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In this paper, we present a gradient algorithm for identifying unknown parameters in an open quantum
system from the measurements of time traces of local observables. The open system dynamics is described by
a general Markovian master equation based on which the Hamiltonian identification problem can be formulated
as minimizing the distance between the real time traces of the observables and those predicted by the master
equation. The unknown parameters can then be learned with a gradient descent algorithm from the measurement
data. We verify the effectiveness of our algorithm in a circuit QED system described by a Jaynes-Cummings
model whose Hamiltonian identification has been rarely considered. We also show that our gradient algorithm
can learn the spectrum of a non-Markovian environment based on an augmented system model.

DOI: 10.1103/PhysRevA.103.022604

I. INTRODUCTION

Quantum information technology has attracted much at-
tention in the past decades, including physically absolutely
secure quantum communication and a huge acceleration in
quantum computation [1]. These advantages rely on high-
precision quantum operations designed with good models of
the quantum information carriers, e.g., superconducting qubits
or quantum dots, etc. However, it would not be easy to obtain
a complete model for a quantum system. For example, in a
recent experiment on a quantum dot system, the calculation
based on a Markovian system model without containing the
exact effect of noises arising in the environment fails to match
the experimental data [2]. In addition, the inaccuracy of pa-
rameters in a model of quantum systems would also lead to
errors in quantum computation.

Quantum identification is the crucial step towards obtain-
ing a complete and accurate model, which utilizes the data
of excitations and measurements to extract unknown infor-
mation. In particular, Hamiltonian identification has gradually
become a hot topic, whose task is to estimate unknown param-
eters in the Hamiltonian or to identify unknown structures in
a quantum system. For closed quantum systems, an inversion-
algorithm-based learning approach was presented to identify
both the free Hamiltonian and the dipole for a class of molec-
ular systems [3]. Employing the system’s algebraic properties,
the identification algorithms were proposed for special finite-
level quantum systems, such as two-level systems [4,5], spin-1
systems [6], and spin networks [7], which can largely save the
resources for the identification by measuring a smaller number
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of observables [8,9] or without state initialization [10]. For
example, only one local observable is required for Hamilto-
nian identification of a three-spin-chain system [11]. Also,
it is important that entangled observables were found to be
more efficient than product observables in Hamiltonian iden-
tification [12]. Moreover, several systematic approaches were
also explored for Hamiltonian identification. In Refs. [13,14],
a quantum observer was designed for estimating the unknown
parameters of a qubit, which is driven by the measurement re-
sults. Similarly, a Bayesian estimation method was presented
for a two-qubit system, which can fulfill the Hamiltonian
identification under noisy measurement data [15]. In addition,
quantum process tomography [16] and quantum state tomog-
raphy [17] approaches were generalized to the Hamiltonian
identification, which rely on the accurate estimation of the
evolutions or the states in the time-consuming tomography
process. Besides the above time-domain approaches, a class
of transfer-function-based frequency-domain approaches was
presented for spin networks [18], where the unknown param-
eters can be obtained by solving a set of nonlinear algebraic
equations induced by a measurement-result-induced realiza-
tion. This method was experimentally realized in a nuclear
magnetic resonance system [19]. However, the performance
of the above methods would degrade when they are applied to
real quantum systems which are open in general, i.e., coupled
to a thermal bath or other quantum systems resulting in their
dissipative dynamics.

For the identification of open quantum systems,
several quantum identification methods were presented. The
transfer-function-based method in Ref. [18] was extended to
Markovian quantum systems [20], i.e., the quantum system
in a memoryless environment with a short correlation time.
A similar work can also be found in Ref. [21]. Moreover,
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a maximum-likelihood estimation method was proposed
for an atomic maser system where the detection process
can be considered a discrete-time Markovian chain [22,23].
Alternatively, continuous measurements can be applied for
the Hamiltonian identification of finite-level open quantum
systems [24–26]. Moreover, classical identification methods
were extended to linear quantum systems such as quantum
harmonic-oscillator networks [27,28]. However, when the
quantum system involves interacting both finite-level and
infinite-level subsystems, which is common in cavity QED
systems, the underlying complicated algebra and nonlinear
dynamics make the identification much harder. To our
knowledge, such problems have not been explored in the
literature.

In this paper, we propose a gradient algorithm for the iden-
tification of such quantum systems. To this aim, we describe
the open quantum system by a general Markovian master
equation, and the time traces of a selected set of observables
are used for identifying the Hamiltonian such that the state
of the system at a time instant can be expressed in terms
of a series of evolution superoperators acting on the initial
state of the system. We verify the effectiveness of our algo-
rithm with a Markovian Jaynes-Cummings model in cavity
(circuit) or quantum electrodynamical systems [29,30]. The
performance of our algorithm under low-sampled data and
noisy measurements is also tested in this system. In addition,
we apply our algorithm to learn the spectrum of a non-
Markovian environment associated with a colored quantum
noise with a long correlation time [31,32]. In the literature,
a differential algorithm [33], a gradient algorithm [34], and
an inverse system method [35] were designed for the iden-
tification of a damping rate function that characterizes the
non-Markovian environment in a time-convolutionless master
equation. The identification can be also done in the frequency
domain, where the kernel function of a non-Markovian en-
vironment is embedded in an integral-differential master
equation [36]. In our previous work, we have shown that a
non-Markovian environment can be modeled by using linear
ancillary quantum systems where the spectrum of the envi-
ronment is parametrized via a spectral factorization theorem.
Hence, a non-Markovian quantum system can be modeled in
an augmented Hilbert space, whose dynamics are described
by a Markovian master equation [37,38]. In this paper, we
assume that the dynamics of the non-Markovian quantum
system with the unknown spectrum of the non-Markovian
environment obey the augmented master equation. The identi-
fication of the spectrum is ascribed to estimate the parameters
of the ancillary systems in the augmented system model.
We apply our gradient algorithm to identify those param-
eters so as to recover the spectrum of the non-Markovian
environment. The feasibility of our algorithm for the identi-
fication of the environment is illustrated in an example of a
qubit in a non-Markovian environment with a two-Lorentzian
spectrum.

This paper is organized as follows. In Sec. II, we describe
the open quantum system by a master equation with unknown
parameters. Then, a gradient algorithm for identification of
the Markovian quantum systems is presented in Sec. III. The
performance of our algorithm with both ideal and nonideal
measurements is verified by an example of a quantum-dot-

resonator system in Sec. IV. In Sec. V, we show that our
algorithm can be applied to explore the spectrum of a non-
Markovian environment. Conclusions are drawn in Sec. VI.

II. DESCRIPTION OF A MARKOVIAN QUANTUM
SYSTEM WITH UNKNOWN PARAMETERS

A Markovian quantum system is referred to as a quantum
system interacting with a memoryless environment, whose
dynamical map obeys the semigroup property [39]. For ex-
ample, the dynamics of a cavity mode interacting with a
vacuum field is usually Markovian, where the field can be
considered quantum white noise [39]. This kind of systems
widely exists in quantum systems. Note that the definition of
Markovian quantum systems here is one of existing definitions
on Markovianity [40–43].

In this paper, we describe Markovian quantum systems by
a master equation

ρ̇(t ) = Lρ(t ) = (L0 + Lθ )ρ(t ), (1)

where ρ(t ) is the density operator of the Markovian quantum
system to be identified. Its evolution is determined by two
superoperators L0 and Lθ as shown on the right-hand side of
Eq. (1). The first superoperator

L0ρ(t ) = −i[H0, ρ(t )] +
Q∑

q=1

λqDLqρ(t ) (2)

represents the known dynamics of the system where H0 is
the Hamiltonian of the system and [·, ·] is the commutator
for two operators. The second term on the right-hand side
of Eq. (2) describes the Q channels of dissipative processes
with the given damping rate constants {λq, q = 1, . . . , Q}.
The Lindblad superoperator DLq is calculated as

DLqρ(t ) = Lqρ(t )L†
q − 1

2 L†
qLqρ(t ) − 1

2ρ(t )L†
qLq,

q = 1, . . . , Q, (3)

with a coupling operator Lq of the system for each dissipative
channel with respect to quantum white noise. Hereafter, we
have assumed that Plank constant h̄ = 1.

The second superoperator,

Lθρ(t ) = −i

[
M∑

m=1

θmHm, ρ(t )

]
+

N∑
n=1

θM+nDLnρ(t ), (4)

describes the unknown quantum dynamics. The first part
corresponds to the unknown coherent dynamics involving
M unknown parameters {θm, m = 1, . . . , M} associated with
M Hamiltonians. The second part represents the unknown
incoherent dynamics involving N parameters {θM+n, n =
1, . . . , N} associated with N Lindbladians. Here, DLnρ(t ) is
written in the same form as Eq. (3). The Markovian master
equation forms the basis for the identification task in this
work.

Since the superoperator L is time invariant, the formal
solution of master equation (1) is expressed as

ρ(t ) = exp {L(t − t0)}ρ(t0), (5)

where t0 = 0 is the initial time of the evolution and ρ(t0) is
the initial density operator. Note that in general it is difficult
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to obtain an analytical expression of Eq. (5) since it involves
calculating the exponential of the superoperator L. Also, in
the following calculation, we let t0 = 0 for convenience.

III. A GRADIENT ALGORITHM FOR HAMILTONIAN
IDENTIFICATION OF MARKOVIAN QUANTUM SYSTEMS

A. Measurement of time trace observables

To identify the unknown parameters in the Markovian mas-
ter equation, we measure the time trace of a local observable
O of the Markovian quantum system. We assume that we can
repeatedly initialize the system to some initial state or we have
many identical copies of the system. This assumption is com-
mon and can also be found in Ref. [4]. Under this assumption,
we measure the observable O with an equal sampling time
�t ; i.e., the time interval from an initial time 0 to a final
time T can be divided into K = T/�t equal intervals. At a
sampling time, the density matrix of the system is projected
onto the basis of the observable O. With the measurement
data at every sampling time, we can map the states of the
Markovian quantum system to the time trace of the observable
O, which can be written as

ŷ = [ŷ1, . . . , ŷk, . . . , ŷK ]T . (6)

Here, ŷk is the real measured time trace of the observable O at
the kth sampling time tk = k�t with k = 1, . . . , K ; i.e., ŷk are
the measured mean values of O at the kth sampling time.

Since these real measurement results reflect the dynam-
ics of the density matrix ρ(t ) affected by the unknown
parameters, one can identify these unknown parameters via
sufficiently many measurement observables.

B. Description of the Hamiltonian identification problem
for the Markovian quantum system

Due to the measurement process, the evolution of the
Markovian quantum system can be discretized. Since the
parameters in master equation (1) are all constants, the dy-
namical map of the system obeys the semigroup property.
Hence, the density matrix ρ(tk ) at the time tk = k�t can be
calculated as

ρ(tk ) = Mk · · ·M2M1ρ(0), k = 1, . . . , K, (7)

where ρ(0) is the initial density matrix of the system. The dis-
cretized superoperator of L is written in a matrix exponential
form as

Mκ = exp {�t (L0 + Lθ )}, κ = 1, . . . , k. (8)

Further, when we guess a set of unknown parameters, using
Eq. (7), we can calculate the corresponding time trace observ-
able at the time tk = k�t as

y = [y1, . . . , yk, . . . , yK ]T
, (9)

where yk = tr[Oρ(tk )] are the calculated expectation values
of the observable O at the kth sampling time. Although the
output y is not the real measurement result, it reflects how the
given set of parameters affects the output of the system, which
can afford a hint for finding the real parameters.

To measure the distance between the real measurement
result ŷ and the calculated result y, we define an objective

function

J = 1

2

K∑
k=1

(yk − ŷk )2, (10)

which is a summation of the square of the differences between
the real measurement and calculated results at every sampling
time.

Thus, the identification problem considered in this paper
can be converted to an optimization problem as follows.
Given the real measurement results ŷ [Eq. (6)], the optimiza-
tion problem is to find a set of the unknown parameters
{θ1, . . . , θM , θM+1, . . . , θM+N } that minimizes the objective
function J subject to the evolution (7).

C. A gradient algorithm for solving the optimization problem

Gradient algorithms have been proposed for solving opti-
mization problems for quantum systems [44]. For example, it
can be applied to design optimal control pulses for transfer-
ring quantum states [44]. In this paper, we design a gradient
algorithm for revealing the real unknown parameters such that
we can minimize the corresponding objective J . The core
issue for designing the algorithm is to calculate the gradient
of the objective J with respect to the unknown parameters,
with which we can search for an optimal solution along the
gradient descent direction.

For the convenience of the following derivation, we rewrite
the unknown parameter set as {θp, p = 1, . . . , M + N}. By
using the chain rule, the gradient of J with respect to the un-
known parameters {θp, p = 1, . . . , M + N} can be calculated
as

∂J

∂θp
=

K∑
k=1

(yk − ŷk )

〈
O

∂ρk

∂θp

〉
. (11)

Since the unknown parameters have been assumed to be con-
stants in every time interval, they affect the dynamics in every
time interval. Hence, the gradient of ρk with respect to the
unknown parameters corresponds to the superoperators Mκ

from the initial κ = 1 up to κ = k time intervals, which can
be calculated as

∂ρk

∂θp
=

k∑
κ=1

Mk · · ·Mκ+1
∂Mκ

∂θp
Mκ−1 · · ·M1ρ(0). (12)

Further, the gradient of the discretized superoperator Mκ

with respect to the unknown parameters can be approximated
as

∂Mκ

∂θp
≈

{
�tLm(·)Mκ (·), p = 1, . . . , M

�tDLn (·)Mκ (·), p = M + 1, . . . , M + N,

(13)
where the superoperator Lm is defined as Lm(·) = −i[Hm, (·)].
The superoperators DLn and Mκ can be computed as Eqs. (3)
and (8), respectively.

By utilizing Eqs. (11)–(13), we can update the guessed
unknown parameters as

θp → θp − ε
∂J

∂θp
, (14)
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where ε is the positive step size. Note that we update the
parameters along their descent gradient directions and thus the
corresponding updated objective function can be smaller than
the original one.

We summarize the gradient identification algorithm for the
Markovian quantum system as follows:

(1) Choose a local observable O, measure the time trace
of the observable ŷ, initialize the state of the system ρ(0) and
the step size ε, and guess the initial values of the unknown
parameters.

(2) Calculate the evolution of the density matrices of the
Markovian quantum system from ρ(1) to ρ(K ) and the out-
puts from y1 to yK with the guessed unknown parameters.

(3) Compute the objective J and its gradient with respect
to {θp} according to Eqs. (11)–(13).

(4) Update θp using relation (14).
(5) When a termination condition is satisfied, stop the

algorithm; otherwise, go to step 2 and start a new iteration.
Importantly, our algorithm is designed for a general

Markovian quantum system, where we have not specified
the Hamiltonian of the system. Compared to the existing
identification methods working for either finite-level quan-
tum systems or infinite-level quantum systems, our algorithm
works for a general Markovian quantum system involving
both of them.

Note that in our algorithm we only require that the iden-
tified parameters satisfy condition (10). Hence, Eq. (10) is a
necessary condition for the identification problem. This means
that multiple estimates would result in the same objective
function (10) as indicated in Ref. [12]. To make sure the
optimized parameters are the real ones, we should run our
algorithm several times with randomly chosen initial values
of the unknown parameters in the parameter space. When the
same local minimum can be achieved by our algorithm with
the randomly chosen initial values, we say that the optimized
parameters can achieve a local minimum in a subspace of the
parameters. When the number of the initial values is suffi-
ciently large, we can consider the local minimum is global and
the identified parameters are real. As pointed out in Ref. [18],
these additional resources for identification would help with
the multiple estimates issue.

IV. IDENTIFICATION OF UNKNOWN PARAMETERS
IN A QUANTUM-DOT-RESONATOR SYSTEM

A. Description of a quantum-dot-resonator system

In this example, we test the performance of our algorithm
by a quantum-dot-resonator system [2] where the charged
quantum dot and the resonator are both dissipative. This sys-
tem can be described by an open Jaynes-Cummings model
which is widely used in circuit or cavity quantum electrody-
namical systems [29,30].

The Hamiltonian of this system can be written as

H = νq

2
σz + ν0a†a + gd (a†σ− + aσ+), (15)

where the first two terms on the right-hand side are the internal
Hamiltonian of the quantum dot and the resonator, respec-
tively, and the third term describes the interaction between
them. σz is the z-axis Pauli matrix and σ− and σ+ are the

TABLE I. Four guessed initial values for the unknown parameters.

Labels gd0 γd0 νq0

Ex1Set1 0.6 GHz 0.1π GHz 3 GHz
Ex1Set2 0.2 GHz 0.15π GHz 7 GHz
Ex1Set3 0.5 GHz 0.05π GHz 5 GHz
Ex1Set4 0.4 GHz 0.25π GHz 4 GHz

ladder operators for the quantum dot. The annihilation and
creation operators of the resonator are written as a and a†,
respectively. The Hamiltonian involves three parameters: the
splitting frequency of the quantum dot, νq; the angular fre-
quency of the resonator, ν0; and the coupling strength between
them, gd . In addition, the coupling operators of the quantum
dot and the resonator for each dissipative channel are L1 = σ−
and L2 = a, respectively. Hence, the dynamics of this open
system can be described by a master equation as

ρ̇(t ) = −i

[
νq

2
σz + ν0a†a + gd (a†σ− + aσ+), ρ(t )

]

+γd

(
σ−ρ(t )σ+ − 1

2
σ+σ−ρ(t ) − 1

2
ρ(t )σ+σ−

)

+γ0

(
aρ(t )a† − 1

2
a†aρ(t ) − 1

2
ρ(t )a†a

)
. (16)

B. Identification of unknown parameters
with error-free measurement results

In this paper, we assume that the splitting frequency of the
quantum dot, νq, the coupling strength gd , and the damping
rate γd are unknowns to be identified. We adopt the parameters
for the quantum-dot-resonator system in Ref. [2] to simulate
the dynamics of the real system. We set ν0 = 6.775 GHz,
νq = 6.1814 GHz, gd = 0.3142 GHz, γd = 0.6283 GHz, and
γ0 = 2.6×2π MHz. With these parameters, we can simulate
the real measurement result ŷ where the observable σx of the
quantum dot is measured; i.e., the measurement result is error
free. We sample the observable σx for one thousand times in a
total time 1 ns.

To start, we randomly choose initial guesses on the un-
known parameters given in Table I. The step sizes for updating
the three parameters are 0.0002 GHz and the termination
condition is that the algorithm achieves 40 000 iterations. We
assume that the quantum dot and the resonator are initialized
on the state 1

2 (I + σx ) and the ground state, respectively. Note
that we have truncated the infinite levels of the resonator to
20 levels to obtain the real measurement results in the sim-
ulation and 8 levels in the identification model, respectively.
The identification result is further examined by truncating the
oscillator to 20 levels to make sure the 8-level truncation is
sufficient. Simulation results show that they are consistent.
If not, one can gradually increase the number of levels and
use the obtained identification as an initial guess to refine the
optimization.

The convergence for the three parameters is given in Fig. 1.
In the cases of four initial guesses, the values of the unknown
parameters approach their real ones, where the converging
process of the splitting frequency νq is very fast compared
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FIG. 1. The convergence processes for the identified unknown
parameters: (a) the coupling strength gd , (b) the damping rate γd ,
and (c) the splitting frequency νq with four sets of the initial guessed
values. The three parameters in the four cases all approach their real
values by using our gradient identification algorithm.

with the slow ones for the other two parameters. It shows
that our algorithm can iteratively learn the real values of
the unknown parameters by utilizing the measurement results
on the expectation values of the observable σx as shown in
Fig. 1. The variation of the corresponding objective function
J during the identification process is shown in Fig. 2. As the
identified values of the unknown parameters approach the real
values, the objective functions J decrease monotonically. The
objective J is reduced down to 10−7 with the second initial
guess which is lower than all other cases. The best identi-
fied values for the three parameters are ĝd = 0.3097 GHz,
γ̂d = 0.6285 GHz, and ν̂q = 6.1814 GHz. These results il-
lustrate that our identification algorithm can achieve a high
precision for the identification with suitable initial guesses.

The above simulation shows that our algorithm can
identify the unknown parameters in a Markovian quantum-
dot-resonator system with a high precision by using only
the measurement results of a local observable. Although the

0 1 2 3 4
Iterations 104

10-8
10-6
10-4
10-2

1
102
104

FIG. 2. The convergence of the objective J in the cases of
four initial guessed values of the unknown parameters for the
quantum-dot-resonator system. With the suitable initial guess, our
gradient identification algorithm can achieve a high precision for the
identification.

algorithm involves an iterative searching process costing com-
putational time, it is acceptable since this process is offline.

C. Identification of unknown parameters with low-sampled
or noisy measurement results

In the above section, the corresponding identification
results are obtained based on error-free measurements.
However, this ideal case would not happen in an experiment.
Hence, it is necessary to verify the performance of our algo-
rithm in some practical cases. In this section, we consider two
practical cases. One is low-sampled measurements, and the
other one is noisy measurements.

Case of low-sampled measurements. In this case, we
consider that the number of sampled time traces K is not
sufficient. Concretely, we measure K = 50, 100, 200, and 500
samples for time traces with which we observe the impact
of low-sampled data on the identification results. With these
low-sampled measurements, we also identify the three param-
eters as in Sec. IV B. We keep all parameters and the initial
state of the system and the settings in our algorithm identical
to that in Sec. IV B. We also start our algorithm with the
guessed initial values of the unknown parameters as given in
Table I.

The variations of the objective J with respect to the differ-
ent K are plotted in Fig. 3, where the four panels correspond
to the results with the guessed parameters as in Table I. We
observe that our algorithm achieves low identification accu-
racies with low-sampled measurements. Similar to the results
in Sec. IV B, good guessed initial values of the parameters
lead to a high identification accuracy. For example, the final
objective as given in Fig. 3(b) is less than those in other parts
of Fig. 3.

Correspondingly, we plot the errors

e =
∣∣∣∣ φ̂ − φ

φ

∣∣∣∣×100% (17)

for the identified parameters obtained by our algorithm
with low-sampled measurements in Fig. 4, where φ̂ and φ

represent the identified and nominal values of the corre-
sponding parameters, respectively. The errors of the identified
parameters can be reduced when the number of sampled
time traces is increased. For the frequency νq, even with

022604-5



XUE, WU, MA, LI, AND JIANG PHYSICAL REVIEW A 103, 022604 (2021)

0 1 2 3 4
Iterations 104

10-5

10-3

10-1

10

103

(a)

0 1 2 3 4
Iterations 10

10-8

10-6

10-4

10-2

1

102

(b)

0 1 2 3 4
Iterations 104

10-7

10-5

10-3

10-1

10

103

(c)

0 1 2 3 4
Iterations 104

10-5

10-3

10-1

10

103

(d)

FIG. 3. Variation of the objective J with the different numbers of the sampled datafor the different initial guesses in Table I with the labels
(a) Ex1Set1, (b) Ex1Set2, (c) Ex1Set3, and (d) Ex1Set4.

low-sampled data, e.g., K = 50, our algorithm can identify
its value with an error lower than 0.2%. However, the low-
sampled data result in huge errors for the parameter gd plotted
as blue stars in Fig. 4. This shows that part of the identi-

fied parameters can be sensitive to low sampling frequencies.
Hence, to precisely calibrate parameters of a system in an
experiment using our algorithm, it would be better to utilize
measurements as much as possible.

0 50100 200 500 1000
0

20

40

60

80

Er
ro

r(
%

)

(a)

0 50100 200 500 1000
0

2

4

6

8

Er
ro

r(
%

)

(b)

0 50100 200 500 1000
0

10

20

30

40

50

Er
ro

r(
%

)

(c)

0 50100 200 500 1000
0

20

40

60

Er
ro

r(
%

)

(d)

FIG. 4. Errors of the identified parameters with the number of sampled data K , corresponding to the different initial guesses in Table I
with the labels (a) Ex1Set1, (b) Ex1Set2, (c) Ex1Set3, and (d) Ex1Set4, respectively. Blue stars, red triangles, and brown squares represent the
identified results for gd , γd , and νq, respectively.
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FIG. 5. Averaged identified unknown parameters and objective J with respect to the different standard deviation σ of the Gaussian noise.
The increasing standard deviation σ of the Gaussian noise results in the errors of the corresponding parameters and the increasing of the
objective.

Case of noisy measurements. In this case, we explore
the impact of measurement noises on the identification re-
sults. Although the effect of noises can be averaged out by
measuring observables with infinite samples in principle, it
should be considered due to finite samples in an experi-
ment. Hence, the robustness of our algorithm to noise is
investigated.

We consider the same system as that in Sec. IV B. We also
equally measure the time traces of the observable σx 1000
times in the total time. Suppose that these measurement results
are polluted by additive Gaussian noise as

ŷ noisy
k = ŷk + ζk, (18)

where ζk ∼ N (0, σ 2) for all k with zero mean and standard
deviation σ . We set σ = 0.05, 0.1, 0.15, and 0.2 and also
consider σ = 0 for the noiseless case. We generate the noisy
measurements and run our algorithm for identification of
the three parameters 40 times. For each time, we run our
algorithm for 40 000 iterations. We average over these identi-
fication results and plot the identification results with respect
to the standard deviations in Fig. 5, where the corresponding
averaged parameters are denoted with a bar.

As shown in Fig. 5, due to the effect of noise, the values
of the identified parameters deviate from their real values and
thus the accuracy of the identification results obtained from
the noisy measurements is less than that in the noise-free
case. This is shown in the bottom right panel of Fig. 5 for
the objective J . As the standard deviation σ of the Gaussian
measurement noise increases, the objective J is increased.
This result indicates that it becomes difficult to estimate the
real values of the parameters using our algorithm when the
standard deviation of the noise is large.

V. IDENTIFICATION OF A NON-MARKOVIAN
ENVIRONMENT FOR A QUBIT SYSTEM

A. An augmented Markovian system model
of a non-Markovian qubit

In actual systems, a quantum information carrier involv-
ing complicated interactions would exhibit non-Markovian
dynamics [41,45,46]. The complicated interactions can be
explained as the influence of a non-Markovian environment
which is characterized by a noise spectrum S(ω). The non-
Markovian dynamics of the system can be described by an
integral-differential quantum Langevin equation, where the
noise spectrum of the environment embedded in a memory
kernel function determines the non-Markovian dynamics. For
more details, see Refs. [31,47]. In this paper, we consider the
non-Markovian system described by the integral-differential
quantum Langevin equation as the original system of interest
whose schematic plot is given in Fig. 6. The noise spectrum
of the environment in the Langevin equation is to be identified
from the measurement data of the system. This identification
problem is important for obtaining a suitable model for the
aim of control. Similar ideas using a qubit as a probe can be
found in recent works [48–51].

For the purpose of identification, we need to represent
the original system as an augmented system model which
has been presented in our previous works [37,38]. In the
augmented system model as shown in Fig. 6, a principal
system and an ancillary system represent the original quan-
tum system and the non-Markovian environment, respectively.
The ancillary system consisting of several one-mode quan-
tum harmonic oscillators driven by quantum white noise is
used to capture the effective modes of the non-Markovian
environment indicated by the noise spectrum S(ω). For each
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Non-Markovian
Environment

Principal system 

Ancillary system

Quantum white 
noise

Direct 
Interaction

Quantum system

Original quantum system Augmented system model

Quantum 
colored 
noise

FIG. 6. A schematic plot of the augmented system model for a
non-Markovian quantum system. The original quantum system and
the non-Markovian environment are represented by a principal sys-
tem and an ancillary system, respectively, in the augmented system
model.

oscillator, a fictitious output is defined, whose power spectral
density is Lorentzian [37]. The center frequency, the width,
and the strength of the Lorentzian spectrum are determined
by the angular frequency ωr , the damping rate with respect to
the quantum white noise,

√
γ̄r , and the coupling strength to

the principal system of the quantum harmonic oscillator,
√

βr ,
respectively. Coupling these ancillary systems to the same
operator of the principal system via their direct interactions,
the combination of the Lorentzian spectra can approximate
noise with an arbitrary spectrum; i.e.,

S(ω) ≈
∑

r

βr
γ̄ 2

r
4

γ̄ 2
r
4 + (ω − ωr )2

. (19)

Here, the operator of the principal system is chosen for re-
producing the quantum Langevin equation of the original
system [37]. The direct interactions can capture the mutual
influence between the non-Markovian environment and the
system. In this augmented system model, the dynamics of the
principal system also satisfy an integral-differential quantum
Langevin equation which is consistent with that of the original
system (see Eq. (27) in Ref. [37] for more details). In this
sense, we can take the augmented system model as a model of
the original system for identification.

In this section, we couple a single-qubit system to a
non-Markovian environment such that the results of the mea-
surement on the qubit can help to access the information of
the environment. For the purpose of identification, we take the
augmented system model as the model of the original system,
where the information of the environment corresponds to the
parameters of the ancillary system.

Since the quantum colored noise is whitened by the ancil-
lary system, the augmented system is driven by quantum white
noise such that the dynamics of the augmented system can be
described by a Markovian master equation [37,38]

ρ̇(t ) = (Lq + Li + Ld )ρ(t ), (20)

where ρ(t ) is the density matrix of the augmented system. The
superoperator

Lqρ(t ) = −i[Hq, ρ(t )] (21)

2 4 6 8 10 12 14 16 18
0

1

2

3

4

5
Real spectrum
Identified spectrum

FIG. 7. The real and identified two-Lorentzian spectra which are
plotted as the solid blue and dashed red lines, respectively. The iden-
tified spectrum obtained by using our gradient algorithm matches the
real one.

describes the internal dynamics of the principal system. The
Hamiltonian of the qubit is Hq = 1

2ω0σz with a working fre-
quency ω0. Moreover, we represent the environment by using
many one-mode oscillators so that the internal dynamics of the
ancillary systems and the dynamics induced by their couplings
to the principal system are described by the superoperator

Liρ(t ) = −i

[
R∑

r=1

ωra†
r ar +

R∑
r=1

iμr (a†
r σ− − σ+ar ), ρ(t )

]
,

(22)

where the operators ar and a†
r and the frequency ωr are the

annihilation and creation operators and the angular frequency
for the rth ancillary system, respectively. The annihilation
and creation operators satisfy the canonical commutation re-
lation [39]. We have defined the fictitious output of each
ancillary system as cr = −

√
γ̄r

2 ar , which is coupled to the
principal system through an operator

√
βrσ− via their direct

interaction iμr (a†
r σ− − σ+ar ) with a coupling strength μr =

−
√

γ̄rβr

2 . Here, γ̄r is the damping rate of the rth ancillary
system with respect to quantum white noise and βr is the
coupling strength between the principal system and the rth
ancillary system. It has been shown that the fictitious out-
put cr carries a channel of quantum Lorentzian noise. Since
they have been coupled to the same operator of the princi-
pal system z∗, we can combine these Lorentzian noises for

0 10 20 30 40 50 60
-0.5

0

0.5

1
(a)

5 6 7 8 9 1011
0

20

40

60
(b)

FIG. 8. The evolution of the expectation value of the observable
σx and its corresponding Fourier transform. The Fourier transform of
the output indicates the number of the ancillary system.

022604-8



GRADIENT ALGORITHM FOR HAMILTONIAN … PHYSICAL REVIEW A 103, 022604 (2021)

TABLE II. Six guessed initial values for the unknown parameters.

Labels ω0
1 ω0

2 μ0
1 μ0

2 γ 0
1 γ 0

2

Ex2Set1 9.40 GHz 10.80 GHz −1.45 GHz −1.07 GHz 1.56 GHz 1.92 GHz
Ex2Set2 8.50 GHz 11.50 GHz −1.20 GHz −0.95 GHz 2.50 GHz 1.00 GHz
Ex2Set3 10.00 GHz 12.00 GHz −2.00 GHz −1.30 GHz 3.00 GHz 1.40 GHz
Ex2Set4 8.00 GHz 10.50 GHz −1.00 GHz −0.90 GHz 1.80 GHz 2.00 GHz
Ex2Set5 9.20 GHz 11.80 GHz −1.50 GHz −1.10 GHz 1.40 GHz 1.60 GHz
Ex2Set6 8.40 GHz 11.30 GHz −1.30 GHz −0.80 GHz 2.00 GHz 2.20 GHz

generating quantum colored noise with one arbitrary spec-
trum. In addition, the dissipative processes of the ancillary
systems with respect to quantum white noise are described
by the superoperator

Ldρ(t ) =
R∑

r=1

γ̄rDLr ρ(t ), (23)

where Lr = ar is the coupling operator of the rth ancillary
system.

Note that with this augmented system model, we can
represent a non-Markovian quantum system in a high-
dimensional Hilbert space as a Markovian quantum system,
where the augmented system is only driven by quantum

white noise. In the Heisenberg picture, our augmented sys-
tem model can reproduce the traditional integral-differential
Langevin equation [37]. In this sense, the augmented sys-
tem model is consistent with the traditional model. Also, the
quantum colored noise arising in the non-Markovian environ-
ment is whitened, whose noise spectrum is parametrized by
the ancillary system. Hence, this augmented system model
forms the bases for identification of the non-Markovian
environment.

B. Identification of the non-Markovian environment of a qubit

We consider that the real noise spectrum S(ω) of the
non-Markovian environment for a qubit system is in a

0 2000 4000 6000 8000 10000
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(a)
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Iterations
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Ex2Set5
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(b)
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FIG. 9. Variations of the identified parameters (a) ω1, (b) ω2, (c) μ1, (d) μ2, (e) γ1, and (f) γ2 of the ancillary systems in the augmented
system model. The final results are close to the real values.
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two-Lorentzian shape [39] as

S(ω) = β1
(

γ̄1

2

)2

(
γ̄1

2

)2 + (ω − ω1)2
+ β2

(
γ̄2

2

)2

(
γ̄2

2

)2 + (ω − ω2)2
. (24)

The center frequencies of the two-Lorentzian spectrum are
ω1 = 9 GHz and ω2 = 11 GHz, respectively. The widths of
the spectrum are γ̄1 = 2 GHz and γ̄2 = 1.5 GHz and their
strengthes are determined by β1 = 3.5 GHz and β2 = 3 GHz,
respectively. This spectrum plotted as the blue line in Fig. 7
is used to characterize the real non-Markovian environment
which induces the non-Markovian dynamics of a qubit with an
angular frequency ω0 = 10 GHz. We sample the observable
σx 1000 times in a total time of 6 ns.

We initialize the qubit in the state 1
2 (I + σx ). In our sim-

ulation, we assume that the ancillary systems are initialized
in the ground states. Note that we also truncate the infinite
levels of the ancillary linear quantum system to eight levels.
For this system, we simulate the real measurement result using
the expectation of the local observable σx of the qubit.

Before running the gradient identification algorithm, the
number of ancillary systems must be determined. Generally,
non-Markovian environments are complicated such that it
is difficult to obtain the exact number of ancillary systems.
However, since the measured expectation values are affected
by the system and its environments, the measurements carry
their mode information and thus the Fourier transform of the
measurements can reflect the number of effective modes in
the system and its environment. Hence, we can use the Fourier
transform to guess the number of the ancillary system. We can
initially let the number of ancillary systems be the number of
peaks in the spectrum except the peak for the principal system.
And thus we can use our algorithm to identify the parameters
of the ancillary systems. When satisfactory identification re-
sults are obtained, we can stop the identification procedure.
Otherwise, we should increase the number of ancillary sys-
tems until a good identification result is obtained. Note that
we require that the frequencies of the ancillary systems are
nondegenerate when we use the discrete Fourier transform
method.

To this aim, we plot the evolution of the expectation of σx

and its corresponding discrete Fourier transform in Figs. 8(a)
and 8(b), respectively. In Fig. 8(b), the curve shows that there
are two additional modes beside the qubit mode, which indi-
cates that two linear ancillary systems should be coupled to
the qubit in the augmented system model. The two additional
peaks are around 9 and 11 GHz. We also randomly choose the
initial values of the parameters in the two ancillary systems
as shown in Table II, where the superscript 0 represents their
initial values. Note that in the interaction Hamiltonian the
coupling strengths can be redefined as μ1 = −√

β1γ̄1/2 and
μ2 = −√

β2γ̄2/2 and thus the interaction Hamiltonian can be
written as iμ1(a†

1σ− − σ+a1) and iμ2(a†
2σ− − σ+a2). Hence,

the task for identification of the parameters β1 and β2 can be
converted to that for μ1 and μ2, respectively.

Hence, in the identification process, we can utilize the
values of μ1 and μ2 to calculate β1 and β2. The step sizes for
updating these parameters in our algorithm are all 0.002 GHz.

0 2000 4000 6000 8000 10000
Iterations

10-12
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10-4

100

104 Ex2Set1
Ex2Set2
Ex2Set3
Ex2Set4
Ex2Set5
Ex2Set6

FIG. 10. Variation of the objective J when we identify the un-
known parameters for the non-Markovian environment.

We run the identification algorithm for 10 000 iterations
and the identification results are given in Figs. 9 and 10. With
six different initial values of the parameters, the identified
parameters approach the real ones. The objective function
J is reduced down to 10−8, which is shown in Fig. 10.
The best identified frequencies and the damping rate con-
stants are ω̂1d = 9.0000 GHz, ω̂2d = 11.0000 GHz and γ̂1d =
2.0000 GHz, γ̂2d = 1.5000 GHz, respectively. From the re-
sults for μ1 and μ2, we can obtain β̂1d = 3.5001 GHz and
β̂2d = 3.0002 GHz. With respect to the best identified param-
eters, we plot the identified spectrum in Fig. 7 as the dashed
red line, which matches the real spectrum.

VI. CONCLUSION

In this paper, we have designed a gradient algorithm for
the identification of unknown parameters in open quantum
systems. This algorithm can utilize the measured data of the
time trace observables of the open quantum systems to iter-
atively learn the real values of the unknown parameters with
high accuracies. We verified the performance of the gradient
algorithm in the example of the quantum-dot-resonator system
and applied it to identifying the non-Markovian environment
based on the augmented system model. This algorithm works
for a more general Markovian quantum system, which are
important in the calibration of parameters of devices in an
experiment with a high accuracy or to explore the interactions
between a quantum system and its environment.
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