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Estimating the degree of non-Markovianity using machine learning
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In the last few years, the application of machine learning methods has become increasingly relevant in different
fields of physics. One of the most significant subjects in the theory of open quantum systems is the study of
the characterization of non-Markovian memory effects that emerge dynamically throughout the time evolution
of open systems as they interact with their surrounding environment. Here we consider two well-established
quantifiers of the degree of memory effects, namely, the trace distance and the entanglement-based measures of
non-Markovianity. We demonstrate that using machine learning techniques, in particular, support vector machine
algorithms, it is possible to estimate the degree of non-Markovianity in two paradigmatic open system models
with high precision. Our approach can be experimentally feasible to estimate the degree of non-Markovianity,
since it requires a single or at most two rounds of state tomography.
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I. INTRODUCTION

Artificial intelligence is a wide research field that simulates
human intelligence using certain machines that are programed
to perform human-like skills. Presently, the study of artificial
intelligence encompasses several branches, such as machine
learning (ML), reinforcement learning and deep learning, the
former being the most prominent one. ML has recently be-
come a crucial tool for extracting useful information from
the very rapidly increasing rate of available data, and is now
widely used in numerous research areas including computer
science, medicine, chemistry, biology, and physics [1]. In
particular, supervised ML is an approach where a training data
set is introduced to the ML algorithm so that it can learn to
yield the desired outputs. When provided with a training data
set that includes certain inputs and their correct outputs, the
model can learn over time to provide accurate estimations of
the output also for the inputs that have not been used in the
training process [2]. In case of a classification problem, these
outputs can correspond to different classes such as Markovian
and non-Markovian quantum dynamics. On the other hand,
a regression problem deals with outputs that corresponds to
real values such as the outcomes of a measurement, where the
aim is to make reliable projections about the desired measure-
ment outcome. Recently, ML has had a remarkable impact in
physics [3–5], for instance, in the fields of condensed matter
physics [6–8], quantum phase transitions [9–12], and quantum
information science [13–15].

Unlike the ideal-isolated quantum systems that evolve
unitarily in time, realistic quantum systems are in general
open to interaction with an environment, which gives rise to

*fanchini@fc.unesp.br

nonunitary dynamics resulting in loss of coherence [16,17].
Understanding the physics of open quantum systems is of
both fundamental and practical interest since the development
of quantum technologies relies on the presence of precious
quantum resources such as coherence [18,19]. One of the
principal concepts in the study of open quantum systems is the
dynamical memory effects which might arise throughout the
time evolution of the open system, and define non-Markovian
dynamics [16]. Although, under special circumstances, the
evolution of open systems can be treated under Markovian
approximation ignoring the memory effects, non-Markovian
behavior cannot be overlooked in many realistic settings. In
fact, the theory of non-Markovianity in the dynamics of open
quantum systems has been widely explored in recent literature
from various perspectives [20–24], and numerous means of
quantifying it have been proposed [25]. In addition, the de-
tection of memory effects in the open system dynamics has
also been experimentally achieved [26–29]. More recently,
ML methods have been started to be employed to study non-
Markovian quantum processes [30–33].

In this work, we present a computational approach
based on ML techniques to determine the degree of non-
Markovianity in the dynamics of open systems. The proposed
approach requires prior knowledge only about the type of
dominant decoherence process that our system of interest
undergoes. In other words, we will assume that we know
the underlying dynamical process, but we have no informa-
tion about the characteristic model parameters defining the
Markovian or non-Markovian nature of this process. Here we
consider two distinct well-established quantifiers of memory
effects for our analysis, namely, the trace distance [34] and
the entanglement-based measures [35]. Although capturing
the signatures of non-Markovian behavior has been possi-
ble in some experiments in recent literature [29], accurate
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determination of the degree of non-Markovianity remains
challenging for a wide variety of experimental setups, since in
general it would require a large number of rounds of quantum
state tomography to be successfully performed on the open
system. Moreover, depending on the considered measure in
an experiment, one would need to deal with the time evolu-
tion of a pair of different initial states or even introduce an
ancillary system that needs to be protected from the destruc-
tive environmental effects. Consequently, the main motivation
of our study is to simplify the experimental determination
of the non-Markovianity quantifiers with the help of a ML
algorithm. In particular, we show that a support vector ma-
chine (SVM)-based model precisely assesses the degree of
non-Markovianity of two paradigmatic quantum processes,
phase damping (PD) and amplitude damping (AD), with only
a single or at most two rounds of quantum state tomography.
At the same time, our results provide a proof of principle that
the non-Markovianity quantifiers can be precisely estimated
with the assistance of ML techniques.

This paper is organized as follows. In Sec. II we introduce
the quantifiers of non-Markovianity considered in our work.
Section III includes the open system models we consider in
our analysis. In Sec. IV we briefly review the ML model we
use in our analysis. We present our main results in Sec. V,
and we conclude in Sec. VI. Details of the SVM-based ML
approach are discussed in the Appendix.

II. QUANTIFYING NON-MARKOVIANITY

In this section, we elaborate on the characterization and
quantification of non-Markovianity in the dynamics of open
quantum systems. Before going into the details of the non-
Markovianity measures and the notion of memory effects that
we consider in our analysis, let us first discuss the fundamental
and practical relevance of the non-Markovianity measures in
quantifying the degree of memory effects in the dynamics of
open systems. To start, memory effects are known to play
an important role in certain significant quantum information
protocols. For instance, considering an optical physical setup,
it has been shown that in the case of mixed state teleportation
under decoherence, increasing the amount of memory in the
open system dynamics enhances the fidelity of the proto-
col, even allowing for perfect teleportation [36]. In a similar
setting, it has also been experimentally demonstrated that
superdense coding under noise can be efficiently performed
due to the emergence of memory effects in the dynamics [37],
where the superdense coding capacity can actually be ex-
pressed as a function of the trace distance measure. Moreover,
it has been shown that, in a realistic open system scenario,
the amount of memory in the dynamics directly controls the
lower bound of the entropic uncertainty relation [38], which
is in turn related to applications such as witnessing entangle-
ment and cryptographic security [39]. In addition, utilizing
Landauer’s principle, it has been argued that the degree of
memory effects determine the amount of work extraction by
erasure under decoherence [40]. We also mention that a rather
general framework has been introduced in Ref. [41], where
greater values of non-Markovianity has been shown to in-
duce larger revivals of classical and quantum capacities which
would potentially improve error correction schemes. Also, it

has been very recently demonstrated that the emergence of
spontaneous quantum synchronization between a pair of two-
level systems (which has consequences such as the creation of
robust quantum correlations between the pair [42]), can be de-
layed and even completely prevented as a consequence of the
increasing degree of non-Markovianity in the dynamics [43].
Finally, we emphasize that non-Markovianity in the quantum
regime is multifaceted phenomenon and different measures
can be relevant in different physical problems.

Despite the established definition of non-Markovianity in
classical settings, non-Markovianity in the quantum regime
is a rather delicate phenomenon [44]. Traditionally, a pro-
totypical Markovian quantum process is defined based on
the Lindblad type master equation, which gives rise to
a semigroup of completely positive quantum dynamical
maps [45,46]. A more general class of quantum processes
satisfies the property of completely positive divisibility (CP-
divisibility) in connection with the non-negativity of the decay
rates in time dependent Lindblad master equations [47]. Let us
assume that we have a dynamical quantum process �, i.e., a
completely positive trace-preserving (CPTP) map, describing
the time evolution of a quantum system. In recent literature,
Markovian quantum dynamical maps are typically considered
to be the ones which obey the decomposition law �(t, 0) =
�(t, s)�(s, 0) where, in addition to �(t, 0) and �(s, 0), the
transformation �(t, s) is also a CPTP map for all s � t . Such
maps are known as CP-divisible transformations and are said
to imply a memoryless evolution for the open system. There-
fore, based on the violation of the decomposition relation
(or equivalently the degree of violation of the CP-divisibility
property), it becomes possible to define quantifiers to measure
the degree of non-Markovianity in open system dynamics.

At this point, it is important to emphasize that most of the
non-Markovianity quantifiers in the literature are actually wit-
nesses for the breakdown of CP-divisibility rather than strict
measures [25]. In other words, even though these quantifiers
consistently vanish when CP-divisibility property is satisfied,
they are not always guaranteed to capture its violation. How-
ever, we should recall that some of these non-Markovianity
witnesses might still be considered as non-Markovianity mea-
sures (or measures for the degree of memory effects in the
dynamics) on their own the right, since they can be used for
quantifying the backflow of information from the environment
to the open system, which by itself can be used as a basis
for the definition of non-Markovian dynamics in the quantum
regime [20]. This approach is also intuitive because in this
way the future states of an open system can depend on its past
states, due to the flow of information from the environment
back to the open system during the time evolution [27,34].

Having briefly elaborated on what we mean by memory
effects, we are in a position to discuss the non-Markovianity
measures that we consider in our study. Let us first in-
troduce the trace distance measure which is constructed
upon the distinguishability of an arbitrary pair of quan-
tum states represented by the density operators ρ1 and ρ2.
Trace distance between these two states can be written as
D(ρ1, ρ2) = 1

2 Tr|ρ1 − ρ2|, with |A| =
√

A†A. Since a tempo-
rary increase of distinguishability, measured with the trace
distance, throughout the open system dynamics can be inter-
preted as a backflow of information from the environment to
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the open system, signatures of memory effects are signaled
when dD/dt > 0. On the other hand, if the trace distance
monotonically decreases or remains constant during the dy-
namics, that is, dD/dt � 0, then it means that the dynamics
has no memory, and thus it is Markovian. Therefore, the
degree of non-Markovianity can be measured by [34]

ND = max
ρ1(0),ρ2(0)

∫
(dD(t )/dt )>0

dD(t )

dt
dt, (1)

where the optimization is performed over all possible pairs
of initial states ρ1(0) and ρ2(0). As it has been suggested in
the recent literature [48], in our calculations we assume that
the optimal initial states are orthogonal [49] and given by the
eigenstates of the Pauli operator along x direction. We recall
that due to the fact that the trace distance is contractive under
CPTP transformations, distinguishability between ρ1 and ρ2

monotonically decreases for all CP-divisible dynamical maps
at all times. However, as mentioned earlier, non-Markovianity
based on the trace distance measure is not equivalent to the
breakdown of CP-divisibility property.

The second measure that we use in our study is based on
the entanglement dynamics of a bipartite quantum state, given
by our system of interest and an ancilla that is isolated from
the effects of the environment. Aside from the interpretation
of the information flow using distinguishability, this approach
is linked to the information dynamics between the open quan-
tum system and its environment through entropic quantities
[27,35]. Specifically, let us introduce an ancilla system A,
which has the same dimension as the principal open system
B. Considering that the subsystem B undergoes decoherence
and the ancilla A trivially evolves, a monotonic decrease in
entanglement of the bipartite system AB implies that the dy-
namics is Markovian. However, any temporary increase in
entanglement throughout the time evolution can be used to
capture the memory effects in the open system dynamics.
Thus, non-Markovianity can be quantified with

NE = max
ρAB (0)

∫
(dE (t )/dt )>0

dE (t )

dt
dt, (2)

where E denotes an entanglement measure and the optimiza-
tion is carried out over all initial states of the bipartite system
ρAB(0). Since it has been demonstrated for a single qubit open
system and an ancilla that the optimal value of the measure is
attained for Bell states [50], we calculate it considering that
the initial bipartite system AB is in one of the Bell states. In
fact, any entanglement measure can be used to evaluate this
measure. Here we choose to focus on the concurrence [51].
We should also finally note that as entanglement measures are
monotones under local CPTP maps, the entanglement-based
non-Markovianity measure vanishes for all CP-divisible pro-
cesses, similar to the trace distance measure.

III. OPEN QUANTUM SYSTEM MODELS

We now introduce the paradigmatic open quantum system
models that we consider to study how well one can determine
the degree of non-Markoviantity using ML techniques.

A. Phase damping

Let us first consider a two-level quantum system (qubit)
undergoing decoherence induced by colored dephasing noise
as introduced in Ref. [52]. Suppose that the time evolution of
the qubit is described by a master equation of the form

ρ̇ = KLρ, (3)

where L is a Lindblad superoperator and ρ denotes the density
operator of our system of interest. Here the time-dependent
integral operator K acts on the open system as Kφ = ∫ t

0 k(t −
t ′)φ(t ′) dt ′ with k(t − t ′) being a kernel function governing
the type of memory in the environment. A master equation of
the form given in Eq. (3) can arise, for instance, when one
considers a time-dependent Hamiltonian

H (t ) = h̄
3∑

k=1

�k (t )σk, (4)

where �k (t ) are independent random variables possessing the
statistics of a random telegraph signal, and σk are the Pauli
matrices in x, y, and z directions. The random variables can be
expressed as �k (t ) = αknk (t ), where each nk (t ) has a Poisson
distribution with a mean equal to t/2τk and αk is a coin-flip
random variable with the possible values ±αk . While αk de-
scribe the coupling of the open system to the random noise,
the flipping rates are given by 1/τk .

To obtain a solution for the density operator ρ of the open
system qubit, one can directly use the von Neumann equation
given by ρ̇ = −(i/h̄)[H, ρ], then it reads

ρ(t ) = ρ(0) − i
∫ t

0

∑
k

�k (s)[σk, ρ(s)] ds. (5)

Substituting Eq. (5) back into the von Neumann equation and
evaluating the stochastic average, one gets

ρ̇(t ) = −
∫ t

0

∑
k

e−(t−t ′ )/τk α2
k [σk, [σk, ρ(t ′)]] dt ′, (6)

using the correlation functions of the random telegraph
signals 〈� j (t )�k (t ′)〉 = α2

k exp(−|t − t ′|/τk )δ jk , which define
the memory kernel. In Ref. [52] it has also been shown that
under the condition that the noise acts only in a single direc-
tion, i.e., when two of the αk vanish, the dynamics generated
by Eq. (6) is completely positive. In fact, if α3 = 1 and α1 =
α2 = 0, then the open system undergoes decoherence induced
by a colored dephasing noise. In this case, the Kraus operators
describing the dynamics of the open system are given by

M1(ν) =
√

[1 + �(ν)]/2I, (7)

M2(ν) =
√

[1 − �(ν)]/2σ3, (8)

where �(ν) = e−ν[cos(μν) + sin(μν)/μ], μ =
√

(4τ )2 − 1,
ν = t/2τ is the dimensionless time, and I denotes the identity
operator. Particularly, the dynamics of the open system can be
expressed using the operator-sum representation as

ρ(ν) =
2∑

i=1

Mi(ν)ρ(0)M†
i (ν). (9)
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We note that the parameter τ controls the degree of memory
effects responsible for the emergence of non-Markovianity,
that is, as τ < 1/4 gives a Markovian time evolution, τ > 1/4
implies a non-Markovian dynamics for the open system, ac-
cording to both measures that we have introduced. For further
details about the physical relevance of the considered model
in this part, interested readers might refer to Ref. [52].

B. Amplitude damping

We will now consider a resonantly driven qubit under the
influence of an AD channel, which is modeled as a bosonic
reservoir at zero temperature [53–57]. The dynamics for this
configuration is described by the Hamiltonian (h̄ = 1)

H = ω0σ+σ− + �(σ+e−iωLt + σ−eiωLt )

+
∑

k

ωka†
kak +

∑
k

(g∗
kσ+ak + gkσ−a†

k ), (10)

where σ+ = σ
†
− = |e〉 〈g|, and |e〉 (|g〉) corresponds to the

excited (ground) state of the qubit with transition frequency
ω0. The external driving field strength and its frequency are
denoted by � and ωL = ω0, respectively, while a†

k (ak) is the
creation (annihilation) operator of the kth reservoir mode with
frequency ωk . Finally gk is the coupling strength between the
qubit and the kth mode. The dissipation kernel is given by

f (t ) =
∑

k

|gk|2e−i(ωk−ω0 )t

=
∫ ∞

0
dωJ (ω)e−i(ω−ω0 )t , (11)

with J (ω) being the spectral density of the reservoir. Without
loss of generality, we assume the qubit resonantly couples to
a reservoir with a Lorentzian spectral density [16,53–58]

J (ω) =
( γ0

2π

) λ2

(ω − ω0)2 + λ2
, (12)

in which the spectral width (twice the coupling λ) is related
to the correlation time of the reservoir τB ≈ 1/λ, whereas
γ0 is connected to the timescale in which the state of the
system changes τR ≈ 1/γ0 [16]. For this spectral density and
considering no external field, the open system dynamics is es-
sentially Markovian within the weak coupling regime, which
corresponds to τR > 2τB (λ > 2γ0). By contrast, the dynamics
exhibits non-Markovian features within the strong coupling
regime where λ < 2γ0 for both of the considered measures.

When the spectral density is Lorentzian, the interaction of
the qubit with its genuine environment can be exactly modeled
by an equivalent “Markovian” description, in which the qubit
itself is coupled to a damped harmonic oscillator (auxiliary
pseudomode described by the bosonic operators b and b†),
which is initially in the vacuum state. Relationship between
the original environment variables and the psedomode ones is
well established, and the details can be found in Ref. [59]; as
well, it is worth emphasizing the pseudomode is a mathemat-
ical construction and, strictly, does not exist physically. Here
the system-pseudomode dynamics, described by the density
operator �t , is given by the following master equation in a
frame rotating with the driving field frequency [53]

�̇t = −i[H, �t ] + Lb�t (13)

with

H = �(σ+ + σ−) +
√

λγ0/2 (σ+b + b†σ−), (14)

Lb�t = λ(2b�t b
† − b†b�t − �t b

†b). (15)

The qubit dynamics is obtained by taking the partial trace over
the harmonic oscillator degrees of freedom, i.e., ρt = Trb[�t ].
We remark that, up to our best knowledge, Eq. (13) does
not have a closed-form solution for ρt in the general case.
However, when there is no external driving field, � = 0, open
system dynamics of the qubit is then given by [16,58]

ρt =
(

ρ0
eePt ρ0

eg

√
Pt

ρ0
ge

√
Pt ρ0

gg + ρ0
ee(1 − Pt )

)
, (16)

where Pt = e−λt [cos(dt/2) + (λ/d ) sin(dt/2)]2 with d =√
2γ0λ − λ2, and ρ0

i j denotes the initial state elements.

IV. MACHINE LEARNING

There are now myriads of learning models available in
the literature [2], each of which is suitable for a particular
problem. Since we will perform our calculations using SVMs
throughout this study, it is instructive to briefly introduce the
main aspects of this computational approach. A more elabo-
rated explanation about SVMs, including a more illustrative
and pedagogical example, is given in the Appendix.

A. Support vector machines

One of the most well understood ML models is the SVM
[60]. This model can be used for classification (SVC) [61–64]
and regression (SVR) [65–68]. Moreover, it has been recently
extended to the quantum regime [69–72]. In general lines,
SVC is a class of algorithms aiming to find a hyperplane that
splits the data set based on the different classes. Therefore,
predicting the label of unknown data is relatively easy, since
it only depends on where the data samples fall with respect
to the hyperplane. The way a hyperplane can be defined is
not unique, and thus, SVC sets the maximum-margin, i.e.,
maximizing the distance between the hyperplane and some
of the boundary training data, which are the data samples that
are close to the edge of the class. These particular samples are
known as support vectors (SVs). Since SVs are a subset of the
training data set, this model is suitable for situations where the
number of training data samples is small as compared to the
dimension of the features vector. Moreover, once the model
has fitted the training data set, it can be used as a decision
function that predicts new samples, without holding in mem-
ory the training data set. For a nonlinearly separated data set, it
is possible to define a kernel function that takes the samples to
a higher dimensional space, where they are linearly separated.
Although we have only provided an intuitive representation
for SVC, here we give a brief mathematical description for
SVR which will be our main tool in the rest of this paper.

SVR delivers the tools for finding a function f (x) that
fits the training data set {xi, yi}, where xi ∈ Rd , and yi ∈ R
labels each sample. Note that d stands for the dimension of
the features vector. For illustration, we focus on a linear func-
tion f (x) = w · x + b, with w ∈ Rd and b ∈ R being fitting
parameters. For ε-SVR [60], deviations of f (xi ) from the

022425-4



ESTIMATING THE DEGREE OF NON-MARKOVIANITY … PHYSICAL REVIEW A 103, 022425 (2021)

labeled data (yi) must be smaller than ε, i.e., | f (xi ) − yi| � ε.
Moreover, the desired function must be as flat as possible
but can also include some errors. Therefore, the optimization
problem can actually be stated as [2,60,67]

minimize 1
2‖w‖2 + C

∑
i (ξi + ξ ∗

i ), (17)

subjected to

⎧⎨
⎩

yi − w · xi − b � ε + ξi

w · xi + b − yi � ε + ξ ∗
i

ξi, ξ
∗
i � 0

, (18)

where || · ||2 stands for the squared Euclidean distance, ξi, ξ
∗
i

are real slack variables and the condition C > 0 sets the toler-
ance for deviations larger than ε.

Before we start to present our main results using the con-
sidered SVM model, we would like to first define certain
terms, which are commonly used in ML studies, for the read-
ers who might be unfamiliar with the subject. In our work,
the regressor is an algorithm which basically estimates the
relationship between independent input variables and a certain
output variable. While these independent variables acting as
input data are known as features, the output of the regressor is
said to be the target value. When a training data set including
features and their respective target values is introduced to
the ML algorithm, it attempts to find patterns in this set to
create a regressor. This is known as the process of training,
during which the algorithm learns from the training data set.
In other words, a learning algorithm such as the SVM takes
the training data and produces a regressor which can in turn
give reliable predictions for the output values of independent
inputs. In our study, the features will be expectation values
of spin observables at certain times, and the target value will
be the degree of non-Markovianity of the considered open
quantum system dynamics. It is important to note that the
target value cannot be evaluated as a simple function of the
features since the expectation values of the observables are
not explicitly connected to the degree of non-Markovianity.
Consequently, in the Appendix, we elaborate on how the
SVM-based ML algorithm functions by first providing a sim-
ple illustrative example and then discussing its mathematical
details.

V. MAIN RESULTS

We commence our analysis considering what we refer to
as pure PD and AD channels, where a pure channel means
that no external driving field is present. For each one of
these models, in order to generate a database for the training
process, we calculate the time evolution of the open system
and use the aforementioned measures to quantify the degree
of non-Markovianity for model parameters, i.e., λ and τ .
We consider a wide range of parameter values that define
the two processes. In particular, in case of the AD channel,
we consider the coupling parameter λ/γ0 to be in the range
[0.1,3.0] with a step size equal to 10−3, which will enable us
to generate a uniformly distributed training data with 2900
samples. On the other hand, for the PD channel, the parameter
τ is varied in the range [0.1,0.5] with a step size equal to
10−4, which will result in a uniformly distributed training
data with 4000 samples. Hereafter, we name each sample of
these databases λn and τn. It is worth noting that we actually

FIG. 1. Dynamics of the expectation value Ox (t ) for different
coupling strengths in case of the pure AD channel, that is, for λ = 0.1
(blue crosses), λ = 0.5 (red dotted line), λ = 1.0 (yellow dot-dashed
line), λ = 3.0 (purple circles), and λ = 5.0 (green dashed line). The
thick black solid line is the separation curve between Markovian and
non-Markovian dynamics, i.e., λ = 2.0. In the inset, we show how
the expectation value Ox (1/γ0 ) changes with λ.

create two independent regressors, one for each channel, but
we discuss both of them in parallel because of the identical
procedure.

Next, we calculate the expectation values Ox, Oy, and Oz

at a fixed time t∗ in the dynamics where

Ok = Tr[σkρ(t∗)], (19)

with σk being the three Pauli spin operators in the x, y and z
directions. We should emphasize that the expectation values
for Ok are calculated for all λn and τn individually at each
fixed time point t∗. Therefore, our database now contains, for
each model parameter, the expectations values Ox(t∗), Oy(t∗),
and Oz(t∗) as the features and the degree of non-Markovianity
N as our target value. We note that the experimental determi-
nation of these expectation values can be realized with a single
quantum state tomography performed at each time t∗. We
should also emphasize that, to train the regressor by providing
it with a data set composing of the features and their target
values, the degree of non-Markovianity is calculated numeri-
cally employing the definitions given in Eq. (1) and Eq. (2). To
summarize, we introduce to our learner a set of features and
their known respective targets. Our main objective will be to
produce a regressor that will be able to determine the degree of
non-Markovianity, given a pure decoherence process (without
external fields), using only the information contained in the
expectation values at a fixed time.

We would like to first point out that, in case of the pure
channels, depending on the time t∗, each expectation value
Ok (t ) can have a unique correspondence with each λn and
τn for AD and PD, respectively. For illustrative purpose, we
show in Fig. 1 the time evolution of Ox(t ) for different val-
ues of λ for pure AD channel. It is straightforward to note
that one can find an optimal time tc (for example, in this
case, around 1/γ0), at which the curves corresponding the
Markovian and non-Markovian dynamics are well separated,
depending on whether they are above or below the thick solid
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line (λ = 2γ0). This suggests that a single state tomography, in
a well determined time tc, is sufficient to estimate the degree
of non-Markovianity. For example, if tγ0 = 1, for each value
of λ, we have a precise and distinct value of Ox(t ). In the inset
of Fig. 1 (assuming tγ0 = 1) we show that there is an optimal
region where, even for small variations in λ, the change in
Ox(tc) is significant. This is crucial to determine the best tc
to be used in an experiment. Indeed, we need to choose a
time tc that increases the accuracy of the ML algorithm but,
at the same time, keep sparse the expectation values as a
function of λ. For example, examining Fig. 1, we see that
one could choose tγ0 = 0.5 but, in this case, a high precision
measurement is necessary since Ox(t ) varies not much, i.e.,
from approximately 0.8 to 1.0 as λ/γ0 ranges from 0.1 to 3.0.
This imposes a balance between the experimental precision of
the measurements and the accuracy of the ML algorithm.

An important aspect of the application of ML algorithms
is the concept of data normalization. Here we also employ
the procedure of feature standardization which makes the
values of each feature in the data set to have zero mean and
unit variance. Such a treatment can in general speed up the
algorithm convergence [73] while increasing the accuracy of
method. Thus, for each set of observables, we calculate their
mean value and variance, and transform the data as

Õn
k = (On

k − uk )/sk, (20)

where On
k is a specific data of Ok (that is, for a particular λn

or τn), uk is the mean value of the expectation Ok , and sk

is the standard deviation of Ok . We remark that this simple
procedure can actually enhance the accuracy of the estimation
up to one order of magnitude.

We now turn our attention to the results on the estimation of
the degree of non-Markovianity in pure AD and PD channels,
which are generated by the regressor we trained. From this
point on, out of the whole database we have produced, we will
keep always 70% of the data (which are randomly chosen)
to train the SVR, and we will reserve the remaining 30% of
the data to test the performance of the regressor. Note that
this is a standard procedure when working with SVR, but
we should also remark that the choice of these percentages
can be adjusted depending on the problem to improve the
prediction accuracy. In Fig. 2 we show the degree of non-
Markovianity predicted with our SVR model (orange circles)
and the theoretical ones (blue solid line) in case of pure de-
coherence channels, considering both the trace distance ND

and entanglement NE -based measures of non-Markovianity.
Here, in the generation of the data set, the expectation values
Ok (t ) are calculated at the fixed time tc = 3/γ0 (tc = 3) for
AD (PD). We also note that the theoretical data are arranged
in decreasing order, and we limit the number of the estimated
non-Markovianity values in the figure merely for illustrative
purposes. Specifically, whereas Fig. 2(a) and Fig. 2(b), re-
spectively, show our findings for ND and NE for the AD
channel, Fig. 2(c) and Fig. 2(d) display the results of the same
analysis for the PD channel. It then becomes clear that our
ML algorithm can estimate the degree of non-Markovianity
with a very high precision. Indeed, the mean errors for AD
and the PD channels are given by 7 × 10−4 and 2 × 10−4 for
the trace distance measure, and 9 × 10−4 and 9 × 10−5 for
the entanglement-based measure, respectively. Therefore, for

FIG. 2. Comparison of the estimated (orange circles) and the-
oretical values (blue solid line) of the degree of non-Markovianity
for pure decoherence channels. Panels (a) and (b) display the results
for the trace distance ND and the entanglement-based NE measures,
respectively, in case of pure AD channel. On the other hand, panels
(c) and (d) show the outcomes of the same investigation in case of
pure PD channel. The estimated values are generated by our regressor
using the input data, which has not been used in training, and the
target values are ordered in decreasing order for better illustration.

pure decoherence channels, a single tomography should be
sufficient to accurately estimate the degree of memory effects.

At this point, it is important to mention that the above
results on the AD channel clearly depend on the knowledge
of the parameter γ0 so that the timescale of tc can be reliably
determined and our approach can be used in an experiment. If
the parameter γ0 is unknown in the considered setting, it has
been recently addressed in Ref. [74] that the noise spectrum
of any environment surrounding a qubit can be accurately
extracted by training a deep neural network (long short-term
memory network) with usual time-dynamics measurements
on qubits, e.g., the two-pulse “Hahn” echo curves.

Motivated by the results we have obtained for pure deco-
herence channels, we would like to apply our computational
approach to a natural extension of the studied problem; that is,
we ask the question of what would be the consequences of an
external driving field affecting the open system? This problem
is certainly more involved as compared to pure decoherence
since the external field induces extra oscillations in the evo-
lution of the expectation values O, which could be mistaken
as a signature of non-Markovianity by the regressor. In this
part, we choose to limit our analysis to the non-Markovianity
of the AD channel quantified through the entanglement-based
measure NE . We will now assume an external driving � �= 0
in Eq. (10), and we follow the procedure that we have used to
obtain the results presented in Fig. 2. In fact, our first question
here is: given a regressor that is trained to work with pure AD
channel, how precisely is it able to estimate the degree of non-
Markovianity in the presence of an external field? To answer
this question we show in Fig. 3 the comparison between the
estimated (by a regressor trained for pure AD channel) and the
theoretical non-Markovianity results when the external field
is nonzero for the AD channel. In the plots displayed from
Fig. 3(a) to Fig. 3(d), we consider the external field strength
�/γ0 values to be 0.01, 0.05, 0.09, and 0.20 in respective
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FIG. 3. Comparison between the predicted (orange circles) and
theoretical values (blue solid line) of the degree of non-Markovianity
for the AD channel considering an additional external field, as mea-
sured by the entanglement-based measure NE , for increasing values
of the field strength � (in units of γ0): (a) � = 0.01, in (b) � = 0.05,
in (c) � = 0.09, and in (d) � = 0.20. Here our regressor has been
trained with the data generated for the pure AD channel.

increasing order, which in turn result in mean errors given by
1.6 × 10−3, 2.2 × 10−2, 6.4 × 10−2, and 0.27. As can be seen
comparing the predicted and theoretical non-Markovianity
values, the results are satisfactory only for small perturbations,
and as the driving strength increases, the regressor no longer
works.

Our findings in Fig. 3 agree with what we expected since
the effects induced by the external driving can significantly
alter the time evolution of the expectation values Ox(t ), Oy(t ),
and Oz(t ). It is also important to emphasize that revivals in
the dynamics of the expectations values do not necessarily
imply that the time evolution is non-Markovian. Actually, the
external field � suppresses the memory effects in the open
system dynamics despite the fact that it causes oscillations in
the dynamics of the expectation values. Figure 4 demonstrates
this situation, i.e., while the field strength � increases, non-
Markovianity NE decreases, tending to zero even for small

FIG. 4. The degree of non-Markovianity quantified by NE as a
function of the coupling strength λ (in units of γ0) for different values
of external field � (in units of γ0) for the AD channel.

FIG. 5. Comparison between the estimated (orange circles)
and theoretical values (blue solid lines) of the degree of non-
Markovianity for the AD channel with external field, as measured by
the entanglement-based measure NE , where the regressor is trained
taking into account the external field. While panels (a) and (c) are
generated considering a single state tomography at a fixed time
during the dynamics, the results in panels (b) and (d) are obtained
taking into account two tomographies at two fixed times.

values of �. This behavior is the cause of the inaccuracy of the
non-Markovianity estimated by the SVR algorithm in Fig. 3.

In order to enhance the predictive power of our SVR-based
ML algorithm, the natural solution is to train the regressor tak-
ing into account the existence of the external field �. Thus, we
now train our algorithm assuming that the coupling strength
λ/γ0 takes values in the range [0.1,3.0], with a step size equal
to 10−2, and additionally, we consider a set of values for
the drive parameter �/γ0 (ranging from 0.01 to 0.5), which
generates a training data with 290 samples for each �. Here
� is divided with a step size equal to 10−2 for �/γ0 values
between 0.01 to 0.2, and with a step size equal to 0.1 between
0.2 to 0.5. The reason for this difference in the distribution of
� is to have a balanced data set, where the number of data with
Markovian results is similar to that of non-Markovian ones. In
Fig. 5 we present the predictions of our regressor now trained
in the presence of the external field. In particular, Fig. 5(a)
and Fig. 5(c) present a comparison of the theoretical and
the estimated results of the non-Markovianity measure NE

using the values of the expectation values Ox(tc), Oy(tc), and
Oz(tc) at fixed times tc = 3/γ0 and tc = 5/γ0, respectively.
Note that for each case, the experimental implementation
requires a single state tomography performed at time tc. As
can be seen from these plots, we obtain a better result for
tc = 3/γ0 as compared to tc = 5/γ0 (mean error for these
two cases are 2.6 × 10−3 and 1.3 × 10−2, respectively). Next,
in order to further improve the estimation efficiency of our
SVR algorithm, we let our regressor to have access to more
information, which means that we train it using the values of
Ox(tc), Oy(tc), and Oz(tc) at two fixed times tc1 and tc2 . The
outcomes of our analysis in this case are shown in Fig. 5(b)
and Fig. 5(d). Particularly, Fig. 5(b) includes the results of the
comparison between the estimated and the theoretical values
of the non-Markovianity for the AD channel with external
drive when two state tomographies are performed at times
tc1 = 3/γ0 and tc2 = 6/γ0. On the other hand, in Fig. 5(d), the
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outcomes of the same analysis are given when the measure-
ment times are tc1 = 5/γ0 and tc2 = 10/γ0. Consequently, we
see that two quantum state tomographies at fixed times spaced
by the intervals either 3/γ0 or 5/γ0 should be sufficient to
precisely estimate the degree of non-Markovianity with mean
errors 1.2 × 10−3 and 1.3 × 10−3, respectively.

VI. CONCLUSION

In summary, we have introduced an experimentally
friendly approach, which utilizes ML techniques based on
SVR, to estimate the degree of memory effects in the dy-
namics of open quantum systems. In particular, we have first
considered the trace distance and entanglement-based mea-
sures of non-Markovianity and demonstrated that, in case of
pure AD and PD channels, a single quantum state tomography
should be sufficient to estimate the value of non-Markovianity
measures very precisely. Next, we have focused on AD chan-
nel but now also taking into account an external drive on
the open system. We demonstrated that even though the re-
gressor trained with pure AD data can estimate the degree
of non-Markovianity relatively well for small values of the
external drive strength, as the drive parameter increases, our
method no longer works due to the extra oscillations induced
on the expectation values O by the external drive. We have
then shown that once our regressor is trained with the data
provided by the AD channel dynamics including the external
drive, it becomes once again possible to precisely estimate the
degree of non-Markovianity with at most two rounds of state
tomography.
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APPENDIX: SUPPORT VECTOR MACHINES (SVMs)

In this part, we intend to first present an intuitive ex-
planation of the SVM-based algorithms in a simple setting,
and then we will provide the mathematical details of this
approach. We remark that SVMs can be used for regression
(SVR) and for classification (SVC). Indeed, we perform re-
gression analysis using the SVR algorithm throughout our
study rather than working on a classification task via SVC.
That is to say that, we actually aim to determine the degree of
non-Markovianity of a given open quantum system dynamics
rather than only classifying them as being Markovian or non-
Markovian. However, due to the fact that the SVM algorithm
has been originally introduced for classification problems, we
start our elaboration of support vector-based algorithms con-
sidering a simple classification problem. The reason for this
is twofold. First, approaches to classification and regression

FIG. 6. Simple illustration of a support vector classifier and
along with its support vectors in a one-dimensional problem. The
parameter λ (in units of γ0) in the AD dynamics is supposed to
be used as a feature where � = 0.12γ0; the green circles denote
non-Markovian observations, and the red squares show Markovian
ones.

tasks using support vectors share many common properties
despite some differences in their applications. Second, we
think that it is more illustrative to discuss classification before
regression for pedagogical purposes.

1. An instructive SVC example

In order to elucidate the main idea involved in the classifi-
cation procedure using SVC, we would like start by discussing
a simple example. Assume that we focus on the AD model
with an external field � studied in the main text, and con-
sider the model parameter λ as the feature and the degree
of non-Markovianity N as the target value. We should first
emphasize that the parameter λ is not experimentally acces-
sible in general. In fact, in our analysis in the main text, we
have used the expectation values of spin observables that can
be measured in experiments as the features in our algorithm.
However, for the simplicity of illustration, here we suppose
that λ is our single input value for the SVC algorithm.

Let us now look at the case � = 0.12γ0 in Fig. 4 where the
degree of non-Markovianity NE is displayed as a function of
the model parameter λ. In this case, open system dynamics is
Markovian only for λ � 0.95γ0. Therefore, it should be pos-
sible to determine a simple boundary separating two classes
as Markovian and non-Markovian, which makes the problem
rather trivial. Indeed, choosing our input as a single parameter,
namely λ here, we limit ourselves to a one-dimensional clas-
sification problem. In Fig. 6 we display a simple illustration
of the problem where we highlight non-Markovian evolutions
with green circles (before λ ≈ 0.95γ0) and Markovian pro-
cesses with red squares (after λ ≈ 0.95γ0). The main idea
behind the SVC algorithm is to define a threshold that is
able to divide the two classes in a reliable way. The shortest
distance between the observations at the boundary of the class
and the classifier threshold is called the margin and the pur-
pose of the algorithm is to simply maximize it. As can be seen
in Fig. 6, it is the support vector classifier that will define the
division between the classes, while the support vectors define
the margins that are to be maximized. It is worth to note that

022425-8



ESTIMATING THE DEGREE OF NON-MARKOVIANITY … PHYSICAL REVIEW A 103, 022425 (2021)

FIG. 7. Illustration of a kernel transformation. (a) We assume
that the parameter λ in the AD dynamics is supposed to be used as a
feature where � = 0.18γ0, and we show the data in one dimension
before the kernel transformation, in which case linear separation
is impossible. (b) We display the data on a two-dimensional space
after the polynomial kernel transformation of order 2, which makes
it possible to linearly separate the data with a line, allowing for an
efficient application of the SVC algorithm. The green circles denote
non-Markovian observations, and the red squares show Markovian
ones.

if the data are presented in a one- (two-) dimensional system,
then the classifier is a point (line). In fact, the classifier will
be in general an hyperplane which has one dimension less
than the number of dimensions that define the class, which is
determined by the number of features. This is also the reason
why we actually supposed to use the model parameter λ as the
single input of the algorithm in this part to be able to provide
an instructive graphical illustration.

Given the above explanation in a rather trivial case, where
the linear separation of the classes is possible, a natural
question arises about how one can use SVC when the lin-
ear separation of the data is impossible. For instance, let us
have a look at the case where � = 0.18γ0 in Fig. 4. It is
now clearly not possible to find a point that can efficiently
divide the dynamics as being non-Markovian and Marko-
vian, as demonstrated in Fig. 7(a), since the time evolution
becomes non-Markovian only when 0.2 � λ/γ0 � 0.42. SV
algorithms are still very effective in such cases but before the
usual machinery of the algorithm one needs to apply a data
transformation also known as a kernel transformation. In our
calculations mentioned in the main text, we have used the
well-known radial basis function (RBF) kernel but, here in
this part, we consider a polynomial kernel of order 2 to better
explain the main idea since it allows for the graphical visual-
ization of the process. The polynomial kernel transformation
can be written as k(m, n) = (m · n + r)2 where m and n refer
to any two observations in the sample and r is the coefficient
of the polynomial. In this case, it is straightforward to see
that (m · n + r)2 = �u · �v, where �u = (

√
2rm, m2, r) and �v =

(
√

2rn, n2, r). This implies that each sample (m and n) is now
expanded into a three-dimensional or even two-dimensional
vector if we ignore the component z which is identical for

both vectors. Thus, each observation is now described in a
two-dimensional space as shown in Fig. 7(b) rather than a
one-dimensional space as displayed in Fig. 7(a). To put it
simply, the kernel transformation extends the data in a higher
dimensional space so that the linear separation is possible and
thus the SVM methodology can be utilized to accurately. In
case of the RBF kernel, that we have used in the main text
for regression, unlike the above polynomial kernel, the ex-
pansion is multidimensional and the support vector classifier
is a multidimensional hyperplane. Explicitly, the RBF kernel
transformation is given by

k(m, n) = exp(−||m − n||2)/2σ 2, (A1)

where || · ||2 is the squared Euclidean distance and σ > 0 de-
fines the tolerance in the limits of decision. Also note that the
multidimensional character of the RBF kernel transformation
comes from the infinite series expansion of the exponential.

In the first section of the Appendix, we presented a brief
intuitive explanation of the SV-based classification algorithm.
Indeed, SV-based algorithms can also be used for regression
tasks as is demonstrated with our analysis in the main text.
In the following, we intend to provide mathematical details of
these algorithms, which share many common concepts in their
applications, such as the determination of the support vectors,
margins, and kernel transformations.

2. Mathematical details of SV-based algorithms

a. Classification

As mentioned previously, the first step of the algorithm is
the data transformation so that it becomes possible to find
an optimal hyperplane linearly separating the data into two
classes. In our problem, we make use of the expectation values
of three spin observables at different times as features xi to
estimate the non-Markovian character of dynamics. In case
of classification, the target parameter can naturally assume
only two values, that is, yi = +1 (Markovian) or yi = −1
(non-Markovian). Let us introduce two hyperplanes defined
by

w · xi + b = +1 when yi = +1,

w · xi + b = −1 when yi = −1, (A2)

as graphically demonstrated in Fig. 8(a), where w and b are
the fitting parameters. In particular, these two planes should
separate the whole space and define a margin, i.e., an empty
region described by −1 � (w · xi + b) � +1. The main task
here is to determine a linear separator with the largest possible
margin, at the same time, making sure that there are no data
points left between the P− = w · xi + b = −1 and P+ = w ·
xi + b = +1 hyperplanes shown in Fig. 8(a). In other words,
since the distance between these two planes is proportional to
1/‖w‖, the problem actually boils down to numerically deter-
mine w and b which minimize ‖w‖ (or equivalently 1

2‖w‖2)
while making sure that the above mentioned constraints are
satisfied.

Up until this point, we have considered a somewhat ideal
scenario where the described procedure can be implemented
in a quite straightforward manner. However, for certain train-
ing data sets, it is not the most ideal approach. For example,
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FIG. 8. (a) We present a schematic representation of a classifier (hyperplane) separating the data, where the task of the algorithm is to
maximize the margin defined by the support vectors. (b) We show an example considering training data where a hardmargin fails to efficiently
separate the classes. (c) We demonstrate how the case in (b) can be improved using a soft margin by allowing some error.

suppose that after the kernel transformation, we end up with a
training data set as shown in Fig. 8(b). In such a case, although
the hyperplane P0 separates the two classes perfectly, it clearly
is not the most efficient one. Indeed, the absence of flexibility
in the algorithm to allow for some errors, might result in the
generation of inefficient hyperplanes for the dividing the data
set. In order to avoid this issue, Cortes and Vapnik proposed
the concept of a soft margin which would allow for a certain
degree of error in classification to keep the margin as wide as
possible [75]. According to their approach, the constraints are
modified as follows

w · xi + b � +1 − ξi when yi = +1,

w · xi + b � −1 + ξi when yi = −1, (A3)

where ξi are slack variables which measures the distance of xi

from the corresponding margin if xi is on the wrong side of
the margin, otherwise they are zero [see Fig. 8(c)].

As a certain amount of error is now allowed in the algo-
rithm, it is necessary to introduce a slightly different criterion
to determine the hyperplanes. Therefore, rather than maximiz-
ing the distance between the hyperplanes P− and P+ as in the
previous case (or in other words, minimizing 1

2‖w‖2), one now
requires us to minimize the following quantity:

1

2
‖w‖2 + C

∑
i

ξi, (A4)

under the constraints given in Eq. (A3), where, as the margin
is being maximized, an extra term C is introduced to take into
account a penalty for possible errors. Here the new positive
parameter C actually weighs the degree of allowed errors
in the algorithm. More explicitly, C is a trade-off parameter
whose value determines whether one wants a better classifica-
tion of training data impairing the wide margin.

b. Regression

As mentioned earlier, SVM algorithm has been originally
developed for the purpose of classification. Later, it has been
extended to work as a regressor [68,76]. As in the case of
linear regression algorithms, SV-based regression algorithm
intends to find a line (or in general, an hyperplane) that fits
training points while minimizing possible errors. In other
words, the task of the SVR algorithm is to find a contin-
uous linear function f (x) = w · x + b which approximates

the mapping from an input data (features) to real numbers
(target) in accordance with the training data set. A kernel
transformation should still be performed to linearize the train-
ing data in a higher dimensional parameter space. In fact, the
approach here is actually similar to the one presented for the
classification problem except for a few important differences.
Most importantly, in case of the SV classifier, since the aim
is to efficiently separate the classes, a decision boundary is
formulated keeping the margin as wide as possible between
the data points closest to it (support vectors), where some data
points are allowed to fall inside this margin (see Fig. 8).

When it comes to the SV-based regression algorithm, a
margin still needs to be fixed but with a completely different
purpose. In order to define this margin, we need to introduce
an additional parameter ε whose value is to be decided based
on the distribution of the training data. This new parameter de-
fines a region around the function f (x) that will be optimized
to keep the deviation from the training data set minimal. Thus,
the minimization constraints now become

−ε � yi − w · xi − b � ε. (A5)

However, it is quite possible that no such linear function f (x)
exists that satisfy the above constraints. For this reason, non-
negative slack variables ξi and ξ ∗

i are introduced to the model
similarly to the soft margin concept in SV-based classification.
As graphically displayed in Fig. 9, the parameter ε describes a
region of space around the hyperplane, inside which the devi-
ations are ignored (the so-called ε-insensitive margin) and the
instances outside this limit are penalized with the help of slack
variables ξi and ξ ∗

i , allowing for a certain degree of regression
errors. With the above mentioned considerations, the problem
that needs to be dealt with for efficiently training the regressor
is now the minimization of the following quantity

1

2
‖w‖2 + C

∑
i

(ξi + ξ ∗
i ), (A6)

under the constrains given by

−(ε + ξ ∗
i ) � yi − w · xi − b � ε + ξi, (A7)

where the positive valued parameter C controls the penalty
imposed on the training data lying outside the ε-insensitive
margin and helps prevent overfitting of the data. The above
problem is clearly equivalent to the constrained optimization
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FIG. 9. Schematic representation of a SV-based algorithm which
is designed to work in a regression task. The main idea is to utilize
the hyperplane shown by red solid line in the middle as a regression
function, at the same time, introducing a certain degree of penalty
(through slack variables ξi and ξ ∗

i ) for the training data set falling
outside the margin, which is defined by the parameter ε.

task described by Eq. (17) and Eq. (18). At this point, it is
also important to note that the process of maximizing margins,
involved in the process of minimizing the quantity ‖w‖2, has
a different role in the case of the regression algorithm as
compared to the classifier, since the width of the margin is
limited by the parameter ε in the former approach. We should
also emphasize that the choice of the parameter ε is crucial
for the efficiency of the algorithm as it defines the maximum
possible error allowed for the regressor.

3. Numerical implementation of SVR

Having provided above a rather technical description of
SV-based regression approach that we have used in our

analysis, we would like to finally give some details about
the numerical implementation of the training and regres-
sion procedures. In our work, the SVR algorithm has been
implemented using the scikit-learn platform [2] which is a
well-recognized free machine learning library for the Python
programming language. In fact, SVR implementation in
scikit-learn itself is internally handled using the libsvm li-
brary [77]. Within this framework, the optimization problem
described by Eq. (17) and Eq. (18) is numerically solved
with a sequential minimal optimization type decomposition
technique proposed by Fan et al. [78]. The free parameters in
the considered SVR algorithm are ε and C that respectively
represent the size of the epsilon-tube within which errors are
ignored, and the tolerance for deviations larger than ε. In addi-
tion, different kernels can also be considered depending on the
distribution of the training data. In our study, we have carried a
careful analysis performing numerous implementations of the
algorithm to achieve the best accuracy. Accordingly, we have
used the previously defined RBF kernel and set the model
parameters as ε = 10−3, C = 1.0, and the tolerance for the
stopping criterion as 10−3.

Last, as we use the expectation values of the three spin
operators Ox, Oy and Oz at one or at most two time points
during the open system dynamics as features, and the degree
of non-Markovianity N as the target value, our training data
in general is structured as a set of arrays whose content read

[N ,Ox(t1),Oy(t1),Oz(t1),Ox(t2),Oy(t2),Oz(t2)], (A8)

having one target and six feature values. Here each array has
a different content since both expectations values at different
times and the degree of non-Markovianity are calculated con-
sidering different model parameters, such as the external field
strength � and the coupling constant λ. We also stress that
we have used 70% of the data for training the regression algo-
rithm. The remaining 30% of the whole data set, which was
not used in training, has been kept for checking the accuracy
of the model to predict the desired target value.
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Comparative study of non-Markovianity measures in exactly
solvable one- and two-qubit models, Phys. Rev. A 90, 052103
(2014).

[49] S. Wißmann, A. Karlsson, E.-M. Laine, J. Piilo, and H.-P.
Breuer, Optimal state pairs for non-Markovian quantum dynam-
ics, Phys. Rev. A 86, 062108 (2012).

[50] A. C. Neto, G. Karpat, and F. F. Fanchini, Inequivalence of
correlation-based measures of non-Markovianity, Phys. Rev. A
94, 032105 (2016).

[51] S. Hill and W. K. Wootters, Entanglement of a Pair of Quantum
Bits, Phys. Rev. Lett. 78, 5022 (1997).

[52] S. Daffer, K. Wódkiewicz, J. D. Cresser, and J. K. McIver, De-
polarizing channel as a completely positive map with memory,
Phys. Rev. A 70, 010304(R) (2004).

[53] S. J. Whalen and H. J. Carmichael, Time-local Heisenberg-
Langevin equations and the driven qubit, Phys. Rev. A 93,
063820 (2016).

022425-12

https://doi.org/10.1103/PhysRevLett.122.200401
https://doi.org/10.1103/PhysRevLett.124.010508
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1016/j.physrep.2018.07.001
https://doi.org/10.1209/0295-5075/127/50001
https://doi.org/10.1103/PhysRevA.88.012105
https://doi.org/10.1103/PhysRevA.94.032121
https://doi.org/10.1088/0034-4885/77/9/094001
https://doi.org/10.1038/nphys2085
https://doi.org/10.1103/PhysRevLett.112.210402
https://doi.org/10.1103/PhysRevA.90.052118
https://doi.org/10.1209/0295-5075/128/30001
https://doi.org/10.1088/1367-2630/aaf749
https://doi.org/10.1142/S0219749918400105
https://doi.org/10.1103/PhysRevLett.124.140502
https://doi.org/10.1103/PhysRevA.102.062414
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1103/PhysRevLett.105.050403
https://doi.org/10.1038/srep04620
https://doi.org/10.1209/0295-5075/114/10005
https://doi.org/10.1209/0295-5075/111/50006
https://doi.org/10.1038/nphys1734
https://doi.org/10.1038/srep27989
https://doi.org/10.1038/srep05720
https://doi.org/10.1103/PhysRevA.85.052101
http://arxiv.org/abs/arXiv:2008.03310
https://doi.org/10.1088/1367-2630/13/9/093004
https://doi.org/10.1007/BF01608499
https://doi.org/10.1063/1.522979
https://doi.org/10.1088/0953-4075/45/15/154001
https://doi.org/10.1103/PhysRevA.90.052103
https://doi.org/10.1103/PhysRevA.86.062108
https://doi.org/10.1103/PhysRevA.94.032105
https://doi.org/10.1103/PhysRevLett.78.5022
https://doi.org/10.1103/PhysRevA.70.010304
https://doi.org/10.1103/PhysRevA.93.063820


ESTIMATING THE DEGREE OF NON-MARKOVIANITY … PHYSICAL REVIEW A 103, 022425 (2021)

[54] P. Haikka and S. Maniscalco, Non-Markovian dynamics of a
damped driven two-state system, Phys. Rev. A 81, 052103
(2010).

[55] P Haikka, Non-Markovian master equation for a damped driven
two-state system, Phys. Scr. T140, 014047 (2010).

[56] H. Z. Shen, M. Qin, X.-M. Xiu, and X. X. Yi, Exact non-
Markovian master equation for a driven damped two-level
system, Phys. Rev. A 89, 062113 (2014).

[57] Z. Huang and H. Situ, Non-Markovian dynamics of quan-
tum coherence of two-level system driven by classical field,
Quantum Inf. Process. 16, 222 (2017).

[58] B. Bellomo, R. Lo Franco, and G. Compagno, Non-Markovian
Effects on the Dynamics of Entanglement, Phys. Rev. Lett. 99,
160502 (2007).

[59] B. M. Garraway, Nonperturbative decay of an atomic system in
a cavity, Phys. Rev. A 55, 2290 (1997).

[60] V. Vapnik, The Nature of Statistical Learning Theory (Springer
Verlag, New York, 1995).

[61] C. J. C. Burges, A tutorial on support vector machines for
pattern recognition, Data Min. Knowl. Disc. 2, 121 (1998).

[62] R. Dietrich, M. Opper, and H. Sompolinsky, Statistical Me-
chanics of Support Vector Networks, Phys. Rev. Lett. 82, 2975
(1999).

[63] S. Risau-Gusman and M. B. Gordon, Generalization properties
of finite-size polynomial support vector machines, Phys. Rev. E
62, 7092 (2000).

[64] M. Opper and R. Urbanczik, Universal Learning Curves of
Support Vector Machines, Phys. Rev. Lett. 86, 4410 (2001).

[65] B. Schölkopf, P. Bartlett, A. J. Smola, and R. Williamson,
Support vector regression with automatic accuracy control, in
ICANN 1998: Perspectives in Neural Computing, edited by L.
Niklasson, M. Bodén, and T. Ziemke (Springer, London, 1998),
pp. 111–116.

[66] B. Schölkopf and A. J. Smola, Learning with Kernels (MIT
Press, Cambridge, MA, 2002).

[67] A. J. Smola and B. Schölkopf, A tutorial on support vector
regression, Stat. Comput. 14, 199 (2004).

[68] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V.
Vapnik, Support Vector Regression Machines (MIT Press, Cam-
bridge, MA, 1996), pp. 155–161.

[69] P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum Support
Vector Machine for Big Data Classification, Phys. Rev. Lett.
113, 130503 (2014).

[70] Z. Li, X. Liu, N. Xu, and J. Du, Experimental Realization
of a Quantum Support Vector Machine, Phys. Rev. Lett. 114,
140504 (2015).

[71] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, Quantum machine learning, Nature (London)
549, 195 (2017).

[72] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A.
Kandala, J. M. Chow, and J. M. Gambetta, Supervised learning
with quantum-enhanced feature spaces, Nature (London) 567,
209 (2019).

[73] S. Ioffe and C. Szegedy, Batch normalization: Accelerating
deep network training by reducing internal covariate shift,
arXiv:1502.03167 (2015).

[74] D. F. Wise, J. J. L. Morton, and S. Dhomkar, Using deep learn-
ing to understand and mitigate the qubit noise environment,
PRX Quantum 2, 010316 (2021).

[75] C. Cortes and V. Vapnik, Support-vector networks, Mach.
Learn. 20, 273 (1995).

[76] H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V.
Vapnik, Support vector regression machines, Advances in Neu-
ral Information Processing Systems 9 (MIT Press, 1997), pp.
155–161.

[77] C.-C. Chang and C.-J. Lin, LIBSVM: A library for support vec-
tor machines, ACM Trans. Intell. Syst. Technol. 2, 27 (2011).

[78] R.-E. Fan, P.-H. Chen, and C.-J. Lin, Working set selection
using second order information for training support vector ma-
chines, J. Mach. Learn. Res. 6, 1889 (2005).

022425-13

https://doi.org/10.1103/PhysRevA.81.052103
https://doi.org/10.1088/0031-8949/2010/T140/014047
https://doi.org/10.1103/PhysRevA.89.062113
https://doi.org/10.1007/s11128-017-1673-0
https://doi.org/10.1103/PhysRevLett.99.160502
https://doi.org/10.1103/PhysRevA.55.2290
https://doi.org/10.1023/A:1009715923555
https://doi.org/10.1103/PhysRevLett.82.2975
https://doi.org/10.1103/PhysRevE.62.7092
https://doi.org/10.1103/PhysRevLett.86.4410
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1103/PhysRevLett.114.140504
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/s41586-019-0980-2
http://arxiv.org/abs/arXiv:1502.03167
https://doi.org/10.1103/PRXQuantum.2.010316
https://doi.org/10.1007/BF00994018
https://doi.org/10.1145/1961189.1961199
http://jmlr.org/papers/v6/fan05a.html

