CSS code. In reality, achieving a configuration
where xi = 11.02 for a scenario in which M1 
= M2 will not
always be possible. If we revisit Eq. (13) we can understand
why this happens. Once the quantum rate of the code has
been selected, aside from ti, the only other parameter we can
modify is yi. Recall, that in Refs. [25,26], results showed that
only a single value of this parameter yielded good outcomes,
y = 3. Thus, since N, mi, and yi are fixed and ti is bounded11

by N
2 , it will not always be possible to build matrices that have

xi = 11.02.
We illustrate this with an example: Introducing N =

19014, y2 = 3, m2 = 11500 and the maximum possible value
of t2 = 9507 into (13), we obtain x2 = 9.54. Since t2 cannot
be increased further, a scheme with this parameter configu-
ration will have a maximum sB node degree of x2 = 9.54. In
consequence, it becomes apparent that our choice of m1 and
m2 also affects the values of x1 and x2. Although this may
seem overwhelming with regard to the design of M1 and M2,
it is actually a positive outcome, since if we can show that
performance of the asymmetric schemes is optimized for a
specific value of xi, the design procedure can be reduced to
finding the values of mi and ti that produce this particular value
of xi.

The last detail worthy of mention related to this first anal-
ysis is that, aside from code A4, whose decoding errors are
overwhelmingly caused by X operators, the entirety of the
decoding errors of all the other asymmetric codes are caused
by phase flips. Although not surprising given the nature of
an asymmetric Pauli channel, it would be ideal to design an
asymmetric scheme in which errors are equally distributed, as
is the case over the depolarizing channel. In other words, we
would like the X and Z operator decoders of our asymmetric

11The parameter ti can theoretically be as large as mi. However,
since each decoding subgraph only has N

2 d nodes, it is not logical to
choose ti > N

2 since with ti = N
2 all the d nodes are already da nodes

(they receive perfect syndrome information).
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FIG. 5. Simulated QBER for different X operator decoders. p
represents the gross flip probability of the Pauli channel with asym-
metry coefficient α = 102.

CSS codes to fail with similar rates, instead of all the decoding
errors being attributed to one of them.

1. Impact of CSS decoding

In most cases, CSS codes are decoded separately by exe-
cuting the SPA over each of the subgraphs of the overall CSS
factor graph. Over the depolarizing channel, given the equal
likelihood of X and Z error events, the error contributions
of each individual decoder to the overall code are essentially
identical. Over the asymmetric channel, however, mainte-
nance of this separate decoding policy results in each of the
CSS decoders impinging on the error correcting capabilities
of the overall CSS code in a different manner.

The decoder for the X operators can cause an increment in
the error floor of the code if the values of m1 and [y1, x1, t1] are
not chosen correctly. For sufficiently large values of m1 < N

2 ,
due to the low likelihood of X errors, the bit-flip decoder
performs well regardless of the values of [y1, x1, t1], but when
m1 becomes too small, performance of the decoder is only
acceptable if [y1, x1, t1] are chosen appropriately. This can be
seen in Fig. 5, where the QBER/WER curves of X opera-
tor decoders with m1 = 1262 and different configurations of
[y1, x1, t1] are shown. The complete characteristics of these X
decoders are detailed in Table II.

As is shown in Fig. 5, performance of the X decoders varies
significantly depending on the values of [y1, x1, t1]. Decoders
A1 and A2 are substantially worse than decoders A3 and A4.

TABLE II. Parameter values and configurations of X operator
decoders of asymmetric CSS codes simulated over a Pauli channel
with α = 102. The results of these simulations are shown in Fig. 5.

Decoder m1 t1 x1 y1

A1 1262 900 76.3 3
A2 1262 750 54.2 3
A3 1262 300 29.3 3
A4 1262 100 24.4 3
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FIG. 6. Simulated QBER for the constituent decoders of a CSS
code. p represents the gross flip probability of the Pauli channel with
asymmetry coefficient α = 102.

They mainly differ in the values of the parameters x1 and
t1, which are much larger for decoders A1 and A2 than for
decoders A3 and A4. This implies that the performance of X
decoders with smaller values of m1 will be better when lower
values of x1 are chosen by using less degree-1 syndrome nodes
in the decoding graph, i.e., selecting smaller values for t1. This
is logical, since as was mentioned in the previous section, de-
spite the fact that selecting larger values of t1 will increase the
amount of exact information transmitted from the upper layer
nodes during initial iterations, it will also make the degree
of the sB nodes so large that the impact of these “perfect”
messages might be mitigated and message passing may not
operate successfully. For a decoder with a small value of m1

(m1 = 1262), if [y1, x1, t1] are chosen correctly, performance
of the X decoder is excellent, with its QBER/WER curves
increasing in a quasi-linear fashion as functions of p (codes
A3 and A4 of Fig. 5). The performance curves of such aptly
built X decoders can sometimes be orders of magnitude below
those of the corresponding Z decoder. On the contrary, if the
selected configuration of [y1, x1, t1] yields a value of x1 that is
too large, performance of the decoder will be degraded enough
to cause an increase in the error floor of the overall CSS code.

The Z operator decoder faces the daunting task of cor-
recting the much more frequent Z errors. Considering the
previous discussion regarding the X operator decoders, if we
assume that we have an appropriately designed X operator
decoder, we hypothesize that the performance of the CSS code
as a whole will be majorly determined by the quality of its
phase-flip decoder. To evaluate this hypothesis we study the
performance curves shown in Fig. 6, which correspond to the
Z decoder of code A4 of Table I, the X decoder A3 of Table II,
and the CSS code that arises when using these two decoders
simultaneously.12

12The performance curves of the CSS code in Fig. 6 have been sim-
ulated. Nonetheless, summing the WER/QBER of each constituent
CSS decoder (the X and Z operator decoders) is also a valid method
to obtain the performance curves of the overall code.

Figure 6 shows how the error contribution of the X decoder
to the QBER/WER curves of the overall CSS code is al-
most negligible when compared to the Z decoder. This occurs
because the X decoder is correctly designed (the design pa-
rameters m1 and [y1, x1, t1] have been selected appropriately),
contrary to the X decoder of code A4 in Fig. 4. Additionally,
the results of Fig. 6 show that the performance curves of
the CSS code and its Z operator decoder are very similar,
especially at the decoding threshold.13 Two factors play a
role in defining when the CSS code reaches its decoding
threshold. The first, which will be discussed later on in this
section, is the block length of the code itself. The second,
is the design of the individual CSS decoders of the code.
The abrupt increase in the error rate for the Z decoder (both
for the WER and the QBER) while the X decoder maintains
performance at the error floor, proves that for our proposed
scheme, the decoding threshold is essentially defined by the
Z operator decoder. Therefore this confirms our postulation
that the performance of an asymmetric CSS code, if it is aptly
designed (i.e., values of m1 and [y1, x1, t1]), will be determined
by the error correcting capabilities of its phase-flip decoder.

In short, this implies that the design of the best possi-
ble decoder for the proposed asymmetric CSS scheme can
be approached through the separate optimization of its con-
stituent Z and X decoders. This can be done by conducting
simulations of different configurations of [y2, x2, t2] and m2

that allow a sufficiently large value of m1 or configuration of
[y1, x1, t1] for which the bit-flip decoder exhibits few errors. In
this manner, even if an equal distribution of X and Z errors is
not obtained, we avoid the increased error-floor associated to
bad X operator decoders while optimum performance (when
the waterfall region is entered) is achieved. This also serves
to simplify matters, since by having shown that the perfor-
mance of these asymmetric CSS codes is overwhelmingly
determined by the quality of the phase flip decoder (assuming
the bit-flip decoder is aptly built), we can now focus only on
optimizing the parameter configuration of a single decoder.
With this goal in mind, in the sequel we simulate different
configurations of m2 and [y2, x2, t2] and determine which one
results in the best performance.

B. Optimization of the Z decoder

In the previous subsection we showed that the performance
of these asymmetric CSS codes is determined by the behavior
of its constituent decoders. A faulty X operator decoder can
degrade performance by raising the error floor of the code,
while its decoding threshold can change depending on the
quality of the Z operator decoder. Having previously estab-
lished that if the X operator decoder is designed appropriately
code performance is completely determined by the Z operator
decoder, we now conduct simulations for various Z operator
decoders in an attempt to discover the optimum values of m2

and [y2, x2, t2].

13For an error correcting code, the decoding threshold or waterfall
region is the region where a sharp drop in the code error rate that
stabilizes at what is known as the error floor of the code takes place.
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TABLE III. Parameter values and configurations of Z operator
decoders of asymmetric CSS codes simulated over a Pauli channel
with α = 102. The results of these simulations are shown in Fig. 7.

Decoder m2 t2 x2 y2

Z1 12262 8198 5 3
Z2 12262 9010 6 3
Z3 12262 9507 6.9 3
Z4 11000 8497 8 3
Z5 11000 8810 9 3
Z6 11000 9060 10 3

Given the flexibility the design of these Z error decoders
allows, it is important to provide structure to the simulation
process. Earlier in this paper we mentioned that if x2 could
be shown to be a good indicator for the performance of
the overall scheme, the design process could be reduced to
simply finding the parameter configuration that would yield
the optimum value of x2. The value of x2 is representative
of its relationship with the parameter t2, given that growth
or reduction in one of these parameters will have the same
effect on the other. In fact, when all the other parameters are
fixed, the only way we have to modify the value of x2 is by
changing t2, hence, t2 will play a critical role in this process.
At the same time, the parameter m2 is intricately related to
the value of x2, which means that the relationship between
these parameters will also play a part in the performance of
the Z decoder. In an attempt to verify how good a performance
indicator x2 is and the nature of the relationship between this
parameter and m2, we test the Z decoder schemes detailed in
Table III. These decoders differ in unit increments of x2 while
the value of m2 is maintained equal as long as it is permitted
by the design process. Recall that for a specific value of m2,
given that t2 � N

2 , there is a maximum value of x2 that can
be obtained. The performance curves of these decoders are
portrayed in Fig. 7.

The results shown in Fig. 7 shed light on the relationship
between m2 and x2, as well as how these parameters are
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FIG. 7. Simulated QBER for different CSS QLDGM schemes.
p represents the gross flip probability of the Pauli channel with
asymmetry coefficient α = 102.

TABLE IV. Parameter values and configurations of Z operator
decoders of asymmetric CSS codes simulated over a Pauli channel
with α = 102. The results of these simulations are shown in Fig. 8.

Decoder m2 t2 x2 y2

Z7 10410 9507 21 3
Z8 10600 8972 12 3
Z9 11232 9507 11 3
Z10 12262 9507 6.9 3
Z11 12676 9507 6 3
Z12 13262 9507 5 3

linked to the performance of the decoder. For starters, consider
decoders Z1, Z2, and Z3. All three of them have the same
value of m2, but by selecting larger values of t2, each scheme
attains a higher value of x2, with x2 = 6.9–7 representing
the largest possible14 value of the parameter for m2 = 12262.
The performance curves of these decoders show how the wa-
terfall region is entered for subsequently higher values of p
(the decoding threshold improves) as x2 grows. For instance,
code Z1 which has x2 = 5, enters the waterfall region at
roughly p = 0.081. In contrast, code Z3 which has x2 ≈ 7,
enters the waterfall region at approximately p = 0.085. The
same trend of performance improvement as x2 becomes larger
can be observed by looking at decoders Z4, Z5 and Z6. All
three decoders have the same value of m2 with the perfor-
mance curves of decoder Z6, which has the largest value
of x2, being slightly better than those of its counterparts. In
consequence, this outcome proves that for a given value of m2

the decoder that will attain the best performance will be the
one for which the value of x2 is maximized. Notice that maxi-
mizing x2 also means maximizing t2, which, in this particular
instance means that the negative effects associated to having
larger degree sB nodes (x2 is maximized) are outweighed by
the positive impact of having the largest possible amount of
sA nodes (t2 is maximized). This is the exact opposite of what
happened in the previous subsection when studying the bit
flip decoder, where maximizing the parameter x yielded worse
results.

Let us now compare the decoders of Table III in terms of
their value of m2. The results of Fig. 7 show that the larger
the value of m2 the better the performance of the decoder. In
fact, even though decoder Z6 has the highest value of x2, it
is outperformed by both decoders Z2 and Z3. These results
present a new conundrum to which we must now give answer:
Which decoders will perform better, those with larger values
of m2 and lower values of x2 or those with larger values
of x2 and smaller values of m2? This notion is analogously
formulated as: how is the trade-off relationship between x2

and t2 affected by the value of m2?. To analyze these questions,
we simulate the Z decoders shown in Table IV.

Figure 8 portrays the simulation results for the Z decoders
of Table IV. Performance is similar for all the simulated de-
coders, with decoder Z10 having the best decoding threshold.
In terms of the relationship between x2 and m2, the curves

14The parameter t2 must fulfill t2 � N
2 .
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FIG. 8. Simulated QBER and WER for the decoders of Table IV.
p represents the gross flip probability of the Pauli channel with
asymmetry coefficient α = 102.

shown in Fig. 8 show that, up to a certain point, better perfor-
mance is obtained by maximizing m2 over x2. In other words,
increasing the number of syndrome nodes used to decode Z
errors is more important, within certain limits, than trying to
obtain the largest value of x2. This is reflected by decoder
Z10, which has m2 = 12262, outperforming decoders Z11
and Z12, which have m2 = 12676 and m2 = 13262. There-
fore the best performance of the proposed scheme over the
asymmetric channel with α = 102 is obtained by setting m2 =
12262 and maximizing t2 (t2 = 9507 in this case) so that
the largest possible value of x2 is obtained for the selected
m2 value. This outcome tells us that increasing m2 beyond a
certain value has a negative impact on performance, despite
the maximization of t2 and m2. A plausible cause for this
is that when m2 > 12262, there is an increased number of
degree x2 sB nodes and a reduced percentage of degree-1 sA

nodes (since t2 is bounded). A smaller percentage of sA nodes
means that a lower amount of perfect information will be
propagated during initial decoding interations, which when
also considering the increased number of sB nodes, explains
the degradation in the performance of the message passing
decoding algorithm for the m2 > 12262 schemes. Nonethe-
less, the performance of all the decoders shown in Fig. 8
differs by such a small margin that we can confidently state
the following. The best or near-best configuration of the pro-
posed asymmetric CSS schemes is obtained by selecting m2 =
βm, where β ∈ (0, 1), that allows a sufficiently large value
of m1 = (1 − β )m for the X operator decoder to function
well. In terms of doping, t2 should be maximized as t2 = N

2 ,
and t1 = 0.3m2.

For α = 102, from the decoders of Table IV we can ascer-
tain that setting 0.73 � β � 0.9 results in good performance,
provided that x2 is maximized by setting t2 = N

2 once m2 is
chosen. We expect the value of the parameter β to vary with
the degree of asymmetry of the channel, becoming larger as α

grows. In terms of the value of t1, the results of Fig. 5 show
that setting 30% of the m1 nodes to be degree-1 syndrome
nodes produces the best results. We test the validity of these
statements for channels with larger degrees of asymmetry in
the final subsection of this chapter. Prior to doing so, we

show how the error floor of the CSS codes can be reduced
by increasing the degrees of the underlying classical LDGM
code, as well as showing how the decoding threshold of our
schemes can be improved by selecting larger values for the
block length.

1. Error floor reduction

As was mentioned in the introduction to this work, the
proposed CSS scheme is based on an underlying classi-
cal irregular LDGM code constructed through the parallel
concatenation of two regular LDGM codes. The motivation
behind such a construction is that the error floor of a single
regular LDGM code can be substantially reduced when it
is parallel-concatenated with another regular LDGM code of
much higher degree. This results in an irregular configuration
in which using a second LDGM code with larger degrees
serves to lower the error floor of the whole scheme. How-
ever, as has been observed in Ref. [31], the use of larger
degrees in the second code of the concatenation may result
in a worse decoding threshold. To study these phenomena
we conduct simulations in which the optimum configura-
tion of the CSS decoders devised for the Pauli channel with
α = 102 is employed: [m1, t1, x1, y1] = [2000, 700, 11.03, 3]
and [m2, t2, x2, y2] = [12262, 9507, 6.9, 3]. As is done in
Ref. [31], we utilize the irregular LDGM codes described by
the concatenations P[(8, 8); (3, 60)], P[(8, 8); (5, 100)], and
P[(8, 8); (8, 160)]. The simulation results are shown in Fig. 9,
where the best symmetric scheme of [25,26] is included for
comparison purposes.

It is easy to see from Fig. 9(a) how increasing the degrees
of the underlying irregular LDGM code lowers the overall
error floor of the CSS code. Moreover, these results also show
that as the degrees of the second regular LDGM code used in
the parallel concatenation become larger, in accordance with
what has been shown throughout the literature, the decoding
threshold of the scheme (more visible in terms of the QBER)
begins to deteriorate. Despite the slight worsening of the
decoding threshold, the error floor yielded by the CSS code
that uses P[(8, 8); (8, 160)] (the irregular LDGM code with
the largest degrees) is orders of magnitude better than for the
other simulated concatenations, both in terms of the WER and
the QBER. Hence, as occurs for quantum LDGM-based CSS
codes designed for the depolarizing channel, using irregular
LDGM codes of larger degrees is also a valuable technique
to improve the performance of codes designed for the general
Pauli channel.

The results included in Fig. 9(b) serve to showcase the
improvements provided by designing CSS codes specifically
for the Pauli channel with α = 102. In this subfigure, the per-
formance curves of the best symmetric CSS QLDGM scheme
in the literature are compared to those of our best asym-
metric CSS QLDGM code. Both constructions are based on
the parallel concatenation described by P[(8, 8); (8, 160)] and
both have block length N = 19014. Consider the decoding
threshold of the symmetric CSS scheme: the code enters the
waterfall region at approximately psym = 0.0525. The asym-
metric scheme enters the waterfall region at pasym = 0.08,
which when compared to the symmetric code, is equivalent
to an improvement of approximately 41%.
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FIG. 9. (a) Simulated QBER and WER for asymmetric
CSS schemes with [m1, t1, x1, y1] = [12262, 9507, 6.9, 3],
[m2, t2, x2, y2] = [2000, 700, 11.03, 3]. Different degrees of the
underlying irregular LDGM code have been tested. p represents the
gross flip probability of the Pauli channel with asymmetry coefficient
α = 102.(b) Simulated QBER and WER for an asymmetric
CSS scheme with [m1, t1, x1, y1] = [12262, 9507, 6.9, 3],
[m2, t2, x2, y2] = [2000, 700, 11.03, 3], and a symmetric CSS
scheme of the same blocklength (N = 19014). The degree
of the underlying LDGM code is the same for both schemes
P[(8, 8); (8, 160)]. p represents the gross flip probability of the Pauli
channel with asymmetry coefficient α = 102.

2. Decoding threshold improvements

LDGM codes have significant performance losses due to
the use of finite block lengths [53], which is why increasing
the value of N may result in slight performance improve-
ments. We close out this subsection by showing how an
augmentation of the block length of the scheme results in an
improvement of its decoding threshold. For this purpose we
compare the code with [m1, t1, x1, y1] = [2000, 700, 11.03, 3]
and [m2, t2, x2, y2] = [12262, 9507, 6.9, 3] that uses the
concatenation P[(8, 8); (5, 100)] to its equivalent when
the block length is doubled (N = 2×19014 = 38028), i.e
[m1, t1, x1, y1] = [4000, 1400, 11.03, 3] and [m2, t2, x2, y2] =
[24524, 19014, 6.9, 3]. Once again, the considered channel
is the Pauli channel with α = 102. The results are shown
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FIG. 10. Simulated QBER and WER for two asymmetric CSS
codes with block lengths N = 19014 and 39028. p represents the
gross flip probability of the Pauli channel with asymmetry coefficient
α = 102.

in Fig. 10, where the betterment of the decoding threshold
associated to a larger block size can be clearly observed.

C. Simulations and adaptation to other asymmetric
parameter values

A matter that has yet to be discussed is the behavior of
our scheme over Pauli channels with different degrees of
asymmetry. in Refs. [12,34,40], the values of the asymmetry
coefficient α = [1, 102, 104, 106] are said to provide a real-
istic representation of practical quantum devices. Earlier in
this work, we predicted that for larger degrees of asymmetry
our proposed schemes would benefit from allowing more syn-
drome information to be used to decode Z errors (increasing
the value of m2). In a similar manner, this implies that for
smaller degrees of asymmetry, the asymmetric CSS codes
should provide more syndrome information to the X decoder.
Essentially, asymmetric CSS QLDGM schemes should have
larger Z operator decoding subgraphs and smaller X operator
decoding subgraphs as the parameter α grows. To verify this
hypothesis, we simulate different asymmetric CSS codes for
the asymmetry coefficients α = [10, 104, 106]. The particular
configurations of the considered CSS codes are shown in
Table V, while the performance of these codes over the Pauli
channels with asymmetry coefficients α = [10, 104, 106] is
shown in Fig. 11.

These results prove that our hypothesis is correct. For α =
10, code C1 outperforms C2 and C3, but as alpha grows, the

TABLE V. Parameter values and configurations of the CSS codes
simulated over Pauli channels with α = [10, 104, 106]. The results of
these simulations are shown in Fig. 11.

Code No. [m1, t1, x1, y1] [m2, t2, x2, y2]

C1 [2000, 700, 11.03, 3] [12262, 9507, 6.9, 3]
C2 [1262, 300, 29.3, 3] [12676, 9507, 6, 3]
C3 [1000, 100, 31.5, 3] [13262, 9507, 5, 3]
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FIG. 11. Simulated QBER and WER for the asymmetric CSS
schemes of Table V: (a) p represents the gross flip probability of
the Pauli channel with an asymmetry coefficient α = 10. (b) p repre-
sents the gross flip probability of the Pauli channel with asymmetry
coefficient α = 104. (c) p represents the gross flip probability of the
Pauli channel with asymmetry coefficient α = 106.

performance of C1 becomes increasingly degraded while that
of C2 and C3 improves. This outcome is consistent with our
initial hypothesis because for the smallest value of α that we
have simulated, α = 10, the code with the best performance is
C1 which has the smallest value of m2 (number of syndrome

nodes used by the Z decoder), whereas for α = 106 codes C2
and C3, which have larger values of m2, overtake code C1.
This behavior is also congruous with the fact that the hashing
bound of a Pauli channel increases as this channel becomes
more asymmetric [40].

However, the results of Fig. 11 are somewhat surprising in
the sense that, even for the most asymmetric instance that we
have simulated α = 106, the performance improvement pro-
vided by the more asymmetric codes, C2 and C3, is relatively
small. In fact, for α = 104 codes C2 and C3, which have larger
values of m2, do not outperform the optimal scheme (code
C1) that was derived for a Pauli channel with α = 102. Let us
discuss why this happens.

It is clear from our initial simulation results (Fig. 4) that
asymmetric CSS schemes in which more syndrome infor-
mation is used to decode Z operators perform better over a
general Pauli channel than symmetric CSS codes. The extent
to which m2 must be increased has been thoroughly dis-
cussed throughout this section and has been shown to also
be dependant on other characteristics of the asymmetric CSS
construction. The entirety of this analysis has been performed
considering a Pauli channel with α = 102. We can now use
the knowledge we have obtained for channels with α = 102

to try and understand what happens over Pauli channels with
α = 104 and 106. In reality, the only difference between
these channels lies in the error probabilities of the X and Z
operators, which, assuming a channel gross flip probability
of p = 0.075 go from pz = 0.0735 and px = 7×10−4 when
α = 102, to pz ≈ 0.075 and px ≈ 7×10−6 when α = 104, to
pz ≈ 0.075 and px ≈ 7×10−8 when α = 106. These changes
in the values of pz and px as α grows, show why in Fig. 11,
the optimum code for α = 102 performs as well as C2 and
C3 when α = 104 and α = 106. The change in pz when going
from α = 102 to 104 or 106 is too subtle to appreciate im-
provements15 when increasing the value of m2 from 12 262 to
m2 = 12 676 and 13 262. In stark contrast, when we go from
α = 1 to 102, i.e., we compare our schemes to symmetric CSS
codes, the improvements in performance when increasing m2

are evident throughout the results provided in this paper. This
happens because the change in pz and px is substantial enough
when going from α = 1 to 102, that changing m2 = 7131 to
12 262 results in a palpable boost in performance. This also
coincides with what is shown in Ref. [40], where the capacity
of a Pauli channel grows sharply when the asymmetry co-
efficient goes from α = 1 to 102. The authors of this work
also mention that only a marginal capacity improvement is
exhibited when α increases further beyond 102. Thus the main
reason for the almost negligible improvements that C2 and
C3 provide with regard to C1 when α > 102 lies behind the
fact that the change in the nature of the asymmetric channel
when increasing α beyond 102 is too small to allow us to
appreciate improvements in performance when increasing m2

for the selected block length. An interesting future research
problem will be to study whether more drastic performance
improvements can be obtained by increasing the block length

15It may even slightly impinge on performance due to imperfect
configuration of the other parameters of the scheme.
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FIG. 12. Achievable coding rate at a WER of 10−3 for various
QLDPC codes over Pauli channels with α = 10 and 102.

of the code, as it may be that for a sufficiently large value
of N (for the same quantum rate, increasing the block length
implies an increase in the total number of syndrome nodes),
for channels with values of α > 102, the improvements pro-
vided by codes with larger values of m2 when compared to the
optimum scheme for the channel with α = 102 will be more
noticeable.

D. Distance to the Hashing bound of the Pauli
channel model for asymmetry

We close this section by benchmarking the performance
of our proposed schemes against the theoretical limit for the
Pauli channel. As is shown in Ref. [12], the Hashing bound
for a Pauli channel with asymmetry coefficient α can be com-
puted as

CQ(p, α) = 1 + (1 − p) log2(1 − p)

+
(

2p

α + 2

)
log2

(
p

α + 2

)

+
(

αp

α + 2

)
log2

(
αp

α + 2

)
.

Based on this expression, we can assess the distance to the
Hashing bound for a specific rate and asymmetry coefficient.
This is reflected in Fig. 12, where the Hashing bounds for a
Pauli channel with asymmetry coefficients α = 10 and 102

are shown alongside the points at which the best RQ = 1
4

asymmetric schemes16 designed in the previous sections for
each of these channels can function with WER = 10−3. As
was done earlier in Sec. IV, in Fig. 12 we also show the
highest possible coding rate at which the asymmetric codes
that have been proposed in the literature can function with
WER = 10−3 over each of these asymmetric channels. These
codes are the following.

(1) The [[255, 159, 5
17 ]] asymmetric QLDPC code of rate

RQ ≈ 0.624 introduced in Ref. [54].
(2) The [[1023, 731, 11

33 ]] asymmetric QLDPC code of rate
RQ ≈ 0.714 introduced in Ref. [47].

16These schemes are defined by the parameters [m1, t1, x1, y1] =
[4000, 1400, 11.03, 3] and [m2, t2, x2, y2] = [24524, 19014, 6.9, 3],
N = 38 028, and P[(8, 8); (8, 160)].

(3) The [[13,1]] asymmetric short code of rate RQ ≈ 0.077
introduced in Ref. [41].

To provide further context, we also include the coding
rates that can be achieved while maintaining WER = 10−3

by the symmetric CSS QLDGM codes of Refs. [25,26] and
the nonbinary QC-QLDPC codes of [27,28] over the Pauli
channels with asymmetry coefficients α = 10 and 102. The
results for the symmetric CSS QLDGM codes have been ob-
tained via Monte Carlo simulations. The results for the codes
of Refs. [27,28] have been derived as follows.

As is mentioned in Sec. III B, the most commonly em-
ployed noise model in the literature of CSS codes [13,25–28]
approximates the action of a depolarizing channel by means
of two independent BSCs with marginal bit-flip probabilities
fm = 2p

3 . Given the fact that each constituent code of a CSS
scheme is decoded separately, the use of this model simplifies
the simulation process because it only requires one of the
constituent codes to be executed in most cases. This can be
done because the error rate of the CSS code over the complete
channel is computed as the sum of the error rates of each
constituent code over each separate BSC, and considering the
fact that each BSC will have the same bit-flip probability, it
will be possible to compute the performance of the scheme
over the overall channel by simply obtaining the error rate
of one of the constituent codes and summing it to itself. We
can use this framework to estimate the performance over the
general Pauli channel model by adjusting the flip probabilities
of the separate BSCs as f x

m = 2p
α+2 and f z

m = p(α+1)
α+2 [47,54].

This means that each BSC serves as an X and Z error chan-
nels, respectively. Against this backdrop, we can compute
the individual flip probabilities that each constituent code of
the symmetric RQ = 1

2 code of Refs. [27,28] would have to
function at by substituting the value of p into the expressions
that have been given for f x

m and f z
m. For instance, over a

Pauli channel with α = 10, for the same value of fm at which
the code performs with WER = 10−3 over the depolarizing
channel, its X error decoder will now have to operate at
f x
m ≈ 0.0077 while the Z operator decoder has to function

at f z
m ≈ 0.0426. These flip probabilities can then be used to

obtain the WER of each constituent code of the nonbinary
QC-QLDPC CSS code from the results given in Refs. [27,28].
This yields WERx � 10−5 and WERz ≈ 10−1. Finally, we
can add these error probabilities to obtain the overall WER
over the complete asymmetric quantum channel,17 which in
this particular case would be WERnon-bin-QC-QLDPC = WERz +
WERx ≈ 10−1. Analogously, since α � 10, pz will be much
larger than px and we will be able to compute the depolarizing
probability at which the code will have WER = 10−3 over the
general Pauli channel by solving for p in f dep

m ≈ f z
m = p(α+1)

α+2 ,

where f dep
m is the flip probability at which the code performs

with WER = 10−3 over the iid X/Z channel model.
This discussion proves that a CSS code designed for a

symmetric channel over which the probability distribution for
X and Z errors is identical will be unable to yield the same

17Note that this procedure would be valid to approximate the per-
formance of any symmetric CSS code over a Pauli channel with
asymmetry coefficient α.
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performance over an asymmetric channel. This is reflected
in Fig. 12, where a coding rate RQ = 1

2 , which is achievable
with the codes of Refs. [27,28] over the depolarizing channel
for a value of p ≈ 0.0465, can now only be achieved for
p ≈ 0.0338 and ≈0.0313 when the corresponding asymme-
try coefficient of the general Pauli channel is α = 10 and
100, respectively. The same phenomenon was exhibited by
the symmetric CSS QLDGM codes in Sec. V A, where per-
formance was shown to be substantially degraded over the
general Pauli channel.

As was done previously for the comparison over the de-
polarizing channel, we can use the distance to the Hashing
bound,18 computed as shown in (11), to analyze the qual-
ity of the strategies shown in Fig. 12. For instance, for
the Pauli channel with asymmetry coefficient α = 10, the
proposed asymmetric CSS QLDGM scheme exhibits a dis-
tance to the Hashing bound of δα

asym-CSS = 3.1 dB. In the
case of the nonbinary QC-QLDPC codes of [27,28] applied
to this same channel, the distance to the Hashing bound
is δα

non-bin-QC-QLDPC = 4.2 dB. This distance is δα
sym-CSS =

6.66 dB for the symmetric CSS QLDGM codes. Clearly, these
outcomes showcase the improvements provided by building
CSS designs specifically for the Pauli channel model for
asymmetry. However, it must be noted that existing asym-
metric quantum codes have a short block length (which most
likely has a negative impact on their performance) and that,
in light of their excellent performance over the depolarizing
channel, asymmetric adaptations of other types of QLDPC
codes such as those of Refs. [27,28,30] may exhibit better
performance over asymmetric channels than the asymmetric
CSS QLDGM codes derived in this paper. Nonetheless, given

18We denote the distance to the Hashing bound of a Pauli channel
with asymmetry coefficient α by δα . The superscript α is introduced
to distinguish this distance measure from δ, the measure used for the
depolarizing channel.

the increased complexity of these error correction strategies,
optimizing them for asymmetric quantum channels will be
more complex than the schemes proposed in this work.

All in all, the discussion provided in this section along
with the results that are portrayed in Fig. 12 prove that the
best symmetric CSS codes of Refs. [27,28] and asymmetric
codes that can be found in the literature are outperformed
over asymmetric Pauli channels by the codes proposed in this
paper.

VI. CONCLUSION

We have introduced a technique to design CSS quantum
codes based on the use of the generator and parity check
matrices of LDGM codes specifically for the general Pauli
channel. The proposed methods are based on simple modifica-
tions to the upper layer of the decoding graph of a symmetric
CSS QLDGM code designed for the depolarizing channel.
For the block length used in this paper, an asymmetric CSS
code has been found for practical Pauli channels with different
values of the asymmetry coefficient. Additionally, we have
shown how for larger block lengths, the proposed asymmetric
CSS codes can be further optimized based on the asymmetry
coefficient α by increasing the block length of the code and
the value of m2 according to the guidelines provided in the
paper. Over Pauli channels with α = 10 and 102, the schemes
proposed in this paper are closer to the theoretical limit than
other existing asymmetric codes and the best codes designed
for the depolarizing channel.
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