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Backaction-evading (BAE) measurements of a mechanical resonator, by continuously monitoring a single
quadrature of motion, can achieve precision below the zero-point uncertainty. When this happens, the measure-
ment leaves the resonator in a quantum squeezed state. The squeezed state so generated is however conditional on
the measurement outcomes, while for most applications it is desirable to have a deterministic, i.e., unconditional,
squeezed state with the desired properties. In this work we apply feedback control to achieve deterministic
manipulation of mechanical squeezing in an optomechanical system subject to a continuous BAE measurement.
We study in details two strategies, direct (Markovian) and state-based (Bayesian) feedback. We show that both
are capable to achieve optimal performances, i.e., a vanishing noise added by the feedback loop. Moreover, even
when the feedback is restricted to be a time-varying mechanical force (experimentally friendly scenario) and an
imperfect BAE regime is considered, the ensuing nonoptimal feedback may still obtain significant amount of
squeezing. In particular, we show that Bayesian feedback control is nearly optimal for a wide range of sideband
resolution. Our analysis is of direct relevance for ultrasensitive measurements and quantum state engineering in
state-of-the-art optomechanical devices.
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I. INTRODUCTION

The accuracy with which the position of an oscillator
continuously monitored in time can be resolved has a fun-
damental limit, known as the standard quantum limit (SQL)
[1–3]. Backaction-evading (BAE) measurements have been
proposed as a way to circumvent this limit by restricting the
measurement to a single quadrature of motion [2,4,5]. BAE
measurements can be thought as classical measurements em-
bedded in a quantum framework. Classical in the sense that
they allow repeated measurements with arbitrary precision,
since no backaction (stemming from the noncommutative na-
ture of the observables) corrupts them. At the same time,
evading this constraint is connected with the emergence of
quantum properties of the object being measured [2].

Cavity optomechanics affords an extremely effective way
to control and monitor mechanical motion [6,7]. A simple way
to implement a BAE measurement of a mechanical quadra-
ture is to drive an optomechanical cavity on both mechanical
sidebands [4,8]. This is referred as two-tone BAE scheme
and has been demonstrated both at microwave [9,10] and
optical [11] frequencies, with sensitivities approaching the
SQL. BAE measurements play a fundamental role for ultra-
sensitive force measurements in large-scale interferometers
as well as in tabletop experiments. They are key for recon-
structing mechanical motion, e.g., for probing independently
prepared mechanical squeezed states [12,13]. They have also
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been studied and demonstrated in atomic ensembles [14–16],
extended to different regimes, e.g., stroboscopic [17], and to
collective quadratures of two resonators [16,18–23].

Achieving uncertainties below the SQL is tied to the ap-
pearance of quantum squeezing, whereby fluctuations along
the measured quadrature are smaller than the zero-point
level [24–26]. Squeezing is a well-known resource for
continuous-variable quantum information [27–32] and for
quantum metrology [33–35], in particular for the estimation
of Hamiltonian and environmental parameters [36–41], with
the paradigmatic example of gravitational-wave detection
[42–44]. Therefore, besides granting precision measurements,
optomechanical BAE measurements of a single motional
quadrature also provide an effective tool for quantum state
preparation of mechanical squeezed states. However, quan-
tum states prepared via this strategy or, in general, via
time-continuous monitoring, are conditional on the stream of
measurement outcomes [45–47], which makes them less prac-
tical for real-time manipulation. This issue can be remedied
by implementing a feedback loop to render squeezed states
unconditional, i.e., measurement independent [25]. In this
way, feedback control can achieve deterministic manipulation
of mechanical squeezing.

So far, feedback control of mechanical motion have mainly
focused, both theoretically and experimentally, on cooling
[48–57], which is a prerequisite for implementing most quan-
tum protocols. In particular, feedback cooling to the ground
state (residual thermal occupancy n̄ = 0.29) was recently
demonstrated in soft-clamped membranes [57] and cooling
to microkelvin temperatures (n̄ = 4) by feedback only was
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reported in optically levitated nanoparticles [58]. Given this
tremendous success, extending feedback control to quantum
properties of mechanical motion, such as squeezing, seems
the next logical step and within experimental reach. How-
ever, control protocols for mechanical squeezing are much
less explored. To date, proposals in this direction have fo-
cused on obtaining mechanical squeezing via monitoring and
state-based feedback [8,59], designing alternative feedback
protocols based on ancillary two-level systems [60] or exploit-
ing parametric amplification [61–63] or via open-loop control
protocols [64].

In this work we study in details two feedback strate-
gies, direct (Markovian) feedback and state-based (Bayesian)
feedback, in combination with time-continuous BAE mea-
surements, to obtain unconditionally mechanical squeezing.
We show that both strategies are capable to achieve optimal
performances, i.e., vanishing noise added by the feedback
loop, in suitable conditions. However, the range of param-
eters where this occurs greatly differs, highlighting crucial
differences between the two approaches. In both cases, we
first determine the ideal feedback loop, i.e., the one that adds
no noise, to be implemented in a perfect BAE regime. For
this case we obtain simple analytical expressions, which we
then use as a benchmark to evaluate the effects of introducing
physical limitations and nonidealities. In particular, the main
sources of limitations we considered are (i) the case in which
the feedback is restricted to be a time-varying mechanical
force and (ii) imperfect BAE regime where counterrotating
terms cannot be neglected. Remarkably, even when assuming
both restrictions, we show that Bayesian feedback is nearly
optimal (vanishing added noise) across several orders of mag-
nitude of the sideband parameter κ/ωm and for not too large
values of the coupling.

Our approach is inspired by Ref. [8], where the authors
consider an approximate description of a BAE optomechan-
ical setup and, besides showing that continuous monitoring
can conditionally generate squeezing, they also discuss the
implementation of an optimal state-based feedback strategy.
Our results complete and considerably extend the analysis
reported there. Contrary to most treatments of optomechan-
ical feedback protocols [8,49,52,61], our approach does not
rely on an effective adiabatic description of the mechanical
motion and is not limited to the weak-coupling regime: it
enables measurement-based control of quantum squeezing in
the good cavity limit where the optical linewidth resolves
the sidebands, and in regimes where counterrotating terms
in the optomechanical interaction play a nonnegligible role.
Our analysis shows that, even when various limitations are
accounted for, feedback control of BAE measurements still
provides an effective and versatile tool for deterministic quan-
tum control of mechanical squeezed, and stands out as a useful
and promising alternative to reservoir-engineering protocols
based on unbalanced two-tone driving [65], that have been
recently experimentally demonstrated in Refs. [66,67].

The present work is structured as follows: In Sec. II we in-
troduce the Gaussian framework for describing continuously
measured quantum oscillators and linear feedback. In Sec. III
we describe two-tone optomechanical BAE measurements. In
Sec. IV we assess the performance of Markovian feedback.
In particular, we first tackle the time-independent problem

(RWA) in Sec. IV A and then include the effects of counterro-
tating terms in Sec. IV B. In Sec. V we carry a similar analysis
for state-based Bayesian feedback. Finally, in Sec. VI contains
some final remarks and outlooks.

II. CONDITIONAL EVOLUTION AND FEEDBACK OF
CONTINUOUSLY MEASURED GAUSSIAN SYSTEMS

We start by reviewing the general formalism describing
bosonic Gaussian systems subject to continuous monitoring
and modeling the action of a linear feedback, which will
be later applied to the case of a two-tone optomechanical
BAE measurement. We consider a system of n quantum
harmonic oscillators described by a vector of operators r̂ =
(q̂1, p̂1, . . . , q̂n, p̂n)T, satisfying the canonical commutation
relations

[r̂, r̂T] = i�, (1)

where � = i
⊕n

j=1 σy is the symplectic form (σy is the y-Pauli
matrix). We restrict ourselves to the physical scenario where
the oscillators interact via a quadratic Hamiltonian of the form
Ĥs = r̂TH r̂/2, while each of them is linearly coupled to a
different Markovian environment. Under these assumptions
one can prove that the quantum state � of the oscillators is
fully described by the first moments vector r̄ = Tr[�r̂] and the
covariance matrix σ = Tr[�{r̂ − r̄, (r̂ − r̄)T}] [68,69], which
evolve according to the equations

d r̄
dt

= Ar̄, (2)

dσ

dt
= Aσ + σAT + D. (3)

In the equations above, A, which is known as the drift matrix,
depends on Ĥs and on the system-environment interaction,
while D denotes the diffusion matrix, which depends on both
the system-environment interaction and the properties of the
environment itself, e.g., its temperature (for more details on
how to derive these matrices from the actual open-system
dynamics we refer to Refs. [68–70]).

We then assume that the environment is continuously mon-
itored via general-dyne detection [71], yielding a continuous
photocurrent

dyt = −
√

2BTr̄c dt + dw, (4)

where dw is a vector of Wiener increments, satisfying
dw jdwk = δ jkdt , or in a more compact form {dw, dwT}/2 =
1 dt . The evolution of the corresponding conditional quantum
state �c is fully described by a stochastic evolution for its
first moments, and a deterministic evolution for its covariance
matrix, which are, respectively, given by

d r̄c = Ar̄c dt + (E − σcB)
dw√

2
, (5)

dσc

dt
= Aσc + σcAT + D − (E − σcB)(E − σcB)T, (6)

where the matrices E and B depends on the specific kind of
measurement performed (see Refs. [68–70] for more details).
By averaging over all the possible trajectories, that is over all
the possible results of the photocurrent dyt , one obtains the
unconditional state �unc = E[�c]. The averaging procedure
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leads to increased fluctuations; one can in fact show that the
unconditional covariance matrix takes the form

σunc = σc + �, (7)

where we set σunc ≡ σ for clarity and we introduced the
excess noise matrix

� = E
[{

r̄c, r̄T
c

}] − {
E[r̄c],E

[
r̄T

c

]}
. (8)

Since averaging over all possible measurement outcomes on
an ancillary system is equivalent to tracing out the ancillary
system, it can be easily checked that r̄unc = Tr[�uncr̂] and
σunc evolve according to Eqs. (2) and (3), respectively.

In this work we analyze quantum feedback strategies that
are subject to constraints, which reflect some experimental
limitations. The goal of feedback is to exploit the information
coming from the measurements to modify (and optimize) the
properties of the unconditional state [25]. The feedback is
implemented via a Hamiltonian of the form

Ĥfb = −r̂T�Fu(t ), (9)

which corresponds to displacements in the phase space,
where the feedback matrix F contains the information on
the displacements directions that are allowed, and where the
time-dependent feedback signal u(t ) is chosen according to
the feedback strategy. Since the stochastic term is confined to
the first moments [see Eq. (5)], the displacement generated
by Eq. (9) is the most general feedback operation that can be
implemented. The linear feedback therefore does not affect
the conditional evolution of the covariance matrix Eq. (6),
while the evolution for the first moment vector becomes

d r̄c = Ar̄c dt + (E − σcB)
dw√

2
+ Fu(t ) dt . (10)

The excess noise matrix �fb has to be minimized through
a suitable choice of the displacements. We stress that the
relation 0 � �fb � � holds, leading to an unconditional co-
variance matrix σ fb = σc + �fb. The best result will always
correspond to obtain a null matrix �fb, that is to prepare an
unconditional state having the same covariance matrix of the
conditional one, σ fb = σc.

III. OPTOMECHANICAL BACKACTION-EVADING
MEASUREMENTS

We consider an optomechanical system composed of a
cavity and a mechanical oscillator, respectively, described by
bosonic operators â0 and b̂0, and with frequencies ω f and
ωm. The two oscillators are radiation-pressure coupled with
a single-photon coupling g0; the cavity is affected by photon
loss with rate κ , while the mechanical mode interacts with a
Markovian phononic bath with decay rate γ and a number
of thermal phonons n̄. We then assume that the cavity is
laser-driven at the two frequencies ω± = ω f ± ωm with the
same amplitude. The Hamiltonian that describes the system is
given by (h̄ = 1)

Ĥom = Ĥ0 − g0â†
0â0(b̂†

0 + b̂0) + ε(t )â†
0 + ε∗(t )â0, (11)

where Ĥ0 = ω f â†
0â0 + ωmb̂†

0b̂0 is the free Hamiltonian and
ε(t ) = 2|ε| cos(ωmt )e−iω f t is the driving field. Moving to an

interaction picture with respect to Ĥ0 and performing a stan-
dard linearization procedure [6,7], we obtain the interaction
Hamiltonian

Ĥint(t ) = −gX̂ {Q̂[1 + cos(2ωmt )] + P̂ sin(2ωmt )}, (12)

where we have introduced the dimensionless quadratures in
the rotating frame X̂ = (â + â†)/

√
2, Ŷ = ı(â† − â)/

√
2, for

the cavity degree of freedom, and Q̂ = (b̂ + b̂†)/
√

2, P̂ =
ı(b̂† − b̂)/

√
2 for the mechanical one (â and b̂ are the anni-

hilation operators in the rotating frame). The parameter g =
g0|ε|

√
ω2

m + κ2/4 is now the cavity-enhanced (linearized)
coupling strength. This Hamiltonian is composed by a time
independent part and an oscillating part. If both conditions (i)
ωm � κ (good cavity limit) and (ii) ωm � g (weak coupling)
are fulfilled, the fast oscillating terms in the Hamiltonian
quickly average to zero and the Hamiltonian can be written
as

Ĥint � −gX̂ Q̂. (13)

This Hamiltonian has a quantum nondemolition (QND) form
and Q̂ is a constant of motion, which makes it is a good
QND observable [4,5]. If Ŷ is continuously measured, the
interaction (13) shunts all the back-action to P̂, which is
dynamically decoupled from Q̂; this mechanism allows to
increase the precision of the observable Q̂ over time [cf.
Fig. 1(b)]. These measurements are called back-action evad-
ing (BAE) measurements, which are an instance of QND
measurement [4,5]. Note that in the following we will use the
terms BAE and QND interchangeably. In principle, increasing
the system-probe coupling, fluctuations of Q̂ can be reduced
indefinitely; once passed the SQL, BAE measurements gener-
ate a squeezed state for the mechanical oscillator. This ideal
scenario is however limited by the presence of unmonitored
noise, e.g., from a thermal bath.

We thus assume that the Ŷ quadrature of the cavity is
continuously monitored by homodyning the output of the
cavity field. Under these assumptions, one can exploit the
Gaussian formalism by considering the operator vector r̂ =
(X̂ , Ŷ , Q̂, P̂)T, and the conditional evolution of the quantum
state can then be described by Eqs. (5) and (6) (see Appendix
A for more details on the matrices A, D, E , B, corresponding
to this particular scenario). The analytical solution for the
covariance matrix of the stationary conditional state σ (ss)

c was
derived in Ref. [47], yielding a variance of the mechanical
quadrature Q̂,

〈
Q̂2〉c =
√

γ 2 + κ2 + 2ζ

16 g2ηκ
(ζ + γ 2 − γ

√
γ 2 + κ2 + 2ζ ),

(14)
where ζ =

√
γ κ[16g2η(1 + 2n̄) + γ κ], and 0 � η � 1 is the

quantum efficiency of the measurement. In particular it was
shown that squeezing, i.e., fluctuations below the vacuum
noise 〈
Q̂2〉c < 1/2, can be in principle generated for a large
set of values of the cavity decay rate κ .

IV. MARKOVIAN FEEDBACK

We start our analysis by considering Markovian feedback
[72–75]. In a Markovian feedback strategy the measured sig-
nal is directly fed back to the system. We assume that the
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FIG. 1. (a) Squeezing of the mechanical quadrature fluctuations 〈
Q̂2〉 (in decibel) as a function of the sideband parameter κ/ωm, for
different value of the coupling g: g = 0.01ωm (red line), g = 0.05ωm (yellow line), g = 0.3ωm (cyan line). The other values for the parameters
are: γ = 10−4ωm, η = 1, n̄ = 10. Solid lines represent the fluctuations 〈
Q̂2〉fb of the unconditional state obtained via Markovian feedback
through the Hamiltonian Ĥfb = ξmP̂ IY . Dashed curves represent the fluctuations 〈
Q̂2〉c of the conditional states [or equivalently of the
unconditional state obtained via the optimal feedback Hamiltonian in Eq. (18)]. The shaded area marks the excluded region beyond the
threshold value Eq. (21). Dashed black lines are the predictions of the adiabatic theory Eq. (22). (b) Effects of measurement-plus-feedback
for an ideal BAE measurement. Black arrows describe how quadratures influence each other. By measuring the output phase quadrature,
information is extracted from Q̂ (outgoing arrow), while no information can be extracted from P̂ (incoming arrow) where all the backaction
goes. Ideal Markovian feedback drives both Q̂ and Ŷ . (c) Markovian feedback restricted to the mechanical mode (mechanical-limited feedback)
and including non-QND terms; these open new paths (dashed arrows) where both backaction and conditioning can spread. The mechanical
mode is also subject to (unmonitored) noise from a thermal environment (Q̂in and P̂in), which for convenience is not shown.

feedback signal u(t ) at time t , appearing in the feedback
Hamiltonian Eq. (9) depends only on the last photocurrent
output I(t ) = dyt/dt , which corresponds to a vanishing delay
time in the feedback loop. Moreover, we take u(t ) = MI(t ),
where the matrix M encodes the particular feedback (Marko-
vian) strategy, i.e., it determines how the measured outputs are
mixed and weighted when being fed back. The first moment
vector evolution Eq. (10) is then modified as

d r̄c = Ãmr̄cdt + Z
dw√

2
, (15)

with Ãm = (A − √
2FMBT ) and Z = (E − σcB) + √

2FM.
Notice that the feedback modifies both the drift matrix and
the stochastic component; this observation will be especially
relevant when compared with the Bayesian strategy in Sec. V.
By using Ito calculus, we find the following evolution equa-
tion for the excess noise matrix (see Appendix B for the
derivation):

d�fb

dt
= Ãm�fb + �fbÃT

m + ZZT. (16)

If one assumes that the feedback matrix F is invertible,
namely, that displacements are allowed in all directions in
phase space, then one can exploit the residual freedom in the
choice of M to completely cancel the stochastic contribution;
this situation will be henceforth referred to as the ideal case.
By doing so, one obtains the optimal matrix

Mopt = −F−1
(
E − σ (ss)

c B
)

√
2

. (17)

Notice that in the above equation we explicitly opted for can-
celing the stochastic terms at steady state, since our goal is to

maximize the amount of (unconditional) stationary squeezing.
One may also make a different choice, e.g., by imposing the
stochastic terms to vanish at all times, but this of course
would lead to a more onerous kind of feedback. By enforcing
Eq. (17) the excess noise matrix �fb will go to zero at steady
state, yielding an unconditional state having a covariance ma-
trix equal to the conditional one, i.e., σ fb = σ (ss)

c (we will
always assume that the feedback drift matrix Ãm is Hurwitz).

However, whenever F is not invertible, for example in
scenarios where some directions of feedback are not allowed,
the stochastic term cannot be identically canceled; this in
turn results in some excess noise. Upon averaging, one in-
deed obtains a nonzero steady-state excess noise matrix �

(ss)
fb ,

asymptotic solution of the Lyapunov Eq. (16). This situation
will be referred as the limited case. Loosely speaking, with
Markovian feedback one prioritizes canceling (minimizing)
the noise at steady state, allowing for some modification in
the relaxation dynamics of the system (Ãm).

A. Mechanical squeezing via Markovian feedback
within the RWA approximation

We now apply the paradigm just described to the optome-
chanical setup of Sec. III. In particular, we start our analysis
by focusing on the scenario where one can apply the RWA and
thus the interaction Hamiltonian is given by Eq. (13). We first
address the ideal case, i.e., we assume a feedback matrix F =
14. Under this condition we can derive the optimal Markovian
feedback matrix Mopt via Eq. (17) and exploit the analytical
solution for σ (ss)

c available for a two-tone BAE measurement
within RWA [47]. The resultaing optimal Markovian feedback
Hamiltonian reads

Ĥfb = (
ξmP̂ + ξ f X̂

)
IY (t ), (18)

022614-4



UNCONDITIONAL MECHANICAL SQUEEZING VIA … PHYSICAL REVIEW A 103, 022614 (2021)

where IY (t ) = −√
2ηκ Tr[�cŶ ] + dw/dt is the only nonzero

element of the photocurrent vector I(t ) = dyt/dt , propor-
tional to the conditional average value 〈Ŷ 〉c = Tr[�cŶ ], and
each feedback term is weighted by the factors

ξm = 1

4g
√

2κη
[γ 2 + ζ − γ

√
κ2 + γ 2 + 2ζ ], (19)

ξ f = 1

2
√

2κη
[κ + γ −

√
κ2 + γ 2 + 2ζ ]. (20)

The feedback Hamiltonian Eq. (18) stabilizes at steady state
the full optomechanical covariance matrix σ (ss)

c . The Hamil-
tonian consists of a displacement by an amount ξmIY dt along
the quadrature Q̂ and a displacement by ξ f IY dt along Ŷ . The
first conclusion to be drawn from Eq. (18) is that, even in
the ideal constraint-free case, rendering σ (ss)

c unconditional
requires feedback on both the optical and the mechanical
degree of freedom. A simple explanation for this fact can
be given once the effects of both the QND evolution and
the measurement are taken into account, as we briefly do
in the following. In Fig. 1(b) we represent the Heisenberg
evolution of the quadratures as obtained from Eq. (13), where
an arrow connecting two terms means that the variable at
the starting point drives the evolution of that at the ending
point; the QND interaction entails that Q̂ and P̂ are decou-
pled. Following the interaction, the output phase quadrature
is measured, which has two main consequences: (i) through
the optmechanical coupling, information is acquired about the
mechanical quadrature Q̂. This, provided that the values of
the photo-current are recorded, reduces the uncertainty along
Q̂, thus leading to reduced fluctuations and, eventually, to
squeezing. At the same time, (ii) the measurement introduces
disturbance (measurement backaction), which directly affects
the conjugate quadrature (X̂in) and then, through the dynamics,
reaches the P̂ quadrature and leads to increased fluctuations
(so-called backaction heating). In an ideal BAE measurement
the acquisition of information (on Q̂) and the introduction of
noise (on P̂) fully decouple.

Armed with this interpretation, it is now easy to account for
the terms featuring in Eq. (18). Continuously monitoring the
Ŷout quadrature causes a stochastic (measurement dependent)
displacement along both Ŷ and Q̂, which necessarily accom-
panies the acquisition of information. Markovian feedback
simply removes this effect by counterdisplacing both quadra-
tures via the unitary generated by Hamiltonian Eq. (18), while
displacement of the other two variables (P̂ and X̂ ) can be
disregarded since they are completely decoupled and all the
backaction is dumped there. In this way we obtain an uncon-
ditional feedback state having the same (optimal) covariance
matrix as the conditional one σ (ss)

c , thus yielding large values
of squeezing for the quadrature Q̂; some instances are shown
by the dashed lines in Fig. 1(a).

We then move to address the limited feedback scenario.
One may naively think that, since the figure of merit we
consider pertains only a part of σ (ss)

c , a single displacement
would suffice to render unconditional the sub-block we are
interested in. However, from Fig. 1(b), we see that the mea-
surement correlates Q̂ and Ŷ , inasmuch as it jointly reduces
their uncertainty. Therefore, local operations on one mode
will, in general, affect local properties on the other (such

as squeezing). Moreover, the QND coupling imposes a fun-
damental asymmetry between the two quadratures, whereby
noise from Q̂ drives Ŷ but not the other way round. Therefore,
we can already conclude that by limiting the feedback to
a single displacement, in general, we will not recover the
optimal squeezing. In particular, cavity-limited feedback, i.e.,
implementing only the optical part of Ĥfb, yields poor re-
sults, since the feedback acts “downstream” with respect to
the QND evolution [any stochastic term driving Q̂ will also
drive Ŷ , cf. Fig. 1(b)]. This intuition can be made rigorous
by neglecting the mechanical term in Eq. (18), thus obtain-
ing Ĥfb,f = ξ f X̂ IY (t ). The corresponding steady-state excess
noise matrix �fb can be obtained via Eq. (16) by considering
the feedback matrix Ff = 12 ⊕ O2 (with Od denoting a square
matrix of dimension d with all elements equal to zero). Under
this restriction the quadrature fluctuations of the unconditional
(feedback) state 〈
Q̂2〉fb are only slightly reduced below the
case with no feedback, and consequently no squeezing can be
observed.

However, if we consider mechanical-limited feedback via
the Hamiltonian Ĥfb,m = ξmP̂ IY (t ), then we find much better
results. Again, this result can be expected as the feedback
now acts “upstream” with respect to the QND evolution
[cf. Fig. 1(b)]. The steady-state excess noise matrix can
be obtained by considering a feedback matrix Fm = O2 ⊕
12 and the corresponding values of 〈
Q̂2〉fb are plotted in
Fig. 1(a) [expressed in −10 log10〈
Q̂2〉 Decibel (dB)], along-
side the optimal values of the conditional state 〈
Q̂2〉c.
Since the stochastic contribution from the cavity field is not
removed, averaging determines increased fluctuations, i.e.,
〈
Q̂2〉fb � 〈
Q̂2〉c. Physically, the reason why mechanical-
limited feedback remains suboptimal is that, although the
feedback removes the stochastic term for the evolution of the
Q̂ quadrature, the displacement of Q̂ is proportional to the
photocurrent, and thus to 〈Ŷ 〉c; as the quadratures Q̂ and Ŷ are
correlated, the fluctuations of Ŷ (that have not been reduced
by the feedback) will have a nonzero effect on the fluctuations
of Q̂, reducing the amount of squeezing that one can generate.

In Fig. 1(a) we can clearly observe two distinct regimes
for stationary squeezing: in the bad-cavity limit (κ � ωm)
mechanical-limited feedback turns out to be optimal, while
in the good-cavity limit (κ 
 ωm) we obtain worse results.
Although an analytic expression of 〈
Q̂2〉fb is available, it is
too cumbersome to be reported here. We instead now derive
simple expressions for these two limits.

In the good cavity limit mechanical-limited feedback leads
to a universal upper bound on the amount of squeezing at-
tainable; by universal we mean that the value is independent
of both the strength of the coupling and the detection ef-
ficiency. In this limit, the stochastic displacement along Ŷ
affects long-lived cavity photons, so averaging upon it leads
to comparatively larger excess noise. Expressing 〈
Q̂2〉fb in
terms of the multiphoton cooperativity C = 4g2/κγ and keep-
ing the leading term in the expansion C � 1, we obtain the
threshold value

〈
Q̂2〉thr = γ (2n̄ + 1)

γ + κ
, (21)

which corresponds to the black line in Fig. 1(a). In particular,
from Eq. (21) it follows that there exists an excluded region of
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sideband values κ/ωm < 2n̄/Qm, (with Qm = ωm/γ being the
mechanical quality factor) where squeezing cannot be attained
for any value of the coupling strength; this is indicated by the
shaded region in figure. This represents a nontrivial prediction
of our framework, as it sets a fundamental lower bound on the
achievable precision via Markovian feedback.

In the bad-cavity limit we see that mechanical-limited
feedback achieves optimal squeezing and the inequality
〈
Q̂2〉fb � 〈
Q̂2〉c is saturated. This behavior can be simply
understood by realizing that for a large enough linewidth,
the photon lifetime inside the cavity is so short that optical
feedback becomes inconsequential. In this limit the cavity
field can be adiabatically eliminated, one obtains 〈
Q̂2〉fb =
〈
Q̂2〉c ≈ 〈
Q̂2〉ad, where the last quantity has the following
expression:

〈
Q̂2〉ad =
√

1 + 4ηC(2n̄ + 1) − 1

4Cη
, (22)

and it corresponds to the black dashed lines in the plot
(for further details about this behavior, see Ref. [47]). The
adiabatic prediction dramatically fails moving towards good
cavity limit, which is where most experiments take place.
This expresses the inadequacy of adiabatic treatment of
measurement-based squeezing available so far.

Let us now make a crucial observation regarding the me-
chanical feedback term Ĥfb,m = ξmP̂ IY (t ). We remind that
we are working in interaction picture with respect to the free
Hamiltonian. If we go back to the laboratory frame operators
Q̂0 and P̂0, corresponding to the actual position and momen-
tum of the mechanical oscillator, then we obtain the feedback
Hamiltonian

Ĥfb,m = ξm(cos(ωmt )P̂0 − sin(ωmt )Q̂0)IY (t ). (23)

The term proportional to the position operator Q̂0 corresponds
to a mechanical force. In clamped resonators, this can be
implemented via piezoelectric actuators [76] or via radiation-
pressure force from an auxiliary laser beam (not coupled
to the cavity mode) [57]; mechanical feedback forces have
been implemented also in levitated charged nanoparticles via
electrodes placed in the vicinity of the particle for cooling its
center-of-mass motion [77–79]. However, terms proportional
to momentum are notoriously more challenging to implement
[49]. Therefore, it is physically motivated to assume that the
feedback action is implemented only by means a (possibly
time-dependent) force on the mechanical oscillator. We re-
fer to this scenario as force-limited feedback. Neglecting the
terms proportional to P̂0 in the Hamiltonian above and going
back to the rotating quadratures, we obtain

Ĥ(1)
fb,force = −ξm sin(ωmt )Q̂0 IY (t ),

= 1
2ξm[P̂ − cos(2ωmt )P̂ − sin(2ωmt )Q̂]IY (t ),

= 1
2Ĥfb,m + Ĥrot. (24)

This phyiscally constrained feedback Hamiltonian is com-
posed of a time-independent part, equal to half the optimal
feedback Hamiltonian in Eq. (18), plus a term Ĥrot =
− 1

2ξm[cos(2ωmt )P̂ + sin(2ωmt )Q̂]IY (t ), with elements rotat-
ing at frequency 2ωm. These terms are depicted in Fig. 1
(c), from which we see that the feedback now drives both

mechanical quadratures. Of course, we may as well assume
to be able to double the feedback signal u(t ), thus obtaining a
force-feedback Hamiltonian:

Ĥ(2)
fb,force = −2ξm sin(ωmt )Q̂0 IY (t )

= Ĥfb,m + 2Ĥrot. (25)

As long as we are working within the RWA, the two choices,
Eqs. (24) and (25), are equally viable. It would then seem
that the results shown in Fig. 1(a) can always be obtained
by simply implementing a time-dependent feedback force.
This seeming contradiction can be cleared by taking a closer
inspection at the RWA under Markovian feedback. In the
presence of feedback, besides the weak coupling condi-
tion needed to cast the two-tone optomechanical Eq. (12)
into a QND form, also the condition |ξmIY (t )| 
 ωm needs
to be fulfilled in order for the RWA to be valid. Substi-
tuting the expression for the homodyne current, the latter
condition splits in two parts; the first part yields ωm �
ξm

√
2ηκ〈Ŷ 〉c ≈ √

ηκγ (2n̄ + 1)〈Ŷ 〉c, where the last approx-
imation holds for high-Q mechanical resonators, while the
second part is |ξmdw/dt | 
 ωm. However, at any given in-
stant the current is dominated by white noise contribution,
which takes unbounded values, so that the second condition
cannot be fulfilled. Therefore, strictly speaking the RWA is
never fully justified when dealing with Markovian feedback
and counterrotating terms cannot be overlooked.

B. Mechanical squeezing via limited Markovian feedback
beyond the RWA approximation

We now include the effect of counterrotating terms that
are neglected under RWA. As explained above, this analysis
is crucial to assess the performances of Markovian feedback
control, in particular when restricting the feedback Hamilto-
nian to be a force. Due to mixing between the quadratures, a
rotating frame where the equations of motion become time-
independent can no longer be found [80,81], nor a closed
expression for the conditional state. In this case one has to
consider the time-dependent drift matrix corresponding to the
interaction Hamiltonian Eq. (12) and numerically integrate
the evolution equation for the conditional covariance matrix
Eq. (6). However, we can still get a qualitative picture of
the effects brought about by the counterrotating terms by
looking at Fig. 1(c). Counterrotating terms open new paths
(dashed arrows) between the quadratures, where both backac-
tion and conditioning can spread. As we can see, measurement
backaction is no longer confined to P̂ but now reaches both
quadratures, which entails a reduction of the amount of
squeezing with respect to the ideal BAE regime. At the same
time, the measurement now acquires information about both
mechanical quadratures, which entails that the conditional
state gets purified [47]. Finally, information is simultaneously
acquired about both the cavity and the mechanics (multiple
arrows incoming at Ŷ ), which implies that stronger correla-
tions between cavity and mechanics are built. Although our
analysis will be focused on the reduction of squeezing, the
point to be stressed here is that, contrary to common wisdom,
counterrotating terms are not only tied to detrimental effects
but can actually be beneficial for conditional state preparation.
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This offers a further motivation for implementing feedback in
BAE measurements beyond the weak coupling regime.

We start by considering the optimal (time-dependent)
Markovian matrix Mopt, namely, all phase-space directions
are allowed. It can be numerically derived via Eq. (17), by
choosing F = 14 and by replacing σ (ss)

c with the numerical
solution of Eq. (6). The corresponding optimal Markovian
feedback Hamiltonian reads

Ĥfb = (m32P̂ − m42Q̂ − m22X̂ + m12Ŷ )IY , (26)

where the elements mjk appearing are the only nonzero el-
ements of Mopt. Compared to Eq. (18), Ĥfb now generates
displacements also along P̂ and X̂ . As done before, we
now purposedly neglect the cavity field terms (mechanical-
limited feedback) and move back to the laboratory frame
operators

Ĥfb,m = (m32P̂ − m42Q̂)IY ,

= {m32[P̂0 cos(ωmt ) − Q̂0 sin(ωmt )]

− m42[Q̂0 cos(ωmt ) + P̂0 sin(ωmt )]}IY . (27)

We further restrict the feedback to act as a force on the
oscillator (force-limited feedback), and following the line of
reasoning of the previous section we consider the following
feedback Hamiltonian

Ĥfb,force(λ) = − 2λ [m4,2 cos(ωmt ) + m3,2 sin(ωmt )]Q̂0 IY ,

= λ Ĥfb,m + 2λ Ĥrot, (28)

where Ĥfb,m here denotes the mechanical-restricted optimal
Hamiltonian in Eq. (27) and where Ĥrot contains elements
rotating a twice the mechanical frequency 2ωm; these addi-
tional contributions are sketched in Fig. 1(c). The free real
parameter λ allows to interpolate between two cases: choosing
λ = 1/2 corresponds to consider only the elements propor-
tional to Q̂0, while for λ = 1 we double the feedback signal,
reobtaining the optimal Hamiltonian Eq. (27) plus a larger
counterrotating term 2Ĥrot. In our formalism, this choice cor-
responds to multiplying the optimal feedback matrix Mopt
with a time-dependent limited feedback matrix of the form
Fm = (2λ)(O2 ⊕ W ), with

W = RFforceRT,

=
(

sin2(ωmt ) sin(ωmt ) cos(ωmt )
sin(ωmt ) cos(ωmt ) cos2(ωmt )

)
, (29)

where R is the rotation matrix by an angle ωmt and Fforce =
diag(0, 1) is the feedback matrix corresponding to feedback
displacements along P̂0 axis only.

We can now numerically integrate Eq. (16) for the excess
noise matrix �fb, and evaluate the corresponding fluctuation
〈
Q̂2〉fb, averaged over a period (the integration is carried
out until σc and �fb reach a time-periodic steady state). In
Fig. 2(a), we have plotted 〈
Q̂2〉fb as a function of λ for the
three choices of the parameters (g, κ ) yielding the maximum
values of squeezing observed in in Fig. 1(a). As expected,
for larger values of g we observe a larger reduction of the
squeezing. Remarkably, we also observe that the counterrotat-
ing terms appearing in the feedback Hamiltonian play a major
role. Indeed, the optimal value of λ maximizing the squeezing,

FIG. 2. (a) squeezing of the mechanical quadrature fluctuations
〈
Q̂2〉 (in decibel) obtained via the nonoptimal Markovian feedback
matrix in Eq. (28), as a function of the Hamiltonian parameter λ and
for three couples of parameters (g, κ ). The dotted lines denotes the
corresponding fluctuations 〈
Q̂2〉c of the conditional states for the
same values of the parameters. Notice that the couples (g, κ ) has
been chosen to pick the maximum of squeezing obtainable from the
conditional states, at fixed coupling g and varying κ as in Fig. 1(a).
(b) squeezing of the mechanical quadrature fluctuations 〈
Q̂2〉 (in
decibel) obtained via the nonoptimal Markovian feedback matrix in
Eq. (28), as a function of the sideband parameter κ/ωm, for different
values of the coupling g, and by choosing the values of λ maximizing
the squeezing as shown in the upper panel. As above, the dotted lines
denotes the corresponding fluctuations 〈
Q̂2〉c of the conditional
states. In both panels the values for the other parameters are fixed
to: γ = 10−4ωm, η = 1, n̄ = 10.

in general, corresponds to neither λ = 1/2 nor λ = 1. We
thus conclude that none of the two approaches discussed at
the end of the previous section corresponds to the optimal
choice. In particular, as we may now expect, we notice how
when increasing the opto-mechanical coupling g, one should
choose smaller values of λ: the counterrotating terms in the
feedback Hamiltonian in the strong-coupling regime have in
fact a major role. However, it is also important to remark
that for relatively small values of g, applying this physically
constrained feedback strategy yield only a small reduction in
the squeezing that one can obtain unconditionally, respect to
the one obtained via the continuously monitored conditional
states.
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Finally, in Fig. 2(b) we show a comparison between RWA
and full Hamiltonian for a particular choice of the experi-
mental parameters values, and by choosing the corresponding
optimal value of λ. The solid curve shows the mean uncondi-
tional squeezing (averaged over one mechanical period) and
the shaded area extends between the minimum and maximum
value of squeezing. We see that Markovian feedback enforces
a more conservative condition for RWA, which strictly speak-
ing is never fulfilled. This is confirmed by looking at the weak
coupling instances where, even when the RWA on the QND
Hamiltonian Eq. (13) provides an excellent approximation,
〈
Q̂2〉fb is still appreciably smaller than the corresponding
〈
Q̂2〉c. Our results show how counterrotating terms, that
have been so far neglected, have a non trivial effect even in
weak coupling regime, where one would expect RWA to be
excellent approximation, reinforcing the need of accounting
them in the assessment of these control strategies.

V. BAYESIAN FEEDBACK

We now assume that the feedback signal u(t ) can be cho-
sen by taking into account the whole measurement results,
that is all the values of the photocurrent dys, with 0 � s �
t ; these are used to estimate properties of the conditional
state, which are in turn exploited in the feedback step. This
kind of non-Markovian feedback is typically referred to as
state-based feedback or Bayesian feedback, as determining
the conditioned state of the quantum system from classical
photocurrent corresponds indeed to a quantum version of the
classical Bayesian update [25,82]. Here we will focus on the
minimization of quadratic cost function defined as

h(t ) = E[〈r̂TSr̂〉c + uT�u], (30)

that one typically integrates over a certain time interval
h̄ = ∫ t̄

0 h(s)ds. In the following we will be interested in op-
timizing this cost function at the (possibly time periodic)
steady state; we will then consider the infinite-time limit
hss = limt→∞ h(t ). The positive semidefinite matrix S � 0
sets the particular property of the system that we want to
minimize, while the positive-definite matrix � > 0 quantifies
the cost of the linear driving u(t ) that we are implement-
ing with our feedback strategy. Under these assumptions we
are dealing with the paradigm of linear-quadratic-Gaussian
(LQG) control [25]. This is indeed a well-known classical
optimal control problem, which is well suited for Gaussian
quantum systems. It has been previously applied to op-
tomechanical systems, e.g., to cool the mechanical oscillator
[49,52,53], or harness the optomechanical entanglement gen-
erated in the blue-detuned regime for various state preparation
tasks [53]. Moreover, a crucial ingredient of LQG control,
namely, optimal quantum state estimation (corresponding to
the classical Kalman filter), has been recently demonstrated
for both mechanically compliant resonators [83,84] and lev-
itated nanoparticles [85,86]. According to LQG control, the
solution minimizing Eq. (30) is obtained by considering a
feedback signal depending linearly on the first moment vector,

u(t ) = −K (t )r̄c, (31)

such that the evolution of the first moments is rewritten as

d r̄c = Ãbr̄c dt + L
dw√

2
, (32)

with Ãb = [A − FK (t )] and L = (E − σcB). We stress that
Bayes feedback Eq. (31) employs only the mean values
(sometimes referred to as the “estimates”) of the conditional
state, i.e., the feedback signal is noiseless. One further proves
that the matrix Kopt, optimizing the steady-state cost function
hss reads

Kopt = �−1F TY, (33)

where Y is the solution of the (homogeneous) Riccati
equation,

0 = ATY + YA + S − Y F�−1F TY. (34)

In this case the evolution for the feedback excess noise matrix
is given by (see Appendix B for details on the derivation)

d�fb

dt
= Ãb�fb + �fbÃT

b + LLT. (35)

By solving the corresponding Lyapunov equation, one can
thus calculate the steady-state excess noise matrix �ss

fb and
assess the performance of the feedback strategy.

By comparing Eqs. (16) and (35), we notice an im-
portant difference in the working principles of Markovian
and Bayesian feedback. While both strategies change the
drift matrix A, adding a damping term to the first mo-
ments, and consequently to the excess noise matrix �fb,
Markovian strategies also aim to reduce the diffusion term in
the Lyapunov Eq. (16), canceling it in the optimal scenario
and yielding an unconditional feedback covariance matrix
σ fb = σc. It is also important to remark that, as mentioned in
the previous section, Markovian feedback is more expensive:
the white noise term dw/dt , entering into the feedback signal
u(t ) via the photocurrent, yields indeed a diverging average
E[u(t )T F T Fu(t )]. However, Bayesian LQG feedback strate-
gies, by fixing a nonzero cost on the feedback displacement,
involve always a finite average signal, and in this sense, as
we will see in the following, it is of interest in practical
implementations. The average feedback at steady-state can be
evaluated via the formula [25]

lim
t→∞E[u(t )T F T Fu(t )] = Tr

[
FKopt�

(ss)
fb KT

optF
T]

. (36)

This quantity is, in general, finite, as it diverges only by taking
the limit of zero cost matrix � → 0; in this limit one is
supposed to implement an infinite damping matrix Kopt, and,
by considering a full-rank feedback matrix F = 1, one obtains
a steady-state zero excess noise matrix and thus the optimal
result σ

(ss)
fb = σ (ss)

c .

A. Mechanical squeezing via Bayesian feedback
within the RWA approximation

We now apply this formalism to our optomehcanical setup.
Our goal is to minimize the steady-state fluctuations of the
Q̂ quadrature, with a nonzero cost on the feedback displace-
ment. In terms of the figure of merit hss, this is obtained
by the choosing S = diag(0, 0, 1, 0) and � = χ14, where
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FIG. 3. (a) Diagram depicting how quadratures influence each other in the case of ideal state-based (Bayesian) feedback; all conventions
are as in Fig. 1. Mechanical position variance in terms of squeezing factor (dB) as a function of the sideband parameter κ/ωm, for three different
values of cost parameter (solid lines). The dashed black line denotes the optimal squeezing obtained via the conditional evolution within RWA
approximation, corresponding to Eq. (14). Different panels correspond to different values of the coupling g [(b), g = 0.05ωm; (c), g = 0.3ωm],
while the other parameters are fixed as following: η = 1, n̄ = 10, γ = 10−4ωm.

the parameter χ > 0 weights the cost of the overall feed-
back with respect to the property to be optimized (squeezing
along Q̂). By considering the matrix � proportional to the
identity we are assuming equal cost for all phase-space direc-
tions of feedback displacement. Nevertheless, as done in the
Markovian case, we will indirectly impose infinite cost along
some directions in phase-space by choosing nonfull rank feed-
back matrices F .

We start by considering the ideal feedback matrix F = 14.
By applying the formulas above, one can analytically ob-
tain the optimal matrix Kopt and the corresponding feedback
Hamiltonian, which reads

Ĥfb,b = 〈Q̂〉c

2

(
γ −

√
4

χ
+ γ 2

)
P̂,

= −β〈Q̂〉cP̂, (37)

where β is a positive real parameter, monotonically decreasing
with the parameter χ (the smaller the feedback cost χ , the
larger the damping of the conditional average value 〈Q̂〉c). The
first thing to be noticed is that the ideal feedback Hamiltonian
contains no cavity terms, which in this framework turn out to
be unnecessary. Indeed, as explained before, Bayesian feed-
back corresponds only to an attenuation of the first moment
vector and consequently on the excess noise matrix. As our
goal is to reduce the fluctuations of the quadrature mechanical
operator Q̂, the feedback Hamiltonian does lead to a damping
only in this direction of phase-space, and other feedback op-
erations are not necessary. We also notice that, as expected,
in the limit of either zero or infinite cost parameter χ , we
implement, respectively, an infinite or zero damping. Finally
we observe that the feedback Hamiltonian, apart from the cost
parameter χ , only depends on the parameter γ , since all the
salient information is incapsulated in the average value 〈Q̂〉c.

Solving Eq. (35), we derive an analytical expression for the
excess noise at steady state for the mechanical operator Q̂:

�ss
Q =

√
χ√

4 + γ 2χ

(γ 2 + ζ − γ
√

κ2 + γ 2 + 2ζ )2

16g2ηκ
. (38)

In Fig. 3 we plot the behavior of the mechanical squeezing (in
terms of dB) as a function of the sideband parameter κ/ωm.
We observe that increasing the cost parameter χ or decreasing
the optomechanical coupling g have a different effect on the
steady-state squeezing achievable. In particular, increasing χ

penalizes the “intermediate” sideband values for which the
squeezing is maximum, while the range for which squeezing
can be observed remains almost unchanged compared to the
optimal conditional states.

It is important to stress that Bayesian feedback allows to
obtain nearly optimal squeezing also in the good cavity limit,
notwithstanding the fact that the optimal feedback Hamilto-
nian acts on the mechanical oscillator only. This shows a
fundamental difference respect to the Markovian scenario,
where mechanical-limited feedback yields a large reduction
of the squeezing achievable for κ/ωm 
 1 and to a threshold
value under which no squeezing can be observed. Further-
more, the fact that, for a fixed cost χ , a larger coupling
constant g implies larger deviations from the optimal condi-
tional squeezing, strongly suggests that larger coupling values
demand larger values of the feedback signal u(t ).

B. Mechanical squeezing via Bayesian feedback beyond
the RWA approximation

We now consider the effect of counterrotating terms in the
optomechanical Hamiltonian Eq. (12). Moreover, similarly to
the Markovian case, we also focus on the force-limited case,
namely, when feedback is actuated via a Hamiltonian pro-
portional to the laboratory position operator Q̂0. Remarkably,
thanks to the LQG-control theory, in this case we can actually
find the optimal feedback strategy, represented by a matrix
Kopt, with a fixed limited feedback matrix Fm = O2 ⊕ W ,
where the matrix W has been defined in Eq. (29). In this case,
as both the drift matrix A and the feedback matrix Fm are time-
dependent, one has to evaluate the time-periodic stationary
matrices representing the conditional states covariance matrix
σc, the optimal Bayesian feedback matrix Y and the excess
noise matrix �fb via, respectively, Eqs. (6), (34), and (35). The
corresponding feedback Hamiltonian takes the form

Hfb,b = −(βQ(t )〈Q̂〉c + βX (t )〈X̂ 〉c)Q̂0, (39)
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FIG. 4. Mechanical position variance in terms of squeezing fac-
tor (dB) as a function of the sideband parameter κ/ωm, obtained
unconditionally via Bayesian feedback limited to a force on the
mechanical oscillator and beyond RWA for two values of the op-
tomechanical coupling g [(a), g = 0.05ωm; (b), g = 0.3ωm] and for
three different values of the cost parameter χ (from top to bot-
tom χ = {0.1, 1, 100}); the dotted curves show the mean squeezing
(averaged over one mechanical period) and the shaded area ex-
tends between the minimum and maximum value of squeezing. The
dashed black line denotes the optimal squeezing obtained via the
conditional evolution within RWA approximation, corresponding to
Eq. (14). The insets show the corresponding average feedback force
(h̄/xzpf )

√
E[u(t )T F T Fu(t )] as a function of the sideband parameter

κ/ωm, and by considering a mechanical oscillator described by a
zero point motion xzpf = 10−14 m. The other parameters are fixed as
following: η = 1, n̄ = 10, γ = 10−4ωm.

where, in general, we observe βQ(t ) > βX (t ) > 0, and the ex-
tra term portional to 〈X̂ 〉c arises because of the counterrotating
terms in the optomechanical Hamiltonian

The corresponding unconditional fluctuations 〈
Q̂2〉fb are
then evaluated by averaging them over a period and we have
reported them in Fig. 4. We remind that, at variance with
Markovian feedback, here the feedback signal is bounded.
In particular one can evaluate its steady-state average mag-
nitude E[u(t )T F T Fu(t )] via Eq. (36). We have numerically
evaluated this quantity, averaging as before its value over its

steady-state period, and we have reported it in the insets of
Fig. 4 (to obtain the average force in Newton, we have taken
its square root and multiplied it by a factor h̄/xzpf = 10−20Ns,
with xzpf ≈ 10−14 m being the zero point motion of a stan-
dard mechanical oscillator). From these plots we can take the
following conclusions: remarkably for small values of the op-
tomechanical coupling constant g (e.g., for g = 0.05ωm), we
obtain the optimal amount of squeezing, that is the one corre-
sponding to Eq. (14) for conditional states evolving within the
RWA approximation, even by considering the counterrotating
terms and if we restrict to a force-limited Bayesian feedback.
As we increase the value of g (e.g., for g = 0.3ωm), we do
observe sensible deviations from the optimal case, that seem
to be more due to the role of counterrotating terms, rather than
to the limited feedback strategy (we remark that the results
shown for χ = 0.1 ω−1

m are not much improved if we further
decrease χ ). In particular we find that the average feedback
force needed to obtain the nearly optimal results is indeed very
small. In general, we observe that u(t ) depends on the cost
parameter χ via a constant factor, and thus, once the time-
dependence of the optimal matrix Kopt has been identified,
one should try to implement a corresponding feedback force
u(t ) proportional to the first moment vector r̄c, and with the
larger proportionality constant allowed by the experimental
setup and our results show how nearly optimal steady-
state squeezing can be obtained by implementing a force
that is well within reach of the state-of-the-art experimental
capabilities.

VI. CONCLUSIONS

In this work we have discussed in detail how to determin-
istically generate mechanical squeezing via time-continuous
BAE measurement plus feedback. Contrary to previous stud-
ies [8], our approach takes into account the effects of a
finite cavity linewidth and is not limited to the weak-coupling
regime; it is therefore apt to describe state-of-the-art optome-
chanical systems. We discussed two main feedback strategies:
state-based (Bayesian) feedback, which employs the measure-
ment record to compute (in real-time) the optimal feedback
signal and direct (Markovian) feedback, where the measured
current is directly fed back to the system. In both cases,
our approach consisted in first determining the form of the
feedback that needs to be implemented in the case of an ideal
BAE measurement; this provide a benchmark to be contrasted
with realistic scenarios, where backaction evasion is imperfect
and the manipulation of the optomechanical system is subject
to limitations, which render feedback control nonoptimal.

When employing a Markovian feedback strategy, achiev-
ing optimal unconditional squeezing requires feedback on
both the cavity and the mechanical degree of freedom; only
for a fast enough cavity, mechanical-only feedback recovers
the maximum amount of squeezing (equal to the conditional
one). Moreover, when further restricting the feedback to be
actuated only via a mechanical force, we found that coun-
terrotating terms cannot be neglected, due to the unbounded
feedback signal. Once these are included, significant values
of squeezing may be obtained for small enough coupling
g, although force-limited feedback always adds some noise.
However, Bayesian feedback attains the maximum squeezing
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(namely, it adds no noise) via a mechanical term alone. Even
in the case of force-feedback, for not too large couplings g
it attains nearly optimal unconditional squeezing across the
whole range of sideband values κ/ωm and that the average
feedback force needed is well within the state-of-the-art ex-
perimental capabilities.

Therefore, we identified the conditions under which a
“cheap” feedback, consisting of a time-dependent mechanical
force (and thus easier to implement), results in no or little
added noise and thus generates large amount of mechanical
squeezing. We have included counterrotating terms in our
analysis, which are usually neglected. On the one hand, we
found that depending on the nature of the feedback policy,
the effect brought about by these terms cannot be overlooked.
However, their incorporation allows to model optomechanical
BAE measurements for any sideband resolution and even in
the strong coupling regime. While in our discussion ideal
detection efficiency was assumed when illustrating the results,
we stress that our framework incorporates the impact nonunit
efficiency of the monitoring process; this additional limitation
(fundamental for experimental implementations) can be read-
ily assessed with the expressions derived in the present work.
Another source of imperfection may come from nonnegligible
delay time in the feedback loop. We plan to tackle delayed
feedback in future works.

Our results are directly relevant for ultra-sensitive force
and displacement measurements, e.g., gravitational wave de-
tection [87], applications to quantum information processing
[31] as well as fundamental studies on the effects of quan-
tum decoherence [88–90]. Our analysis could be extended
to the multimode optomechanical systems consisting of two
mechanical resonators coupled to a common cavity mode,
for the deterministic generation of mechanical EPR entangle-
ment and multipartite entanglement [20,47]. Finally, besides
optomechanics, our results also apply to QND measurements
in hybrid quantum systems [16,22,91,92] and cavity-coupled
atomic ensembles, e.g., for deterministic generation of spin
squeezing [14].
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APPENDIX A: GAUSSIAN FORMALISM FOR
OPTOMECHANICAL HAMILTONIAN

In this Appendix we report the matrices entering into
Eqs. (2), (3), (5), and (6), and corresponding to the optome-
chanical BAE setup described in Sec. III.

The corresponding unconditional and conditional dynam-
ics in interaction picture respect to H0, are described,
respectively, by the master equation

d�unc

dt
= L�unc (A1)

= −i[Ĥint, �unc] + κD[â]�unc (A2)

+ γ (n̄ + 1)D[b̂]�unc + γ n̄D[b̂†]�unc, (A3)

and by the stochastic master equation

d�c = L�c dt + √
ηκH[−iâ]�c dw, (A4)

with a continuous photocurrent IY (t )dt = −√
2ηκ 〈Ŷ 〉c dt +

dw, and where we have defined the superoperator H[Ô]� =
Ô� + �Ô† − Tr[�(Ô + Ô†)]�. The matrices A, D, E , and B
can be derived by following the formalism introduced in
Refs. [68,69], or analogously in Ref. [70]. We start by pre-
senting the scenario where the RWA can be performed, and
the optomechanical Hamiltonian reads

Hint = −gX̂ Q̂.

The corresponding matrices are

A =

⎛
⎜⎜⎝

− κ
2 0 0 0
0 − κ

2 g 0
0 0 − γ

2 0
g 0 0 − γ

2

⎞
⎟⎟⎠,

D =

⎛
⎜⎝

κ 0 0 0
0 κ 0 0
0 0 γ (2n̄ + 1) 0
0 0 0 γ (2n̄ + 1)

⎞
⎟⎠,

B = E =

⎛
⎜⎝

0 0 0 0
0

√
ηκ 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎠.

In the regime where the RWA does not apply and thus the
optomechanical Hamiltonian is described by Eq. (12),

Ĥint(t ) = −gX̂ [Q̂(1 + cos(2ωmt )) + P̂ sin(2ωmt )],

the drift matrix A is the only matrix that changes its form, it
becomes time-dependent and it reads

A =

⎛
⎜⎜⎝

− κ
2 0 0 0

0 − κ
2 g(1 + cos(2ωmt )) g sin(2ωmt )

−g sin(2ωmt ) 0 − γ

2 0
g(1 + cos(2ωmt )) 0 0 − γ

2

⎞
⎟⎟⎠.
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APPENDIX B: DERIVATION OF LYAPUNOV EQUATION FOR THE EXCESS NOISE MATRIX �

Let us consider the following stochastic evolution of the first moment vector

d r̄c = Ãr̄cdt + V
dw√

2
. (B1)

Our goal is to derive the evolution equation for the excess noise matrix �, defined in Eq. (8) as

� = E
[{

r̄c, r̄T
c

}] − {
E[r̄c],E

[
r̄T

c

]}
. (B2)

By deriving the first term respect to time, and by exploiting Ito calculus, one obtains

d
(
E

[{
r̄c, r̄T

c

}]) = E
[{

d r̄c, r̄T
c

}] + E
[{

r̄c, d r̄T
c

}] + E
[{

d r̄c, d r̄T
c

}]
= ÃE

[{
r̄c, r̄T

c

}]
dt + E

[{
r̄c, r̄T

c

}]
Ã dt + V

(
E

[ {dw, dwT}
2

])
V T

= (
ÃE

[{
r̄c, r̄T

c

}] + E
[{

r̄c, r̄T
c

}]
ÃT + VV T)

dt,

where we have exploited the Wiener increments property {dw, dwT}/2 = 1 dt .
The second term, however, yields

d
({
E[r̄c],E

[
r̄T

c

]}) = {
E[d r̄c],E

[
r̄T

c

]} + {
E[r̄c],E

[
d r̄T

c

]}
= (

Ã
{
E[r̄c],E

[
r̄T

c

]} + {
E[r̄c],E

[
r̄T

c

]}
ÃT)

dt .

By combining the two equations, we finally find the Lyapunov equation for the excess noise matrix

d�

dt
= Ã� + �ÃT + VV T. (B3)

As a consequence, given the evolution of the first moment vector r̄c ruled by either Eq. (15) for Markovian feedback, or
Eq. (32) for Bayesian feedback, one finds that the evolution for the excess noise matrix � is given, respectively, by Eq. (16) or
Eq. (35).
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