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Wavelength division multiplexing (WDM) of quantum key distribution (QKD) with classical optical channels
has been proven to be feasible experimentally. In this paper, we will analyze the practical security of WDM-
QKD theoretically. Specifically, we first establish the noise model of classical signals. Then, the influence of
classical noises on the performance of decoy-state WDM-QKD is studied with a finite-key security analysis.
For numerical simulations, the effect of classical noise-reduction methods for different experimental settings is
given. The secret key rate and maximum transmission distance of WDM-QKD is simulated with various sent
number of quantum pulses or transmitted power of classical signals. Furthermore, the performance of two kinds
of decoy-state WDM-QKD is compared, which shows that the optimal decoy-state protocol for WDM-QKD is
related to the sent number of quantum pulses. Since WDM-QKD is desired to reduce the cost of QKD networks
and since experiments have already been carried out, our work can not only close the gap between theory and
practice, but also be used to optimize the experimental parameters and improve its performance.
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I. INTRODUCTION

Quantum key distribution (QKD) can make two legal users,
e.g., Alice and Bob, share a string of common true random bits
which is theoretically safe against an eavesdropper Eve with
unconditional security. For QKD to work normally, quantum
signals are usually transmitted in a separate fiber in practice
as the power of classical signals is strong, which otherwise
would generate noises to seriously reduce the signal-to-noise
ratio of QKD.

The fact that quantum signals transmit separately with
classical signals makes the cost and difficulty increase when
a QKD network is deployed. To overcome the damage caused
by classical signals to QKD in the same fiber, much ef-
fort has been made since the first demonstration of the
feasibility of the coexistence of O-band (∼1310 nm) quan-
tum signals and C-band (∼1550 nm) classical signals by
Townsend in 1997 [1]. With the lower loss of the C-band
optical signal in fiber communication, both signals were
then merged into one fiber at the C-band simultaneously
using wavelength division multiplexing (WDM) technology
[2–5]. Moreover, the classical channel can be encrypted
by a quantum key produced by the accompanying QKD
[6,7]. Recently, field trials for the coexistence of quantum
and classical signals have been conducted around the world
[8–10] with the increase of classical signals power [7,11]
and secure transmission distance [12], which boost the large-
scale deployment of QKD in existing telecommunication
networks.
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In a WDM-QKD system, classical signals can cause vari-
ous types of noise due to the linear or nonlinear interactions
with fiber. Although the noises may have little influence on
classical communication, it cannot be ignored for the imple-
mentation of QKD. Based on previous research, the classical
channel crosstalk noise leaking into the quantum channel is
the main source of out-band noise for QKD [2], while the
spontaneous Raman scattering (SRS) and four-wave mixing
(FWM) noises are the main in-band one [3,6]. Many methods
that try to suppress these classical noises in WDM-QKD have
been proposed and experimentally verified, such as reducing
the power of classical signals [1], or spectral or temporal
filtering in the QKD receiver [3,5,6,13]. However, there is lack
of detailed analysis for the practical security of WDM-QKD in
theory. To close the gap between theory and practice, here we
give a strict secret key rate for WDM-QKD using finite-key
security analysis. Moreover, the influence of classical noises
on the performance of WDM-QKD is analyzed and simulated,
which can be used in experiments.

In this paper, we first study the model of classical noises
and their influence on decoy-state [14–16] WDM-QKD in
Sec. II. Then, the finite-key security analysis of WDM-QKD
is given in Sec. III. At last, in Sec. IV, we simulate and
discuss the effect of classical noise-reduction methods and
the performance of decoy-state WDM-QKD with different
experimental settings.

II. NOISE MODEL OF THE WDM-BASED QKD

Before the evaluation of the practical security of WDM-
QKD, we will model the noises caused by classical channels
and show their influence. Here we consider both the out-band
and in-band classical noises for WDM-QKD.
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FIG. 1. Schematic of a general structure of WDM-QKD. ATT:
optical attenuator; F: filter; Mux/Demux: wavelength division multi-
plexer or demultiplexer.

A. General structure of WDM-QKD

To model the classical noises, a general structure of the
WDM-QKD setup is shown in Fig. 1. In the figure, the quan-
tum channel and classical channel are integrated into one
single fiber through the WDM technology. For reducing the
strength of classical noises, the transmitted power of classical
signals is adjustable so that both the QKD and classical com-
munication systems can work normally. Furthermore, a filter
with bandwidth �λ is placed before the QKD receiver which
is used to isolate the classical noises. In the QKD receiver, the
gate width τD of the single-photon detector (SPD) is adjusted
to play the role of temporal filtering.

B. Classical channel crosstalk noise

As the isolation of the demultiplexer in Fig. 1 is limited,
the photons of classical signals may leak into the quantum
channel, which is the main source of out-band noise for QKD.
The intensity of classical channel crosstalk noise at the output
of the demultiplexer is given as

Pleak = P(0)tmuxtABtleaktdemux

= P(0)10− I
10 10

−αcL
10 10− ξ

10 10− I
10 , (1)

where P(0) is the transmitted power of the classical signal at
the multiplexer, I is the insertion loss of the multiplexer or
demultiplexer, αc is the fiber loss coefficient for the incident
classical signals, L is the fiber length, and ξ is the isolation of
the demultiplexer. Then, tmux = 10− I

10 and tdemux = 10− I
10 are

the transmittances of the multiplexer and demultiplexer, re-
spectively, tAB = 10

−αcL
10 is the fiber transmittance, and tleak =

10− ξ

10 is the ratio of crosstalk from the classical channel into
the quantum channel.

Then, within the gate width τD of the SPD, the number of
crosstalk noise photons that arrive at the QKD receiver after
the filter is given by

Nleak = PleakτDtc
F

h fc
, (2)

where h is the Planck constant, fc is the frequency of classical
signals, and t c

F is the transmittance of the filter for crosstalk
noise. Therefore, the detection probability of crosstalk noise
by the QKD receiver is

Yleak = Nleakη
c
Bob, (3)

where ηc
Bob = t c

Bobη
c
D is the transmittance of the QKD receiver

with the internal transmittance of optical components t c
Bob and

SPD efficiency ηc
D for crosstalk noise.

C. Spontaneous Raman scattering noise

Based on the previous WDM-QKD experiments [3,5,6],
it is known that the Raman scattering noise induced by the
nonlinear interaction of classical signals with fiber is one of
the main noise sources for QKD. As the transmitted power
threshold for classical signals to trigger stimulated Raman
scattering is usually not reached in a practical WDM system
[17], we will only consider the effect of SRS in this paper.
In Fig. 1, when quantum signals are transmitted in the same
direction with classical signals, the power of SRS noise, i.e.,
forward SRS noise, at the output of the fiber is given by [6,18]

P f
ram = 10βP(0)tmux�λ

(αr − αc) ln 10
(10− αcL

10 − 10− αr L
10 ), (4)

where β and αr are the normalized SRS cross section [6]
and fiber loss coefficient at the wavelength of SRS noise,
respectively. While the transmission directions of quantum
signals and classical signals are opposite, the power of SRS
noise, i.e., backward SRS noise, at the output of the fiber is
given by [6,18]

Pb
ram = 10βP(0)tmux�λ

(αc + αr ) ln 10
(1 − 10− (αc+αr )L

10 ). (5)

If the frequencies of classical signals and SRS noises are
near, i.e., αc ≈ αr , the power of forward and backward SRS
noises can be approximated to

P f
ram ≈ βP(0)tmuxL�λ10− αr L

10 ,

Pb
ram ≈ 5βP(0)tmux�λ

αr ln 10
(1 − 10− αr L

5 ). (6)

Note that only the photons of in-band SRS noises, which
have the same frequency as quantum signals, can pass the filter
in front of the QKD receiver efficiently. Therefore, within the
gate width τD of SPD, the photon numbers of in-band forward
and backward SRS noises arriving into the QKD receiver can
be given by

N f
ram = P f

ramτDtdemuxt r
F

h fr
, Nb

ram = Pb
ramτDtdemuxt r

F

h fr
, (7)

where fr and t r
F are the frequency and transmittance of the

filter for the in-band SRS noises. For the in-band case, there
are fr ≈ fq, αr ≈ αq, and t r

F ≈ t q
F , where fq, αq, and t q

F are the
frequency, fiber loss coefficient, and filter transmittance for
quantum signals, respectively. Correspondingly, the detection
probabilities of forward and backward in-band SRS noises are

Y f
ram = N f

ramηBob, Y b
ram = Nb

ramηBob, (8)

where ηBob = tBobηD is the transmittance of the QKD receiver
with the internal transmittance of optical components tBob and
SPD efficiency ηD for the in-band noise photons or quantum
signals.

D. Four-wave mixing noise

When two or more classical channels are multiplexed into
one fiber, the FWM effect arises due to the third-order non-
linearity of the fiber [19]. Assume the frequencies of three
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classical channels are fi, f j , and fk , with k �= i, j; the fre-
quency of the noise generated through FWM is [19]

fi jk = fi + f j − fk, (9)

which may fall into the quantum channel, resulting in in-band
FWM noise. The peak power of the FWM noise at the output
of the fiber is given by [20]

Pi jk = ηi jkD2
i jkχ

2Pi(0)Pj (0)Pk (0)t3
mux10− αcL

10

9
(

αc ln 10
10

)2 (1 − 10− αcL
10 )2,

(10)

where Di jk = 1, 3, or 6 is the degeneracy factor which corre-
sponds to three, two, or none of the involved frequencies being
the same, χ is the nonlinear coefficient of the fiber, and Pi(0),
Pj (0), and Pk (0) are the transmitted powers of the classical
signals. Since the impact of the FWM effect will decrease
dramatically with the enlarging of channel spacing [17], we
can only consider the classical signals with small channel
spacing and make the fiber loss coefficients of three classical
channels equal to αc. ηi jk is the FWM efficiency, which is
given by [20]

ηi jk =
(

αc ln 10
10

)2

(
αc ln 10

10

)2 + �B2

[
1 + 4×10− αcL

10 sin2(�BL/2)(
1 − 10− αcL

10
)2

]
,

(11)

where �B is the difference between the propagation constants
of the classical channels due to fiber dispersion, and �BL is
the phase mismatch coefficient. �B is given by [21]

�B = 2πλ2
k

c
� fik� f jk

[
Dc(λk )+ λ2

k

2c
(� fik + � f jk )

dDc(λk )

dλ

]
,

(12)

where λk = c
fk

, c is the speed of light in vacuum, � fak =
| fa − fk| (a = {i, j}), and Dc(λk ) and dDc (λk )

dλ
are the chromatic

dispersion and its slope at wavelength λk .
For in-band FWM noise, i.e., fi jk ≈ fq, the arriving photon

number and detection probability of FWM noise at the QKD
receiver within gate width τD of the SPD are

Nf wm = Pi jkτDtdemuxt i jk
F

h fi jk
, Yf wm = Nf wmηBob, (13)

where the filter transmittance t i jk
F ≈ t q

F .

E. Influence on the decoy-state WDM-QKD

For the noncoexistent QKD, detector dark counts are the
main source of noise. However, the background noise for
WDM-QKD contains not only detector dark counts, but also
the classical noises introduced by classical signals in the same
fiber, which will further damage the performance of QKD.
In the following, take the commonly used phase-randomized
weak coherent state sources for example. Let the average
photon numbers be m = {μ, ν1, ν2, . . . } for signal and decoy-
state sources, respectively. Then, the yield of an n-photon state
for decoy-state WDM-QKD is given by

Yn = Yd + Yc + ηn − YdYc − Ydηn − Ycηn + YdYcηn, (14)

where Yd is the background rate for noncoexistent QKD, and
ηn = 1 − (1 − η)n is the transmittance of the n-photon state.
Note that in WDM-QKD, the overall transmission and de-
tection efficiency η of the transmitted quantum signals will
become

η = tABtdemuxt q
F ηBob, (15)

where the transmittances of the demultiplexer and filter are
included. Yc is the in-band classical noise detection rate for
WDM-QKD, which can be expressed by

Yc = f
(
Yleak,Y f

ram,Y b
ram,Yf wm

)
. (16)

According to Sec. II, Eq. (16) can be concretized based
on the configuration of WDM-QKD, such as the number and
transmission direction of the classical channels. For example,
Yc can be given as

Yc =

⎧⎪⎨
⎪⎩

Yleak + Y f
ram (Case 1)

Y b
ram (Case 2)∑3

a=1 Yleak,a + ∑3
a=1 Y f

ram,a + Yf wm (Case 3),

(17)

where Case 1 represents one classical channel with the same
direction of quantum channel, Case 2 represents one classi-
cal channel with the opposite direction of quantum channel,
and Case 3 represents three classical channels with the same
direction of quantum channel.

It can be seen from Eq. (14) that the detection events of
in-band classical noises will make a contribution to the yield
of the n-photon state directly. For example, consider the case
where a classical noise photon, such as a SRS photon, arrives
at Bob in the time slot in which a single photon emitted by
Alice is naturally lost. It affects the yield of the one-photon
state. Furthermore, the error rate of the n-photon state is
affected directly as well, which can be given by

en = e0(Yd + Yc − YdYc) + edetηn(1 − Yd − Yc + YdYc)

Yn
,

(18)

where edet is the misalignment error rate of WDM-QKD.
Here, assume that the error rate of in-band classical noises
is the same with detector dark counts and both are equal to
e0 = 1

2 .
Following Eqs. (14)–(18), the overall gain and quantum bit

error rate (QBER) of the signal and decoy states for WDM-
QKD are given by

Qm =
∞∑

n=0

Yn
mn

n!
e−m

= Yd + Yc − YdYc + [1 − (Yd + Yc − YdYc)](1 − e−ηm),

(19)

EmQm =
∞∑

n=0

eb
nYn

mn

n!
e−m

= e0(Yd + Yc − YdYc)

+ edet (1 − e−ηm)[1 − (Yd + Yc − YdYc)]. (20)
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III. FINITE-KEY SECURITY ANALYSIS
FOR DECOY-STATE WDM-QKD

For decoy-state WDM-QKD, let the probabilities that
Alice uses the signal and decoy sources be qm, and the proba-
bilities that Alice and Bob choose the basis γ = {Z, X } be qγ .
The secret key length in one basis, e.g., Z basis, can be given
from [15,22]

KZ � MZ
1μ

[
1 − h

(
epZ

1μ

)] − MZ
μ f

(
EZ

μ

)
h
(
EZ

μ

)
, (21)

where MZ
1μ and MZ

μ are the numbers of Z-basis sifted key
from the single-photon signal state and the overall signal state,
respectively, epZ

1μ and EZ
μ represent the phase error rate and

QBER, correspondingly, f (EZ
μ ) denotes the error-correction

inefficiency, and h(x) = −x log2(x) − (1 − x) log2(1 − x) is
the binary Shannon entropy function. Note that MZ

μ and EZ
μ

can be measured in experiment, while the bounds of MZ
1μ and

epZ
1μ need to be estimated using the decoy-state method [23].

In the asymptotic case, the parameters of the single-photon
state required by Eq. (21) can be estimated accurately from
the measured values of WDM-QKD, which will converge
to the underlying true values. Then, the final key length of
WDM-QKD can be obtained safely. However, in practical
WDM-QKD, the number of transmitted quantum states is
finite, resulting in the measured values fluctuating statistically,
which is known as the finite-key effect and cannot be ignored
when estimating the final key length. Here, before giving a
finite-key security analysis for decoy-state WDM-QKD, we
will first review the improved Chernoff bound method used
for fluctuation analysis in Ref. [24].

With a failure probability ε, the confidence interval of the
expectation value E[ζ ] for an observed value ζ > 0 is given
as

EL[ζ ] = ζ

1 + δL
, EU [ζ ] = ζ

1 − δU
, (22)

where EL[ζ ] and EU [ζ ] denote the lower and upper bounds
of E[ζ ], and δL and δU can be obtained from the following
equations:

[
eδL

(1 + δL )1+δL

] ζ

1+δL

= ε

2
,

[
e−δU

(1 − δU )1−δU

] ζ

1−δU

= ε

2
. (23)

Using the Lambert W function [25], the solutions of Eq. (23)
are

1

1 + δL
= −W0(−e

ln( ε
2 )−ζ

ζ ),

1

1 − δU
= −W−1(−e

ln( ε
2 )−ζ

ζ ). (24)

If ζ = 0, we simply have EL[ζ ] = 0 and EU [ζ ] = − ln( ε
2 ).

Based on Eqs. (22)–(24), the confidence intervals of the
expectation values of Mγ

m and Eγ
m Mγ

m can be given as EL[Mγ
m],

EU [Mγ
m], EL[Eγ

m Mγ
m], and EU [Eγ

m Mγ
m], where Mγ

m and Eγ
m Mγ

m

are the numbers of sifted key and quantum bit error for basis
γ . Assume the total number of transmitted quantum states is
N . Then, these confidence intervals can be used to calculate
the lower and upper bounds of the overall gain and QBER for

the signal and decoy states, which results in

EL
[
Qγ

m

] = EL
[
Mγ

m
]

Nγ
m

, EU
[
Qγ

m

] = EU
[
Mγ

m
]

Nγ
m

,

EL
[
Eγ

m Qγ
m

] = EL
[
Eγ

m Mγ
m
]

Nγ
m

,

EU
[
Eγ

m Qγ
m

] = EU
[
Eγ

m Mγ
m
]

Nγ
m

,

(25)

where Nγ
m = qmq2

γ N represents the number of quantum states
with Alice and Bob using the same basis γ with average
photon number m. Furthermore, the lower bound number of
the γ -basis sifted key stemming from single-photon states is

Mγ L
1 = Y γ L

1 q2
γ N (qμe−μμ + qνe−νν), (26)

where Y γ L
1 is the lower bound of Y γ

1 , which can be derived
from the decoy-state method combining with Eqs. (22)–(25).
Note that Mγ L

1 consists of the single-photon states coming
from both the signal state and decoy state. Among them, the
lower bound for the contribution from the single-photon signal
state can be given by the reverse form of the Chernoff bound,

Mγ L
1μ = (1 − δ)pμ

1 Mγ L
1 , (27)

where δ = − ln(ε/2)+
√

[ln(ε/2)]2−8 ln(ε/2)pμ
1 Mγ L

1

2pμ
1 Mγ L

1

, pμ
1 =

qμe−μμ

qμe−μμ+∑
m �=μ qme−mm is the corresponding proportion of the

single-photon signal state due to the Poisson distribution of
source intensity.

In the finite resource case, the relationship between the
phase error rate and QBER for the single-photon state, i.e.,
epZ

1μ = ebX
1 , is no longer correct [26], for there is a deviation

θ between the two error rates due to statistical fluctuations.
The upper bound of deviation θU can be characterized by the
random sampling theorem with a failure probability ε such
that [26]

ε =
√

MXL
1 + MZL

1μ√
ebXU

1

(
1 − ebXU

1

)
MXL

1 MZL
1μ

2−(MXL
1 +MZL

1μ )ξ (θU ), (28)

where ξ (θU ) = h(ebXU
1 +θU −qxθU ) − qxh(ebXU

1 ) − (1 − qx )

h(ebXU
1 + θ ) with qx = MXL

1

MXL
1 +MZL

1μ

. Then, the upper bound of the

phase error rate is given by

epZU
1μ = ebXU

1 + θU , (29)

where ebXU
1 is the upper bound of ebX

1 , which can be derived
from the decoy-state method combining with Eqs. (22)–(25).

IV. NUMERICAL SIMULATION

In this section, we will simulate the performance of classi-
cal noises and WDM-QKD based on the above analysis. For
the simulation, quantum and classical channels coexist in a
standard single-mode fiber (SSMF) using the C-band dense
wavelength division multiplexing (DWDM) technology.

In the following, the performances of two kinds of decoy-
state WDM-QKD are evaluated for different sent number of
quantum states and transmitted power of classical signals. To
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TABLE I. Parameters used for the performance simulation of WDM-QKD.

Parameter Value

αq, αc (loss coefficient of fiber) 0.21 dB/km
I (insertion loss of Mux/Demux) 1.5 dB
ξ (isolation of Mux/Demux) 80 dB
�λ (bandwidth of filter) 35.2367 pm
t leak
F (filter transmittance for out-band noise) 0.01

t q
F (filter transmittance for quantum signal) 0.95

t r
F , t i jk

F (filter transmittance for in-band noise) 0.95
β (coefficient of SRS) 2×10−9/(km nm)
Di jk (degeneracy factor) 3
χ (nonlinear coefficient of fiber) 1.2/(W km)
Dc(λk ) (chromatic dispersion of fiber) 18 ps/(nm km)
dDc (λk )

dλ
(slope of the chromatic dispersion) 0.056 ps/(nm2 km)

� fak (frequency difference) 400 GHz
h (Planck constant) 6.63×10−34 J s
c (light speed) 299792458 m/s
λq (wavelength of quantum signal) 1550 nm
N (total sent number of quantum signals) 1010

E0 (QBER of vacuum state) 0.5
f (EZ

μ ) (error-correction inefficiency) 1.22
tBob (internal transmittance of optical components) 0.9
ηD (SPD efficiency) 0.045
Yd (detector dark count rate) 1.7×10−6

τD (gate width of SPD) 100 ps
ed (misalignment error rate) 0.033
ε (failure probability) 10−10

maximize the final secret key rate R = KZ

N , the biased bases
choice is considered and the choice rates are optimized. We
also optimize the intensities and associated rates of signal and
decoy states. The parameters used in the simulation are listed
in Table I.

A. Comparison of the in-band classical noises

To reduce the intensity of classical noises, many methods
have been put forward. Among them, crosstalk noise can be
relieved remarkably through the high isolation band WDM
[2]. Other noise-reduction techniques, such as adjusting the
classical signals power, spectral, or temporal filtering, have
been proposed to deal with the in-band noises. However, in
previous research, FWM noise is always considered to be
negligible compared with SRS noise if the above methods
are used. In this section, we will compare the two in-band
noises strictly with different experimental parameters. The
simulation result shows that FWM noise may be larger than
SRS noise in some situations, which means that it cannot
always be ignored for WDM-QKD.

Before the comparison, note that as for the filtering of
classical noises in frequency and time domains by filter F and
SPD, respectively, in Fig. 1, the bandwidth �λ and gate width
�τD cannot be infinitely small simultaneously. The product of
the two factors, i.e., time-bandwidth product (TBP), is limited
by the following lower bound [5]:(

c

λ2
�λ

)
�τD � 2 ln 2

π
, (30)

where λ is the central wavelength of F. Combining with
Eqs. (6), (7), and (13), it can be seen that the effect of spectral
and temporal filtering for in-band classical noises is limited
by the TBP bound.

In the following simulations, we will make TBP remain
at the lower bound, which means that SRS noise is well
suppressed. Let us first consider the case that three classical
channels are existing in one fiber and the transmitted power of
classical signals is low, e.g., −10 dBm. From Figs. 2(a) and
2(b), it shows that the intensity of SRS noise is far greater than
FWM noise.

Then, let the emission power of classical signals increase
to, e.g., 0 dBm. It can be seen from Figs. 2(c) and 2(d) that
the detection rates of in-band classical noises go up. However,
when the transmission distance is short, FWM noise cannot
be ignored. Moreover, seeing Fig. 2(d), if the gate width �τD

is large, the intensity of FWM noise can exceed the SRS one.
In Fig. 3, it more clearly shows the relationships between the
detection rates of in-band classical noises and the transmitted
power of classical signals with a short transmission distance,
L = 15 km. As can be seen in the figure, when the power of
the classical signals is low, FWM noise is smaller than SRS
noise. With the increase of the classical signals power, the
detection rate of FWM noise grows at an exponential rate and
quickly exceeds the SRS one. Comparison of the results show
that reducing the transmitted power of the classical signals is a
straightforward way to decrease the classical noises. However,
once the emission power of the classical signals cannot be
changed, it is preferred to narrow the gate width of the SPD
than the bandwidth of the filter F.
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(a) (b)

(c) (d)

FIG. 2. Comparison of the detection rates of SRS noise and FWM noise. SRSf and SRSb denote the forward and backward SRS noises,
respectively. The transmission power of the classical signals is −10 dBm for (a) and (b), while it is increased to 0 dBm for (c) and (d). (a),
(c) The bandwidth of filter �λ = 35.23 pm and the gate width of SPD �τD = 100 ps. (b), (d) The bandwidth of filter �λ = 3.523 pm and the
gate width of SPD �τD = 1 ns.

B. Performance of decoy-state WDM-QKD

In this section, we will analyze the performance of WDM-
QKD with three classical channels transmitting in the same
direction as the quantum channel. The vacuum+weak decoy-
state method [23] is used to estimate Y γ

1 and ebX
1 , whose

specific forms refer to Eqs. (34) and (37) in Ref. [23]. First, the
secret key rates of two-decoy-state WDM-QKD with different
finite resources are shown in Fig. 4. The transmitted power of
the classical signals is fixed to be −10 dBm. It can be seen that
with the sent number of quantum pulses going up, the secret
key rates and maximum secure distances increase as well.

We also compare the performance of WDM-QKD with
the noncoexistent one in terms of the asymptotic case. From

Fig. 4, we can see that both the secret key rate and maximum
secure distance of QKD decrease in the WDM system. An
interesting phenomenon is that under the given parameters in
Table I, the maximum secure distance is reduced by 9 km
for WDM-QKD. However, the distance reduction due to the
insertion losses of DWDM and filter F is 8.2 km. It reminds
us that reducing the insertion losses of WDM and the filter is
important to improve the maximum secure distance.

Furthermore, the relationships between total sent number
of quantum pulses and the corresponding maximum secure
distance are simulated in Fig. 5 with different transmitted
power of classical signals. It can be seen that the more
the transmitted number of quantum pulses, the longer the
maximum secure distance. The maximum secure distance
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FIG. 3. The relationships between the detection rates of SRS and
FWM noises and the transmitted power of the classical signals with
L = 15 km. SRSf and SRSb denote the forward and backward SRS
noises respectively. The bandwidth of filter �λ = 3.523 pm and the
gate width of SPD �τD = 1 ns.

approaches the infinite-key case if N is larger than about 1012

for each transmitted power of classical signals. On the other
hand, to make the secure key rate positive, the minimum sent
number of quantum pulses should increase as the transmitted

power of classical signals becomes stronger. In Fig. 5, the
range of the minimum value of N is about 107 to 108.

At last, we analyze the influence of the transmitted power
of the classical signals on the performance of WDM-QKD.
The relationships between the maximum secure distance and
classical signals transmission power are shown in Fig. 6. It
can be seen that the maximum secure distance declines with
the transmitted power of the classical signals. If the power
is high enough, the maximum secure distance drops to zero
sharply.

C. Comparison of WDM-QKD with different
decoy-state protocols

In the above simulations, the two-decoy-state protocol with
vacuum+weak decoy states is considered. Next, we will com-
pare the performance of one-decoy-state WDM-QKD with
the two-decoy-state one. For consistency, the specific forms
of Y γ

1 and ebX
1 refer to Eqs. (41) and (37) in Ref. [23] for

the one-decoy-state WDM-QKD. First, fixing the transmitted
power of the classical signals, the comparison of the secret key
rates with different finite resources for the two-decoy-state
WDM-QKD is shown in Fig. 4. Furthermore, the comparison
of the relationships between the maximum secure distance and
total sent quantum pulses number is demonstrated in Fig. 5.
It can be seen from the two figures that when the total sent
number of quantum pulses is small, the secret key rate and
maximum secure distance of one-decoy-state WDM-QKD has
an advantage over the two-decoy-state one. However, as the
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FIG. 4. The relationships between the secret key rate and transmission distance for WDM-QKD with different finite resources. The
transmitted power of classical signals is fixed to be −10 dBm, and the other parameters used are listed in Table. I. Note that co(two) denotes the
two-decoy-state WDM-QKD with solid lines in the figure, and co(one) denotes the one-decoy-state WDM-QKD with dashed lines. The various
transmitted numbers of quantum signals are distinguished by the data point symbols. For comparison, the performances of noncoexistent QKD
with symbols inco(two) and inco(one) for the two-decoy-state protocols are also shown in the same figure.
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FIG. 5. The relationships between the maximum secure distance and total sent number of quantum pulses for WDM-QKD with fixed
classical signals transmission power. The maximum secure distance approaches the asymptotic case if N � 1012. The range of the minimum
value of N is about 107 to 108 to make the secret key rate positive. The various transmitted powers of classical signals are distinguished by the
data point symbols. The meanings of co(two) with solid lines and co(one) with dashed lines are the same as in Fig. 4.

sent number of quantum pulses increases, the performance of
two-decoy-state WDM-QKD will exceed the one-decoy-state
one.

At last, the performance comparison of the two WDM-
QKD with different transmitted power of classical signals
is depicted in Fig. 6. It shows that when N = 108, the
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FIG. 6. The relationships between the maximum secure distance and transmitted power of classical signals for WDM-QKD with fixed sent
number of quantum pulses. The various transmitted numbers of quantum signals are distinguished by the data point symbols. The meanings of
co(two) with solid lines and co(one) with dashed lines are the same as in Figs. 4 and 5.
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maximum secure distance of one-decoy-state WDM-QKD al-
ways outperforms the two-decoy-state one. Note that when
N = 1010, the solid and dashed red lines with asterisks in
Fig. 6 cross, where the maximum secure distance of one-
decoy-state WDM-QKD is first larger than and then less than
that of the two-decoy-state one with the increase of the classi-
cal signals emission power. However, as the total sent number
of quantum pulses continues to increase, the performance of
two-decoy-state WDM-QKD always exceeds the one-decoy-
state one regardless of classical signals powers.

V. CONCLUSION

In conclusion, we have systematically analyzed the prac-
tical security of decoy-state WDM-QKD in theory. First, the
classical noises model of WDM-QKD is established, accom-
panied by the numerical simulation of the effect of three
methods on reducing them. The simulation result shows that
reducing the classical signals transmission power can remark-
ably suppress the strength of classical noises. Narrowing the
gate width of SPD will reduce the intensities of the two in-
band classical noises. However, due to the limitation of TBP,
narrowing the bandwidth of the filter cannot always mitigate
the impact of in-band classical noises for large classical sig-
nals transmission power.

Furthermore, the decoy-state model of WDM-QKD is re-
vised with finite-key security analysis. And the performance
of decoy-state WDM-QKD is simulated under various finite
resources. We also display the effect of the transmitted power

of the classical signals on WDM-QKD. In addition, the per-
formance of one-decoy-state WDM-QKD is compared with
the two-decoy-state one, which shows that the former has
advantages with small sent number of quantum pulses.

The method and result of the paper can be directly used
in the experiment for integrating BB84 QKD into the ex-
isting WDM optical communication system. It provides the
theoretical basis to relieve the classical noises and optimize
the experimental settings. The analysis method developed in
the paper is universal, which can be utilized by a variety
of practical copropagation systems. In this work, WDM-
QKD with SSMF and DWDM technology is simulated,
while the system with low loss and large effective area fiber
and/or the coarse WDM can also be analyzed. Moreover,
the method can be extended to other QKD protocols, such
as the recent measurement-device-independent QKD [27,28]
and twin-field QKD [29–31]. In the future, other practical se-
curity issues, such as the source flaws and detector loopholes
for WDM-QKD, can be analyzed based on this work.
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