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Dicke states are typical examples of quantum states with genuine multipartite entanglement. They are valuable
resources in many quantum information processing tasks, including multiparty quantum communication and
quantum metrology. Phased Dicke states are a generalization of Dicke states and include antisymmetric basis
states as a special example. These states are useful in atomic and molecular physics besides quantum information
processing. Here we propose practical and efficient protocols based on adaptive local projective measurements
for verifying all phased Dicke states, including W states and qudit Dicke states. To verify any n-partite phased
Dicke state within infidelity ε and significance level δ, the number of tests required is only O(nε−1 ln δ−1), which
is linear in n and is exponentially more efficient than traditional tomographic approaches. In the case of W states,
the number of tests can be further reduced to O(

√
n ε−1 ln δ−1). Moreover, we construct an optimal protocol for

any antisymmetric basis state; the number of tests required decreases (rather than increases) monotonically with
n. This is the only optimal protocol known for multipartite nonstabilizer states.
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I. INTRODUCTION

Quantum states with genuine multipartite entanglement
(GME) play crucial roles in quantum information processing
and foundational studies [1,2]. Dicke states [3,4] are one of
the most important multipartite quantum states other than
stabilizer states. They are useful in many quantum information
processing tasks, such as multiparty quantum communication
and quantum metrology [5–11]. Phased Dicke states are a gen-
eralization of Dicke states constructed by introducing phase
changes and they are equally useful in the above research
areas [12,13]. Besides the usual Dicke states, antisymmetric
basis states are a prominent example of phased Dicke states
[14–16]; they are usually used to represent the fermions, and
play a paramount role in atomic and molecular physics. By
now numerous experiments have been performed to prepare
and engineer Dicke states [9–11,17–19], phased Dicke states
[13,20], and antisymmetric basis states [21,22] in various
platforms.

In practice, it is usually extremely difficult to prepare quan-
tum states with GME perfectly, and the success probability
decays rapidly with the number of particles. Therefore, it is
crucial to verify these states with high precision efficiently
using limited resources. For the convenience of applications,
it is also desirable to achieve this task using only local oper-
ations and classical communication (LOCC). Unfortunately,
traditional tomographic approaches are notoriously inefficient

*zhuhuangjun@fudan.edu.cn

and are too resource consuming for systems with more than
ten qubits [19], since they extract too much unnecessary infor-
mation. Although direct fidelity estimation [23] can improve
the efficiency significantly, it is still not satisfactory except for
some special states, like stabilizer states.

Recently, an alternative approach known as quantum state
verification [24–30] has attracted increasing attention because
of its potential to achieve a much higher efficiency. So far
efficient verification protocols based on LOCC have been
constructed for bipartite pure states [31–33], stabilizer states
(including graph states) [28,30,34,35], hypergraph states [35],
weighted graph states [36], and qubit Dicke states [37]. More-
over, a similar idea can be applied to verifying quantum gates
and processes [38–41]. On the other hand, efficient protocols
are still not available for many other important quantum states,
including qudit Dicke states and phased Dicke states in partic-
ular. In addition, it is extremely difficult to construct optimal
verification protocols, especially for nonstabilizer states. So
far optimal protocols under LOCC are known only for maxi-
mally entangled states [24,25,42], two-qubit pure states [32],
Greenberger-Horne-Zeilinger (GHZ) states [43], and some
other stabilizer states [44]. Any progress on this topic is of
interest to both theoretical studies and practical applications.

In this paper, we construct highly efficient and practical
verification protocols for all phased Dicke states, includ-
ing W states and qudit Dicke states. Our protocols only
require adaptive local projective measurements with classi-
cal communication, which are as simple as one can expect.
Incidentally, no efficient protocols based on nonadaptive mea-
surements are known so far for verifying general bipartite
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pure states (see Refs. [31–33]), not to mention multipartite
states. To verify any n-partite phased Dicke state within infi-
delity ε and significance level δ, the number of tests required
is only O(nε−1 ln δ−1), which is linear in n. So our proto-
cols can extract the key information—the fidelity with the
target state—exponentially more efficiently than traditional
approaches, including tomography and direct fidelity estima-
tion. In the case of W states, the number of tests can be further
reduced to O(

√
n ε−1 ln δ−1), which is quadratically fewer

compared with the best verification protocol known in the lit-
erature [37]. For the three-qubit W state, one of our protocols
is almost optimal under LOCC; in addition, this protocol is
useful for fidelity estimation because the verification opera-
tor is homogeneous [30]. Moreover, we construct an optimal
verification protocol for every antisymmetric basis state; the
number of tests required decreases monotonically with n. This
is the only optimal protocol known so far for multipartite non-
stabilizer states. For quantum states with GME, such optimal
protocols were known previously only for GHZ states [43],
which are stabilizer states and have Schmidt decomposition
(optimal protocols for some other stabilizer states were con-
structed recently [44] after the initial posting of this paper). In
the course of study, we introduce several tools for improving
the efficiency of a given verification protocol, which are useful
to studying quantum verification in general.

II. PURE STATE VERIFICATION

A. Basic framework

Before presenting our main results, let us take a brief
review on the basic framework of pure state verification
[28–30]. Suppose there is a quantum device that is expected
to produce the pure target state |�〉 ∈ H. However, some
errors may occur when the device is working, and it actually
produces the states σ1, σ2, . . . , σN in N runs. Let ε j := 1 −
〈�|σ j |�〉 denote the infidelity between σ j and the target state,
and let ε̄ := ∑

j ε j/N denote the average infidelity. Our aim
is to verify whether these states are sufficiently close to the
target state on average, that is, whether the average infidelity
ε̄ is smaller than some threshold ε.

To achieve this task, for each state σ j the verifier performs
a test and accepts the states produced if and only if (iff)
all tests are passed. Each test is specified by a two-outcome
measurement {El , 1 − El}, which is chosen randomly with
probability pl from a set of accessible measurements. Here the
test operator El corresponds to passing the test and satisfies
the condition El |�〉 = |�〉, so that the target state can always
pass the test. If the infidelity of σ j satisfies ε j � ε̃ for some
threshold ε̃ � 0, then the maximum probability that σ j can
pass each test on average is given by [28,30]

max
〈�|σ |�〉�1−ε̃

tr(�σ ) = 1 − [1 − λ2(�)]ε̃ = 1 − ν(�)ε̃, (1)

where � := ∑
l plEl is called the verification operator or a

strategy, λ2(�) denotes the second largest eigenvalue of �,
and ν(�) := 1 − λ2(�) is the spectral gap from the max-
imum eigenvalue. The probability of passing all N tests
is at most

∏
j[1 − ν(�)ε j] � [1 − ν(�)ε̄]N . To ensure the

condition ε̄ < ε with significance level δ, it suffices to

take [29,30]

N =
⌈

ln δ

ln[1 − ν(�)ε]

⌉
≈ ln δ−1

ν(�)ε
, (2)

where the approximation is applicable when ν(�)ε � 1.
According to this equation, the efficiency of a verification
strategy � is mainly determined by its spectral gap ν(�).

B. Optimization of test probabilities

To optimize the verification efficiency, we need to max-
imize the spectral gap of the verification operator for the
target state |�〉 or minimize the second largest eigenvalue.
Suppose the set of test operators {El}l for |�〉 is fixed, then
we need to optimize the probabilities for performing individ-
ual tests. Given a general verification operator of the form
� = ∑

l plEl , the second largest eigenvalue of � reads

λ2(�) = ‖�̄‖ =
∥∥∥∥∑

l

pl Ēl

∥∥∥∥, (3)

where ‖ · ‖ denotes the operator norm and

�̄ := � − |�〉〈�|, Ēl := El − |�〉〈�|. (4)

Note that λ2(�) is convex in {pl}l , so that ν(�) is concave
in {pl}l . In addition, the minimum of λ2(�) over {pl}l can be
computed via semidefinite programming:

minimize f

subject to
∑

l

pl Ēl � f 1, pl � 0,

∑
l

pl = 1. (5)

The minimum in Eq. (5) can be derived analytically when
� consists of two projective tests thanks to the following
lemma, which is proved in Appendix A.

Lemma 1. Suppose � = pP1 + (1 − p)P2, where 0 � p �
1 and P1, P2 are test projectors for |�〉 with ranks at least 2.
Then λ2(�) � (1 + √

q)/2 and ν(�) � (1 − √
q)/2, where

q := ‖P̄1P̄2P̄1‖ = max
|φ〉∈supp(P̄1 )

〈φ|P2|φ〉. (6)

If q < 1, then the upper bound for ν(�) is saturated iff p =
1/2.

Note that any test projector based on LOCC has rank at
least 2 if |�〉 is entangled. Previously, Lemma 1 was known
in the special case in which P̄1 and P̄2 are orthogonal [42].

C. Symmetrization of verification operators

Here we consider another recipe for improving the verifica-
tion efficiency by employing the symmetry of the target state
|�〉; similar ideas have already found applications in verifying
bipartite pure states [28,32,33]. Suppose � is a verification
operator for |�〉, so that � � |�〉〈�| and �|�〉 = |�〉. Let
U be a unitary operator that leaves |�〉 invariant up to a
phase factor, that is, U |�〉〈�|U † = |�〉〈�| or, equivalently,
U |�〉 = eiφ |�〉, where φ is a phase (a real number). Then
U�U † is also a valid verification operator for |�〉. Moreover,
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U�U † and � have the same spectral gap, that is,

ν(U�U †) = ν(�). (7)

Let G be the group generated by product unitaries and
permutations that leave |�〉〈�| invariant. Then U�U † can
be realized by LOCC (is separable) iff � can be realized by
LOCC (is separable) for any U ∈ G. Let S be a subset of G
and define

�S :=
∫

S
U�U †dU, (8)

where the integral is taken with respect to the normalized
probability measure induced from the Haar measure on G (see
Chap. 11 in Ref. [45] for example). The measure reduces to
the normalized Haar measure on S when S is a group and
reduces to the counting measure (see p. 27 in Ref. [46] for
example) when S is finite. The verification operator � is called
S-invariant if �S = �.

If the verification strategy � consists of m distinct tests and
has the form � = ∑

l plEl , then

�S =
∑

l

pl E
S
l , (9)

where

ES
l :=

∫
S

UElU
†dU . (10)

If S is a finite set with cardinality |S|, then the above equation
reduces to

ES
l = 1

|S|
∑
U∈S

UElU
†. (11)

If each test operator El is a projector, then each ES
l can be

realized by at most |S| distinct projective tests. Therefore, �S

can be realized by at most m|S| distinct projective tests.
Proposition 1. Suppose S ⊆ H � G. Then

ν(�) � ν(�S ) � ν(�H ) � ν(�G). (12)

Here the notation S ⊆ H means S is a subset of H ; by
contrast, the notation H � G means H is a subgroup of G.
Proposition 1 shows that symmetrization is an effective way
for improving the verification efficiency.

Proof. The inequality ν(�) � ν(�S ) follows from Eq. (7)
and the fact that ν(�) is concave in �. The inequality
ν(�S ) � ν(�H ) follows from the inequality ν(�) � ν(�S )
and the fact that �H = (�S )H given that S is a subset of the
group H . The inequality ν(�H ) � ν(�G) follows from the
inequality ν(�S ) � ν(�H ). �

The following proposition is useful to reducing the number
of distinct tests when constructing a verification strategy based
on the symmetrization procedure. It is a corollary of Eq. (14)
below.

Proposition 2. Suppose S � H � G; in addition, S and H
have the same number of irreducible components. Then �S =
�H and ν(�S ) = ν(�H ).

Suppose S is a subgroup of G and has r inequivalent ir-
reducible components with dimensions d j and multiplicities
mj , respectively (here we view S as a representation of itself).

Then the Hilbert space H decomposes into

H =
r⊕

j=1

H j ⊗ Cmj , (13)

where H j has dimension d j and carries the jth irreducible
representation, and Cmj denotes the multiplicity space. Let Qj

be the projector onto H j ⊗ Cmj , then

�S =
r∑

j=1

1

d j

[
1H j ⊗ trH j (Qj�)

]
Qj, (14)

where trH j means the partial trace over H j (see the Appendix
of Ref. [47]). If all irreducible components of S are inequiva-
lent, that is, mj = 1 for j = 1, 2, . . . , r, then Eq. (14) reduces
to

�S =
r∑

j=1

tr(Qj�)

d j
Qj, (15)

where Qj is the projector onto the jth irreducible component.
In this case, all S-invariant verification operators commute
with each other.

III. VERIFICATION OF QUDIT DICKE STATES

In this section we construct an efficient protocol for ver-
ifying general qudit Dicke states [4]. Previously, efficient
protocols were known only for qubit Dicke states [37].

A. Dicke states

Up to a local unitary transformation, each n-qudit Dicke
state can be labeled by a sequence of r + 1 ordered positive
integers that sum up to n, where r � d − 1. Let

k := (k0, k1, . . . , kr ), (16)

where k0, k1, . . . , kr are positive integers that satisfy the con-
ditions

∑r
j=0 k j = n and k0 � k1 � · · · � kr � 1. Denote by

B(k) the set of all sequences of n symbols in which ki symbols
are equal to i for i = 0, 1, . . . , r. Then the n-partite Dicke state
corresponding to the sequence k has the form

|D(k)〉 = 1√
m

∑
u∈B(k)

|u〉, (17)

where m := |B(k)| = n!/(
∏r

j=0 k j!). It is worth pointing out
that here we consider all Dicke states that can be defined
for n-qudit systems with local dimension d , while some of
these states can also be defined for systems with smaller local
dimensions. To avoid trivial cases, we assume that n � 3 and
k0 < n in the rest of this paper unless it is stated otherwise.

When k = (2, 1, 1) for example, the set B(k) is composed
of all sequences of four symbols in which two symbols are
equal to 0, one symbol is equal to 1, and one symbol is equal
to 2. More concretely, B(k) = {0012, 0021, 0102, 0120, 0201,
0210, 1002, 1020, 1200, 2001, 2010, 2100}. The correspond-
ing Dicke state reads

|D(k)〉 = 1√
12

(|0012〉 + |0021〉 + |0102〉 + |0120〉

+ |0201〉 + |0210〉 + |1002〉 + |1020〉 + |1200〉
+ |2001〉 + |2010〉 + |2100〉). (18)
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FIG. 1. Schematic view of the test Pi, j used to verify the Dicke state |D(k)〉. All n − 2 parties other than parties i and j first perform the
generalized Pauli-Z measurement and send the outcome u to parties i and j. Conditioned on this outcome, parties i and j then perform suitable
projective measurements. The outcomes corresponding to passing the test are marked by “�”.

When r = 1, |D(k)〉 is a familiar qubit Dicke state. If in
addition k1 = 1, then the Dicke state reduces to a W state [19]:

|Wn〉 = 1√
n

∑
u∈B1

n

|u〉, (19)

where B1
n is the set of strings in {0, 1}n with Hamming weight

1. In particular, the three-qubit W state (n = 3) reads

|W3〉 = 1√
3

(|001〉 + |010〉 + |100〉). (20)

Denote by S the group of all permutations of the n parties
(realized as unitary transformations); denote by H the group
of all unitary transformations of the form U ⊗n, where U is
diagonal in the computational basis; let G = SH = HS. The
Dicke state |D(k)〉 is invariant under any permutation of the
n parties and is thus invariant under the action of S. In ad-
dition, it is invariant (up to an overall phase factor) under
any unitary transformation in H or G. These observations are
instructive to constructing efficient protocols for verifying the
state |D(k)〉. Given any verification operator � for |D(k)〉, we
can construct potentially more efficient verification operators
�H , �S , �G according to Eq. (8) and Proposition 1.

B. Efficient verification of qudit Dicke states

To construct an efficient protocol for verifying the Dicke
state |D(k)〉 defined in Eq. (17), it is convenient to introduce
some additional notations and concepts. Let

ks
t := (k0, . . . , ks + 1, . . . , kt − 1, . . . , kr ), (21)

kst := (k0, . . . , ks − 1, . . . , kt − 1, . . . , kr ), (22)

kss := (k0, . . . , ks − 2, . . . , kr ) for ks � 2. (23)

Here we assume that 0 � s, t � r and s �= t in Eq. (21), 0 �
s < t � r in Eq. (22), and 0 � s � r in Eq. (23). Now the
sets B(ks

t ), B(kst ), and B(kss) can be defined in the same way
as B(k). The generalized Pauli-Z operator acting on a single
qudit is defined as

Z =
d−1∑
j=0

ω j | j〉〈 j|, ω = e2π i/d . (24)

The generalized Pauli-Z measurement is the projective mea-
surement on the computational basis.

Our verification protocol consists of
(n

2

)
distinct tests per-

formed with uniform probabilities. Each test is associated
with a pair of parties among the n parties and is based on
adaptive local projective measurements. To be specific, the
test Pi, j associated with parties i and j is illustrated in Fig. 1
and realized as follows. All n − 2 parties other than parties
i and j perform the generalized Pauli-Z measurements, and
their outcomes are labeled by a sequence u of n − 2 symbols,
which corresponds to the product state |u〉. The measurements
of parties i and j depend on the outcome u, and we need
to distinguish three cases. Suppose k0, k1, . . . , kg � 2 and
kg+1 = kg+2 = · · · kr = 1, where −1 � g � r.

(1) u ∈ B(kss) with 0 � s � g. In this case, the normalized
reduced state of parties i and j reads |s〉i|s〉 j (if the target
Dicke state is measured). Then the two parties both perform
Z measurement, and the test is passed if they both obtain
outcome s.

(2) u ∈ B(kst ) with 0 � s < t � r. In this case, the nor-
malized reduced state of parties i and j reads 1√

2
(|s〉i|t〉 j +

|t〉i|s〉 j ). Then the two parties both perform the projective
measurement {T +

s,t , T −
s,t , I − T +

s,t − T −
s,t }, where I is the identity

operator for one qudit and

T +
s,t = 1

2 (|s〉 + |t〉)(〈s| + 〈t |), (25)

T −
s,t = 1

2 (|s〉 − |t〉)(〈s| − 〈t |). (26)

The test is passed if they both obtain the first outcome (cor-
responding to T +

s,t ) or if they both obtain the second outcome
(corresponding to T −

s,t ).
(3) Other cases. The state cannot be the target state |D(k)〉,

so the test is not passed.
The resulting test projector reads

Pi, j =
g∑

s=0

Z̄i, j (kss) ⊗ [
(|s〉〈s|)⊗2

]
i, j

+
∑
s<t

Z̄i, j (kst ) ⊗
[(

T +
s,t

)⊗2 + (
T −

s,t

)⊗2
]

i, j
, (27)

where

Z̄i, j (kss) =
∑

u∈B(kss )

|u〉〈u|, (28)

Z̄i, j (kst ) =
∑

u∈B(kst )

|u〉〈u|. (29)
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TABLE I. The efficiencies of various verification strategies for
the n-qubit W state, three-qubit W state, n-partite Dicke states,
phased Dicke states, and antisymmetric basis state. Here ν(�) de-
notes the spectral gap of each strategy, and N (ε, δ, �) denotes the
number of tests required to verify the target state within infidelity
ε and significance level δ. In addition, the coefficients a and b read
a = √

π/2 tanh(π/2) ≈ 1.15 and b = √
π/2 coth(π/2) ≈ 1.37.

Strategy ν(�) N (ε, δ, �)

�Wn (n � 1, n is odd) b/(4
√

n) 4
√

n(bε)−1 ln δ−1

�Wn (n � 1, n is even) a/(4
√

n) 4
√

n(aε)−1 ln δ−1

�G
Wn

(n � 1, n is odd) b/
√

n
√

n(bε)−1 ln δ−1

�G
Wn

(n � 1, n is even) a/
√

n
√

n(aε)−1 ln δ−1

�I (n = 3) 0.305 3.28 ε−1 ln δ−1

�II (n = 3) 5/8 (8/5) ε−1 ln δ−1

�k and �
φ

k [k = (2, 1)] 1/3 3 ε−1 ln δ−1

�k and �
φ

k [k �= (2, 1)] 1/(n − 1) (n − 1)ε−1 ln δ−1

�ASn 1/(n − 1) (n − 1) ε−1 ln δ−1

�G̃
ASn

n/(n + 1) (n + 1)n−1ε−1 ln δ−1

Here the subscripts i, j and the overbar indicate that the op-
erators Z̄i, j (kss) and Z̄i, j (kst ) act on the n − 2 parties other
than i and j. By contrast, the subscripts i, j in [(|s〉〈s|)⊗2]i, j

and [(T +
s,t )⊗2 + (T −

s,t )⊗2]i, j indicate that these operators act on
parties i and j. We perform each test with probability 1/

(n
2

)
,

and the resulting verification operator reads

�k =
(

n

2

)−1 ∑
i< j

Pi, j . (30)

The efficiency of this protocol is guaranteed by the following
theorem, which is proved in Appendix B. The result is sum-
marized in Table I and illustrated in Fig. 2. Here it is worth
pointing out that the spectral gap of �k is closely related
to the spectrum of the transposition graph [48,49], which is
of interest to some researchers beyond quantum information
science.

Theorem 1. The spectral gap of �k reads

ν(�k ) =
⎧⎨
⎩

1/2 k = (1, 1, 1),
1/3 k = (2, 1),
1/(n − 1) n � 4.

(31)

To verify the Dicke state |D(k)〉 within infidelity ε and signif-
icance level δ, the number of tests required reads

N (ε, δ,�k ) ≈

⎧⎪⎨
⎪⎩

2ε−1 ln δ−1 k = (1, 1, 1),

3ε−1 ln δ−1 k = (2, 1),

(n − 1)ε−1 ln δ−1 n � 4.

(32)

By construction �k is invariant under any permutation of
the n parties; actually we have �k = PS

1,2, where S is the group
of all permutations of the n parties. Therefore, �S

k = �k and
�G

k = �H
k , where G = HS, and H is the group of all diagonal

unitary operators of the form U ⊗n. As shown in Appendix C,
the spectral gap of �G

k reads

ν(�G
k ) = 1

n − 1
, n � 3. (33)

FIG. 2. Spectral gaps ν(�) of verification strategies for the n-
qubit W state, n-partite Dicke states, phased Dicke states, and
antisymmetric basis state. The values of ν(�Wn ) and ν(�G

Wn
) oscillate

with the parity of n. Strategies �k, �
φ

k , and �ASn have the same
spectral gap when n � 4 [see Eqs. (31), (85), and (90)].

So we have ν(�G
k ) = ν(�k ) whenever n � 4, although �G

k �=
�k in general; the symmetrization procedure discussed in
Sec. II C does not help in this case.

IV. EFFICIENT VERIFICATION OF W STATES

In this section we present two more efficient protocols for
verifying the n-qubit W state defined in Eq. (19) [4,19]. These
protocols can reduce the number of tests quadratically with
respect to the number of qubits.

A. Efficient protocol based on two distinct tests

The first protocol consists of only two distinct tests. In the
first test, called the standard test, all parties perform the Pauli-
Z measurements, and the test is passed if only one of the n
outcomes is 1. The test projector reads

P1 =
∑
u∈B1

n

|u〉〈u|, (34)

where B1
n is the set of strings in {0, 1}n with Hamming weight

1. In the other test, each of the first n − 1 parties performs X
measurements; denote the outcome by 0 (1) if the measure-
ment result is +1 (−1). The n − 1 outcomes are labeled by
a string x ∈ {0, 1}n−1 of n − 1 bits, which corresponds to the
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product state

|αx〉 = 1√
2n−1

∑
y∈{0,1}n−1

(−1)x·y|y〉. (35)

The reduced state of party n reads

|βx〉 = |1〉 + (n − 1 − 2|x|)|0〉√
1 + (n − 1 − 2|x|)2

, (36)

where |x| denotes the Hamming weight of x. Then party n per-
forms the two-outcome projective measurement {|βx〉〈βx|, I −
|βx〉〈βx|}, and the test is passed if the first outcome (corre-
sponding to |βx〉〈βx|) is obtained. The resulting test projector
reads

P2 =
∑

x∈{0,1}n−1

|αx〉〈αx| ⊗ |βx〉〈βx|. (37)

If we perform the two tests P1 and P2 with probability p
and 1 − p, respectively, then the verification operator reads

�Wn = pP1 + (1 − p)P2. (38)

According to Lemma 1, the spectral gap ν(�Wn ) is maxi-
mized when p = 1/2, in which case �Wn = (P1 + P2)/2 and
ν(�Wn ) = (1 − √

q)/2, where

q = ‖P̄1P̄2P̄1‖ =
{ 2

5 n = 3,

1 − h(n − 3) n � 4,
(39)

with

h(n) := 1

2n

n∑
j=0

(n
j

)
1 + (n − 2 j)2

. (40)

Here the second equality in Eq. (39) is derived in Appendix D.
Therefore, we have ν(�Wn) = (1/2) − (1/

√
10) for n = 3, and

ν(�Wn ) = 1 − √
1 − h(n − 3)

2
>

h(n − 3)

4
for n � 4.

(41)
The dependence of ν(�Wn ) on n is illustrated in Fig. 2.

The function
√

n h(n) has the following properties as
proved in Appendix E.

Proposition 3.
√

n h(n) is strictly monotonically increasing
in n for odd n and even n, respectively, assuming n � 0.

Proposition 4. When n → +∞,
√

n h(n) converges for odd
n and even n, respectively:

lim
n→+∞

√
2n + 1 h(2n + 1) =

√
π

2
tanh

(π

2

)
≈ 1.15, (42)

lim
n→+∞

√
2n h(2n) =

√
π

2
coth

(π

2

)
≈ 1.37. (43)

Here we assume that n is an integer when taking the limits.
The above two propositions imply the following inequali-

ties:

1

2
�

√
nh(n) �

√
π

2
tanh

(π

2

)
, n � 1 is odd, (44)

3
√

2

5
�

√
nh(n) �

√
π

2
coth

(π

2

)
, n � 2 is even. (45)

By virtue of these results, we can derive lower and upper
bounds for the spectra gap, namely,

1

4
√

n
< ν

(
�Wn

)
<

{
3/(8

√
n) n � 3, n �= 5,

1/(2
√

n) n = 5;
(46)

these bounds can be improved when the parity of n is
given; see Appendix F for more details. As a consequence of
Eq. (46), the number of tests required to verify |Wn〉 within
infidelity ε and significance level δ satisfies

N
(
ε, δ,�Wn

)
�
⌈

4
√

n

ε
ln δ−1

⌉
. (47)

In addition, ν(�Wn ) admits the following limits:

lim
n→+∞

√
2n + 1ν

(
�W2n+1

)=
√

2π

8
coth

(π

2

)
≈0.342, (48)

lim
n→+∞

√
2nν(�W2n ) =

√
2π

8
tanh

(π

2

)
≈ 0.287, (49)

as proved in Appendix G. When n � 1, we have

ν
(
�Wn

) ≈
{√

2π

8
√

n
coth

(
π
2

) ≈ 0.342√
n

n is odd,
√

2π

8
√

n
tanh

(
π
2

) ≈ 0.287√
n

n is even;
(50)

N
(
ε, δ,�Wn

) ≈
{

2.93
√

nε−1 ln δ−1 n is odd,

3.48
√

nε−1 ln δ−1 n is even.
(51)

These results are summarized in Table I and illustrated in
Fig. 2. Compared with the protocol in Ref. [37] which
achieves ν = 1/(n − 1) with

(n
2

)
distinct tests when n � 4 (see

Sec. III B), the current protocol achieves a much better scal-
ing behavior in n and a higher efficiency whenever n � 15,
although only two distinct tests are required.

B. Higher efficiency from symmetrization

The efficiency of the above protocol can be improved by
applying the symmetrization procedure described in Sec. II C.
Let G be the group generated by all permutations of the n
qubits and diagonal unitary operators of the form U ⊗n. Con-
sider the symmetrized verification operator

�G
Wn

= pPG
1 + (1 − p)PG

2 = pP1 + (1 − p)PG
2 . (52)

Note that PG
1 = P1 is a projector, but PG

2 is not a projector.
So Lemma 1 is not applicable, and here the optimal choice
of p is not 1/2 in contrast to Eq. (38). Denote by H1 the
support of P1 and by H2 the orthogonal complement of H1.
Then H1 and H2 are invariant subspaces of G. In addition, G
has two inequivalent irreducible components in H1: one com-
ponent is spanned by |Wn〉 and is one dimensional; the other
component consists of all vectors in H1 that are orthogonal to
|Wn〉. Each irreducible component in H2 is not equivalent to
any irreducible component in H1. Consequently, PG

2 is block
diagonal with respect to H1 and H2; in addition, P1P̄G

2 P1 is
proportional to a projector. Let R be the subgroup of G gener-
ated by diag(1, e2π i/(n+1))⊗n and a cyclic permutation of order
n; note that R has order n(n + 1). By virtue of Proposition 2,
it is not difficult to verify that �R

Wn
= �G

Wn
, given that P1 is

invariant under all permutations, while P2 is invariant under
permutations of the first n − 1 parties. Therefore, the strategy
�G

Wn
can be realized using n2 + n + 1 distinct projective tests.
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As derived in Appendix H, we have

tr
(
P1PG

2

) = tr(P1P2) = n − 1 − (n − 2)h(n − 1), (53)

where h(n) is defined in Eq. (40). It follows that

∥∥P1P̄G
2 P1

∥∥ = (n − 2)[1 − h(n − 1)]

n − 1
� 1 − h(n − 1). (54)

Let

p = 1 − ∥∥P1P̄G
2 P1

∥∥
2 − ∥∥P1P̄G

2 P1

∥∥ = 1 + (n − 2)h(n − 1)

n + (n − 2)h(n − 1)
; (55)

then we have

λ2
(
�G

Wn

) = 1 − p = n − 1

n + (n − 2)h(n − 1)
, (56)

ν
(
�G

Wn

) = p = 1 + (n − 2)h(n − 1)

n + (n − 2)h(n − 1)
>

1√
n + 1

, (57)

as shown in Appendix H. In addition, by virtue of Propo-
sition 4 as well as Eqs. (44) and (45), we can deduce the
following limits:

lim
n→+∞

√
2n + 1 ν

(
�G

W2n+1

) =
√

π

2
coth

(π

2

)
≈ 1.37, (58)

lim
n→+∞

√
2n ν

(
�G

W2n

) =
√

π

2
tanh

(π

2

)
≈ 1.15. (59)

Numerical calculation shows that a good approximation of
ν(�Wn ) can be expressed as follows:

ν(�Wn ) ≈
{

1.37√
n+1.37

n is odd,

1.15√
n+1.11

n is even.
(60)

When n � 1, we have ν(�G
Wn

) ≈ 4ν(�Wn ), so the symmetriza-
tion procedure can improve the efficiency by about four times.

A comparison of the strategies �k, �Wn , and �G
Wn

indicates
that �G

Wn
has the largest spectral gap and thus the highest

efficiency for all n � 3 [see Eqs. (31), (46), and (57)], as il-
lustrated in Fig. 2. The strategy �Wn requires only two distinct
tests, which is much fewer than the number O(n2) of distinct
tests required by the other two strategies. On the other hand,
the strategies �Wn and �G

Wn
only apply to W states, while the

strategy �k applies to all qudit (including qubit) Dicke states.

V. NEARLY OPTIMAL VERIFICATION OF THE
THREE-QUBIT W STATE

In this section we construct a nearly optimal protocol for
verifying the three-qubit W state |W3〉 [50] shared by Alice,
Bob, and Charlie. Before presenting this protocol, it is in-
structive to set an upper bound for the spectral gap of any
verification operator based on LOCC.

According to Ref. [32], for a normalized two-qubit en-
tangled pure state s0|00〉 + s1|11〉 with Schmidt coefficients
s0, s1 (0 < s0, s1 < 1 and s2

0 + s2
1 = 1), the maximum spectral

gap of any verification operator based on LOCC or separable
measurements is 1/(1 + s0s1). With respect to the partition
between Alice and the other two parties, |W3〉 can be regarded
as a two-qubit state in a proper subspace and has two Schmidt
coefficients equal to

√
1/3 and

√
2/3, respectively. Therefore,

the spectral gap of any verification operator based on LOCC
or separable measurements is upper bounded by

1

1 + √
2/9

= 9 − 3
√

2

7
≈ 0.6796. (61)

If each test of the verification strategy can be realized by
LOCC with one-way communication, then the upper bound
can be reduced to 2/3 according to Refs. [32,33].

A. Nearly optimal verification protocol

To start with, we construct an efficient protocol using three
distinct tests. In the first test, all three parties perform Z
measurements, and the test is passed if only one of the three
outcomes is 1. The test projector reads

P1 = |001〉〈001| + |010〉〈010| + |100〉〈100|, (62)

which is a special case of the projector defined in Eq. (34).
The other two tests are based on adaptive local projective
measurements. The second test P2 is defined in Eq. (37) with
n = 3 and has the form

P2 = X +X + ⊗ |γ+〉〈γ+| + X −X − ⊗ |γ−〉〈γ−|
+ (X +X − + X −X +) ⊗ |1〉〈1|, (63)

where |γ±〉 = 1√
5
(2|0〉 ± |1〉), X ± = |±〉〈±|, and |±〉 =

1√
2
(|0〉 ± |1〉) are eigenstates of the operator X . For the third

test, Alice performs Z measurement and send her outcome
to Bob and Charlie. If the outcome of Alice is 1, so that the
normalized reduced state of Bob and Charlie is |00〉 (if |W3〉
is measured), then both Bob and Charlie perform Z measure-
ment, and the test is passed if their outcomes are both 0. If the
outcome of Alice is 0, so that the normalized reduced state
reads 1√

2
(|01〉 + |10〉) (if |W3〉 is measured), then both Bob

and Charlie perform X measurement, and the test is passed if
their outcomes coincide. The resulting test projector reads

P3 = |100〉〈100| + |0〉〈0| ⊗ (X +X + + X −X −). (64)

Note that the three test projectors P1, P2, and P3 have ranks 3,
4, and 3, respectively.

If we perform the three tests P1, P2, and P3 with probabili-
ties p1, p2, and 1 − p1 − p2, respectively, then the verification
operator is given by

�I = p1P1 + p2P2 + (1 − p1 − p2)P3. (65)

Note that this strategy can be realized using local projective
measurements with one-way communication. Numerical cal-
culation shows that λ2(�I ) � 0.695, and the lower bound is
approximately saturated when p1 ≈ 0.246 and p2 ≈ 0.444, in
which case we have ν(�I ) ≈ 0.305.

The efficiency of the above protocol can be improved by
applying the symmetrization procedure described in Sec. II C.
Let G be the group generated by the six permutations and
diagonal unitary operators of the form U ⊗3. Then G has six
irreducible components, all of which are inequivalent. Let

|τ0〉 := |000〉, |τ1〉 := |111〉,
|τ2〉 := (|001〉 − |010〉)/

√
2,
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|τ3〉 := (|001〉 + |010〉 − 2|100〉)/
√

6,

|τ4〉 := (|011〉 + |101〉 + |110〉)/
√

3, (66)

|τ5〉 := (|011〉 − |101〉)/
√

2,

|τ6〉 := (|011〉 + |101〉 − 2|110〉)/
√

6.

Then four one-dimensional irreducible components of G are
spanned by |W3〉, |τ0〉, |τ1〉, |τ4〉, respectively. One two-
dimensional component is spanned by |τ2〉 and |τ3〉, and the
other two-dimensional component is spanned by |τ5〉 and |τ6〉.
Given any verification operator � for |W3〉, then �G has the
form

�G = |W3〉〈W3| + μ0|τ0〉〈τ0| + μ1|τ1〉〈τ1| + μ4|τ4〉〈τ4|
+ μ2(|τ2〉〈τ2| + |τ3〉〈τ3|) + μ3(|τ5〉〈τ5| + |τ6〉〈τ6|)

(67)

according to Eq. (15), where 0 � μ0, μ1, μ2, μ3, μ4 � 1. On
the other hand, any verification operator of this form is G-
invariant.

Let K be the subgroup of G that is generated by six permu-
tations and U ⊗3

π/2 with Uπ/2 = diag(1, i); note that K has order
24. Then K has the same number of irreducible components
as G, so �K = �G for any verification operator of |W3〉 ac-
cording to Proposition 2. In addition, if � can be realized by
m distinct projective tests, then �K can be realized by at most
24m distinct projective tests.

Consider the verification operator

�II := �K
I = p1P1 + p2PK

2 + (1 − p1 − p2)PK
3 ; (68)

note that PK
1 = P1. Each test operator PK

j for j = 1, 2, 3 has
the form in Eq. (67) with at most five distinct eigenvalues. The
parameter vectors μ = (μ0, μ1, μ2, μ3, μ4) associated with
the three test operators are respectively given by

μ = (0, 0, 1, 0, 0) for PK
1 ,

μ = 1
15 (6, 9, 3, 8, 8) for PK

2 , (69)

μ = 1
6 (3, 0, 3, 1, 1) for PK

3 .

Therefore, the second largest eigenvalue of �II reads

λ2(�II ) = max
p1, p2�0
p1+p2�1

{
5 − 5p1 − p2

10
,

5 − 5p1 + 11p2

30
,

5 + 5p1 − 3p2

10
,

3

5
p2

}
� 3

8
. (70)

The bound is saturated iff p1 = 1/8 and p2 = 5/8, in which
case we have

�II = |W3〉〈W3| + 3
8 (1 − |W3〉〈W3|) (71)

and

ν(�II ) = 5
8 , N (ε, δ,�II ) ≈ 8

5ε
ln δ−1. (72)

Compared with the protocol in Ref. [37] which achieves ν =
1/3 (see Sec. II C), this protocol has a much higher efficiency.
In addition, the spectral gap is only 8.04% smaller than the
upper bound ν(�) � (9 − 3

√
2)/7 for strategies based on

LOCC or separable measurements. Accordingly, the number

of tests required by the strategy �II is only 8.74% more than
the optimal strategy based on separable measurements.

B. Additional applications

The strategy �II is homogeneous and so can be applied to
fidelity estimation [30]. Note that the passing probability of
any state ρ is related to its fidelity with the target state |W3〉 as
follows, tr(ρ�II ) = 5

8 〈W3|ρ|W3〉 + 3
8 , which implies that

F = 〈W3|ρ|W3〉 = 8
5 tr(ρ�II ) − 3

5 . (73)

According to Ref. [30], the standard deviation of this estima-
tion is given by �F =√

(1 − F )(F + 3/5)/N , where N is the
number of tests performed.

Besides fidelity estimation, our protocol in Eq. (71) is also
useful for state verification in the adversarial scenario, in
which case the state to be verified is prepared by a potentially
malicious adversary [29,30]. If there is no restriction on the
accessible measurements, the optimal strategy for verifying
|�〉 in the adversarial scenario can be chosen to be homoge-
neous:

� = |�〉〈�| + λ2(�)(1 − |�〉〈�|). (74)

According to Refs. [29,30], in the high-precision limit ε, δ →
0, the minimal number of tests required to verify |�〉 reads
(assuming λ2(�) > 0)

N ≈ [
λ2(�)ε ln λ2(�)−1]−1

ln δ−1. (75)

This number is minimized when λ2(�) = 1/e, which yields
N ≈ eε−1 ln δ−1. Since our verification strategy �II for |W3〉
is homogeneous with λ2(�II ) = 3/8, it can be applied to the
adversarial scenario directly. For high-precision state verifica-
tion, the number of tests required reads N ≈ 2.7188ε−1 ln δ−1,
which is only about 0.02% more than the optimal strategy.
When ε, δ are small but not infinitesimal (say ε, δ � 0.01),
our strategy is still nearly optimal.

VI. VERIFICATION OF PHASED DICKE STATES

In this section we consider the verification of phased Dicke
states [12,13], which have the form

|Dφ (k)〉 = 1√
m

∑
u∈B(k)

eiφ(u)|u〉, (76)

where m = |B(k)| = n!/(
∏r

j=0 k j!) and the phase φ(u) is a
real-valued function of the sequence u.

Similar to the verification protocol for Dicke states, our
protocol for |Dφ (k)〉 consists of

(n
2

)
distinct tests based on

adaptive local projective measurements. Each test is asso-
ciated with a pair of parties among the n parties. The test
Pφ

i, j associated with parties i and j is realized as follows as
illustrated in Fig. 3. All n − 2 parties other than parties i and
j perform the generalized Pauli-Z measurements, and their
outcomes are labeled by a sequence u of n − 2 symbols, which
corresponds to the product state |u〉. The measurements of
parties i and j depend on the outcome u, and we need to
distinguish three cases. Recall that kst and kss are defined in
Eqs. (22) and (23), respectively. Suppose k0, k1, . . . , kg � 2
and kg+1 = kg+2 = · · · kr = 1, where −1 � g � r.
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FIG. 3. Schematic view of the test Pφ

i, j used to verify the phased Dicke state |Dφ (k)〉. All n − 2 parties other than parties i and j first
perform the generalized Pauli-Z measurement and send the outcome u to parties i and j. Conditioned on this outcome, parties i and j then
perform suitable projective measurements. The outcomes corresponding to passing the test are marked by “�”.

(1) u ∈ B(kss) with 0 � s � g. In this case, the normalized
reduced state of parties i and j reads |s〉i|s〉 j up to an irrelevant
phase factor (if the target phased Dicke state is measured).
Then the two parties both perform Z measurement, and the
test is passed if they both obtain outcome s.

(2) u ∈ B(kst ) with 0 � s < t � r. In this case, the normal-
ized reduced state of parties i and j reads

1√
2

[|s〉i|t〉 j + eiθ (i, j,u)|t〉i|s〉 j
]
, (77)

θ (i, j, u) := φ(v( j, i, u)) − φ(v(i, j, u)). (78)

Here v(i, j, u), v( j, i, u) ∈ B(k) are defined as follows:

vi(i, j, u) = s, v j (i, j, u) = t, vi, j (i, j, u) = u, (79)

vi( j, i, u) = t, v j ( j, i, u) = s, vi, j ( j, i, u) = u, (80)

where vi, j (i, j, u) means the subsequence of v(i, j, u) without
the ith and jth components, and vi, j ( j, i, u) is defined in the
same way. Note that the parameters s and t are determined
by u. Then parties i and j perform projective measurements
{�+

i, j,u, �
−
i, j,u, I − �+

i, j,u − �−
i, j,u} and {�+

j,i,u, �
−
j,i,u, I − �+

j,i,u −
�−

j,i,u}, respectively, where

�+
i, j,u = 1

2

[|s〉 + eiθ (i, j,u)/2|t〉][〈s| + e−iθ (i, j,u)/2〈t |], (81)

�−
i, j,u = 1

2

[|s〉 − eiθ (i, j,u)/2|t〉][〈s| − e−iθ (i, j,u)/2〈t |], (82)

and �±
j,i,u are defined in a similar way with θ (i, j, u) replaced

by θ ( j, i, u) = −θ (i, j, u). The test is passed if they both
obtain the first outcome (corresponding to �+) or if they both
obtain the second outcome (corresponding to �−).

(3) Other cases. The state cannot be the target state
|Dφ (k)〉, so the test is not passed.

The resulting test projector reads

Pφ
i, j =

g∑
s=0

Z̄i, j (kss) ⊗ [
(|s〉〈s|)⊗2

]
i, j +

∑
s<t

∑
u∈B(kst )

|u〉〈u|

⊗ (
�+

i, j,u ⊗ �+
j,i,u + �−

i, j,u ⊗ �−
j,i,u

)
i, j, (83)

where Z̄i, j (kss) is the projector defined in Eq. (28). Each
test is performed with probability 1/

(n
2

)
, and the resulting

verification operator reads

�
φ

k =
(

n

2

)−1 ∑
i< j

Pφ
i, j . (84)

The efficiency of this protocol is guaranteed by the following
theorem, which is proved in Appendix I. As in the case of
Dicke states, the spectral gap of �

φ

k is closely related to the
spectrum of the transposition graph [48,49].

Theorem 2. The spectral gap of �
φ

k is the same as that of
�k in Eq. (31), namely,

ν
(
�

φ

k

) = ν(�k ) =

⎧⎪⎨
⎪⎩

1/2 k = (1, 1, 1),

1/3 k = (2, 1),

1/(n − 1) n � 4.

(85)

To verify the phased Dicke state |Dφ (k)〉 within infidelity ε

and significance level δ, the number of tests required reads

N
(
ε, δ,�

φ

k

) ≈
⎧⎨
⎩

2ε−1 ln δ−1 k = (1, 1, 1),
3ε−1 ln δ−1 k = (2, 1),
(n − 1)ε−1 ln δ−1 n � 4.

(86)

FIG. 4. Schematic view of the test PAS
i, j used to verify the n-partite antisymmetric basis state |ASn〉. All n − 2 parties other than parties i

and j first perform the generalized Pauli-Z measurement and send the outcome u to parties i and j. Conditioned on this outcome, parties i and
j then perform suitable projective measurements. The outcomes corresponding to passing the test are marked by “�”.
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VII. OPTIMAL VERIFICATION OF ANTISYMMETRIC
BASIS STATES

Finally, we consider the verification of the n-partite anti-
symmetric basis state, also known as the Slater determinant
state [14–16]. It has the following form:

|ASn〉 = 1√
n!

∑
j1, j2,..., jn

ε̃ j1,..., jn | j1 − 1〉 ⊗ · · · ⊗ | jn − 1〉,

(87)
where j1, j2 . . . , jn ∈ {1, 2, . . . , n} and ε̃ j1, j2,..., jn is the Levi-
Civita symbol. Note that |ASn〉 can be regarded as a bipartite
maximally entangled state of Schmidt rank n between one
party and the other parties. So the spectral gap of any veri-
fication operator based on LOCC or separable measurements
is upper bounded by n/(n + 1) according to known results
on the verification of maximally entangled states [24,25,42].
Here we shall show that this upper bound can be saturated for
any antisymmetric basis state with n � 2. When n = 2, the
state |AS2〉 is a singlet and can be verified using protocols for
bipartite pure states proposed in Refs. [24,25,31–33,42]. Here
we focus on the multipartite case with n � 3.

A. Efficient verification protocol

Note that the antisymmetric basis state |ASn〉 in Eq. (87)
is a special case of phased Dicke states in Eq. (76) with
k = (1, 1, . . . , 1) and φ(u) = 1 (−1) if u is an even (odd)
permutation of 0, 1, 2, . . . , n − 1. Therefore, |ASn〉 can be
verified using the strategy presented in Eq. (84) tailored to this
specific case. Here we shall construct a variant protocol that
also consists of

(n
2

)
distinct tests, and each test is associated

with a pair of parties. The test PAS
i, j associated with parties

i and j is illustrated in Fig. 4 and realized as follows. All
n − 2 parties other than parties i and j perform the general-
ized Pauli-Z measurements, and their outcomes are labeled
by a sequence u of n − 2 symbols, which corresponds to the
product state |u〉. The measurements of parties i and j depend
on the outcome u, and we need to distinguish two cases.

(1) u ∈ B(kst ) with 0 � s < t � n − 1. In this case, the
normalized reduced state of parties i and j reads 1√

2
(|s〉i|t〉 j −

|t〉i|s〉 j ). Then the two parties both perform the projective
measurement {T +

s,t , T −
s,t , I − T +

s,t − T −
s,t }, where T +

s,t and T −
s,t are

projectors defined in Eqs. (25) and (26). The test is passed if
one of them obtains the first outcome (corresponding to T +

s,t )
and the other one obtains the second outcome (corresponding
to T −

s,t ).
(2) Other cases. The state cannot be the target state |ASn〉,

so the test is not passed.
The resulting test projector reads

PAS
i, j =

∑
s<t

Z̄i, j (kst ) ⊗ (
T +

s,t ⊗ T −
s,t + T −

s,t ⊗ T +
s,t

)
i, j

, (88)

where Z̄i, j (kst ) is defined in Eq. (29) and acts on the tensor
product space of all parties other than i and j.

We perform each test with probability 1/
(n

2

)
, and the result-

ing verification operator reads

�ASn =
(

n

2

)−1 ∑
i< j

PAS
i, j . (89)

The efficiency of this protocol is guaranteed by the following
theorem, which is proved in Appendix J.

Theorem 3. The spectral gap of �ASn with n � 3 reads

ν
(
�ASn

) = 1

n − 1
. (90)

To verify the antisymmetric basis state |ASn〉 within infidelity
ε and significance level δ, the number of tests required reads

N
(
ε, δ,�ASn

) ≈ n − 1

ε
ln δ−1. (91)

Incidentally, the measurement {T +
s,t , T −

s,t , I − T +
s,t − T −

s,t }
employed in the above verification protocol can be replaced
by the alternative {T̃ +

s,t , T̃ −
s,t , I − T̃ +

s,t − T̃ −
s,t }, where

T̃ +
s,t = 1

2 (|s〉 + i|t〉)(〈s| − i〈t |), (92)

T̃ −
s,t = 1

2 (|s〉 − i|t〉)(〈s| + i〈t |). (93)

Accordingly, the test projector PAS
i, j is replaced by

P̃AS
i, j =

∑
s<t

Z̄i, j (kst ) ⊗ (
T̃ +

s,t ⊗ T̃ −
s,t + T̃ −

s,t ⊗ T̃ +
s,t

)
i, j, (94)

and the resulting verification operator �̃ASn is given by
Eq. (89) with PAS

i, j replaced by P̃AS
i, j . This verification strategy

is a special case of the strategy presented in Sec. VI (tailored
to the antisymmetric basis state). According to Theorems 2
and 3, we have

ν(�̃ASn ) = 1

n − 1
= ν

(
�ASn

)
. (95)

Therefore, the two strategies �ASn and �̃ASn are equally effi-
cient.

B. Optimal verification protocol based on symmetrization

Let H̃ be the group of all unitary transformations of the
form U ⊗n with U ∈ U(Cn) (here U is not required to be diag-
onal), let S be the group of all permutations of the n parties,
and let G̃ = H̃S. Then the projector onto the antisymmetric
basis state |ASn〉 is invariant under G̃. Therefore, we can
construct a symmetrized strategy �G̃

ASn
according to Sec. II C.

Similar to �k, by construction �ASn is invariant under S, so
we have �S

ASn
= �ASn and �G̃

ASn
= �H̃

ASn
. For the convenience

of practical applications, the group U(Cn) used to construct H̃
can also be replaced by a unitary t-design with t = n [47,51].

To determine �G̃
ASn

, note that H̃ is a representation of
U(Cn) and S is a representation of the symmetric group Sn of
n letters. Accordingly, G̃ is a representation of U(Cn) × Sn.
By Schur-Weyl duality [52,53], all the irreducible components
of G̃ in (Cn)⊗n are multiplicity free, and each irreducible
component is labeled by a partition of n. Meanwhile, (Cn)⊗n

has the following decomposition:

(Cn)⊗n =
⊕
μ�n

Hμ =
⊕
μ�n

Wμ ⊗ Sμ, (96)

where the notation μ � n means μ = (μ1, μ2, . . . , μn) is a
partition of n, which means μ j are non-negative integers ar-
ranged in decreasing order and sum up to n. Here Wμ carries
the irreducible representation of the unitary group U(Cn),
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while Sμ carries the irreducible representation of the symmet-
ric group Sn. Let Dμ = dim(Wμ) and dμ = dim(Sμ); let Pμ

be the projector onto Hμ; then we have tr(Pμ) = dim(Hμ) =
dμDμ. The following theorem is proved in Appendix K.

Theorem 4. For n � 3 we have

�G̃
ASn

=
∑

μ

dμ

Dμ

Pμ, (97)

β
(
�G̃

ASn

) = 1

n + 1
, ν

(
�G̃

ASn

) = n

n + 1
. (98)

To verify the antisymmetric basis state |ASn〉 within infidelity
ε and significance level δ, the number of tests required reads

N
(
ε, δ,�G̃

ASn

) ≈ n + 1

nε
ln δ−1. (99)

Equation (98) in Theorem 4 follows from Eq. (97) and
Lemma 2 below, which imply that the second largest eigen-
value of �G̃

ASn
is dμ/Dμ with μ = (2, 1, . . . , 1). In this case,

we have dμ = n − 1 and Dμ = n2 − 1, which yields Eq. (98).
Theorem 4 implies that our protocol associated with the
verification operator �G̃

ASn
is optimal for verifying the anti-

symmetric basis state |ASn〉 under LOCC. This is the only
optimal protocol known for multipartite nonstabilizer states.
For quantum states with GME, it is extremely difficult to
construct optimal verification protocols under LOCC, and
such optimal protocols were known previously only for GHZ
states [43] (optimal protocols for some other stabilizer states
were constructed recently [44] after the initial posting of this
paper).

A partition μ � n is majorized by another partition μ′ � n,
denoted by μ ≺ μ′, if

k∑
j=1

μ j �
k∑

j=1

μ′
j ∀k = 1, 2 . . . , n. (100)

Note that the inequality is saturated when k = n. The follow-
ing lemma as proved in Appendix K is very instructive to
understanding the spectrum and spectral gap of the verifica-
tion operator �G̃

ASn
.

Lemma 2. Suppose μ,μ′ � n and μ ≺ μ′; then

Dμ

dμ

� Dμ′

dμ′
. (101)

C. Efficient certification of GME

A multipartite pure state is genuinely multipartite entan-
gled if it is not separable across every bipartition. According
to Ref. [2], a quantum state ρ is genuinely multipartite entan-
gled if its fidelity with some multipartite entangled state |�〉
is larger than C� , where C� is the square of the maximum
Schmidt coefficient of |�〉 maximized over all bipartitions.
Note that C� equals 1/n when |�〉 is the antisymmetric basis
state |ASn〉. Thus a state ρ is genuinely multipartite entangled
if tr(ρ|ASn〉〈ASn|) > 1/n. Given a verification strategy � for
|ASn〉, to certify the GME of the antisymmetric basis state
with significance level δ, the number of tests is determined
by Eq. (2) with ε = (n − 1)/n. If � is the optimal local strat-
egy with ν(�) = n/(n + 1) (the strategy �G̃

ASn
constructed in

Sec. VII B for example), then this number reads

NE =
⌈

ln δ

ln 2 − ln(n + 1)

⌉
, (102)

which decreases monotonically with n. We have NE = 1 when
n � 2δ−1 − 1, so the GME of the antisymmetric basis state
can be certified with any given significance level using only
one test when the number n of particles is large enough. Pre-
viously, single-copy certification of GME is known only for
GHZ states [43] and qudit stabilizer states [30]. The current
result is of special interest because it may shed light on the
certification of GME of other nonstabilizer states.

VIII. COMPARISON WITH QUANTUM STATE
TOMOGRAPHY

Before concluding this paper, it is instructive to com-
pare our verification protocols with traditional tomography
[19,54,55]; see also Ref. [30]. First, they have different
assumptions. In quantum state tomography, it is usually as-
sumed that the states prepared in different runs are identical.
However, this assumption is difficult to guarantee in many sce-
narios of practical interest. In quantum state verification, we
can drop this assumption and thus draw a stronger conclusion
[29,30].

Second, the two approaches address different tasks and
have different goals. Quantum state tomography aims to de-
termine the density matrix of an unknown quantum state
completely. That is why the resource required grows ex-
ponentially with the number n of qubits (qudits), given
that the system size increases exponentially with n. By con-
trast, the aim of quantum state verification is to determine
whether the states prepared are sufficiently close to the target
state on average. If these states are far from the target state,
then they will fail the tests quickly, so we can avoid false
positive conclusion with high probability, but we can get little
information about the true state in this case. In a word, quan-
tum state verification tries to extract the key information—the
fidelity with the target state—as efficiently as possible. It is a
powerful tool in many scenarios of practical interest in which
quantum state tomography is too resource consuming to apply.
It cannot replace tomography completely, but is a useful ad-
dition to the traditional tomographic approaches. In practice,
the choice of a specific method depends on the specific task
and goal under consideration.

To see the inefficiency of tomography, here we review the
number of copies (tests) required when tomography is em-
ployed to estimate an unknown quantum state within a given
precision as quantified by the trace distance ε1 or the infidelity
ε2. Recall that the fidelity between two density matrices ρ and
σ is defined as

F (ρ, σ ) :=
[
tr
(√√

ρσ
√

ρ
)]2

. (103)

To clarify the efficiency limit of the traditional approach, here
we consider quantum state tomography with optimal collec-
tive measurements (the most general measurements allowed
by quantum mechanics). The efficiency can only decrease if
only individual local measurements are accessible. Suppose
σ is an unknown D-dimensional quantum state, and ρ is
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our estimator constructed using quantum state tomography.
If we want to achieve precision ε1 in trace distance, that is,
1
2‖ρ − σ‖1 � ε1 (with constant probability close to 1), then at
least �(D2/ε2

1 ) copies are required according to Ref. [54]. In
addition, Ref. [55] shows that O(D2/ε2

1 ) copies are sufficient
to accomplish this task. On the other hand, if we want to
achieve infidelity ε2, that is, 1 − F (ρ, σ ) � ε2, then �(D2/ε2)
copies are necessary, while O(D2/ε2) ln(D/ε2) copies are suf-
ficient according to Ref. [54].

Next, we devise a scheme based on tomography for deter-
mining whether a given unknown state σ is sufficiently close
to the D-dimensional target pure state |�〉〈�|, that is, whether
the infidelity εσ := 1 − 〈�|σ |�〉 is smaller than some thresh-
old ε. First, we do tomography using N copies of σ and obtain
the estimator ρ. Second, we calculate ερ := 1 − 〈�|ρ|�〉. In
order to ensure the condition εσ � ε, it suffices to ensure the
following condition:

1
2‖ρ − σ‖1 + ερ � ε, (104)

because 〈�|ρ|�〉 � 〈�|σ |�〉 + 1
2‖ρ − σ‖1 [see Eq. (9.96)

in Ref. [56] for example]. In the tomography procedure, we
require that our estimator ρ satisfies the following condition
1
2‖ρ − σ‖1 � ε/2 (with constant probability), and finally we
accept the state σ if and only if ερ � ε/2. Suppose optimal
collective measurements are accessible; then this scheme re-
quires �(D2/ε2) copies. If the target state is an n-qudit state,
then N = �(d2n/ε2) copies are necessary and sufficient.

In the previous sections we have shown that only O(n/ε),
O(

√
n/ε), and O(1/ε) tests are required to verify the n-

partite phased Dicke states, W state, and antisymmetric basis
state, respectively, within infidelity ε. Compared with to-
mography, quantum state verification can extract the key
information—the fidelity with the target state—exponentially
more efficiently. Nevertheless, it should be pointed out again
that the two approaches rely on different assumptions and
have different scopes of applications. Hence the above com-
parison cannot be completely fair.

IX. SUMMARY

Motivated by practical applications, we proposed several
efficient protocols for verifying general phased Dicke states,

including W states and qudit Dicke states. Our protocols only
require adaptive local projective measurements, which are as
simple as one can expect and are quite appealing in practice.
To verify any n-qudit phased Dicke state within infidelity
ε and significance level δ, the number of tests required is
only O(nε−1 ln δ−1), which is exponentially more efficient
than previous approaches based on quantum state tomography
and direct fidelity estimation. In addition, this number can be
further reduced to O(

√
n ε−1 ln δ−1) for W states. One of our

protocols for the three-qubit W state is nearly optimal for both
nonadversarial and adversarial scenarios, and it can also be
applied to fidelity estimation. Moreover, we constructed an
optimal protocol for verifying the antisymmetric basis state;
the number of tests required decreases monotonically with the
number n of particles. By virtue of this protocol, the GME of
the antisymmetric basis state can be certified with any given
significance level using only one test when n is sufficiently
large. In this way, our paper provides powerful tools for char-
acterizing and verifying various phased Dicke states. In the
course of study, we introduced several methods for improving
the efficiency of a given verification strategy, which are useful
to studying quantum verification in general. In addition, our
paper highlights the significance of graph theory and repre-
sentation theory in studying quantum verification, which is
of interest to many researchers beyond quantum information
science.
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APPENDIX A: PROOF OF LEMMA 1

Proof. Note that |�〉 is an eigenstate of P1 and P2 with eigenvalue 1 by assumption. Without loss of generality, we can assume
that P1 has rank l + 1 and P2 has rank h + 1 with h � l . Then we can find two sets of orthonormal states {|φ j〉}l

j=1 and {|ϕk〉}h
k=1

such that

P1 = |�〉〈�| +
l∑

j=1

|φ j〉〈φ j |, P2 = |�〉〈�| +
h∑

k=1

|ϕk〉〈ϕk|, |〈φ j |ϕk〉|2 = qkδ jk, (A1)

where the overlaps qk are arranged in decreasing order, that is, 1 � q1 � q2 � · · · qh � 0. As a consequence, we have

P̄1 =
l∑

j=1

|φ j〉〈φ j |, P̄2 =
h∑

k=1

|ϕk〉〈ϕk|, (A2)

q :=‖P̄1P̄2P̄1‖ =
∥∥∥∥∥
(

l∑
j=1

|φ j〉〈φ j |
)(

h∑
k=1

|ϕk〉〈ϕk|
)(

l∑
j=1

|φ j〉〈φ j |
)∥∥∥∥∥ =

∥∥∥∥∥
h∑

k=1

qk|φk〉〈φk|
∥∥∥∥∥ = q1, (A3)

max
|φ〉∈supp(P̄1 )

〈φ|P2|φ〉 = max∑l
j=1 |c j |2=1

l∑
j,k=1

c∗
j ck〈φ j |P2|φk〉 = max∑l

j=1 |c j |2=1

h∑
j=1

q j |c j |2 = q1 = ‖P̄1P̄2P̄1‖ = q. (A4)
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In addition, the verification operator � can be expressed as follows:

� = pP1 + (1 − p)P2 = |�〉〈�| +
h∑

j=1

[
p|φ j〉〈φ j | + (1 − p)|ϕ j〉〈ϕ j |

] + p
l∑

k=h+1

|φk〉〈φk|. (A5)

So the second largest eigenvalue of � reads

λ2(�) = ‖� − |�〉〈�|‖ = max
1� j�h

∥∥p|φ j〉〈φ j | + (1 − p)|ϕ j〉〈ϕ j |
∥∥ = max

1� j�h

1

2

[
1 +

√
(2p − 1)2 + 4p(1 − p)q j

]
= 1

2

[
1 +

√
(2p − 1)2 + 4p(1 − p)q1

] = 1

2

[
1 +

√
(2p − 1)2 + 4p(1 − p)q

]
= 1

2

[
1 +

√
4(1 − q)p2 − 4(1 − q)p + 1

]
� 1 + √

q

2
. (A6)

If q < 1, then the lower bound is saturated iff p = 1/2, in which case we have � = (P1 + P2)/2. Therefore, the spectral gap
satisfies ν(�) � (1 − √

q)/2, and the upper bound is saturated iff p = 1/2, which confirms Lemma 1. �

APPENDIX B: PROOF OF THEOREM 1

Proof. The verification operator �k can be expressed as

�k =
(

n

2

)−1 ∑
i< j

g∑
s=0

Z̄i, j (kss) ⊗ [
(|s〉〈s|)⊗2

]
i, j +

(
n

2

)−1 ∑
i< j

∑
s<t

Z̄i, j (kst ) ⊗
[(

T +
s,t

)⊗2 + (
T −

s,t

)⊗2
]

i, j

= 1

n(n − 1)

(
r∑

s=0

k2
s − n

)
Z (k) + 2

n(n − 1)

∑
i< j

∑
s<t

Z̄i, j (kst ) ⊗ [(|ψ+
s,t 〉〈ψ+

s,t |
)

i, j + (|ϕ+
s,t 〉〈ϕ+

s,t |
)

i, j

]

= 1

n(n − 1)

[
M1 +

∑
s<t

M(s,t )

]
. (B1)

Here |ψ+
s,t 〉 = 1√

2
(|s〉|t〉 + |t〉|s〉), |ϕ+

s,t 〉 = 1√
2
(|s〉|s〉 + |t〉|t〉), Z (k) = ∑

u∈B(k) |u〉〈u|, and

M1 :=
(

r∑
s=0

k2
s − n +

∑
s<t

kskt

)
Z (k) +

∑
u, v∈B(k)

u∼v

|u〉〈v| = 1

2

(
n2 − 2n +

r∑
s=0

k2
s

)
Z (k) +

∑
u,v∈B(k)

Auv|u〉〈v|, (B2)

M(s,t ) := ks(ks + 1)

2

∑
u∈B(ks

t )

|u〉〈u| + kt (kt + 1)

2

∑
v∈B(kt

s )

|v〉〈v| +
∑

u∈B(ks
t )

v∈B(kt
s )

u∼v

(|u〉〈v| + |v〉〈u|), (B3)

where the notation u ∼ v means uj �= v j for exactly two values of j. The coefficient matrix (Auv ) for u, v ∈ B(k) happens to
be the adjacency matrix A(k) of the transposition graph G(k) [48] explained in Appendix L. Note that M1 and all M(s,t ) (with
s, t = 0, 1, . . . , r and s < t) are Hermitian and have mutually orthogonal supports, so all of them are positive semidefinite given
that �k is positive semidefinite by construction.

According to Lemma 3 in Appendix L, the maximum eigenvalue of A(k) is d = (n2 − ∑r
s=0 k2

s )/2 with multiplicity 1, and
the second largest eigenvalue of A(k) is equal to d − n. Therefore, the two largest eigenvalues of M1 read

λ1(M1) = n(n − 1), λ2(M1) = n(n − 1) − n = n(n − 2). (B4)

In addition, direct calculations show that M(s,t ) has an eigenstate

|�s,t 〉 = 1√
ks(ks + 1) + kt (kt + 1)

[√
ks(ks + 1)

∣∣D(ks
t

)〉 + √
kt (kt + 1)

∣∣D(kt
s

)〉]

=
√ ∏r

j=0 k j!

kskt [ks(ks + 1) + kt (kt + 1)](n!)

[
ks(ks + 1)

∑
u∈B(ks

t )

|u〉 + kt (kt + 1)
∑

u∈B(kt
s )

|u〉
]
, (B5)

with eigenvalue

λ1
(
M(s,t )

) = ks(ks + 1)

2
+ kt (kt + 1)

2
. (B6)
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According to the Perron-Frobenius theorem (see Chap. 8 in Ref. [57] for example), this is the largest eigenvalue of M(s,t ), given
that M(s,t ) is irreducible in the subspace spanned by |u〉 with u ∈ B(ks

t ) ∪ B(kt
s), that is, the graph corresponding to the third term

of M(s,t ) in Eq. (B3) is connected. In conjunction with Eqs. (B1) and (B4), we can deduce the second largest eigenvalue and
spectral gap of �k, with the result

λ2(�k ) = max

{
λ2(M1)

n(n − 1)
, max

s<t

λ1
(
M(s,t )

)
n(n − 1)

}
= max

{
n − 2

n − 1
,

k0(k0 + 1) + k1(k1 + 1)

2n(n − 1)

}
, (B7)

ν(�k ) = 1 − λ2(�k ) = min

{
1

n − 1
, 1 − k0(k0 + 1) + k1(k1 + 1)

2n(n − 1)

}
. (B8)

When n � 4, the above equations reduce to

λ2(�k ) = n − 2

n − 1
, ν(�k ) = 1

n − 1
, (B9)

which confirms Eq. (31). When n = 3, Eq. (31) can be verified directly by virtue of Eq. (B8).
Equation (32) follows from Eqs. (2) and (31). This observation completes the proof of Theorem 1. �

APPENDIX C: DETERMINATION OF �G
k AND PROOF OF EQ. (33)

Denote by H the group of all unitary transformations of the form U ⊗n, where U is diagonal in the computational basis.
According to Eqs. (8) and (B1), we have

�G
k = �H

k = MH
1 + ∑

s<t MH
(s,t )

n(n − 1)
, (C1)

where

MH
1 = M1, MH

(s,t ) = ks(ks + 1)

2

∑
u∈B(ks

t )

|u〉〈u| + kt (kt + 1)

2

∑
v∈B(kt

s )

|v〉〈v|. (C2)

Equation (C2) follows from Eqs. (B2) and (B3) as well as the fact that (|u〉〈v|)H = |u〉〈v| if u and v can be turned into each other
by a permutation, while (|u〉〈v|)H = 0 otherwise.

Note that M1 and all MH
(s,t ) (with s, t = 0, 1, . . . , r and s < t) are positive semidefinite and have mutually orthogonal supports.

The largest eigenvalue of MH
(s,t ) reads λ1

(
MH

(s,t )

) = ks(ks + 1)/2. In conjunction with Eqs. (C1), (C2), and (B4), we can deduce
the second largest eigenvalue and the spectral gap of �G

k , with the result

λ2
(
�G

k

) = max

{
λ2(MH

1 )

n(n − 1)
, max

s<t

λ1
(
MH

(s,t )

)
n(n − 1)

}
= max

{
n − 2

n − 1
,

k0(k0 + 1)

2n(n − 1)

}
= n − 2

n − 1
, ν

(
�G

k

) = 1

n − 1
, (C3)

which confirms Eq. (33).

APPENDIX D: PROOF OF EQ. (39)

Proof. Note that each ket |ζ 〉 in the support of the test projector P1 in Eq. (34) has the following form:

|ζ 〉 = a1|10 . . . 00〉 + a2|01 . . . 00〉 + · · · + an|00 . . . 01〉, (D1)

where a1, a2, . . . , an are complex numbers that satisfy the normalization condition
∑n

j=1 |a j |2 = 1. In conjunction with
Lemma 1 and Eqs. (35)–(37), we can deduce that

q = ‖P̄1P̄2P̄1‖ = max
〈Wn|ζ 〉=0
〈ζ |P1|ζ 〉=1

〈ζ |P2|ζ 〉 = 1

2n−1
max∑

j a j=0∑
j |a j |2=1

∑
x∈{0,1}n−1

∣∣an + (n − 1 − 2|x|)∑n−1
j=1(−1)x j a j

∣∣2
1 + (n − 1 − 2|x|)2

= 1

2n−1
max∑

j a j=0∑
j |a j |2=1

n−1∑
k=0

1

1 + (n − 1 − 2k)2

∑
x∈{0, 1}n−1

|x|=k

∣∣∣∣∣an + (n − 1 − 2k)
n−1∑
j=1

(−1)x j a j

∣∣∣∣∣
2

, (D2)
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where |x| denotes the Hamming weight of x. When x ∈ {0, 1}n−1 and a1, a2, . . . , an satisfy the conditions
∑

j a j = 0 and∑
j |a j |2 = 1, we can derive the following equalities,

∑
|x|=k

∣∣∣∣∣an + (n − 1 − 2k)
n−1∑
j=1

(−1)x j a j

∣∣∣∣∣
2

=
∑
|x|=k

|an|2 + 2Re

[
(n − 1 − 2k)a∗

n

∑
|x|=k

n−1∑
j=1

(−1)x j a j

]
+ (n − 1 − 2k)2

∑
|x|=k

∣∣∣∣∣
n−1∑
j=1

(−1)x j a j

∣∣∣∣∣
2

= 4k(n − 1 − k)(n − 1 − 2k)2

(n − 1)(n − 2)

(
n − 1

k

)
+
(

n − 1

k

){
1 + (n − 1 − 2k)2

[
1 − 2

n − 1
− 8k(n − 1 − k)

(n − 1)(n − 2)

]}
|an|2 (D3)

for k = 0, 1, . . . , n − 1, where a∗
j denotes the complex conjugate of a j . The last equality in Eq. (D3) follows from the following

equations:

∑
|x|=k

n−1∑
j=1

(−1)x j a j = n − 1 − 2k

n − 1

(
n − 1

k

) n−1∑
j=1

a j = −n − 1 − 2k

n − 1

(
n − 1

k

)
an, (D4)

∑
|x|=k

∣∣∣∣∣
n−1∑
j=1

(−1)x j a j

∣∣∣∣∣
2

=
(

n − 1

k

)⎡⎢⎢⎢⎣
n−1∑
j=1

|a j |2 + (n − 1)(n − 2) − 4k(n − 1 − k)

(n − 1)(n − 2)

∑
i, j=1, . . . , n−1

i �= j

aia
∗
j

⎤
⎥⎥⎥⎦

=
(

n − 1

k

)[
4k(n − 1 − k)

(n − 1)(n − 2)
+ (n − 1)(n − 2) − 8k(n − 1 − k)

(n − 1)(n − 2)
|an|2

]
. (D5)

In deriving the second equality in Eq. (D5), we have employed the following facts:

n−1∑
j=1

|a j |2 = 1 − |an|2,
∑

i, j=1, . . . , n−1
i �= j

aia
∗
j =

∣∣∣∣∣
n−1∑
i=1

ai

∣∣∣∣∣
2

−
n−1∑
j=1

|a j |2 = | − an|2 − (1 − |an|2) = 2|an|2 − 1. (D6)

Now by plugging Eq. (D3) into Eq. (D2) we obtain

q = c1(n) + max∑
j a j=0∑

j |a j |2=1

c2(n)|an|2, (D7)

where the coefficients c1(n) and c2(n) read

c1(n) := 1

2n−1

n−1∑
k=0

(n−1
k

)
4k(n − 1 − k)(n − 1 − 2k)2

(n − 1)(n − 2)[1 + (n − 1 − 2k)2]
= 1

2n−3

n−2∑
k=1

(n−3
k−1

)
(n − 1 − 2k)2

[1 + (n − 1 − 2k)2]

= 1

2n−3

n−3∑
k=0

(n−3
k

)
[1 + (n − 3 − 2k)2 − 1]

[1 + (n − 3 − 2k)2]
= 1 − h(n − 3), (D8)

c2(n) := 1

2n−1

n−1∑
k=0

(n−1
k

)
1 + (n − 1 − 2k)2

{
1 + (n − 1 − 2k)2

[
1 − 2

n − 1
− 8k(n − 1 − k)

(n − 1)(n − 2)

]}

= 1

2n−1

n−1∑
k=0

(
n − 1

k

)
− 2

n − 1

1

2n−1

n−1∑
k=0

(n−1
k

)
(n − 1 − 2k)2

1 + (n − 1 − 2k)2
− 2c1(n)

= 1 − 2

n − 1
[1 − h(n − 1)] − 2[1 − h(n − 3)] = 2

n − 1
h(n − 1) + 2h(n − 3) − n + 1

n − 1
, (D9)

and h(n) is defined in Eq. (40).

If n = 3, then c1(n) = 0 and c2(n) = 3
5 > 0, so the maximum in Eq. (D7) is attained when a1 = a2 = − 1√

6
and a3 =

√
2
3 , in

which case we have

q = c1(3) + 2
3 c2(3) = 2

5 , (D10)

which confirms Eq. (39) in the case n = 3.

022601-15



LI, HAN, SUN, SHANG, AND ZHU PHYSICAL REVIEW A 103, 022601 (2021)

If n = 4, 5, then c2(n) < 0 by direct calculation. If n � 6, then

c2(n) = 2

n − 1
h(n − 1) + 2h(n − 3) − n + 1

n − 1
<

1

n − 1
+ 1 − n + 1

n − 1
= − 1

n − 1
< 0, (D11)

where the first inequality follows from the fact that h(n) < 1/2 for n � 3, which is easy to prove. Therefore, c2(n) < 0 for n � 4.
In this case, the maximum in Eq. (D7) is attained when a1 = −a2 = 1√

2
and a j = 0 for j = 3, 4, . . . , n, which yields

q = c1(n) = 1 − h(n − 3) (D12)

and confirms Eq. (39). �

APPENDIX E: PROOFS OF PROPOSITIONS 3 AND 4

Proof of Proposition 3. To prove Proposition 3, it suffices to prove that
√

n + 2 h(n + 2) >
√

n h(n) for each integer n � 0.
When n = 0, the inequality is obvious; when n � 1, the inequality can be proved as follows:

2n+2

√
n

[√
n + 2 h(n + 2) − √

n h(n)
]

=
√

n + 2

n

n+2∑
j=0

(n+2
j

)
1 + (n + 2 − 2 j)2

−
n∑

j=0

4
(n

j

)
1 + (n − 2 j)2

>
n + 2

n + 1

n+2∑
j=0

(n+2
j

)
1 + (n + 2 − 2 j)2

−
n∑

j=0

4
(n

j

)
1 + (n − 2 j)2

= n + 2

n + 1

n+1∑
k=−1

(n+2
k+1

)
1 + (n − 2k)2

−
n∑

j=0

4
(n

j

)
1 + (n − 2 j)2

>

n∑
j=0

1

1 + (n − 2 j)2

[
n + 2

n + 1

(
n + 2

j + 1

)
− 4

(
n

j

)]
� 0. (E1)

Here the first inequality holds because
√

n+2
n > n+2

n+1 , and the last inequality holds because

n + 2

n + 1

(
n + 2

j + 1

)
− 4

(
n

j

)
=
[

(n + 2)2

( j + 1)(n + 1 − j)
− 4

](
n

j

)
� 0, j = 0, 1, . . . , n. (E2)

Therefore,
√

n h(n) is strictly monotonically increasing in n for odd n and even n, respectively. �
Proof of Proposition 4. First, Eq. (43) in Proposition 4 can be derived as follows,

lim
n→+∞

√
2n h(2n) = lim

n→+∞

√
2n

22n

2n∑
j=0

(2n
j

)
1 + (2n − 2 j)2

=
[

lim
n→+∞

√
2n

22n

(
2n

n

)]⎡⎣ lim
n→+∞

2n∑
j=0

(2n
n

)−1(2n
j

)
1 + (2n − 2 j)2

⎤
⎦

=
√

2

π

[
lim

n→+∞

2n∑
j=0

1

1 + (2n − 2 j)2

]
=
√

2

π

[
1 + lim

n→+∞

n∑
k=1

2

1 + (2k)2

]

=
√

2

π

[
1 + π

2
coth

(π

2

)
− 1

]
=
√

π

2
coth

(π

2

)
≈ 1.37, (E3)

where the third equality follows from Eqs. (E4) and (E5) below, and the fifth equality is a corollary of Eq. (E6) below:

lim
n→+∞

√
2n

22n

(
2n

n

)
= lim

n→+∞

√
2n(2n)!

22n(n!)2
=
√

2

π
, (E4)

lim
n→+∞

2n∑
j=0

(2n
n

)−1(2n
j

)
1 + (2n − 2 j)2

= lim
n→+∞

2n∑
j=0

1

1 + (2n − 2 j)2
, (E5)

lim
n→+∞

n∑
k=1

2

1 + (2k)2
= i

2
lim

n→+∞

n∑
k=1

( 1

i/2 − k
+ 1

i/2 + k

)
= i

2

[
π cot

( iπ

2

)
+ 2i

]
= π

2
coth

(π

2

)
− 1. (E6)

The second equality in Eq. (E4) follows from the Wallis formula [see Eq. (1) in Ref. [58] for example] or the Stirling formula;
the second equality in Eq. (E6) follows from Theorem 6.12 in Ref. [59].
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To prove Eq. (E5), note that the left-hand side in Eq. (E5) cannot be larger than the right-hand side thanks to the inequality(2n
j

)
�
(2n

n

)
. To complete the proof, it suffices to prove the opposite inequality, which can be derived as follows,

lim
n→+∞

2n∑
j=0

1

1 + (2n − 2 j)2
− lim

n→+∞

2n∑
j=0

(2n
n

)−1(2n
j

)
1 + (2n − 2 j)2

= 2 lim
n→+∞

n∑
k=1

1 − (2n
n

)−1( 2n
n+k

)
1 + 4k2

= 2 lim
n→+∞

�n2/3�∑
k=1

1 − (2n
n

)−1( 2n
n+k

)
1 + 4k2

+ 2 lim
n→+∞

n∑
�n2/3�+1

1 − (2n
n

)−1( 2n
n+k

)
1 + 4k2

� 2 lim
n→+∞

�n2/3�∑
k=1

k2

n(1 + 4k2)
+ 2 lim

n→+∞

n∑
�n2/3�

1

1 + 4k2
� 2 lim

n→+∞
�n2/3�

4n
+ 2 lim

n→+∞
n

4n4/3
= 0, (E7)

where the first inequality is a consequence of the following equation:(
2n

n

)−1( 2n

n + k

)
= (n!)2

(n + k)!(n − k)!
= n(n − 1) · · · (n − k + 1)

(n + k)(n + k − 1) · · · (n + 1)
�
(

n − k

n

)k

� 1 − k2

n
, k ∈ {1, 2, . . . , n}. (E8)

Next, Eq. (42) in Proposition 4 can be derived as follows,

lim
n→+∞

√
2n + 1 h(2n + 1) = lim

n→+∞

√
2n + 1

22n+1

2n+1∑
j=0

(2n+1
j

)
1 + (2n + 1 − 2 j)2

=
[

lim
n→+∞

√
2n + 1

22n+1

(
2n + 1

n

)]⎡⎣ lim
n→+∞

2n+1∑
j=0

(2n+1
n

)−1(2n+1
j

)
1 + (2n + 1 − 2 j)2

⎤
⎦

=
√

2

π

[
lim

n→+∞

2n+1∑
j=0

1

1 + (2n + 1 − 2 j)2

]

=
√

2

π

[
lim

n→+∞

n∑
k=0

2

1 + (2k + 1)2

]
=
√

2

π
× π

2
tanh

(π

2

)
=
√

π

2
tanh

(π

2

)
≈ 1.15, (E9)

where the third equality follows from Eqs. (E10) and (E11) below, and the fifth equality is a corollary of Eq. (E12) below:

lim
n→+∞

√
2n + 1

22n+1

(
2n + 1

n

)
=
[

lim
n→+∞

√
2n(2n)!

22n(n!)2

][
lim

n→+∞

√
2n + 1

2n

2n + 1

2(n + 1)

]
=
√

2

π
, (E10)

lim
n→+∞

2n+1∑
j=0

(2n+1
n

)−1(2n+1
j

)
1 + (2n + 1 − 2 j)2

= lim
n→+∞

2n+1∑
j=0

1

1 + (2n + 1 − 2 j)2
, (E11)

lim
n→+∞

n∑
k=0

2

1 + (2k + 1)2
=
(

lim
n→+∞

2n+1∑
k=1

2

1 + k2

)
−
[

lim
n→+∞

n∑
k=1

2

1 + (2k)2

]

= i lim
n→+∞

n∑
k=1

( 1

i − k
+ 1

i + k

)
−
[π

2
coth

(π

2

)
− 1

]

= i[π cot(iπ ) + i] − π

2
coth

(π

2

)
+ 1 = π

2
tanh

(π

2

)
. (E12)

The second equality in Eq. (E10) follows from the Wallis formula [see Eq. (E4)]; the second and third equalities in Eq. (E12)
follow from Eq. (E6) above and Theorem 6.12 in Ref. [59], respectively; Eq. (E11) can be proved in a similar way as Eq. (E5),
given the following equation:(

2n + 1

n

)−1( 2n + 1

n + 1 + k

)
= n!(n + 1)!

(n + 1 + k)!(n − k)!
�
(

n − k

n + 1

)k

� 1 − k2 + k

n + 1
, k ∈ {0, 1, . . . , n}. (E13)

�
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APPENDIX F: BOUNDS FOR ν(�Wn ) AND PROOF OF EQ. (46)

To derive lower bounds for ν(�Wn ), we shall consider two cases depending on the parity of the qubit number n.
(1) n is an odd integer. Direct calculation based on Eqs. (39)–(41) shows that

√
nν(�Wn ) > 3/10 for 3 � n � 33. When

n � 35, we have

√
n ν

(
�Wn

)
>

1

4

√
n − 3 h(n − 3) � 1

4

√
32 h(32) >

3

10
, (F1)

where the first inequality follows from Eq. (41), and the second inequality follows from Proposition 3. Therefore,
√

nν(�Wn ) >

3/10 when n is odd and n � 3, which implies the lower bound in Eq. (46).
(2) n is an even integer. Direct calculation based on Eqs. (40) and (41) shows that

√
nν(�Wn ) > 1/4 for 4 � n � 42. When

n � 44, we have

√
n ν(�Wn ) >

1

4

√
n − 3 h(n − 3) � 1

4

√
41 h(41) >

1

4
, (F2)

where the first inequality follows from Eq. (41), and the second inequality follows from Proposition 3. Therefore,
√

nν(�Wn ) >

1/4 when n is even and n � 4, which implies the lower bound in Eq. (46) again.
In conclusion, the lower bound in Eq. (46) holds for any integer n that satisfies n � 3.
To derive upper bounds for ν(�Wn ), we also consider two cases depending on the parity of the qubit number n.
(1) n is an odd integer. Direct calculation based on Eqs. (39)–(41) shows that

√
nν(�Wn ) < 3/8 for 3 � n � 45 with n �= 5

and
√

nν(�Wn ) < 0.411 < 1/2 when n = 5. When n � 47, we have

√
n ν(�Wn ) = √

n − 3 h(n − 3)

√
n

n − 3

1 − √
1 − h(n − 3)

2h(n − 3)
<

√
π

2
coth

(π

2

)
× 1.034 × 0.265 <

3

8
, (F3)

where the first inequality follows from Eq. (45) and the following equations:

√
n

n − 3
�
√

47

47 − 3
< 1.034, (F4)

h(n − 3) � 1√
n − 3

×
√

π

2
coth

(π

2

)
�
√

π

2(47 − 3)
coth

(π

2

)
< 0.207, (F5)

1 − √
1 − h(n − 3)

2h(n − 3)
<

1 − √
1 − 0.207

2 × 0.207
< 0.265. (F6)

The first inequality in Eq. (F5) follows from Eq. (45); the first inequality in Eq. (F6) follows from Eq. (F5) and the fact that the
real-valued function (1 − √

1 − x)/(2x) is monotonically increasing in x when 0 < x � 1. Therefore,
√

nν(�Wn ) < 3/8 when n
is odd and n � 3, n �= 5, which implies the upper bound in Eq. (46).

(2) n is an even integer. Direct calculation based on Eqs. (40) and (41) shows that
√

nν(�Wn ) < 0.31 for 4 � n � 52. When
n � 54, we have

√
n ν

(
�Wn

) = √
n − 3 h(n − 3)

√
n

n − 3

1 − √
1 − h(n − 3)

2h(n − 3)
<

√
π

2
tanh

(π

2

)
× 1.03 × 0.261 < 0.31, (F7)

where the first inequality follows from Eq. (44) and the following equations:

√
n

n − 3
�
√

54

54 − 3
< 1.03, (F8)

h(n − 3) �
√

π

2(n − 3)
tanh

(π

2

)
�
√

π

2(54 − 3)
tanh

(π

2

)
< 0.161, (F9)

1 − √
1 − h(n − 3)

2h(n − 3)
<

1 − √
1 − 0.161

2 × 0.161
< 0.261. (F10)

The first inequality in Eq. (F9) follows from Eq. (44); the first inequality in Eq. (F10) follows from Eq. (F9) and the fact that the
real-valued function (1 − √

1 − x)/(2x) is monotonically increasing in x when 0 < x � 1. Therefore,
√

nν(�Wn ) < 0.31 when
n is even and n � 4, which implies the upper bound in Eq. (46) again.

In conclusion, Eq. (46) holds for any integer n that satisfies n � 3.
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APPENDIX G: PROOFS OF EQS. (48) AND (49)

Proof. Equation (48) can be proved as follows:

lim
n→+∞

√
2n + 1ν(�W2n+1 ) = lim

n→+∞
√

2n + 1
1 − √

1 − h(2n − 2)

2

=
[

lim
n→+∞

√
2n − 2 h(2n − 2)

](
lim

n→+∞

√
2n + 1

2n − 2

)[
lim

n→+∞
1 − √

1 − h(2n − 2)

2h(2n − 2)

]

= 1

4

√
π

2
coth

(π

2

)
≈ 0.342. (G1)

Here the first equality follows from Eq. (41); the third one follows from Eq. (43) and the fact that limn→+∞ h(n) = 0.
Equation (49) can be proved as follows:

lim
n→+∞

√
2nν(�W2n ) = lim

n→+∞
√

2n
1 − √

1 − h(2n − 3)

2

=
[

lim
n→+∞

√
2n − 3 h(2n − 3)

](
lim

n→+∞

√
2n

2n − 3

)[
lim

n→+∞
1 − √

1 − h(2n − 3)

2h(2n − 3)

]

= 1

4

√
π

2
tanh

(π

2

)
≈ 0.287. (G2)

The first equality follows from Eq. (41); the third one follows from Eq. (42) and the fact that limn→+∞ h(n) = 0. �

APPENDIX H: PROOFS OF EQS. (53), (56), AND (57)

Proof of Eq. (53). The equality tr(P1PG
2 ) = tr(P1P2) in Eq. (53) follows from the fact that P1 is invariant under the action of

G, that is, PG
1 = P1. The second equality in Eq. (53) can be derived from Eqs. (34) and (37) as follows:

tr(P1P2) = 〈00 . . . 01|P2|00 . . . 01〉 +
∑

u∈B1
n−1

(〈u| ⊗ 〈0|)P2(|u〉 ⊗ |0〉)

= h(n − 1) + (n − 1)[1 − h(n − 1)] = n − 1 − (n − 2)h(n − 1), (H1)

where B1
n−1 is the set of strings in {0, 1}n−1 with Hamming weight 1. Here the second equality follows from the following

equations:

〈00 . . . 01|P2|00 . . . 01〉 =
∑

x∈{0,1}n−1

|〈00 . . . 0|αx〉|2 · |〈1|βx〉|2 = 1

2n−1

∑
x∈{0,1}n−1

1

1 + (n − 1 − 2|x|)2

= 1

2n−1

n−1∑
j=0

(n−1
j

)
1 + (n − 1 − 2 j)2

= h(n − 1), (H2)

(〈u| ⊗ 〈0|)P2(|u〉 ⊗ |0〉) =
∑

x∈{0,1}n−1

|〈u|αx〉|2 · |〈0|βx〉|2 = 1

2n−1

∑
x∈{0,1}n−1

[
1 − 1

1 + (n − 1 − 2|x|)2

]

= 1 − 1

2n−1

n−1∑
j=0

(n−1
j

)
1 + (n − 1 − 2 j)2

= 1 − h(n − 1), u ∈ B1
n−1. (H3)

�
Proof of Eq. (56). Note that �G

Wn
can be expressed as follows:

�G
Wn

= pP1 + (1 − p)PG
2 = pP1 + (1 − p)P1PG

2 P1 + (1 − p)(1 − P1)PG
2 (1 − P1), (H4)

given that P1 and PG
2 commute with each other. Therefore,

λ2
(
�G

Wn

) = max
{

p + (1 − p)
∥∥P1P̄G

2 P1

∥∥, (1 − p)
∥∥(1 − P1)PG

2 (1 − P1)
∥∥} = 1 − p = n − 1

n + (n − 2)h(n − 1)
. (H5)

Here the second equality follows from the equality p + (1 − p)‖P1P̄G
2 P1‖ = 1 − p [see Eq. (55) in the main text] and the

inequality (1 − p)‖(1 − P1)PG
2 (1 − P1)‖ � 1 − p. �

Proof of Eq. (57). The equalities in Eq. (57) follow from Eq. (56).
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When 3 � n � 40, the lower bound in Eq. (57) can be verified directly by virtue of Eq. (40). When n � 41, the lower bound
follows from the following equation:

√
n + (n − 2)

√
nh(n − 1) + 1 >

√
n + n − 1 > n. (H6)

Here the first inequality is a consequence of the inequalities
√

nh(n − 1) >
√

n − 1h(n − 1) > 1, the second of which follows
from Proposition 3 and the assumption n � 41, given that

√
40 h(40) >

√
41 h(41) > 1. This observation completes the proof

of Eq. (57). �

APPENDIX I: PROOF OF THEOREM 2

Proof. In analogy to �k (see Appendix B), the verification operator �
φ

k can be expressed as

�
φ

k =
(

n

2

)−1 ∑
i< j

g∑
s=0

Z̄i, j (kss) ⊗ [
(|s〉〈s|)⊗2]

i, j +
(

n

2

)−1 ∑
i< j

∑
s<t

∑
u∈B(kst )

|u〉〈u| ⊗ (
�+

i, j,u ⊗ �+
j,i,u + �−

i, j,u ⊗ �−
j,i,u

)
i, j

= 1

n(n − 1)

( r∑
s=0

k2
s − n

)
Z (k) + 2

n(n − 1)

∑
i< j

∑
s<t

Z̄i, j (kst ) ⊗
[(|ϕ+

s,t 〉〈ϕ+
s,t |

)
i, j + 1

2
(|st〉〈st | + |ts〉〈ts|)i, j

]

+ 1

n(n − 1)

∑
i< j

∑
s<t

∑
u∈B(kst )

|u〉〈u| ⊗ [
eiφ(v(i, j,u))|st〉〈ts|e−iφ(v( j,i,u)) + eiφ(v( j,i,u))|ts〉〈st |e−iφ(v(i, j,u))

]
i, j

= 1

n(n − 1)

[
M ′

1 +
∑
s<t

M(s,t )

]
. (I1)

Here |ϕ+
s,t 〉 = 1√

2
(|s〉|s〉 + |t〉|t〉), Z (k) = ∑

u∈B(k) |u〉〈u|, Z̄i, j (kst ) is defined in Eq. (29), v(i, j, u) and v( j, i, u) are defined in
Eqs. (79) and (80), M(s,t ) is defined in Eq. (B3), and

M ′
1 :=

( r∑
s=0

k2
s − n +

∑
s<t

kskt

)
Z (k) +

∑
u, v∈B(k)

u∼v

(
eiφ(u)|u〉)(〈v|e−iφ(v))

= 1

2

(
n2 − 2n +

r∑
s=0

k2
s

)
Z (k) +

∑
u,v∈B(k)

Auv

(
eiφ(u)|u〉)(〈v|e−iφ(v)

)
, (I2)

where the notation u ∼ v means uj �= v j for exactly two values of j. The coefficient matrix (Auv ) for u, v ∈ B(k) happens to be
the adjacency matrix A(k) of the transposition graph G(k) [48] (see Appendix L).

Note that M ′
1 can be turned into M1 in Eq. (B2) by a diagonal unitary transformation; similarly, �

φ

k can be turned into �k by
a diagonal unitary transformation [see Appendix B]. Therefore, �

φ

k and �k have the same spectrum and the same spectral gap.
Thanks to Eqs. (B8) and (31), we have

ν
(
�

φ

k

) = ν(�k ) = min

{
1

n − 1
, 1 − k0(k0 + 1) + k1(k1 + 1)

2n(n − 1)

}
=

⎧⎪⎨
⎪⎩

1/2 k = (1, 1, 1),

1/3 k = (2, 1),

1/(n − 1) n � 4.

(I3)

This result confirms Eq. (85) and implies Eq. (86) in view of Eq. (2) (see Theorem 1). �

APPENDIX J: PROOF OF THEOREM 3

Proof. The verification operator �ASn can be expressed as

�ASn =
(

n

2

)−1 ∑
i< j

∑
s<t

Z̄i, j (kst ) ⊗ (
T +

s,t ⊗ T −
s,t + T −

s,t ⊗ T +
s,t

)
i, j

= 2

n(n − 1)

∑
i< j

∑
s<t

Z̄i, j (kst ) ⊗ [(|ψ−
s,t 〉〈ψ−

s,t |
)

i, j + (|ϕ−
s,t 〉〈ϕ−

s,t |
)

i, j

]

= 1

n(n − 1)

[
MAS

1 +
∑
s<t

∑
u∈B(ks

t )
v∈B(kt

s )
u∼v

X u,v
s,t

]
. (J1)
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Here |ψ−
s,t 〉 = 1√

2
(|s〉|t〉 − |t〉|s〉), |ϕ−

s,t 〉 = 1√
2
(|s〉|s〉 − |t〉|t〉),

MAS
1 := n(n − 1)

2
Z (k) −

∑
u, v∈B(k)

u∼v

|u〉〈v| = n(n − 1)

2
Z (k) −

∑
u,v∈B(k)

Auv|u〉〈v|, (J2)

X u,v
s,t := |u〉〈u| + |v〉〈v| − |u〉〈v| − |v〉〈u|, (J3)

and the notation u ∼ v means uj �= v j for exactly two values of j. In addition, the coefficient matrix (Auv ) for u, v ∈ B(k)
happens to be the adjacency matrix A(k) of the transposition graph G(k) [48]. Note that MAS

1 and all X u,v
s,t [with s < t , u ∈ B(ks

t ),
v ∈ B(kt

s), and u ∼ v] are Hermitian and have mutually orthogonal supports, so all of them are positive semidefinite given that
�ASn is positive semidefinite by construction.

According to Lemma 4 in Appendix L, the smallest eigenvalue of A(k) is equal to −n(n − 1)/2 with multiplicity 1, and the
second smallest eigenvalue of A(k) is n − n(n − 1)/2. Therefore, the two largest eigenvalues of MAS

1 read

λ1
(
MAS

1

) = n(n − 1), λ2
(
MAS

1

) = n(n − 1) − n = n(n − 2). (J4)

In addition, direct calculations show that the maximum eigenvalue of X u,v
s,t is 2. In conjunction with Eqs. (J1) and (J4), we can

deduce the second largest eigenvalue and spectral gap of �ASn , with the result (assuming n � 3)

λ2
(
�ASn

) = max

{
λ2(MAS

1 )

n(n − 1)
, max

s<t

λ1(X u,v
s,t )

n(n − 1)

}
= n − 2

n − 1
, (J5)

ν
(
�ASn

) = 1 − λ2
(
�ASn

) = 1

n − 1
, (J6)

which confirms Eq. (90).
Equation (91) follows from Eqs. (2) and (90). �

APPENDIX K: PROOFS OF THEOREM 4 AND LEMMA 2

Proof of Theorem 4. According to Eq. (15), we have

�G̃
ASn

=
∑
μ�n

1

dμDμ

tr
(
�G̃

ASn
Pμ

)
Pμ =

∑
μ�n

1

dμDμ

tr
(
�ASn Pμ

)
Pμ. (K1)

By representation theory, the projector Pμ can be expressed as follows:

Pμ = dμ

n!

∑
σ∈Sn

χμ(σ )Uσ , (K2)

where Uσ is the unitary operator corresponding to the permutation σ , and χμ(σ ) is the character of σ associated with the
representation labeled by μ. Therefore,

tr
(
�ASn Pμ

) = 1

n(n − 1)

[
tr
(
PμMAS

1

) +
∑
s<t

∑
u∈B(ks

t )
v∈B(kt

s )
u∼v

tr
(
PμX u,v

s,t

)] = d2
μ, (K3)

which implies Eq. (97). Here the first equality follows from Eq. (J1), and the notation u ∼ v means u j �= v j for exactly two
values of j. The second equality follows from Eqs. (K4) and (K5) below:

tr
(
PμMAS

1

) = n(n − 1)

2
tr[PμZ (k)] −

∑
u,v∈B(k)

Au,v〈v|Pμ|u〉 = n(n − 1)

2

∑
u∈B(k)

〈u|Pμ|u〉 −
∑

u, v∈B(k)
u∼v

〈v|Pμ|u〉

= n(n − 1)

2(n!)
d2

μ|B(k)| −
∑

u, v∈B(k)
u∼v

dμχμ(τ )

n!
= n(n − 1)

2
d2

μ − n(n − 1)

2
dμχμ(τ ), (K4)

∑
s<t

∑
u∈B(ks

t )
v∈B(kt

s )
u∼v

tr
(
PμX u,v

s,t

) =
∑
s<t

∑
u∈B(ks

t )
v∈B(kt

s )
u∼v

(〈u|Pμ|u〉 + 〈v|Pμ|v〉) = 2
∑
s<t

∑
u∈B(ks

t )

〈u|Pμ|u〉

= n(n − 1)|B(ks
t )|dμ

n!
[dμ + χμ(τ )] = n(n − 1)

2
d2

μ + n(n − 1)

2
dμχμ(τ ), (K5)
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where τ ∈ Sn is any transposition.
Alternatively, the trace tr(�ASn Pμ) can be derived by virtue of Eqs. (88) and (89) as follows:

tr
(
�ASn Pμ

) =
(

n

2

)−1 ∑
i< j

tr
(
PμPAS

i, j

) = tr
(
PμPAS

1,2

) =
∑
s<t

tr
{

Pμ

[(
T +

s,t ⊗ T −
s,t + T −

s,t ⊗ T +
s,t

)
⊗ Z̄ (kst )

]}

=
∑
s<t

tr
{

PμU ⊗n
st

[(
T +

s,t ⊗ T −
s,t + T −

s,t ⊗ T +
s,t

)
⊗ Z̄ (kst )

]
U ⊗n†

st

}
=
∑
s<t

tr
{
Pμ

[(|st〉〈st | + |ts〉〈ts|) ⊗ Z̄
(
kst

)]}

= tr[PμZ (k)] =
∑

u∈B(k)

〈u|Pμ|u〉 =
∑

u∈B(k)

dμ

n!

∑
σ∈Sn

χμ(σ )〈u|Uσ |u〉 = d2
μ

n!
|B(k)| = d2

μ, (K6)

where

Ust = 1√
2

(|s〉〈s| + |s〉〈t | + |t〉〈s| − |t〉〈t |) +
∑
r �=s,t

|r〉〈r|. (K7)

Equation (98) in Theorem 4 follows from Eq. (97) and Lemma 2. Equation (99) follows from Eqs. (2) and (98). �
Proof of Lemma 2. According to the well-known dimension formulas for Dμ and dμ (see Refs. [52,53] for example), we have

Dμ

dμ

= 1

n!

d∏
j=1

(d + μ j − j)!

(d − j)!
= 1

n!

∏ �(d + μ j − j + 1)

�(d − j + 1)
, (K8)

where d = n is the local dimension. Note that this formula is still applicable when d �= n. As an implication, we have

ln
Dμ

dμ

=
d∑

j=1

ln �(d + μ j − j + 1) −
d∑

j=1

ln �(d − j + 1) − ln(n!). (K9)

Recall that the function ln �(x) is convex in x for x > 0, we conclude that ln Dμ

dμ
is convex and thus Schur convex in μ. Therefore,

ln Dμ

dμ
� ln

Dμ′
dμ′ whenever μ ≺ μ′, which confirms Lemma 2. �

APPENDIX L: THE SPECTRUM OF THE TRANSPOSITION GRAPH

Let k := (k0, k1, . . . , kr ) with k0, . . . , kr being positive integers and n = ∑r
j=0 k j . Recall that B(k) is the set of all sequences

of n symbols in which ks symbols are equal to s for s = 0, 1, . . . , r. The transposition graph G(k) is a regular graph the vertices
of which are labeled by sequences in B(k). Two distinct vertices u, v ∈ B(k) are adjacent iff u and v can be turned into each other
by a transposition [48], that is, uj �= v j for exactly two values of j. The number of vertices in G(k) is equal to the cardinality of
B(k), which reads |B(k)| = n!/(

∏r
j=0 k j!), and the degree of G(k) is given by

d := 1

2

(
n2 −

r∑
s=0

k2
s

)
. (L1)

Let A(k) be the adjacency matrix of G(k). The eigenvalues of G(k) are defined as the eigenvalues of A(k). Here we are interested
in the largest and second largest eigenvalues of G(k), which are crucial to the proof of Theorems 1 and 2. The lemma below
follows from Eq. (4.2) in Ref. [49].

Lemma 3. The largest eigenvalue of G(k) is equal to its degree d and has multiplicity 1; the second largest eigenvalue of G(k)
is equal to d − n.

When k0 = k1 = · · · kn−1 = 1, the graph G(k) reduces to the Cayley graph of the symmetric group. In this case we can also
determine the smallest and second smallest eigenvalues of G(k). To this end, note that the sequences in B(k) can be divided into
two groups of equal size: one group can be constructed from the sequence (0, 1, . . . , n − 1) by even permutations, and the other
group can be constructed by odd permutations. In addition, G(k) is a bipartite graph with respect to this partition; accordingly,
the adjacency matrix A(k) has a block form:

A =
(

0 B

BT 0

)
, (L2)

where B is a matrix of size (n!/2) × (n!/2). Therefore, the eigenvalues of A(k) form pairs: if λ is an eigenvalue of A, then −λ

is an eigenvalue with the same multiplicity. Together with Lemma 3, this observation implies the following lemma (see Aldous’
spectral gap conjecture, which was proved in Ref. [49]).

Lemma 4. Suppose k = (k0, k1, . . . , kn−1) with k j = 1 for j = 0, 1, . . . , n − 1. Then the smallest eigenvalue of G(k) is equal
to −d and has multiplicity 1, where d = n(n − 1)/2 is the degree of G(k); the second smallest eigenvalue of G(k) is equal to
n − d .
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Let us take k = (1, 1, 1) for example. In this case we have n = d = 3, and G(k) is a bipartite graph with six vertices labeled
by the sequences (0,1,2), (1,2,0), (2,0,1), (0,2,1), (1,0,2), (2,1,0). With respect to this order, the adjacency matrix of G(k) reads

A(k) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠. (L3)

Direct calculation shows that A(k) has three distinct eigenvalues 3, 0,−3, with multiplicities 1,4,1, respectively, which agrees
with Lemmas 3 and 4.
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