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Identification of time-varying signals in quantum systems
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The identification of time-varying parameters (e.g., directly inaccessible in situ signals in vacuum and
low-temperature environments) is prevalent for characterizing the dynamics of quantum processes. Under
certain circumstances, they can be identified from time-resolved measurements via Ramsey interferometry
experiments, but only with specially designed probe systems can the parameters be explicitly read out, and a
rigorous identifiability analysis is lacking, i.e., whether the measurement data are sufficient for unambiguous
identification. In this paper we formulate this problem as the invertibility of the input-output mapping associated
with the quantum system for which an algebraic identifiability criterion is derived based on the system’s relative
degree. The invertibility analysis also leads to an inversion-based algorithm for numerically identifying the
parameters, which is computationally much more efficient than nonlinear regression methods. The effectiveness

of the criterion are demonstrated by numerical examples.
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I. INTRODUCTION

The full characterization of quantum dynamics is crucial
for high-precision modeling and manipulation of quantum
information processing systems. In the literature, extensive
studies have been cast to the identification of quantum states
and operations (known as quantum state and process tomog-
raphy) [1-3] or quantum Hamiltonians [4—10]. Most of these
works focus on the estimation of constant but unknown quan-
tities, e.g., a density or process matrix [4-8,11,12] or some
parameters in the Hamiltonian [9-11,13], based on maximum
likelihood [11,14], regression [12,13], or compressive sensing
estimators [4—10]. However, the identification of unknown
time-varying parameters has been rarely studied. Such prob-
lems broadly exist in low-temperature quantum information
processing systems in which many signals are not directly
accessible by ambient measurement devices. For the example
of superconducting quantum chips [15] shown in Fig. 1, the
in situ dc or ac control signals in low-temperature environ-
ments always experience distortion by attenuators and control
lines or crosstalks between them [15-25], but the distorted
signals are directly accessible by a room-temperature mea-
surement apparatus.

To calibrate the distortion, it is necessary to identify the
real distorted signals in quantum systems that are not di-
rectly accessible by measurement devices. Such signals must
be indirectly extracted from available measurements on the
quantum system that they interact with. For instance, some
in situ signals can be readout from the qubit phase vari-
ance measured by Ramsey experiments (see Sec. II) [26-29],
but such a scheme is not generalizable to more complicated
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systems. More seriously, as will be shown in Sec. II, such
a method is problematic as it leads to nonunique estima-
tions. Alternatively, nonlinear regression method [13] can be
applied to identify time-varying signals by curve fitting via
the dynamical model, but there are various numerical issues
such as high computational cost and failed estimation due
to improperly selected initial guesses. Moreover, whether the
signal can be uniquely determined by a given measurement
scheme, which is termed as the identifiability of the signals, is
still not well understood in these methods.

Therefore a method that is computationally economic,
stable, and with guaranteed identifiability is demanded in
practice. From a system point of view, the identification
of time-varying parameters from time-varying measurements
can be thought of as reversing the system’s input-output
mapping [30]. Whether the parameters are identifiable is
equivalent to the left invertibility of the system (Chap. 5, [31]),
i.e., the property that different inputs must produce differ-
ent outputs. In parallel, the right invertibility (Chap. 5, [31])
is referred to as the property that any desired time-varying
output can be produced by some (nonunique) input function.
In the classical domain, the left invertibility was applied for
estimating the source of heat conduction from temperature
measurements [32], while the right invertibility was often used
for designing tracking control of a robot along a chosen trajec-
tory [33]. All studies collectively showed that the invertibility
of a general input-output system is determined by its relative
degree that can be specified by an inversion algorithm.

In the quantum domain, the left invertibility was first
studied by Ong ef al. [34] in a nonlinear filtering problem
based on nondemolition continuous-time measurements. This
work showed that under adequate Lie algebraic conditions
the time-varying input of a quantum system can be recovered
in real time from the time trace of a continuously measured
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FIG. 1. Schematic diagram of the identification of time-varying
signals in a superconducting quantum computing system. The in situ
signals are delivered from ambient signal generators that experience
distortion and crosstalk, but the actual signals are not accessible by
room-temperature devices. A quantum probe (e.g., a superconduct-
ing qubit) is placed to receive the signal, whose measurement signals
are conducted out for identifying the in situ signals.

observable. Later on, the inversion (of right invertible sys-
tems) was applied to the quantum control design as a reference
tracking problem based on virtual feedback [35—40] or to the
estimation of quantum states and Hamiltonians [7,9].

In this paper we will apply the inversion-based method
to the identification of time-varying parameters. This can be
treated as a generalization of the work of Refs. [34,41], but
the measurements do not have to be nondemolitional because
the time-resolved output signal can be measured via ensemble
average. We will also extend the invertibility criterion and
inversion algorithm from the single signal case to more com-
plicated multisignal cases, which are much more complicated
and have not been explored in the literature. These cases are
prevalent in multiqubit systems that are coupled with multiple
signals.

The remainder of this paper will be organized as follows.
Section II shows how the ambiguity issue arises in direct
Ramsey-based identification examples, following which we
propose the inversion-based method for analyzing the iden-
tifiability (i.e., invertibility) of the time-varying parameters
and analyze its computing complexity. Section IV provides
two examples, a one-qubit system with single input and a
two-qubit system with multiple inputs, to show the advantage
of the inversion-based method—how the singularity problem
can be solved by abundant measurements and analyzing the
influence of noise. Finally, conclusions are drawn in Sec. V.

II. A DIRECT IDENTIFICATION SCHEME
VIA RAMSEY INTERFEROMETRY

Let us start from a simple case. Suppose that the time-
varying parameter u(t) to be identified is coupled to a
single-qubit probe [29], and we expect to read out u(¢) through
the time-resolved measurement of the qubit. A simple model
for the readout process can be described by the Schrodinger
equation Y (t) = —iH ()Y (t), where ¥ (¢) is the quantum
state of the qubit probe and

H(t) = u(t)o:. ey
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FIG. 2. Ramsey-experiment-based identification. The measured
output (a) corresponds to two different time traces of the qubit phase
(b) in which one is false. The resulting identified in sifu input (c) is
thus undecidable.

Here, oy, 0y, o, are the standard Pauli matrices. The qubit is
prepared at the superposition state ¥ (0) = \/%(|O> + |1)) and
evolves as follows:

Y(t) = %[e‘”(”/ﬂm + 721, 2)

where the information about u(¢) is transferred to the accumu-
lated phase

0(t) = /r u(t)dx. 3)
0

In the laboratory, the phase 6(¢) can be conveniently measured

via a Ramsey experiment that corresponds to the expectation

value of o,:

cosd(t)
e

Reversing the above processes, we obtain the identification
formula:

y(t) = (Y @loxly @) = 4)

Fy@)
V1T =420

There are two issues in this identification scheme. First,
the identification formula (5) provides two solutions among
which one cannot determine which one is correct, because
the involved cosine function in Eq. (4) is not one-to-one. For
example, as is shown in Fig. 2, the two different signals u(t) =
=+ sin wpt (wo = 1) accumulate different traces of phases that
lead to the same measured output y(¢), and we are not able to
judge whether u(t) = sinwpt or u(t) = —sinwypt is the real
in situ signal. In practice, the false solution may be easily
excluded via prior knowledge, but later we will see that the
signal is actually identifiable.

Second, this direct identification scheme relies on the ana-
Iytical solvability of the time-dependent Schrodinger Eq. (1),

u(t) = %[ﬂ: arccos 2y(t) + km] = 5
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which is usually impossible when H(¢t) and H(t') do not
commute for ¢ # ¢'. For example, the in situ signal cannot be
simply encoded into the qubit phase when there is a bias term
in the qubit probe Hamiltonian:

H(1) = woox + u(t)o:. (6)

This issue is even more severe in multiqubit systems that are
coupled with multiple input signals. Therefore a more general
framework is required to analyze the invertibility.

III. INVERSION-BASED IDENTIFICATION
OF TIME-VARYING SIGNALS

In this section we will formulate the identification problem
as an inverse problem of solving the output of the dynami-
cal Schrodinger equation. The invertibility criterion will be
derived as well as the inversion algorithm for extracting the
signals.

A. The invertibility of quantum systems

To facilitate the following derivation, we assume that the
probe system is a closed or a Markovian open system, so that
the evolution can be described by

pt) = [Lo+u@)Lilp(t), )

where the density matrix is initially prepared at p(0) = po.
The superoperators £y and £, which are assumed to be pre-
cisely known, are a Liouvillian (Lp = —i[H, p] with H being
the interaction Hamiltonian) or a Lindbladian (i.e., Lp =
2LpL" — L'Lp — pL'L with L being the coupling operator).
We expect to identify u(¢) from the time-resolved ensemble
measurement

y(t) = (0) = Tr[p()0], ®)

where O is the corresponding observable.

The system is said to be left invertible (or functional ob-
servable) if for any admissible u(t) # u/(¢), their resulting
outputs y(z) # y'(t). To determine whether the system is in-
vertible, we can differentiate the measurement signal y(z),
which yields

y() = (L50) + (LT0)u(t), )

where £;0 (k =0, 1) represents the adjoint operation of L
on the observable O, i.e., Tr[(Lp)0] = Tr[p(L*0)] = (L*O).
For example, when £ is a Liouvillian operator, i.e., Lp =
—i[H, p], we can derive L*O = i[H, O] from

Tr{(Lp)O} = Tr{—i[H, p]O} = Tr{[H, Olp}. (10)

Similarly, the adjoint operation of a Lindbladian Lp =
2LpL" — pLTL — LTLp on some observable O is £*O =
2L'OL — OL'L — L'LO.

If it happens that (£70) = 0, we can go on to differentiate
y(t) = (L*0) o times until (L} (LE)*'0) # 0, which gives

YO) = (L5 0) + (L1(L5)* ' Ohur). (1)

The index « is called the relative degree of the quantum
system. It can be proved that the system is left invertible if
and only if its relative degree is finite (in fact, o is always
no greater than the system’s dimension n if it is finite) [34],

which is exactly the condition of identifiability for uniquely
estimating time-varying input signals.

In practice, it is inconvenient to calculate the values of
(ET(K;‘;)"O) (k > 0) because p(¢) is usually not analytically
solvable. Since the invertibility condition holds for any u(¢)
and p(0), we can equivalently verify it by the operators
CT(ES)"O instead of their expectation values, i.e., the system
is invertible if and only if there exists some finite integer such
that £5(L£¥)%0 # 0 but L5(LO=0fork=0,...,a — 1.

It is natural to extend the invertibility criterion to general
systems that involve multiple input and output signals, where
the invertibility is also determined by the finiteness of the sys-
tem’s relative degree, although the calculation of the relative
degree is much more complicated (see Appendix for details).
In addition, we can draw a useful necessary condition from
the derivation that the number of time-varying outputs must
be no less than that of time-varying input signals. This is to
say, one can never uniquely identify m unknown input signals
with time-resolved measurements on less than m observables.
As will be seen later, in practice we often need to select more
than m observable so as to avoid ill-conditioned numerical
issues.

B. The inversion-based identification algorithm

The above invertibility analysis also provides an inversion
algorithm that can be used to identify the input signal u(t). To
see how this can be done, we can solve u(t) from Eq. (11) as

Yt = ((£5)*0)
(Ly(Ly)—to)y

u(t) = ¢plp@), y* ()] = (12)
in which y®)(¢) can be directly calculated from the measure-
ment output y(7), and the terms ((L£$)*0) and (L%(LE)*'0)
are also physically measurable quantities. Therefore one can
perform the corresponding time-resolved measurements on
observables (L£j)*O and E’f(ﬂ;‘;)“"O and use Eq. (12) to
reconstruct u(t).

Under the circumstance that the observables (£{)*O and
ET([%)“"O are difficult to measure, one can also replace
Eq. (12) back into Eq. (7), leading to the so-called inverse
system:

p(t) = (Lo + dlp@), Y OIL1}p(1), (13)

in which y(¢) acts as the input and u(¢) acts as the output. We
can first numerically solve it from the measurement data of
y(t) and the prepared initial state p(0) and use the calculated
p(t) to reconstruct u(t) via Eq. (12).

For illustration, we apply the inverse-system analysis to
the example discussed in Sec. II. The differential of y(¢) =
(U (D)lox|¥ (1)) yields

y(@)
(W Oloyly @)

which indicates that the system’s relative degree is 1, and
hence the system is invertible at least on a nonempty time
interval, as long as (¥ (t)|oy [/ (¢)) is initially nonzero. Hence
the signal is in principle identifiable via the inversion algo-
rithm, but the Ramsey-experiment-based scheme may fail.

To better understand the identification, we show that the
system may lose invertibility under improper measurements,

u(t) = — (14)
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e.g., when y(¢) = (¥ (t)|o;|¥(t)). One can verify that the
relative degree o = oo and thus u(¢) can never be uniquely
identified from this measurement. However, when a bias
Hamiltonian is introduced, i.e.,

(1) = —ilopoy, + ut)o ¥ (t), (15)

the system can regain invertibility under the same measure-
ment. In such a case we can differentiate y(¢) twice to obtain

u(ey = LAY Oloelv @) — o '50)
W Olox [y ()

which indicates that the system’s relative degree is « = 2 and
hence the signal u(¢) is identifiable.

This example shows that the signal is in principle iden-
tifiable by introducing the bias Hamiltonian. In practice,
we always prefer the lowest-relative-degree identification
schemes [e.g., using (14)] instead of Eq. (16), if experimen-
tally allowed, to reduce high-frequency noise induced errors
from the numerical differentiation of time-varying signals.

Let us compare the inversion method with the commonly
used nonlinear regression method that estimates u(¢) by min-
imizing the following regression functional:

) (16)

T
Dlu(1)) =/ IVexp(t) = Flu(®)]||dt, a7)
0

where yex,(¢) is the experimentally measured output, and
F[u(t)] represents the output calculated from system (7) using
u(t). The regression index can be iteratively minimized by
standard gradient-descent algorithms starting from an initial
guess on u(t). In comparison, the proposed inversion method
has the following twofold advantages in the computational
complexity.

First, the inversion method is performed in a “single-shot”
manner in that the differential Eq. (13) is to be numerically
solved only for once, while the nonlinear regression method
has to solve Eq. (7) in every iteration. Although the differential
equation to be integrated is more complicated, the numerical
computational burden is slightly increased by the calculation
of ¢[p(t), y'®(t)], whose algebraic form is known and the nu-
merical differentiation of y(¢) [to obtain y*)(¢)]. Comparing
the potentially large number of iterations in the regression ap-
proach, the “single-shot” integration in the inversion method
is much cheaper.

Second, the nonlinear regression method is highly depen-
dent on the initial guess on u(¢), which may lead to a false
estimation due to potential local traps. The inversion method,
which is performed in a “single-shot” manner, does not have
this problem. It should be noted that the inversion algorithm
can become instable due to the singularity of Eq. (12), e.g.,
when the denominator crosses zero in Eq. (14). This is an
intrinsic property of the system that can be relieved by intro-
ducing extra measurements (e.g., using two outputs to identify
one input), but it cannot be overcome by any algorithm.

Since practical measurement of y(r) is always sampled
in discrete time, the sampling rate must be sufficiently high
(according Shannon’s sampling Theorem [42]) so as to faith-
fully recover the signal, following which a low-pass filter is
required to mitigate the influence of high-frequency noises on

the numerical differentiation. As for the numerical differenti-
ation schemes, we can use the simplest two-point difference,

V(1) — y(tx)
At
between adjacent sampling points, where #; = kAt with At
being the sampling period. To improve the precision, one can

use the more advanced three-point formula [43]

y(te) ~ . (18)

=3y(t)+4y(t)—y(t) —
2At ’ k =1
g ~ ) =t )+yty1)
R =y l<k<N (19
Y(in—2)—4y(in—1)+3y(n) k=N

2At

where N is the number of time steps. As will be seen in the
following simulations, the adoption of three-point differentia-
tion also improves the stability of the inversion algorithm.

IV. NUMERICAL EXAMPLES

In this section we show how the proposed inversion
algorithm can be applied to identify single or multiple time-
varying signals in two-qubit quantum systems. Suppose that
the system to be probed consists of two coupled transmon
qubits with the following Hamiltonian [44]:

wi (1) w>(t)
2

where o, and o4 are the standard Pauli and lowering or raising
operators. The signals w;(t), wa(t), and g(¢) to be identified
are the frequencies of the two qubits and the effective qubit-
qubit coupling strength that are tunable by external electronic
dc sources. In the following, we will apply the inversion

H= o1, + 02, + 8(t)(01402— + 01-024), (20)

15
10 T —
50 B
~N -
T 0 actual signal : =
= - inversion via <o, > :
o 5¢ inversion via <, > and <, > 1
y 2x
10+ —-—-.regression <a1y>(good guess) =
5k regression via <o1y>(poor guess) ]
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0 - \\‘\
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0 50 100 150
time (ns)

FIG. 3. Identification of the in situ signal by using inversion
method and regression method and the denominators in the inversion
method. The identified signal by using inversion method by using
single measurement and regression method with a good and a bad
initial guess on g(t), respectively. The identification encounters sin-
gularity at around # = 130 ns.
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algorithm to the identification of single-input and multi-input
signals.

A. Identification of single in situ signals

In this case we fix w;(t) = w,(t) = 1 MHz and identify
the time-varying g(¢) from time-resolved measurements. As
shown in Fig. 3, the signal g(¢) to be identified is chosen to be
a distorted step function rising from 0 to 10 MHz, which is of-
ten applied for quickly switching on the qubit-qubit coupling.

The initial state of the system is chosen to be

2 1 V3 1
[ (0)) = <\/;|0) + \/;|1)> ® <7|0) + §|1)>,

and the time-resolved measurement of o7y, is performed on the
first qubit. One can derive that the corresponding relative order
is o = 1 and the mapping ¢[p(?), y(¢)] used for inversion is

ly(t) + <01x>
2 (01:0%)

Plp(1), y(1)] = — ) 2y
where the notation defined in (8) is applied.

In the numerical simulations, we apply Euler’s algorithm
to solve the nonlinear differential equation and the two-point
method to numerically differentiate y(r). The simulation re-

J

(01y027) 2 (1) — (02y)) — (01:02:) (V1 (1) + {01x))

sults are shown in Fig. 3, in which the identified signal g(z)
encounters singularity in the matrix inversion in Eq. (AS).
At the critical time r ~ 120 ns [see Fig. 3(b)], the numerical
simulation becomes instable, but it still comes back later to
the true solution. The inversion may be more stable by more
precisely integrating the nonlinear differential equation, but
there is no guarantee for the inversion algorithm to get over
the singularity.

We also make comparisons with the nonlinear regression
method that starts from a good initial guess g®(t) = 10 MHz
and a poor initial guess g (t) = —10 MHz, respectively. It
is found that the former converges to the true signal, but the
latter diverges away just around the critical time.

Therefore both the inversion and the regression methods
can well identify the in situ signal before the critical time
and may fail after it. The inversion algorithm is more efficient
because it integrates the differential equation for only once
without having to guess the signal in the beginning, but the
regression method needs to solve the differential equation
repeatedly until convergence.

To avoid the singularity, we may introduce redundant mea-
surements to collect more information about the input signal.
In the simulation, we use two measurements y; () = (oyy),
y1(t) = (02y), under which the mapping ¢[p(t), y;(t)] for in-
version is

. 1
dlo(), ()] = 3

It can be seen that the denominator crosses zero only when
(01,02¢) and {(o1,07;) simultaneously vanish, which is highly
unlikely in general cases. As is seen in Fig. 3, the inversion
algorithm can precisely reproduce the in situ signal from
redundant measurements, in which either (o1,02,) or (o1,02;)
may cross zero, but they do not vanish at the same time.

B. Simultaneous identification of multiple in situ signals

Assume that the in situ time-varying signals w(t), wa(t),
and g(¢) are all unknown. To identify them simultaneously,

J

<01)')
_<Glx>

Plp(t), 5(1)] =

0 (00y)

We simulate the identification process for in situ signals
w1 (1), wa(t), and g(t), which are all chosen as distorted step
functions. As is shown in Fig. 4, the identified signals all
conform to the true ones until the first critical time ¢ &~ 70 ns
when singularity occurs. They come back to the true signals
after a spiky deviation and again encounter singularity at the
second critical time # &~ 200 ns. The inaccuracy caused by the
singularities can be reduced by introducing two time-resolved
measurements O4 = 03, and Os = o, or by using the three-
point differential of y(z).

<01z02x>2 + (Ul)r021>2

. (22)

(

we need at least three time-resolved measurements and, ac-
cording to the analysis in Appendix, the system is invertible
with relative degree o = 1 when Zjol, EjOg, and 5:03 are
linearly independent with each other, where 0= (01, 03, 03)
are the chosen observables. A viable choice is as follows:

6 = (O1x, Oly, aZx)Tv (23)

under which the mapping ¢[p(?), )"}(t)] for inversion is

_2(01102}') ).71 (l)
2(01:024) () |- (24)
_2(01y021> )']3(t)

[
C. The affection of noises

The prevalently existing noises in realistic quantum sys-
tems can affect the quality of identification or even destroy it.
Taking the one-qubit probe as an example, we consider two
typical classes of noises present in the following system:

V(1) = —i[ne(t)o, + u(t)o 1y (1), (25)
y(t) = (Y Oloe ¥ (t)) + ny(t). (26)
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FIG. 4. The identification of multiple in situ signals w (t), w,(t),
and g(¢) (all chosen as distorted step functions) in a two-qubit system
via measurements on three and five observables. Singularities appear
in the three-observable case when a two-point differential is used
(red dashed line), but they disappear in the five-observable case (blue
solid line) or three-observable case using three-point differentials
(yellow dashed line).

The noise n¢(#) comes from unwanted coupling to unspecified
signals (e.g., crosstalk via some other qubit’s input), and ny, (¢)
comes from the measurement noise. According to Eq. (12),
the measurement noise, especially its high-frequency compo-
nents, can have a fatal effect on the quality of readout results
because it can be greatly amplified by the differential of y(z).
The system is less affected by the high-frequency components
of noise n.(¢) because they tend to be filtered.

In the simulation we simulated low-frequency (comparable
with the frequency of the signals) and high-frequency (25-30
times the frequency of the signals) random noise in system
(n,(1)). The variance of the noise is taken to be 102 for
n.(¢) and 107¢ for n,, (1), respectively. As shown in Fig. 5,
the measurement noise distorts the calculated in situ signal
dramatically even with a smaller variance, especially when
the frequency is high. To improve the accuracy, the mea-
surement noises must be effectively filtered. By contrast, the
high-frequency noises in the system have a minor affect on
the identification. Therefore, in practice, the measured output

(a) low-frequency system noise  (b) low-frequncy measurement noise

2
31
2
'E_ 0
< -1
-2
0 5 10 0 5 10

(c) high-frequncy system noise (ogohigh-frequncy measurement noise

2
31
2
'E_ 0
< -1

-2

0 5 10
wt (rad)

FIG. 5. (a) The calculated in sifu signal when there is low-
frequency system noise (n,). (b) The calculated in situ signal when
there is high-frequency system noise. (c) The calculated in situ sig-
nal when there is low-frequency measurement noise (n,,). (d) The
calculated in situ signal when there is high-frequency measurement
noise.

should be carefully filtered to reduce the noise affect while
keeping the signal undistorted as much as possible.

V. CONCLUSION

To conclude, we propose an inverse-system-based method
to unambiguously identify time-varying parameters from
time-resolved measurements which is experiment friendly.
Although the parameters are usually locally identifiable (i.e.,
likely diverge at some critical time due to the singularity),
the proposed method still greatly generalizes the existing
Ramsey-experiment-based schemes to arbitrary multi-input—
multi-output systems, as long as the algebraic invertibility
condition is satisfied. The simulation results show that it
can perfectly extract the in situ signal in both single-
input and multiple-input systems by integrating the nonlinear
Schrodinger equation. Although, the algorithm is applicable
only on a finite time interval due to potential singularity,
one can properly introduce redundant measurements to pro-
long the applicable time interval. The affection and limitation
brought by system’s noises are also analyzed through numer-
ical simulations.

The method we developed can be naturally generalized to
any other quantum systems, no matter closed or open, as long
as the probe system can be precisely modeled and the modeled
system is invertible. In principle, one can freely choose the
time-resolved measurements for identifying the time-varying
parameters according to the invertibility condition. However,
in practice one should pick those with lowest relative degree
so as to minimize the influence of measurement noise.
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APPENDIX: MULTI-INPUT MULTI-OUTPUT INVERSION

Suppose that the quantum system has multiple parameters
that are to be identified from multiple time-resolved measure-
ments, as follows that

p(t) = [Lo+ii(r) - Lp(),

in which in situ signals i(t) = [u(t), ..., u,(t)]" are cou-
pled to the system via Liouvillians (or Lindbladians) L.=
(Ly,...,L,). The dot product is referred to as the inner
product ii(t) - L.= > iy k(1) L. We expect to identify these
signals from n measurements ¥(t) = [y;(t), ..., y.(¢)]", with
ye(t) = (O,) being the expectation value of the corresponding
observable O,.

Similarly, the quantum system is said to be invertible if
for any two different input vectors #(¢) # ii'(¢), the resulting
output vectors y(¢) # ¥ (t). According to Eq. (A1), we differ-
entiate ¥(¢) and obtain

(Al)

(A2)

where
(A3)

with

(L:08) = (L0, -+ {L3,00)
for k=0, 1,2,...,m. Similarly, since it is hard to evaluate
the expectations, we analyze the corresponding operators. We

say that operator arrays E:TOI-], ce E;’TO,}) are linearly inde-
pendent if

(A4)

MLIO, + -+ 2pLr0; #0

for any nonzero real numbers A, ..., A,, and the rank of a
group of operator arrays is referred to as the maximal number
of mutually independent arrays in them. If there exist m mu-
tually linear independent arrays among EjOl, e, zj O,,ie.,
rank(ﬁfé) = m, then the signals can be formally calculated
as a regression solution of (A2):

i) = Glp, 3]
= [(LL0) (L0 HLLO)Y — (L50). (A9
This formula is then replaced back to Eq. (A1) to obtain the
following inverse system:

p(t) = {Lo + Glp(t), 5] - Le}p(2).

Similar to the single-input—single-output systems, the ex-
pectation (L'f_@) may become rank deficient at some time

(A6)

instance even when the operator rank condition rank(Zj@) =
m is satisfied. The affection of singularity on the identification
process will be discussed in the following simulation section.
Moreover, the operator rank of /32‘0 may also be lower than m,
under which circumstance Eq. (AS) has no unique solutions
for all time ¢. In such a case, we need to extract i(t) via
higher-order derivatives of y(¢). To do this, we first divide
0 = (04, Oy) such that

rank[ﬁjél] = rank[ﬁf.@],

and zj(jl is linearly dependent with the arrays of 5:51, ie.,
there exists a matrix V;; such that [:jél = vnﬁjél.
Let §; = (O;) and ; = (O,). We differentiate them

(L501) + (L20))i = 3, (A7)

(LEO)) + (L:0))ii = 1, (A8)
and then eliminate # in the second equation using the relation
L:0, = Vy, L0y, which gives §; = (0,), where

0, = L0, _V]lﬁzalv Fo =31 — Vi

This equation can be further differentiated to produce a new
group of linear equations of #:

(L£502) + (L:0,)ii = 3. (A9)
If Ej@l and £*0, include m linearly independent rows of
operators, we can let 62 = O, and halt the process. Otherwise,
we can do the same operation on O, by separating its linearly
independent part. Inductively, if the system is invertible, we
can obtain a transformation O’ = VO = (O, ..., O,)" of the
observables after repeatedly doing the above differentiation
process, which leads to the following group of equations:

(L50) + (L0 = filTY, ..., 7]

in which

rank(L:0') = m (A10)
and 3, = f[3V, ..., 5], k =1, ..., r, are linear functions
of the derivatives of y with &) < --- < «,. The required high-
est order of differentiation, «,, is defined as the relative degree
of the multi-input-multi-output system. The system is invert-
ible if and only if the relative degree is finite.

The above inversion process also reveals that to guarantee
the transformation of observables exists, the number of mea-
surement outputs must not be less than m. In practice, one
can introduce redundant time-resolved measurements (i.e.,
n > m), which may reduce the risk of encountering singular-
ity. This will be shown in the numerical simulations.
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