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We develop a hybrid quantum-classical algorithm to solve an optimal population transfer problem for a
molecule subject to a laser pulse. The evolution of the molecular wave function under the laser pulse is simulated
on a quantum computer, while the optimal pulse is iteratively shaped via a machine learning (evolutionary)
algorithm. A method to encode on the quantum computer the n-electrons wave function is discussed, the
circuits accomplishing its quantum simulation are derived and the scalability in terms of number of operations
is discussed. Performance on noisy intermediate-scale quantum devices (IBM Q X2) is provided to assess
the current technological gap. Furthermore the hybrid algorithm is tested on a quantum emulator to compare
performance of the evolutionary algorithm with standard ones. Our results show that such algorithms are able
to outperform the optimization with a downhill simplex method and provide performance comparable to more
advanced (but quantum-computer unfriendly) algorithms such as Rabitz’s or gradient-based optimization.
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I. INTRODUCTION

The first proposals for a new paradigm of computation that
would have gone beyond standard computer science date back
to the works of Feynman and Deutsch [1,2]. In their seminal
contributions for the first time it was argued that quantum
mechanics could have been exploited, as much as classical
physics, as a background for a new way of computing.

Nowadays quantum computation is an extremely active
field owing to the fact that such a paradigm of computation
has been proven potentially disrupting and able to realize
very challenging computational tasks in a faster and more
efficient way than our classical most powerful computers [3].
At the origin of this discipline there is the idea that a quan-
tum system may be, by far, more suitable to simulate the
properties of another quantum system [1]; it is equally true
that the physical realization of quantum hardware can not be
independent of the very precise knowledge of the underlying
physics and of the capability to control its dynamics with an
impressive spatial and temporal resolution [4,5]. From these
considerations naturally comes looking at the development of
new quantum technologies and the fundamental research in
the field of atomic, molecular, and optical physics [6,7] as two
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mutually supporting processes. An example of this philosophy
is quantum optimal control theory (QOCT) [8,9] where the
knowledge of the system (its assumed Hamiltonian) is suffi-
cient to suitably shape, in both time and space, an external
perturbation to achieve a desired response of such system.
Such a strategy has been applied in several fields ranging from
photochemistry to quantum gate synthesis [10–12]; notably,
with regard to the last example, QOCT is generally conceived
as a tool to improve quantum devices’ performance while
we rarely think of a quantum computer (exception made for
closed-loop feedback control experiments as in Ref. [13]) as
an active party of the optimization process. In this work we
put ourselves in this latter perspective by developing a hybrid
algorithm which features quantum and classical computation
to solve an optimal population transfer problem [14]; the
approach we propose aims to complement, in a quantum com-
puting fashion, the experiment proposed in the seminal work
of Judson and Rabitz [15]. They demonstrated an optimal
control protocol based on the experimental measurement of a
property disclosing the molecular wave function evolution in
the presence of an external light pulse, coupled to a learning
procedure that shapes the control pulse to obtain the desired
excitation. In the present work the quantum computer replaces
the experimental apparatus, extending the range of application
of this approach to those systems for which setting up such an
experiment from scratch is not feasible (e.g., molecules un-
dergoing photodamage during the experimental optimization,
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FIG. 1. Schematic diagram for the hybrid algorithm. The input is an initial guess field specified by the set of control parameters a, dipole
moment matrix ˆ̄μ, and excitation energies (EEs) of the molecular system of interest. The output is given by the set of control parameter aopt ,
i.e., the optimal field. Parameters a in the initial ansatz directly enter in the quantum gate executing the simulation of the molecular dynamics
Ua(t, 0). Subsequently they are adjusted in a hybrid quantum-classical optimization loop until the functional J[a] is above a user-specified
threshold. When this loop terminates, the resulting gate sequence [P|GS〉, encoding of the initial state, Ua(t, 0), evolution] can also be used to
prepare the state of the computer for further uses.

molecules not synthesized yet). The choice of this particular
case has been also motivated by the increasing interest in the
ultrafast dynamics of electronic states that have been probed
experimentally with ultrashort pulses in single-molecule
experiments [16]. Moreover, here we intend to provide a
further example of the application of quantum computation
methods to chemistry. A great effort, to date, has been directed
to the development of algorithms for the characterization of
properties concerning the electronic structure of molecular
systems [17]; although their importance is primary, we hope
that this work can demonstrate how new quantum technolo-
gies can be exploited to address time-dependent problems
to complex systems by combining state-of-the-art quantum
chemistry methods with quantum simulation techniques.

In the same spirit of Li et al. [18], where the authors
focused on the problem of state preparation, we suggest
the use of a quantum algorithm as a subroutine external to
the classical optimization algorithm needed to evaluate the
fitness function. Subsequently the classical optimization al-
gorithm updates the set of control parameters feeding back
again the quantum algorithm until convergence is reached (see
Fig. 1). A similar approach has been also devised very recently
by Magann et al. [19]. In particular, they present a thorough
discussion of the numerical errors arising in the wave func-
tion evolution algorithm, estimate the resources needed with
the proposed mapping, and describe possible applications
to vibrational and rotational control and to the investigation
of light-harvesting complexes. In this work we will focus
on different aspects of the investigation with emphasis on
the implementation of the routine on noisy devices, assessing
the effect of quantum noise at different levels and motivating
the choice of a genetic algorithm (GA) as an effective opti-
mization routine.

The choice of the classical optimization algorithm is cru-
cial for the performance of the whole procedure. Due to the
quantum nature of the subroutine which computes the value
of the fitness function after measurement, the most natural
choice is a gradient-free optimizer (although a gradient-based
approach, extensively used in the literature [20], will be con-
sidered along with the Rabitz algorithm as a reference for
our calculations). As shown extensively in the literature for
the case of variational quantum eigensolver (VQE) [21,22]

there are various choices for this kind of methods [17,23–
26]; due to promising performance of machine learning in the
field of multiparameters optimization, we chose to couple the
quantum routine to a machine learning global search scheme,
notably a genetic algorithm. Similar approaches have been
already tested in the context of QOCT, but with a classical
(as opposed to the present quantum) evaluation of the fitness
function [27,28].

This paper is organized as follows: in Sec. II we present the
theoretical tools needed to implement the hybrid algorithm,
in particular discussing the main features of QOCT and the
quantum simulation of a time-dependent molecular Hamil-
tonian with emphasis on the choice of the mapping adopted
and on the quantum circuit synthesis. Subsequently, after hav-
ing discussed the computational details in Sec. III, Sec. IV
is dedicated to analyzing the numerical results assessing
the performance of the mapping on noisy intermediate-scale
quantum (NISQ) devices together with the implementation of
the hybrid algorithm for the case of the cyanidin molecule; in
particular, while providing a comparison between our hybrid
solution and the result obtained with state-of-the-art algo-
rithms on classical computers (gradient-based optimization
and the algorithm proposed by Zhu et al. [14]), we also an-
alyze the performance of genetic algorithms when coupled to
different noisy simulated quantum processors. Finally, in the
Conclusions we summarize the results obtained and consider
possible future perspectives of this work.

II. THEORY

A. Proposed algorithm for quantum optimal control with
quantum simulation of a time-dependent molecular Hamiltonian

Quantum optimal control theory deals with the evolution of
a dynamical quantum system undergoing an external manip-
ulation, able to drive the system itself from a general starting
state to a final excited state. The system evolution is described
by the time-dependent Schrödinger equation (TDSE), while
the external perturbation which allows one to control the
dynamics is described adding a term to the isolated system
Hamiltonian. In our case the extra term is a suitably shaped
laser pulse, able to drive the system from an initial state
|ψ (0)〉 = |ψ0〉 to a final state |ψ (T )〉 = |ψT 〉 corresponding
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to a chosen final time t = T . The final state should maximize
the expectation value of a chosen operator Ô acting on the
system. In this work, we will focus on a particular case,
namely, optimal population transfer: given a molecular system
in the initial state we look for the shape of the laser pulse of
length t = T able to maximize the population of a specific
target excited state. In other words, we want to tune the laser
field profile in such a way that it provides the most precise,
and experimentally attainable, optical excitation. The optimal
field can be obtained maximizing the following unconstrained
functional:

J[a] = 〈ψa(T )|Ô|ψa(T )〉 −
∫ T

0
α(t )|Ea(t )|2 dt (1)

Here Ô = |�〉〈�| is the projector operator on the excited
target state |�〉, and the second term is a penalization factor
that discourages the optimization algorithm to move towards
high fluency fields; the time-dependent factor α(t ) allows one
to enforce a given envelope of the laser pulse. Such multiplier
can be relevant, e.g., when the optimal problem has to be
solved for a particular experimental set up. Finally |ψa(T )〉
stands for the value of the state vector whose evolution is
driven by a field Ēa(t ). The vector a specifies the set of control
parameters.

There are two key elements to be defined within QOCT
algorithms: one is the approach to evolve the molecular wave
function under the effect of the light pulse so to get |ψa(T )〉
(and thus J) for a given set of control parameters, the other
is the optimization algorithm that iteratively leads to the best
vector a. For the latter algorithm (the “Classical Routine” in
Fig. 1), we adapted a machine learning scheme as described in
the Methods section. Here we discuss the devised simulation
of the evolution of the molecular wave function subject to
the laser pulse, which is the part running on the quantum
computer (“Quantum Routine” in Fig. 1).

Quantum simulation is a branch of quantum computation
that aims to compute the evolution of a quantum system by
programming the evolution of the state vector of a quantum
computer such that they correspond to each other [29]. In
other words, let UQC (t, 0) be the time evolution operator of
the quantum computer (QC) and U (t, 0) the system time
evolution operator we are interested in the computation of,
and we want to achieve

U (t, 0)
encoding

←→
decoding

UQC (t, 0). (2)

To this extent the problem of quantum simulation can be
thought as a translation problem from the common language
of quantum mechanics to the dialect of quantum computation.

1. Encoding of the n-electrons wave function

In this work we assume that a large enough set of elec-
tronic states of the molecule has been precalculated with some
suitable quantum chemistry approach. Beside the energies of
such states, the method provides also the matrix elements
of the interaction operator with the external control. In the
present case, since the control is the time-dependent electric
field associated with a laser pulse, the required operator is the
dipole moment operator μ̄.

In this section we describe the method that we have used to
map a molecular wave function written in the (approximated)
electronic eigenstate basis, e.g., configuration interaction (CI)
[30], into the state of the quantum computer.

First, for sake of clarity, we recall the common notation for
an arbitrary state of the quantum computer composed of an
M-qubits register given by

|�〉 =
∑

β1,...,βM

cβ1,...,βM

(
M⊗

i=1

|βi〉
)

, (3)

where βi denotes the state of the single ith qubit which
can be either |0i〉 or |1i〉 with the coefficients of the direct
product states cβ1,...,βM satisfying the normalization condition∑

β1,...,βM
|cβ1,...,βM |2 = 1.

Our starting point is the molecular Hamiltonian (i.e.,
the standard polyelectronic Hamiltonian containing electron-
electron and electron-nuclei interactions) in the presence of an
external field written as

Ĥ (t ) =
∑

k

ek|k〉〈k| − Ē (t )·
∑
i, j

μ̄i j |i〉〈 j|, (4)

where the indexes k,i,j in the sums run over the possible
n-electrons states approximated as the eigenvectors of the CI
matrix; ek is the energy of the kth electronic state, Ē (t ) is
a time-dependent electric field associated to the controlling
laser pulse, and μ̄i j is the transition dipole moment between
the states |i〉 and | j〉 (or the corresponding permanent dipole
when i = j).

With this approach we can write an arbitrary quantum state
of the molecule as a coherent superposition of CI eigenvec-
tors:

|�(t )〉 =
N∑
k

ck (t )|k〉. (5)

To find a link with the state of the quantum computer we
encode the coefficient ck (t ) [Eq. (5)] into the bitstring state
coefficient of the quantum computer where all the qubits are
in the state |0〉 but the kth qubit which is in the state |1〉.

More formally we get the following equivalence:

ck (t ) := 〈k|�(t )〉 ≡ 〈01 . . . 0k−11k0k+1 . . . 0N |�〉, (6)

where we recall that |�〉 is the state of the quantum computer
and |�〉 that of the molecule. Similar approaches have been
recently considered for the simulation of bosonic Hamiltoni-
ans [31–33]; here we extend this mapping to the simulation
of many-fermions wave functions. We may notice that this
particular choice allows us to encode the coefficients corre-
sponding to the different molecular electronic eigenstates into
a particular subset of bitstring states where only one qubit at
the time is in the state |1〉. This feature gives us the possibility
to make a step further and establish a connection between
the set of CI eigenvectors of Eq. (5) and the Fock states of
single occupancy for an N-fermions system. It is important to
highlight that such an encoding exploits a formal equivalence
between a CI eigenvector and a single-occupancy Fock state.
Indeed, from a physical point of view we know that we are
dealing with very different objects: with the former represent-
ing an n-electrons wave function and the latter a single-body
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quantum state. To conclude this parallelism we can think of
such a mapping as an interpretation of the CI Hamiltonian
[Eq. (4)] as a single-body operator acting on the states of a
quasiparticle, the different electronic states being the modes
in which the latter can be found.

We can now exploit this equivalence to make use of the
techniques that have been developed to perform the quantum
simulation of a fermionic Hamiltonian [34,35]. We chose to
adapt the well known Jordan-Wigner (JW) mapping [36] to an
n-electrons wave function by means of Eq. (6). We recall that
the JW transform allows one to express fermionic operators
in terms of Pauli matrices {σx, σy, σz,1} due to the following
expressions:

a j = −
j−1⊗
k=1

σ z
k σ−

j , a†
j = −σ+

j

j−1⊗
k=1

σ z
k , (7)

where aj and a†
j are, respectively, the annihilation and cre-

ation operators for the jth particle while σ z
k and σ±

k are Pauli
operators acting on the kth qubit.

Since we reduced the encoding of the n-electrons states
into the single-occupancy Fock space we can disregard the
string of Pauli operators σ zs leading to a much simpler ex-
pression. This simplification would not be possible if we had
included in our encoding scheme the representation of a Slater
determinant with a bitstring state with more than one qubit in
the state |1〉; indeed, in that case, we should have taken into
account permutation properties of the many body quantum
states.

Finally, we end up with a simple equivalence between the
kth electronic state and the reference state of the quantum
computer (i.e., when all qubits are in |0〉):

|k〉 ≡ σ+
k |01 . . . 0k−10k0k+1 . . . 0N 〉

= |01 . . . 0k−11k0k+1 . . . 0N 〉. (8)

By substitution of the previous expression in the molecular
Hamiltonian [Eq. (4)] we obtain

Ĥ (t ) =
∑

k

θkk (t )
(
1k − σ z

k

) +
∑
p>q

αqp(t )

2

[
σ x

q σ x
p + σ y

q σ y
p

]
= H̃z(t ) + H̃x,y(t ), (9)

where, in the last equivalence, we use the subscripts to stress
the dependence of the different terms on a particular subset of
Pauli operators and adopt the following shorthand:

θkk (t ) = ek − Ē (t )·μ̄kk,

αqp(t ) = Ē (t )·μ̄qp. (10)

2. Trotterization of a time-dependent Hamiltonian

As we can see Eq. (9) is an explicit transposition of the
time-dependent Hamiltonian in the n-electrons basis in terms
of one-qubit operators (diagonal elements) and two-qubit
operators (off-diagonal elements). We consider now how to
derive the circuit representation of the time evolution operator
UQC (t, 0) based of such expression. It is well known [37] that
for an Hamiltonian such as the one of Eq. (4) the time evolu-
tion operator is given by a time-ordered expansion according

to the equation

U (t, 0) = T e−i
∫ t

0 Ĥ (t ′ ) dt ′
, (11)

where T is the Dyson’s time-ordering operator.
To compute the time evolution operator by making use

of the Trotter-Suzuki (TS) approximation [38] we discretize
the time axis in K time slots of width 	t = t j+1 − t j and ap-
proximate the integration as if the Hamiltonian were constant
within the given time interval:

U (t, 0) ≈ T e−i
∑K

j=0 Ĥ (t j )	t . (12)

We are now able to decompose the time evolution operator
U (t, 0) as a stepwise time-independent evolution and to apply
the TS decomposition to each single-step evolution operator:

U (t, 0) =
K∏

j=0

U (t j+1, t j ), (13)

U (t j+1, t j ) ≈ e−iH̃z (t j )	t e−iH̃x,y (t )	t . (14)

In the last equation we made use of the first-order TS ap-
proximation, but an extension to higher order approximation
is straightforward [39]. Notice that in the following we shall
refer to this integration scheme for a time-dependent Hamil-
tonian as Trotter-Suzuki piecewise constant approximation
(TS-PCA).

The implementation of the first term of Eq. (14), i.e., the
diagonal evolution of the molecular wave function, has been
discussed in Ref. [35] consisting in the application of a phase
gate on each qubit with the phase specified by θkk (t j ). Fol-
lowing the same reference the exponential of a string of Pauli
operators has been implemented; in this work we considered
three different implementations of the circuit accounting for
e−iH̃x,y (t )	t as summarized in Table I. The second circuit is ex-
actly the implementation of the mapping we presented in the
previous section where the string of σz (CNOT cascade) has
been disregarded. Furthermore we also considered a modifi-
cation to the previous circuit in which all the gates accounting
for the operations containing the exponential of σxs and σys
are performed separately in order to diminish the single-qubit
operations needed to rotate the single-qubit states into the
correspondent σx/σy eigenstate basis.

Finally, we highlight that on top of the TS approximation
of Eq. (14) the off-diagonal evolution is also approximated by
a first-order product formula; in fact the Pauli string operators
arising from different pair of states do not, in general, com-
mute. As a consequence we have

e−iH̃x,y (t )	t ≈
∏
λ

�(αλ(t j )) =
∏
λ

�x(αλ(t j ))�y(αλ(t j )), (15)

where � is a shorthand for the boxed circuits (second row of
Table I) and the last identity emphasizes the factorization of
the circuit in two parts due to the σx and σy terms.

3. Quantum algorithm complexity

A sufficient condition for an algorithm to be told efficient
is that each step of its implementation must be accomplished
in a number of operation and by requiring an amount of
resources which increase polynomially with the system size
[40]. Here we consider in more detail the complexity of our
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TABLE I. Quantum circuits representing the coupling of different electronic states in the presence of an external perturbation. Here q and
p correspond to different CI eigenstates, and λ is a shorthand for an arbitrary couple of states. In the first circuit a readaptation of the JW
mapping in the n-electrons basis is shown; notice that with this approach an additional string of σzs is present. Dashed lines of the CNOT
gate stand for a CNOT cascade between all the qubits with label greater than q and lower than p. Dashed boxes refer to the σx contribution,
and dotted boxes refer to the σy part. Notice that the last circuit, unlike the previous ones, refers to the implementation of the whole operator
e−iH̃x,y (t )	t .

implementation to show that the number of operations scales
polynomially with the dimension of the Hilbert space of the
molecular n-electrons states. It is important to notice that,
even though the implementation is efficient, the number of
Slater determinants required still scales exponentially with
the number of electrons and spin orbitals used; as such we
will also comment on other options that represent different
compromises in terms of quantum hardware budget. We also
point out the interesting analysis proposed in Ref. [33] where
quantum circuits to switch encoding during the computation
are presented and suggested as a possible strategy to im-
prove the ratio between efficiency of the implementation and
quantum hardware requirements. Further we will not discuss
either the efficiency of the state preparation algorithm for a
many-fermions state or the efficiency of the evolution algo-
rithm (Trotter-Suzuki decomposition) as they are both very
well known techniques in the area of quantum simulation
[34,38]. To this extent, as a first point we consider the qubit
efficiency of the encoding scheme; our mapping provides a
linear scaling, with respect to the number of qubits, of the
Slater determinants’ encoding. In fact, as we have pointed out
previously, the electronic state |k〉 is mapped onto the bitstring
state with all the qubits in state |0〉 but the kth qubit. This
implies that, considering the Hilbert space resulting from the
tensor product of the individual qubits space, we are limiting
our interest to a subspace made up of Q bitstring states.
Furthermore, even considering error correction procedures
needed for fault-tolerant quantum computation, the qubit scal-
ing remains linear since O(Q) additional qubits are needed
for their implementation [41]. Now, concerning the number of
operations needed to simulate a single-step evolution operator
[Eq. (14)], we will consider separately the contributions due
to the diagonal elements of the Hamiltonian (i.e., e−iH̃z (t j )	t )

and the ones arising from the off-diagonal elements (i.e.,
e−iH̃x,y (t j )	t ). The former unitary operation needs exactly Q
single-qubit operations to be performed; the latter, as shown
in Table I, have been considered in different versions. The
first circuit shown in Table I, i.e., the one not considering any
constraint on the occupancy of our fictitious Fock states, rep-
resents an upper bound for the estimation of gate complexity
of this implementation. Due to its hermiticity, this operator has
Q(Q − 1)/2 independent terms, each of which can be imple-
mented with 2Q two-qubit operations, as discussed in detail
in Ref. [42]. Altogether we get a total gate count ∼O(Q3). We
can reduce the two-qubit operation complexity of one power
if we consider a circuit in which we make explicitly use of the
mapping boundary within the single-occupancy Fock space
(second row of Table I). In this situation each term of Eq. (15)
needs only two CNOT gates, leading to a total gate count of at
most ∼O(Q2). Of course the matrix associated with H̃x,y(t j )
may be sparse, reducing the scaling or at least the prefactor.
It may be worth noticing that these considerations do not take
into account that the actual implementation of a two-qubits
gate on the hardware could require additional O(Q) opera-
tions, as not all the qubits in the quantum processor interact
directly between each other. On the downside, this encoding
exploits only a subset of the computational space of the quan-
tum hardware. Specifically, the dimension of such subspace is
the same as the number of qubits. Anyway, the idea can be
extended by considering mapping to larger subspaces, such
as double, triple, etc., excitation vectors (e.g., vectors with all
the qubits 0 but two or three or more). The dimension of such
space is the binomial coefficient

(Q
m

)
, where m is the excitation

order. While using a larger sharing of computational space,
such subsets require a larger number of CNOT gates to encode
each term of Eq. (15), since in the m-excitations subspace one
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needs strings of 2m Pauli matrices (with m � Q/2) to specify
a particular bitstring state; each term is a sum of 22m−1 of such
strings. Depending on the features of the quantum hardware
and the problem at hand, the best m-excitation subspace may
be chosen.

Other options for the mapping can be considered as well,
such as the use of a binary mapping to encode the Slater
determinant integer label (sorted, for instance, according to
increasing energy ordering) and the bitstring state of the com-
puter. In this case we will have a qubit register dimension of
log2 Q. This option has been considered in Ref. [19]; even
though more efficient from an information storage standpoint,
this mapping requires more complex expressions for the Pauli
representation that, in turn, imply a greater number of two-
qubit gates. Again, we notice that the choice of the mapping
should be done carefully evaluating the balance between cir-
cuit depth, classical, and quantum computational resource
requirements.

To conclude this discussion we recall that, in the particular
application considered in this work, i.e., the quantum simu-
lation of a time-dependent Hamiltonian, the total complexity
must take into account also the number of propagation steps
K needed. As a consequence, the final estimation of the two-
qubit operations for our circuit is ∼O(Q2K ), still ensuring the
efficiency (as defined above) of the implementation.

B. Optimization of the J functional

Different approaches are available to optimize the J func-
tional [Eq. (1)] with different pros and cons depending on the
system under study and the purpose of the optimization [9]. A
notable example is represented by the well-established Rabitz
algorithm [10], which shows excellent convergence properties
both in vacuum and in the presence of a solvent [43]. Despite
its success, this algorithm is intrinsically unsuitable to be used
coupled with a quantum simulation algorithm, as it requires
the knowledge of the state of the system at each instant of
its evolution. This means we should measure the state of the
quantum computer at each time step, nullifying the advantages
of the quantum procedure. Notwithstanding, in the choice of
the final algorithm to be used for our procedure, we have kept
the Rabitz algorithm as a reference to asses the quality of our
results.

In this work we follow the idea of Li et al. [18] working out
a hybrid algorithm in which quantum computation accounts
for propagating the system wave function under the influence
of the external field, while an external classical algorithm
optimizes a set of control parameters for the field. The reason
behind our choice is that, doing so, we are able to assign to the
quantum processor the computationally most demanding part
of the algorithm (i.e., the propagation of the wave function
and consequently the evaluation of the functional J) leaving
to the classical computer the task of choosing how to proceed
in the control parameter landscape exploration. Nevertheless,
exploitation of quantum search algorithms in conjunction with
the quantum simulation circuits discussed above (see Table I)
could allow a further speedup of this implementation. The last
point is still an open problem and could be the subject of a
future work.

Differently from Li et al. [18], we focus on classical op-
timization algorithms that do not require the knowledge of
the gradient of the objective function with respect to the
optimization parameters. As a matter of fact, calculating the
gradients adds extra noise to the procedure, as noted for VQE
[44]. A first possibility that we considered for the classical
optimization procedure is the Nelder-Mead (NM) algorithm
[45], which has been applied successfully in the CRAB and
DCRAB methods [46,47] and has been the choice for various
hybrid quantum classical approaches to determine the elec-
tronic structure [17]. This algorithm is a direct search method
which first constructs a simplex in the multidimensional pa-
rameter space, and then modifies the simplex at each iteration
under a set of predefined rules moving its centroid towards
a minimum (hence the alternative name of downhill simplex
method). Even though this method has been proved extremely
robust [48], at the same time is affected by a very slow
convergence rate, already considering a few tens of control
parameters [49], as we will show in the Results section.

From a broader perspective, optimal control is an instance
of optimization problems where machine learning (ML) has
shown high potential [12]: for this reason, in order to improve
the performance of the optimization algorithm, we decided
to implement a GA [50], which is a direct search method
evaluating multiple copies of the system and combining
the best results to create a better generation, hence the name
“genetic algorithm.” In our case the algorithm propagates the
system under the influence of different fields, and then the
fields parameters are modified learning from the best results
obtained (see Sec. II). We may notice that both in NM and
GA methods a simple and massive parallel implementation
is possible, as we are dealing with algorithms which rely on
several independent evaluations of the functional J.

In both these options, we need to find a set of control
parameters a that explicitly define the shape of the external
perturbation (the field) in order to optimize the evolution of
our system and the value of the functional J. To obtain such a
parametric dependence we decided to write the laser pulse as

Ēa(t ) =
∑

α

ūα

[
a0,α +

M∑
j

a j,α sin
( jπt

T

)]
, (16)

where ūα is a unit vector with direction specified by the index
α running over the three Cartesian components.

Here the field takes the form of a sum over different har-
monics with frequency ω j = jπ

T , where T is the time duration
of the laser pulse. The subscript emphasizes the parametric
dependence on the set of amplitudes a which are, ultimately,
our set of control parameters. We chose to use predetermined
ω j values corresponding to Fourier frequencies, which have
the advantage of describing a field which starts and ends at
zero (provided it has no constant component a0) and thus more
easily obtained with an experimental apparatus. Moreover, if
a specific frequency range has to be considered due to partic-
ular experimental limitations, this is easily accomplished by
choosing the terms to include in the summation of Eq. (16).
It may be worth noticing that alternative optimization algo-
rithms implemented the optimization of the frequencies as
well as of the amplitudes, in order to allow the systems to
reach the global optimal solution [46]. In our work the opti-
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mization of the amplitudes alone was enough to escape local
minima and reach a satisfactory optimal solution, due to the
implementation of the evolutionary algorithm. Nevertheless,
it would be possible both for the NM and the GA optimizers
to include the frequencies in the optimization procedure. In
the specific case of the GA it would be a straightforward
procedure that would be easily implemented at only the price
of increasing the number of optimization parameters.

Genetic algorithms to optimize J

Due to the quantum nature of the subroutine which com-
putes the value of the fitness function, we decided to rely
on a gradient-free optimizer. One of the most popular and
transferable choices for a reliable algorithm in a multidimen-
sional space are genetic algorithms, considered to be part of
the broad family of machine learning techniques.

The term genetic algorithms is due to the inspiration that
these optimization strategies draw from the process of devel-
opment of new species that takes place in nature [50]. As
the physical performance and the consequent success of an
individual within a herd are related to the chromosomes, so
the value of a function f (x) depends on the variables x. In
this picture the performance of an individual (i.e., the value
assumed by the function f ) is completely specified by its
genes (i.e., the value assumed by the set of variables x). In
GAs several initial sets of parameters are generated (either by
an educated guess or at random) thus forming a population
of individuals; the optimization of the function is provided
by letting the population evolve, forming a new generation of
individuals, in accordance with the foundational rules of the
evolution process (note that in our implementation the size of
the population is kept constant, nonetheless alternatives with a
varying number of individuals are possible). In our case each
individual is a vector of amplitudes a describing the field used
to evolve the wave function of the system in its final state.
Generally speaking, the final state is the objective function of
the algorithm and can be determined by numerical calculation
or experimentally. Each of the individuals is then rated accord-
ing to its fitness, which describes the success of the individual
parameters. From our standpoint it is easy to understand that
the fitness function corresponds to the J functional. The fitness
could be determined also from an experimental procedure,
measuring any observable effect consequent to the electronic
excitation, as charge transfer or light emission.

Concerning the mimicking of the evolution process, three
main traits are usually considered in this framework: selec-
tion, recombination, and mutation.

(a) Selection. An example of biological merit is the trans-
fer of one’s own genetic kit: this is most commonly achieved
by successful individuals. This behavior can be transferred
in the implementation of a GA in different manners [51,52].
We chose to build the next generation on top of the best m
individuals. It is important to notice that the ratio between the
selected individual and the size of the population ( m

n ) is a crit-
ical parameter: indeed, if a too small number of individuals is
selected, important features allowing to drive the optimization
to the global minimum may be lost determining a premature
convergence. Conversely, if too many individuals influence
the next generation the successful traits could not emerge.

This behavior would result in an optimization resembling a
random exploration of the parameter landscape.

(b) Recombination. Once a subset of the population is se-
lected to give birth to the new generation, the recombination
process occurs. Here two individuals are chosen randomly
between the selected ones, and their amplitudes are mixed
to give a new child vector. There are different flavours of
recombination which allow more or less mixing of the two
parent individuals. In our algorithm, each amplitude in the
final new vector has 0.5 probability to come from one or the
other parent. As a consequence, recombining the same two
individuals a second time does not give the same child.

(c) Mutation. With the last procedure (i.e., recombination)
the rules to compute the offsprings are set. Nevertheless, even-
tually, a mutation can arise changing randomly a gene in a
certain individual. In our implementation this phenomenon
is performed summing a random number to an individual
amplitude. Each random number is extracted from a Gaussian
distribution specified by a value of mean μ and standard
deviation σ . We point out that the mutation is a nondetermin-
istic process happening for each amplitude of each individual
with a given probability P. In this implementation the choice
of the three parameters (namely, μ, σ , and P) is crucial to
guarantee a sufficient exploration of the parameter landscape;
in particular higher values of these three parameters lead to a
higher chance and entity of the exploration.

Mutation and recombination can be combined in different
ways to finally obtain the full population starting from the
subset of selected individuals. Parameters for mutation and
recombination can change during the evolution depending
on the fitness behavior. Generally speaking, recombination
favors convergence toward a (local) solution, while mutation,
as already mentioned, favors exploration.

The three steps described so far constitute the main blocks
of the genetic algorithm we adopted in this work. It is im-
portant to notice that a genetic algorithm reaches the global
minimum of a multivariate function, as at each iteration it
acquires more information about the position of the minimum.
The learning loop is actually made by the evolutionary process
and it is efficient only when an accurate balance between
recombination and mutation is, achieved, avoiding, in this
way, to get stuck in local minima or, on the other hand, to
lose information due to an excessive mutation rate of the
individuals.

Despite the number of choices needed to set up an evo-
lutionary procedure, most of the optimization problems are
robust with respect to a large interval of values for the param-
eters, with the difference between different choices translating
mainly in a faster or slower convergence towards the optimal
solution; see Appendix B for an account of the GA im-
plementation performance with respect to increasing system
complexity. Our final choice was very simple: we recombine
the subset of individual to obtain the full population (e.g., 60
starting individuals, 10 selected and recombined randomly to
return 60 new individuals), and then we mutate all of them
(i.e., each amplitude of each individual is mutated with a
given probability). Several different choices could have been
adopted to improve the efficiency of the algorithm and im-
plement an automatic behavior; nevertheless our purpose was
to find a simple algorithm able to work efficiently combined
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TABLE II. Genetic parameters adopted in the numerical applications. Different values have been considered for the complete set of excited
state (first column) and for the smaller subset (second column). Likewise different parameters have been adopted to enhance a converging or
exploring behavior. In brackets, when needed, values adopted in the hybrid implementation to reduce the computational cost.

11 states 3 states

Exploration Convergence Exploration Convergence

Individuals 70 (80) 70 (50) 40 40
Selected individuals 10 10 10 10
Precombination 1 1 1 1
Mutated individuals 70 (80) 70 (50) 40 40
Pmutation 0.2 0.2 0.2 0.2
μ 0 0 0 0
σ 0.001 0.0001 0.001 0.0001

with a propagation performed on a quantum computers. More
details on the choice of the parameters are given in the follow-
ing section. As shown in Sec. IV, the results obtained were
satisfactory.

III. COMPUTATIONAL DETAILS

All the calculations were performed with OCPy [53], a
homemade stand-alone Python software which features all the
possibilities we have considered so far, i.e., hybrid or classi-
cal propagation coupled to different optimization algorithms,
like Rabitz, GA, NM, and Broyden-Fletcher-Goldfarb-Shanno
(BFGS) methods.

A. Quantum chemistry calculations

Geometry optimization of the cyanidin molecule was ob-
tained using the NWChem software [54] at the density func-
tional theory (B3LYP, cc-pVDZ) level of theory. The first 10
electronic excited states were computed with GAMESS [55]
at the CI single (CIS) level of theory using a 6-31G∗∗ basis
set. The suitability of the number of excited states considered
to evaluate the optimal dynamics involving a sufficiently large
set of electronic states is assumed on the basis of a previous
related work [43]. It may be worth noticing that, when QOCT
is applied to an actual experimental situation, a more accurate
description of the system is needed; the CIS method is usually
affected by excitation energies overestimation [56]; never-
theless an accurate description of the molecule electronic
structure goes beyond the purpose of the present study.

B. Optimization procedure

As previously mentioned, our aim is to maximize the pop-
ulation transfer between the ground state |GS〉, that we set as
the initial state |ψ0〉, and a given excited state, here the first
excited state, |1〉. We applied the optimal control procedure
considering both a manifold of 11 electronic states (the ground
state plus the first 10 excited states) and a smaller subset
consisting in the ground state and the first two excited states.
For sake of brevity, in the following we will refer to the former
as system Cyan11 and to the latter as system Cyan3.

The duration of the laser pulse is set equal to 250 a.u., i.e.,
≈6 fs. The reason to focus on this kind of perturbation is that
a genuinely selective pulse is such if the electron dynamics
is fast enough to occur in the manifold of electronic states

unaffected by the consequent nuclear relaxation. In fact, as
shown in Ref. [57], a π -pulse (i.e., a light pulse which causes
population inversion in a two-level system) is not able to
achieve the desired result in such a short time. In all cases
in which we consider a classical method to compute the nu-
merical propagation of the wave function we have adopted
a Euler propagation method using a time step of 0.01 a.u.
(i.e., ≈2 × 10−4 fs); other, more robust, methods are possible
(e.g., operator splitting technique in Ref. [57]), but never-
theless the choice of Euler propagator was done to keep the
procedure as simple as possible and focus our discussion on
the comparison between the classical and the hybrid imple-
mentation.

Concerning the parameters choice for the reference al-
gorithms (Rabitz and BFGS), the initial guess field is a
sinusoidal laser pulse resonant with the transition of interest
(|GS〉 −→ |1〉, ω = 0.125 a.u.) with amplitude set equal to
0.01 a.u along all the three coordinates. To enforce small
values of the field amplitudes we set the penalty factor α(t )
equal to 10 (value in a.u., i.e., e2a2

0 h̄−1E−1
h ) and kept constant

throughout the evolution. NM calculations were performed
with the initial guess simplex built upon the same guess pulse
of the Rabitz algorithm by modifying per each vertex, one at
the time, the value of a single component of a. More specifi-
cally, if the ith component of the guess field is null it is auto-
matically set to 0.00025 a.u., otherwise it is increased by 5%.

In Table II we show the genetic parameters adopted for our
numerical calculations. We decided to alternate optimizations
runs favoring exploration of the landscape and convergence
runs towards the optimal solution. The only difference be-
tween the two is the value of σ in the mutation procedure.
A larger sigma means that the random numbers added dur-
ing mutation span a larger interval, favoring exploration. In
the exploration runs σ value is equal to 0.001 a.u., while
in the convergence one it is equal to 0.0001 a.u.. Our first
and simpler choice was to perform only two runs, the first
favoring exploration and the second favoring convergence.
Depending on the system, a different number of iteration is
needed: regarding Cyan11 the total number of generations
was 100 (50 generations of exploration and 50 generations
of convergence), with a population size of 70 individuals.
On the other hand, considering the case of Cyan3, the com-
plete computation consisted of 30 generations (15 generations
of exploration and 15 generations of convergence), with a
population size of 40 individuals. Subsequently, we worked
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TABLE III. Noise models adopted in the numerical applications. Different error probabilities have been considered in order to assess the
behavior of the genetic algorithm to the increase of the noise during the execution of the quantum simulation circuit. In brackets we give
the error probability for two-qubit operations. Depending on the different kind of noise used and their intensity, in the paper we refer to the
different models with the following shorthand: - model (BF model); depolarizing error on single-qubit gates [SQ depol. (1) or SQ depol. (2),
depending on the intensity]; and mixed model when both the previous channels are included.

BF model SQ depol. (1) SQ depol. (2) Mixed model

Depolarizing channel probability 0 (0) 1 × 10−5 (0) 5 × 10−5 (0) 5 × 10−5 (0)
Bit-flip channel probability 1 × 10−5 (1 × 10−5) 0 (1 × 10−5) 0 (5 × 10−5) 5 × 10−5 (5 × 10−5)

in reducing the number of iterations and replicas in order
to lower the computational effort when the propagation is
performed on the 11 qubits computer. Here we performed
six runs made of 10 iterations alternating convergence and
exploration until the algorithm achieves a threshold value for
the target state population (that we set equal to 0.95). Then
we end out optimization with a convergence run made of 40
iterations. Altogether the total number of iterations is still 100.
Here there is a further difference between the exploration and
convergence run, apart for the value of σ : indeed during the
exploration phase a larger population size has been adopted
(80 individuals), while the convergence run has been per-
formed with a population size of 50 individuals. This tailoring
of the optimization procedure was made specifically for the
problem under study (i.e., system and hardware) and does not
claim to be general or optimal. It was chosen on the basis of
the obtained performance and can be improved or replaced
depending on the final purpose, usually exploiting a small
number of test runs. Finally, the value of the penalization
factor for all the numerical calculations performed with the
GA was kept constant and equal to 1 a.u. as in this case to
limit the intensity of the field is more effective to choose the
amplitude within a fixed interval, ±0.005 a.u.

C. Quantum propagation

Quantum circuits accounting for the propagation were built
due to the Python library Qiskit [58]. The time step 	t used
for all our simulations is equal to 1 a.u. (i.e., ≈2 × 10−2 fs);
see Sec. IV for a more detailed account on the benchmark
of the propagation. All the results concerning the hybrid im-
plementation of the optimal control algorithm were obtained
using the second circuit of Table I. In all the computations
performed on a quantum hardware we used the five-qubit
chip IBM Q X2 [59]; analogously all the noisy simulations
were carried out including single-qubit measurement errors,
thermal relaxation, and depolarizing noise tuned upon ex-
perimental parameters of the same quantum processor. Each
circuit (for both quantum state tomography and quantum sim-
ulation) has been run 2048 times to build relevant statistics.

Implementation of the hybrid algorithm in the presence of a
noisy simulation was accomplished considering four different
kinds of noise models. The standard approach to describe an
error in quantum information science is to model the error
event as a transformation of the qubit (or qubits when it is
the case) state [41]. These general transformations are usu-
ally named quantum channels. The bit-flip channel depicts
a situation where for each operation we carry on the qubit
register (i.e., one- or two-qubit gate) there is a probability
p for the state of the qubit(s) to be flipped, otherwise (i.e.,

with probability 1 − p) it is left unchanged. Similarly, the
depolarizing channel refers to a transformation of the qubit(s)
state to the maximally mixed state with probability p, else the
identity applies. These types of error have been combined to
obtain the models summarized in Table III.

IV. NUMERICAL RESULTS

In this section we provide the results of the numeri-
cal applications of the hybrid algorithm (and corresponding
classical benchmark) to the cyanidin molecule, see Fig. 2.
Cyanidin is an interesting system where the excitation from
the ground state to the first excited state |1〉 has been proved
of fundamental importance for its role in the charge separation
process in natural dye-based solar cells [60]. We applied the
optimal control procedure to a cyanidin molecule, considering
both a manifold of 11 electronic states (the ground state plus
the first 10 excited states) and a smaller subset consisting in
the ground state and the first two excited states. For sake of
brevity, in the following we will refer to the former as system
Cyan11 and to the latter as system Cyan3. Showing the
results for the system Cyan3 will allow one not only to em-
phasize which dynamical features are lost when considering a
too small subset of electronic states for the optimal problem,
but also to establish a clearer connection with the results of the
last section. In fact, to conclude the results section, we provide
a performance analysis of the quantum simulation algorithm,
referring to the particular case of system Cyan3, on IBM Q
devices.

A. Benchmarking the quantum simulation circuit

In Fig. 3 we compare the time evolution (upper panel)
of the first three states of cyanidin (for Cyan11) under the
influence of an ultrashort laser pulse (bottom panel) ob-
tained with different methods. In particular we consider the

FIG. 2. Optimized structure of the cyanidin molecule. Color
code: (gray) red = O, dark gray = C, white = H. Oxygen atoms
are highlighted with a ball representation.
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FIG. 3. Upper panel: time evolution of the ground state (green solid line) and first two excited states (|1〉, blue dashed line; |2〉, red
dashed-dotted line) of cyanidin. Lines represent the evolution computed with Euler first-order propagation (	t = 10−2 a.u.). Stars (	t = 1 a.u.)
and dots (	t = 5 a.u.) are computed simulating the quantum circuit representing the time evolution operator (see Table I); stars are reported
every five steps. Bottom panel: laser pulse driving the evolution of the electronic states. Only one component is shown. (Right panel) Absolute
deviation 	ε between the classical benchmark algorithm (Euler first-order) and the simulated quantum circuits implementing the TS-PCA
algorithm with different time steps. Dashed lines at 	ε = 0.02 pose a threshold value for the minimum acceptable accuracy.

dynamics computed integrating the TDSE with a classical
algorithm (first-order Euler), represented in figure by the solid
line, and the evolution obtained adopting a simulated quantum
circuit derived in the previous section based on the TS-PCA
algorithm; see Sec. II. As a first consideration we may notice
that the TS-PCA algorithm is able to reproduce the dynamics
driven by the laser pulse; moreover it may be worth noticing
the extreme robustness of the quantum algorithm with respect
to the time step choice: our benchmark solution has been
obtained with a time step 	t = 0.01 a.u. (≈2 × 10−4 fs). On
the other hand, the evolution computed simulating the quan-
tum circuit (stars in the figure) represents the result obtained
with a time step equal to 1 a.u. while the dots are obtained
setting 	t = 5 a.u.. In both cases the simulated quantum al-
gorithm recovers the qualitative information of the dynamics.
To assess quantitatively the accuracy of the numerical solution
we show in the right panel the absolute deviation 	ε of the
TS-PCA propagation from the reference values of the classical
algorithm using different time steps. A reasonable threshold
for 	ε is 0.02 (dashed lines in figure) which is never exceeded
when 	t = 1 a.u.; conversely we may notice that a higher
time step, even though still useful for a qualitative inspection
of the system, provides a much higher inaccuracy. For this
reason all the results we will consider from now on have been
obtained with a time step of 1 a.u.

B. QOCT: Classical implementation

Figure 4 shows the results for the optimal problem applied
to cyanidin molecule with a fully classical implementation.

Here our aim is to compare the efficiency of the different
approaches considered in this work. For this reason we will
show only the results obtained for system Cyan11, as similar
considerations apply for the simpler case of system Cyan3.
Values for the functional J [see Eq. (1)], target state popula-
tion and field fluency are shown. As a first comment, we can
see that the NM algorithm is completely outperformed by GA,
BFGS, and Rabitz algorithms; in fact, we cannot appreciate
a substantial improvement for any of the values reported.
Actually, an additional order of magnitude of iterations are
needed to achieve results of comparable quality to that of the
other two algorithms. It is important to stress that this result
is general, regardless of system specifics, and well established
within the optimization community [49].

On the other hand the performance of the GA, even
with our very simple strategy, is satisfactory and competi-
tive with respect to the reference algorithms, as in all cases
the optimization is capable of achieving an almost complete
population transfer within the same number of iterations.
Regarding the value of the J functional, it is important to
notice that, as mentioned in Sec. II B, we have adopted a
different strategy for penalizing high fluency in the reference
algorithms and in the GA. Concerning BFGS and Rabitz’s
algorithm, we used α(t ) = 10 a.u.; for the latter, we included
no α(t ) in J but imposed an external maximum threshold
for the absolute value of the amplitudes. Hence we see the
discrepancy between Fig. 4(a), where GA shows a higher
value of J , and Figs. 4(b) and 4(c), where Rabitz or BFGS
results are equal or better than the ones obtained with the GA.
Particularly for the field integrals values, it is clear that the
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FIG. 4. Optimal control applied to cyanidin with different approaches (fully classical implementation). Plots of J (a, d), target state (|1〉)
population (b, e), and field fluency (c, f). Bottom row plots show a comparison between two different strategies for the implementation of the
GA; green solid line refers to the two-step strategy for balancing convergence and exploration; purple triangles on top of the solid line refer
to the less computationally demanding scheme which alternates multiple times greater or lesser exploration of the optimization landscape. All
plots refer to system Cyan11.

best result is achieved by the BFGS algorithm. This last point
should be interpreted considering that we are comparing a
general purpose gradient-free algorithm (GA) with a gradient-
based optimization or with an algorithm whose fundamental
working equations are problem-dependent: such an accuracy
could likely be achieved, within the framework of GAs, with
a finer tuning of the parameters, which, again, is a problem-
dependent task, or by increasing the number of iterations. An
in-depth analysis of the resulting electric field is presented in
Appendix C.

The bottom row plots of Fig. 4 show a comparison of the
GA results obtained with two different strategies to balance
convergence and exploration. The green solid lines in the
upper and lower panels refer to the same results, obtained
with the simpler two-step exploration and convergence proce-
dure; purple solid line shows the results for the same control
problem but with the computationally less demanding scheme
which alternates several times exploration and convergence
(see Sec. II B for details). This second choice will be adopted
in our hybrid implementation to reduce the cost of simulating
an 11-qubit device: as we can see they are almost equivalent
considering both performance and final results.

C. QOCT: Hybrid implementation using classical quantum
emulator software

The aim of this section is to present the results of the
hybrid implementations for both system Cyan11 and system
Cyan3. In particular Fig. 5 shows values for J , population of
the target state and field fluency as a function of the iterations;
upper row panels refer to system Cyan3, middle row panels

to system Cyan11, and bottom row panels show a comparison
between the hybrid and classical implementation adopting GA
as optimization strategy. Again we can see that also in the
case of a simpler problem, i.e., optimal population transfer
for system Cyan3, the NM algorithm displays a slow growth
rate. Conversely GA, BFGS, and Rabitz algorithms are able
to reach a complete population transfer in fewer iterations.
Regarding field fluency values of Fig. 5(g) we can notice a
smaller discrepancy [with respect to what shown in Fig. 5(h)]
between GA and the reference algorithms that can be ascribed
to the fewer control parameters [Eq. (16)] used than in the
case of system Cyan11; see Appendix A for a discussion
on the improvement of GA performances of field fluency
values. It may be also worth noticing that in the case of
this smaller system the BFGS and Rabitz algorithm have an
equivalent performance also regarding field fluency values.
Concerning the results obtained for system Cyan11 we can
notice that all the considerations made in the previous section
still hold. Finally, in Fig. 5 (bottom panel), we can appreciate
the equivalence (in as much as we compare two results of a
nondeterministic algorithm like the genetic one) between the
classical and hybrid implementation as a further proof of the
reliability of the quantum simulation algorithm. An analysis
of the resulting optimized fields in terms of frequencies is
given in Appendix C.

D. QOCT: Hybrid implementation simulating a noisy device

Here we discuss the results regarding the solution of the
control problem for Cyan3 in the presence of different noise
models; see Fig. 6. As mentioned in Sec. III, we considered
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FIG. 5. Optimal control applied to cyanidin with different approaches. Plots of J (a–c), target state (|1〉) population (d–f), and field
fluency (g–i). Color code: purple (triangles), classical implementation coupled to the GA optimizer; gray (dashed-dotted line), classical
implementation coupled to the BFGS optimizer; blue (solid line), Hybrid implementation coupled to the GA optimizer; yellow (dotted line),
hybrid implementation coupled to the NM optimizer; red (dashed line), Rabitz algorithm. Upper row plots show the results for system Cyan3.
Notice that all the results shown for the GA are obtained with the optimized scheme assessed in the previous section (see Fig. 4).

four different noise models to assess the robustness of the
GA with respect to a stochastic behavior of the function due
to device imperfections. Single-qubit error probability ranges

from 1 × 10−5 (BF Model) to 1 × 10−4 (mixed model) per
gate execution, while two-qubit operations reach a maximum
error probability of 5 × 10−5 (see Table III). Even though

FIG. 6. Optimal control with a noisy simulation of the quantum device. Plots of J (a), target state (|1〉) population (b), and field fluency
(c). Different noise models (see Table III) have been used to assess the robustness of the GA with respect to different error probabilities in the
function evaluation. Legend: upward blue triangles, noise free; orange squares, BF model; green dots, SQ depol. (1); red downward triangles,
SQ depol. (2); purple diamonds, mixed model. Dashed lines represent a reference value obtained with the optimal solution given by the BFGS
optimization in the presence of the corresponding noise model. All plots refer to system Cyan3.
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TABLE IV. Target state population P|1〉(T ) at time T for system
Cyan3. Evolution driven by the optimal field obtained as result of
the control problem (see Fig. 6) under noise-free conditions.

BF model SQ depol. (1) SQ depol. (2) Mixed model

P|1〉(T ) 0.9980 0.9968 0.9977 0.9984

our models assume much longer coherence times than the
current ones (we have disregarded thermal relaxation errors),
very recent contributions suggest that such models will be
realistic for quantum processors available within a few years
[61]. As we can see in Fig. 6 we reported values of the J
functional [Fig. 6(a)], target state population [Fig. 6(b)], and
field fluency [Fig. 6(c)]. As the noise increases we can see
how the optimization reaches convergence at lower values of
the functional. Nevertheless it is likely that, depending on the
function evaluation accuracy, the maximum value of J reach-
able with the optimization decreases while not necessarily
affecting the quality of the optimal result. To better understand
this observation we reported [dashed lines in Figs. 6(a) and
6(b)], for each different noise model, the value obtained by
executing the circuit which simulates the evolution driven by
the optimal pulse found with the BFGS algorithm in Fig. 5.
As we can see, the GA approaches J values very similar to the
ones obtained in noise-free conditions with a gradient-based
optimization. We may notice that in some cases (namely, red
downward triangles and purple diamonds) the field obtained
by performing the optimization in the presence of noise is
performing slightly better than the optimal field found by the
BFGS optimization in noise free conditions; we suppose that
this behavior can be related to the fact that the field found
with a noisy optimization drives the quantum computer wave
function through states more resilient towards depolarizing
or bit-flip errors. Further studies will be dedicated to address
this point. On the other hand Table IV provides the comple-
mentary data for this analysis: target state population at time
T obtained with the optimal field corresponding to different
noisy optimizations. As we can see GA show excellent noise
resiliency by providing fields that completely populate the
target state. This feature could be provided by two concurrent
factors: first, the algorithm is forced to retain the best solu-
tion found within a set of individuals (the functional grows
regardless of the correctness of the propagation) and, second,
each individual represents an independent propagation (i.e.,
more chances of obtaining physically meaningful information
when the errors are not too big).

E. Results on IBM Q hardware

Up to now we presented results obtained on classical hard-
ware, disregarding the effect of any noise in the quantum
propagation or considering mild effects that do not yet cor-
respond to the current technological situation. In this section
we focus on the last issue. Due to the early stage of current
quantum computer development, we were able to perform
noisy simulations and actual computations on the IBM Q X2
hardware [59] only for the system Cyan3. We have limited
our analysis to this simpler system as enlarging the elec-

tronic states subspace quickly prevents from distinguishing
the characteristics of the different circuits implemented; in
fact, due to the complexity of the investigated dynamics,
the noise associated to the number of two-qubit operations
needed for a system larger than Cyan3 would determine a
complete suppression of the simulated wave function evolu-
tion. To quantify the effect of noise, we compute the fidelity
between the density matrix reconstructed via quantum state
tomography (QST) and a reference state obtained simulat-
ing the circuit in noise-free conditions. The choice of the
hardware (among the available IBM Q devices on cloud) has
been dictated by the high interqubit connectivity required by
the simulated Hamiltonian; indeed, in order to minimize the
number of additional gates needed to implement the circuits of
Table I (which assumes an all-to-all connectivity) in the actual
computers, the device with the highest number of connections
has to be preferred.

As a general consideration we observe, as expected, that
as the number of gate counts increases (i.e., the depth of the
circuit increases) we obtain a result farther from the classi-
cal benchmark; more explicitly, as mentioned in Sec. II, the
number of operations grows linearly with the propagation
steps [Figs. 7(b) and 7(d)] thus determining lower fidelity
values [Figs. 7(a)–7(c)]. Our aim is to present these results
as example to assess the technological gap that still has to
be covered to exploit in this perspective our simulation al-
gorithm. Clearly, as the depth of the circuit depends on the
time duration of the pulse T , a profitable use of a quantum
hardware with this algorithm is not likely at the present time;
indeed, as we can see, after 20 steps of the propagation in all
cases the state of the computer reaches a value of F equal
to the value of thermal state that, according to Ref. [62]
is 1

N with N equal to the dimension of the Hilbert state of
the quantum processor. Nevertheless these plots allow us to
understand the importance of an accurate synthesis of the
circuit as, exploiting the particular connection of our map-
ping with the single-occupancy Fock space (second circuit
in Table I) we were able to obtain significant improvements.
Indeed, we can see that the readaptation of the Jordan-Wigner
mapping on the electronic configuration space (upper circuit
in Table I) has a worse performance both in terms of fidelity
and number of operations. To further improve the quality of
the results we considered equivalent circuits obtained with
an optimization routine (named transpilation) implemented in
Qiskit, which allows one to reduce gate counts when a given
circuit is mapped on to the topology of a particular hard-
ware [63]; optimal compilation is a complex task that aims
to minimize the performance loss due to the mapping on a
limited connectivity hardware by exploiting gate cancellation
and permutation rules to find the best virtual-to-physical qubit
mapping and logical-to-native circuit mapping [64]. As shown
in the bottom panels of Fig. 7 even though these improvements
are significant when larger propagation steps are considered,
we were not able to reach better fidelity values. We note that
our reordered circuit (bottom circuit in Table I) does not get
any significant improvement by this procedure. As a further
assessment, in Appendix D we discuss the probability dis-
tributions obtained measuring the computational basis states
population, that confirm the considerations outlined here from
the fidelity plots.
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FIG. 7. (a, c) Fidelity of quantum state vs propagation steps for noisy simulations of system Cyan3 (dashed lines) and actual experiments on
IBM Q X2 (dotted lines). Panel (a) refers to the circuits in Table I, and panel (c) shows the results for the equivalent circuits after transpilation.
Color code: blue (dots and upward triangles), Jordan-Wigner mapping readaptation in the n-electrons basis; orange (downward triangles and
stars), single-occupancy Fock space mapping; green (crosses and squares), reordered single-occupancy Fock space mapping. (b, d) Total gate
count vs propagation steps; same color code is used. Error bars represent the standard error of the quantum state tomography procedure with
number of measurements N for each component of the density matrix N = 2048 assuming Gaussian statistics.

V. CONCLUSIONS

In this work we presented a hybrid approach featuring
quantum and classical computation to solve optimal control
problems in molecular systems. More thoroughly we adopted
a quantum-based routine for the evaluation of the cost func-
tion: to accomplish this task we proposed an efficient mapping
of a multideterminantal wave function into the bitstring state
of a quantum processor. A possible advantage of this con-
struction, which is not based on physical principles, is that
we can choose the criterion with which to assign the cor-
respondence between the two sets of states thus exploiting
hardware-specific information to improve the quality of the re-
sult. We will seek to explore these aspects in future works. As
a case study we focused about the optimal population transfer
between molecular electronic states of the cyanidin molecule.
We compared the results of this problem both for different
algorithms and for different choices of the classical opti-
mization routine showing that machine learning approaches
(here genetic algorithms), even without a fine tuning, can be
competitive with respect to the well-established and robust
Rabitz’s algorithm. The extension to optimization of other
chemical relevant processes, such as photochemistry, may
leverage on the ongoing development of excited state nuclear
dynamics performed on quantum hardware [32].

Moreover we discussed the practicalities of this implemen-
tation. From this standpoint we considered two different sets

of states in which to follow the electronic dynamics, namely,
a three-level system and a bigger set including up to the tenth
excited state. The importance of discussing the results on a
simpler system is manifold: the current fragility of quantum
processors, even if equipped with a few dozen qubits, is put to
the test not only by the implementation of very deep circuits,
but also by maintaining coherence between qubits very far
apart. Following the same idea in the last part of this work
we have reported some tests with simple noise models and
on IBM Q hardware to assess quantitatively the technological
gap which has to be covered in order to exploit this quantum
algorithm for many-electrons wave function evolution.

Efficient leverage of quantum properties of matter is an
extremely challenging task calling for a common effort of the
scientific community. For its part computer science, sustained
by the increasing computer power, has provided chemists and
physicists with the tools of machine learning which enable
us to extract information and find hidden patterns in data
in an unprecedented way. With the advent of first quantum
computers the development of quantum simulation algorithms
must be explored to get the best out of both sides.
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FIG. 8. Optimal control applied to system Cyan11. Plots of (a) J , (b) target state (|1〉) population, and (c) field fluency. Red dashed line
represents the reference result obtained with Rabitz’s algorithm; green solid line shows the result obtained with the GA with a lower bound on
amplitude values.
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APPENDIX A

The optimization algorithms presented so far adopt differ-
ent strategies to control the field fluency, which we want to
keep as small as possible: Rabitz, BFGS, and NM algorithms
include in J a scaling factor α, which controls both the shape
and the fluency of the field. The equation for J is the same in
the case of the genetic algorithm, nevertheless the algorithm
itself enforces a limit to the value of the amplitude during
their random generation and the mutation procedure. As a
consequence, the scaling factor in J can still control the shape
of the field, but is quite useless in controlling the fluency. In
Fig. 4 we decided to show results obtained with α = 1 for the
genetic algorithm and α = 10 for Rabitz, with the purpose of
not giving the false impression that the genetic algorithm was
performing better than the Rabitz one. In Fig. 8 we show again
the same comparison where the limit on the absolute value on
the amplitudes in the genetic algorithm calculation is 0.0025
instead than 0.005. As it is possible to see, the result for the
field is much more similar to the Rabitz one, without losing
accuracy on the result on populations.

APPENDIX B

We performed some tests to understand how the very
simple GA we implemented performs depending on the com-
plexity of the system under analysis. Our interest was to assess
which factors influence positively or negatively the results
obtained.

To increase the complexity of the system, we decided to
modify three different factors: the number of molecular ex-
cited states included in the calculation, the density of such
states, and the number of parameters to optimize with the
genetic algorithm. Concerning this third point, the genetic
algorithm is built to optimize the amplitudes of the field in
Eq. (16), the number of amplitudes is three times the num-
ber of frequencies included in the summation, which in our
calculation for cyanidin were chosen in an automatic way:

the frequencies are such that the last one is higher than the
last energy state. For the calculations performed in the main
text, where we included 10 excited states, we have 12 fre-
quencies plus the one corresponding to i = 0, which means
39 amplitudes as parameters for the genetic algorithm. In the
calculations performed in this section, the number of individ-
uals is kept fixed at 70, and the calculations were done with
the same parameters used in Fig. 5.

Figure 9 shows the results obtained on three different
version of cyanidin system. In the first we included in the
calculation 20 excited states instead than 10. Because of the
automatic way in which the frequencies are chosen, this corre-
sponds to 15 frequencies, i.e., 45 amplitudes to be optimized
instead than 39. Then we scaled the 20 states in such a way to
have the same energy range than in the 10-state calculation. In
particular, we kept fixed the energies of the ground state and
of the first excited state, while we scaled the others in such
a way that the 20th excited state has the same energy of the
10th. This allows us to check what happens when the energy
levels are closer the ones to the other and possibly other paths
open up to go from the ground state to the target state. In
this case the energy range is the same that the one for the
10-state calculations, and the amplitudes to be optimized are
again 39. Finally, to further increase the number of parameters
to optimize, we performed an optimization calculation on
the same 10-state cyanidin system but asking for 24 Fourier
frequencies instead than the standard 12, as usual plus the
one corresponding to i = 0. This means this time there are 75
parameters for the algorithm to optimize. In Fig. 9 the cyan
plot shows the results obtained on cyanidin including in the
calculation 20 excited states instead than 10. Comparing the
results obtained with the ones in Fig. 5, we can see that we
have a decrease in the performance, with the value of the target
state population after the 100 iteration, which is 0.955 instead
than 0.989. For this reason we tried to improve this result
adding 50 more convergence iterations, and we were able to
obtain a final population of 0.972, with similar results on the
values of J and field fluency. As expected, more iterations,
possibly focusing on both convergence and exploration, are
able to solve the problem of a greater complexity.

We then compared this result on the 20-state system with
the other two variations of the cyanidin system: in the case of
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FIG. 9. Optimal control problem solution for the cyanidin molecule. Plots of (a) J , (b) target state (|1〉) population, and (c) field fluency.
Color code: cyanidin (20 levels), cyan triangles; cyanidin (20 levels with scaled energy spectrum), pink crosses; cyanidin (10 levels with 24
optimization parameters), brown dots.

20 scaled states (solid pink line), we have a slightly worst re-
sult that in the not scaled case, even if the difference can easily
be a consequence of performance fluctuations in different runs
of genetic algorithm. The third case (solid brown line), the one
with 25 frequencies for 10 excited states, performs similarly
to the others.

Finally, as our results has been all obtained on cyanidin,
we tested our method on β-carotene, a molecule with a linear
structure very different from the cyanidin aromatic one. We
included in the description 20 energy states, which result in
an energy range similar to the one of cyanidin. Figure 10
shows how the results obtained with the genetic algorithm are
very similar in term of performances with respect to the one
obtained on the 20-state cyanidin system.

APPENDIX C

Here we present an analysis of the optimal control pulse
obtained with the approach described in the main text. In
Fig. 11 we report the optimal result, i.e., the laser pulse after
the optimization and its Fourier transform, obtained with the
hybrid implementation using a GA optimizer for the control
problem referring to system Cyan11 [upper row, Figs. 11(a)
and 11(b)] and to system Cyan3 (bottom row, Figs. 11(d)

and 11(e)]; later we also will discuss Figs. 11(c)–11(f) re-
porting the evolution of the field frequency distribution as a
function of the iterations for the x component of the field.
We reported in both cases only the plots for the x and y
components because, due to the planarity of our system, the
transition dipole moment along the z direction is almost null.
As we already mentioned in describing the purpose of optimal
control, the optimal field not only realizes the direct transition
from the ground to the target state, but must also discourage
subsequent and competitive transitions to other excited states
[43,57]. This means that, even if the direct transition from the
ground state to the target state corresponds to ω = 0.126 a.u.,
other frequencies are present in the optimal field. Looking at
the plots, it is evident how increasing the complexity of the
system leads to an increase in the complexity of the optimal
field. Cyan11 system has a larger number of electronic states
with respect to Cyan3, which also means a greater number
of possible path to reach the optimal solution. Indeed, we
can see that the frequency distributions reveal some contribu-
tions which are even more intense than the one corresponding
to the direct transition from the ground state to the target
state (ω = 0.126 a.u.), to be ascribed either to multistep paths
among different states or to processes of suppression of com-
petitive transitions. This is an established result of solving

FIG. 10. Comparison of the optimal control problem solution between cyanidin and β-carotene. Plots of J (a), target state (|1〉) population
(b) and field fluency (c). Color code: cyanidin, solid cyan (light gray) line; β-carotene, solid dark blue (gray) line.
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FIG. 11. Results of the optimal control problem solved with the TS-PCA propagation coupled with a GA. Upper row (a–c): optimal pulse
(a), frequency distribution (b), and evolution of the frequency distribution (c) during the optimization for system Cyan3. Bottom row (d–f):
optimal pulse (d), frequency distribution (e), and evolution of the frequency distribution (f) during the optimization for system Cyan11. Color
maps show the frequency distributions of the x component of the fields.

optimal control problems which the genetic algorithm is able
to reproduce. Nevertheless, there is also a second reason for
the larger number of frequencies in the larger system which
is a consequence of how the field is represented in the case
of the GA optimizer: in the case of Cyan11 the number of
harmonics, and consequently amplitudes, which are summed
up to describe the field is larger with respect to system Cyan3.
In principle useless amplitudes, i.e., the ones which do not
have a direct effect on the final value of the population in the
target state, should be minimized and their value should be
set to zero. In practice the GA optimizer is more efficient in
identifying, and optimizing, amplitudes which have a direct
effect on the result (i.e., amplitudes which favor or discourage
the transition).

As a consequence, it is possible that some of the smaller
amplitudes are a consequence of an incomplete minimization.
Nevertheless, the second term in the J functional (i.e., the
integral accounting for the filed fluency) works exactly in the
way of minimizing those useless amplitudes, which means
that if needed, a finer tuning of the optimization algorithm
would lead to a further improved result. Now we discuss
Figs. 11(c)–11(f), which show the frequency distribution of
the fields as a function of the iterations for direction x. With
regard to Cyan3 system [Fig. 11(c)] we can see that all along
the optimization the main contribution to the field is given
by a low-lying frequency component, which, as we are deal-
ing with a very simple system, we can easily assign to the
frequency resonant with the transition between the first two

excited states; in this case it is easy to rationalize the role of
this frequency component as it allows us to bring back to the
target state all the population which has been mistransferred to
the second excited state. On the other hand, in the case of sys-
tem Cyan11, the heat map of Fig. 11(f) allows us to appreciate
even more the main information that we have extracted from
the frequency distribution of the optimal result: to achieve
high controllability within a manifold of electronic states in
ultrashort timescales, alternative paths including transitions
are important as much as the contribution due to the frequency
resonant with the transition of interest. This general statement
is in agreement with other analysis carried out in literature
[43,57]. An in-depth analysis of the population dynamics and
the fluxes among excited states is beyond the purpose of this
work and will be carried out in a future study.

APPENDIX D

Here we show additional results for the quantum sim-
ulation performed with the mapping discussed in Sec.
II A. Probability distributions obtained measuring the com-
putational basis states population (Fig. 12) confirm the
considerations outlined discussing the results of the fidelity
plots (main text). We can appreciate how the presence of
noise drives the evolution of the quantum computer out of the
subspace of the bitstring states with only one qubit in state
|1〉 until it reaches thermalization with all the states equally
populated.
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FIG. 12. Quantum simulation of system Cyan3. Experimental probability distributions obtained for the quantum simulation circuit (second
row of Table I) on the IBM Q X2 hardware, light orange (light gray) or pale green (pale gray) with a transpiled circuit. Each panel shows the
results obtained performing different propagation steps, in blue (gray) the reference noise-free distribution. We recall that at t = 0 the molecule
is in the ground state |001〉. Error bars represent the standard error computed assuming Gaussian statistics for 2048 repetitions.
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