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Impossibility of cloning of quantum coherence
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It is well known that it is impossible to clone an arbitrary quantum state. However, this inability does not lead
directly to no cloning of quantum coherence. Here, in this article, we show that it is impossible to clone the
coherence of an arbitrary quantum state. In particular, with an ancillary system as machine state, we show that
it is impossible to clone the coherence of states whose coherence is greater than the coherence of the known
states on which the transformations are defined. Also, we characterize the class of states for which coherence
cloning will be possible for a given choice of machine. Furthermore, we find the maximum range of states whose
coherence can be cloned perfectly. The impossibility proof also holds when we do not include machine states.
Lastly, we generalize the impossibility of cloning of coherence in terms of dimension of the quantum state and
coherence measure taken into consideration.
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I. INTRODUCTION

The phenomenon of quantum superposition and entan-
glement lies at the heart of quantum mechanics acting as
resources which we can harness to perform practical and
important information-theoretic tasks [1]. Motivated by the
increasing importance of quantum entanglement [2] in quan-
tum information processing and communication schemes, a
general study of the theory of resources within the paradigm
of quantum mechanics and beyond is being formulated. We
have several entanglement measures to quantify entangle-
ment, however, until recently there was no standard way to
quantify the coherence present in a quantum state. Quan-
tum coherence can be viewed as a fundamental signature of
nonclassicality in physical systems. Coherence can also be
used as a resource for certain tasks like better cooling [3] or
work extraction processes in nanoscale thermodynamics, in
many quantum algorithms [4,5], in quantifying wave-particle
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duality [6–8], and in biological processes [9,10]. The resource
theory of quantum coherence [11–22] along with other re-
source theories of entanglement and thermodynamics [23–26]
has also been established. Once we have the measure based
on a given set of axioms to quantify the coherence [27–35]
we can build the resource theory of coherence. This seeks to
quantify and study the amount of linear superposition a quan-
tum state possesses with respect to a given basis. Given a state
ρ, with its matrix elements as ρi j , the amount of coherence
present in the state in the basis {|i〉} is given by the quantity
Cl (ρ) = ∑

i �= j |〈i|ρ| j〉| which is known as the l1 norm of
coherence. Note that coherence is a basis-dependent quantity
as the amount of coherence will be different in different bases.
Since the l1 norm is a function of the off-diagonal elements of
the given density matrix representation, clearly the value of
coherence will be zero in the eigenbasis of the density matrix,
where there are no off-diagonal elements.

Quantum superposition and entanglement play a pivotal
role in achieving information processing tasks that are other-
wise not possible by any other classical resource. The same
properties also forbid us to do certain tasks that are oth-
erwise achievable classically. It started with the no-cloning
theorem, which states that there does not exist a quantum
operation which can perfectly duplicate any pure state [36].
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In particular, the no-cloning theorem states that if we have
a cloning machine which can copy two orthogonal quantum
states, then with the same cloning machine it is impossible
to create an identical copy of an arbitrary quantum state. Pati
and Braunstein later showed that we cannot delete either of
the two quantum states perfectly [37]. In addition to these two
famous no-cloning and no-deletion theorems there are many
other no-go theorems like no-flipping (impossibility to flip
an arbitrary quantum state) no-self-replication (cannot have
a universal quantum constructor) [38]. A two-dimensional
quantum system can always be represented as points on the
Bloch sphere parametrized by azimuthal angle θ and the phase
angle φ. It is interesting to note that there are no-go theorems
like no partial erasure [39], no splitting [40], and no partial
swapping [41], which together tells us the indivisibility of the
information content present in a quantum system.

At this point it is interesting to ask the question whether
it is possible to clone coherence of arbitrary quantum states.
We know that cloning of arbitrary quantum states implies sig-
naling. Therefore, the no signaling implies the no cloning but
the no cloning does not imply the no signaling. Unlike in the
case of cloning of states where each term of the density matrix
has to be perfectly replicated, cloning of coherence does not
limit us similarly. If we are able to clone the state perfectly,
the coherence of the state also gets cloned. Hence, the cloning
of quantum states implies the cloning of coherence present in
the state. Its contrapositive tells us that no cloning of quantum
coherence of a state will directly imply that the cloning of the
state is not possible. So, in that sense no-cloning quantum co-
herence mathematically implies no cloning of quantum states.
We have given a couple of examples of state cloners in the
Appendix to illustrate that cloning of quantum coherence is
not the same as the cloning of quantum state.

Impossibility of cloning coherence provides additional in-
sights compared to that of the no-cloning theorem. Since
coherence is a resource for creation of entanglement by in-
coherent operation, if we could clone coherence exactly, then
we will be able to build up a large amount of entanglement
starting from a minimal amount of coherence and repeated use
of incoherent operations. Our no-go result suggests that this
is not possible. Other insights can be gained in the context
of thermal machines. If one aims to generate coherence in
the energy eigenbasis from thermal resources, then our no-go
result suggests that coherence cannot be created in initially
incoherent systems while maintaining the machine in a fixed
state. Thus, the impossibility of cloning coherence implies
that various quantum resources cannot be generated arbitrarily
starting from a given state having a fixed amount of nonzero
coherence. In this paper, we show that indeed it is so and
these two cloners are different. It is interesting to see that
we cannot clone the coherence of arbitrary superposition of
orthogonal states as long as the coherence of the state is more
than the coherence of the orthogonal states in the given basis.
This result holds when we define the cloning transformation
with the machine states. However, we cannot say directly
anything specific when the coherence of the input state is less
than or equal to the coherence of these orthogonal states, but
nevertheless in this zone we are able to characterize the states
whose coherence can be cloned. We considered the action of
an approximate quantum coherence cloner defined for two

orthogonal states from the equatorial plane. We demonstrate
its action on an arbitrary quantum state expressed in the basis
of these two orthogonal states. Interestingly, we found that
the higher the difference between the two angles of the initial
states and the final state, the lower is the ratio of the initial and
final coherence after cloning. We also find the maximum range
of states whose coherence can be cloned perfectly. Further, we
show that there does not exist any universal unitary operator
as a coherence cloner even when we are not considering
the ancillary states. In addition to these, we show that it is
impossible to clone coherence of a qudit. Also, we show
that this impossibility is valid for coherence measures like
relative entropy measure, l1 norm, quantum skew divergence,
etc., where maximally coherent states are only pure states
[42] (result of Theorem 1). We find that the impossibility of
universal coherence cloning fundamentally depends upon the
choice of the known states and is very much different from the
cloning of the quantum state.

II. NO CLONING OF QUANTUM COHERENCE WITH
MACHINE STATES

In the case of the no-cloning theorem for quantum states,
we start with an assumption that we can clone two known
orthogonal quantum states. Here, we start with an assumption
that we can copy the coherence of two known orthogonal
quantum states |ψ1〉 and |ψ2〉 and then prove that it is im-
possible to clone the coherence of an unknown quantum state
universally. At this point, one may ask the question that how
do we know that we can clone coherence of two orthogonal
quantum states |ψ1〉 and |ψ2〉. We can argue that since |ψ1〉
and |ψ2〉 are two known orthogonal states, we can make copies
of these quantum states. Now, cloning of quantum states al-
ways implies that the cloning of coherence is true (although
the reverse is not true). This is because when we can clone the
entire state we can definitely clone the coherence content of
the state. Therefore, it is natural to assume that we can clone
coherence of two known orthogonal states.

Let Ucc be the unitary transformation that produces two
copies of coherence starting from two orthogonal quantum
states. The cloning transformation for coherence is given by

|ψ1〉A|0〉B|X0〉C −→ |�1〉AB|X1〉C,

|ψ2〉A|0〉B|X0〉C −→ |�2〉AB|X2〉C,
(1)

where |ψ1〉, |ψ2〉 are input states, |0〉 is the blank state, and
|X0〉 is the initial machine state. Also, |�1〉 and |�2〉 are states
whose subsystems A and B have coherence the same as that
of the input states, and |X1〉 and |X2〉 are the corresponding
final machine states. The machine states satisfy 〈X2|X1〉 = 0
due to unitarity of the transformation. Let us represent the
two orthogonal states |ψ1〉A and |ψ2〉A in the {|0〉, |1〉} basis
as |ψ1〉A = a|0〉A + b|1〉A and |ψ2〉A = b∗|0〉A − a∗|1〉A.

As the transformation demands coherence to be perfectly
copied, we must have Cl (|ψ1〉A) = Cl (ρA

′) = Cl (ρB
′) and

Cl (|ψ2〉A) = Cl (ρA
′′) = Cl (ρB

′′), where

ρA
′ = TrB|�1〉ABAB〈�1|, ρB

′ = TrA|�1〉ABAB〈�1|,
ρA

′′ = TrB|�2〉ABAB〈�2|, ρB
′′ = TrA|�2〉ABAB〈�2|.

(2)
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FIG. 1. Classification of states for a given cloner. The zone on the
surface of the Bloch sphere that is between the two horizontal circles
drawn with the dashed line denotes the pure states whose coherence
can not be cloned. CY L|ψ1〉 represents all the states (pure as well as
mixed) which have the same coherence as |ψ1〉

Since the coherence of the orthogonal states is the same, we
have Cl (|ψ1〉A) = Cl (|ψ2〉A) = 2|a||b|, where Cl (ρ) is the l1
norm for quantifying quantum coherence. It may be noted that
in the case of cloning of quantum states we require two iden-
tical copies of the input state at the output port. However, for
cloning of coherence, this is not the case as there can be two
nonidentical states with the same coherence. Since any state
can be represented on the Bloch sphere as ρ = I+ 	m .	σ

2 with
	m = (mx, my, mz ) as the Bloch vector and 	σ = (σx, σy, σz )
are the Pauli matrices. The coherence in {|0〉, |1〉} basis is

given by Cl (ρ) =
√

m2
x + m2

y . Hence, coherence only depends

on mx and my values. As shown in Fig. 1, we can say that all
the states that lie on the curved surface of the cylinder with

radius
√

m2
x + m2

y will have the same coherence. At this point,

it is important to ask the following question: Does quantum
mechanics allow existence of a universal cloner for cloning
the coherence of an arbitrary input state α|ψ1〉 + β|ψ2〉? The
answer to the question is “no.”

Theorem 1. It is impossible to clone the coherence of an ar-
bitrary quantum state |ψ〉 = α|ψ1〉 + β|ψ2〉, with the cloning
transformations given by Eq. (1) when the coherence of the
state |ψ〉 is more than the coherence of the states |ψi〉 (i =
1, 2) for a fixed choice of basis {|0〉, |1〉}.

Proof. Without loss of generality, let us use the l1 norm
as a measure of quantum coherence and assume a fixed ba-
sis as the computational basis. Any arbitrary state in |ψ1〉A,
|ψ2〉A basis can be written as |ψ〉A = α|ψ1〉A + β|ψ2〉A. The
l1 norm of coherence of the state |ψ〉A in the {|0〉, |1〉} basis
is 2|(αa + βb∗)(αb − βa∗)|. After the application of cloning
transformation Ucc, the arbitrary state along with the blank
and machine states becomes (α|�1〉AB|X1〉C + β|�2〉AB|X2〉C).
Tracing out the subsystems B and C, we get ρfinal

A =
|α|2ρA

′ + |β|2|ρA
′′. From the convexity property of coherence

measure we have Cl (ρfinal
A ) � [|α|2Cl (ρA

′) + |β|2Cl (ρA
′′)] =

2(|α|2|a||b| + |β|2|a||b|) = 2|a||b| = C(|ψi〉). Therefore, the
final coherence of the subsystem A is at most 2|a||b|. There-
fore, it is evident that all the input states |ψ〉 whose initial

coherence Cl (|ψ〉) is greater than 2|a||b|, which is the coher-
ence of the known orthogonal states, it is impossible to clone
the coherence perfectly. �

Note 1. Theorem 1 holds for all coherence measures
and is not only restricted to the l1 norm of coherence.
The convexity of any coherence measure ensures that the
final coherence C(ρfinal

A ) is bounded above by C(|ψi〉A),
where i = 1, 2.

This tells that if the coherence of an arbitrary input state is
greater than the coherence of the orthogonal states, then we
cannot copy the coherence of the state into a blank state. Geo-
metrically, if we consider the Bloch sphere as the state space,
the orthogonal states |ψ1〉 and |ψ2〉 represent two symmetric
points on the surface of each hemisphere of the Bloch sphere.
Taking the shortest distance of each of these points from the
central axis as radius, these circles will represent all the states
with same coherence value. We will have exactly two sim-
ilar circles, one in each hemisphere representing orthogonal
states. All the pure states with greater coherence value will be
the points on the surface which are lying between these two
circles. This theorem geometrically tells us that we cannot
copy the coherence of the intermediate surface points (see
Fig. 1). However, the theorem does not tell anything about
the points on the surface which lies on the circles (except |ψ1〉
and |ψ2〉) and other points lying between those circles and
poles. It may be possible to clone some of these states. The
theorem only tells us that given a choice of known orthog-
onal states, there does not exist any universal cloner which
will clone all pure states on the surface of the Bloch sphere.
However, the theorem is only true as long as the orthogonal
states are not from the equatorial circle of the Bloch sphere
(|+〉 = |0〉+|1〉√

2
and |−〉 = |0〉−|1〉√

2
lying on the equator of the

Bloch sphere can be one such example). In that scenario, we
do not have any input state with a coherence greater than
the coherence of these equatorial orthogonal states (which
is 1). If we view this, circles from each hemisphere coin-
cide with each other and there is no intermediate point. The
important question is whether for such choice of cloner it
is possible to clone all the states on the surface of Bloch
sphere. The answer to this is once again “no” and indeed
there does not exist a universal cloner for whatever choice
of machine.

Corollary 1. For a cloning transformation given by Eq. (1),
with the choice of known orthogonal states |ψ1(E )〉 and
|ψ2(E )〉, taken from the equator, it is impossible to clone the
coherence of an arbitrary quantum state |ψ〉 = α|ψ1(E )〉 +
β|ψ2(E )〉, for a fixed choice of basis {|0〉, |1〉}.

Proof. As per the assumption that the unitary cloning trans-
formation (Ucc) perfectly clones the coherence of |ψ1(E )〉A,
|ψ2(E )〉A into subsystem of |�1〉AB, |�2〉AB we have 2|x| =
1 and 2|y| = 1, where, x = ρ ′

A01 and y = ρ ′′
A01 are the

off-diagonal terms of the subsystem ρA
′ and ρA

′′, respec-
tively. Here we will only look at system A and prove that
there exist some states for which cloning is not possible.
With the constraint 2|a||b| = 1 and the normalization con-
dition we have |a| = |b| = 1√

2
. Now, the initial coherence

of the input state becomes Cl (|ψ〉A) = 2|α2ab − β2a∗b∗| =
2
√

1
4 − 2 Re[α2β∗2(ab)2]. However, the final coherence of the

subsystem A is given by Cl (ρfinal
A ) = 2|(|α|2x + |β|2y)|.
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Let us assume that there is a universal machine that clones
coherence of any arbitrary state |ψ〉. Now, we clearly see that
the initial coherence depends on the values of α and β but the
final coherence depends only on |α| and |β|. A requirement to
perfect cloning of coherence is that Cl (|ψ〉) should be equal
to Cl (ρfinal

A ) for every α and β value. To show contradiction,
we give examples of two states such that their final coherence
is the same while their initial coherence is different.

There exist α1 and β1 such that |α| = |α1| and |β| =
|β1| but α �= α1 or/and β �= β1. In that case, though the fi-
nal coherences will be equal, the initial coherences are not.
That clearly means that for at least one of the states the
cloning coherence is not happening perfectly, hence proving
Corollary 1. �

Example. Let |χ1〉 = α1|ψ1〉 + β1|ψ2〉 and |χ2〉 =
α2|ψ1〉 + β2|ψ2〉, where α1 = 1√

2
, β1 = 1√

2
, α2 = i√

2
,

β2 = 1√
2
. Here |ψ1〉 and |ψ2〉 are the states defined

in Eq. (1). Then, initial coherence of |χ1〉 is given by
Cl (|χ1〉) = |ab − a∗b∗| and that of |χ2〉 is Cl (|χ2〉) =
|ab + a∗b∗| given that |a| = |b| = 1√

2
. Final coherence

Cl (ρfinal
1 ) = Cl (ρfinal

2 ) = |ρ ′
A01 + ρ ′′

A01|, where ρ ′
A01 and ρ ′′

A01
are the off-diagonal terms of the subsystem ρ ′

A and ρ ′′
A,

respectively.
Clearly, we see that there is a mismatch of the initial co-

herence of states |χ1〉 and |χ2〉, but their final coherence is the
same. Therefore, at least for one of the states the coherence is
not getting perfectly copied.

III. CLASSIFICATION OF STATES GIVEN
A COHERENCE CLONER

In this section, we try to characterize the states whose co-
herence can be perfectly cloned given a machine defined over
|ψ1〉 and |ψ2〉. Geometrically, we attempt to find out points on
the surface of the sphere for which the cloning of coherence
is possible. The entire Bloch sphere can be divided in two
zones, namely, Cl (|ψ〉A) � 2|a||b| and Cl (|ψ〉A) > 2|a||b|. In
Theorem 1, we have already shown that cloning of coherence
is not possible when Cl (|ψ〉A) > 2|a||b|, however, it is not
clear when Cl (|ψ〉A) � 2|a||b|.

Let us take an arbitrary state |ψ〉 from the top or the
bottom-most zones, which is the orange zone, as shown in
Fig. 1. All the states both pure and mixed that have the same
coherence value as |ψ〉 lie on CY L|ψ〉 as shown in Fig. 4. For
the coherence of |ψ〉 to be perfectly cloned, the output states
ρfinal

A and ρfinal
B should lie on CY L|ψ〉. As we have seen earlier

ρfinal
A = |α|2ρA

′ + |β|2|ρA
′′ and ρfinal

B = |α|2ρB
′ + |β|2|ρB

′′ are
convex combination of ρA

′, ρA
′′ and ρB

′, ρB
′′, respectively.

Here, ρA
′, ρA

′′ and ρB
′, ρB

′′ are the mixed output states for
the known orthogonal states |ψi〉 and should lie on the wider
cylinder CY L|ψ1〉. This would mean that ρfinal

A is an intersection
of the line segment joining ρA

′, ρA
′′, and CY L|ψ〉, a similar

condition must hold for ρfinal
B .

For perfect cloning to happen, the line segment joining ρ ′
A

and ρ ′′
A and the line segment joining ρ ′

B and ρ ′′
B should intersect

CY L|ψ〉 in equal proportions, as it is evident from the expres-
sions of ρfinal

A and ρfinal
B . Let us imagine that ρ

final 1 (final 2)
A(B) are

four intersection points. Figure 2 shows some of the possible
orientations of these four points.

FIG. 2. Top view to depict existence of solutions.

Without loss of generality, let us just look at the subsystem
A. Let |α| = k. To find all the pure states that have the same
coherence as |ψ〉, whose coherence can be perfectly cloned,
we only need to see what are the points of intersection of rims
of CY L|ψ〉 and the circle CIRCk , where CIRCk contains all
the points α|ψ1〉 + β|ψ2〉 whose |α| = k, as shown in Fig. 3.
Depending on the CY L|ψ〉, CY L|ψ1〉, and the values of k, the
number of points of intersections will vary from 0 to 4, as
shown in Fig. 3. Similarly, when |α| = 1 − k we get the same
number of solutions. Therefore, the total number of solutions
vary as 0, 2, 4, 6, or 8.

IV. MAXIMIZATION OF COHERENCE CLONERS

In an earlier section, we have seen classification of states
given a particular coherence cloner. It is clear that the range
of states whose coherence can be cloned perfectly depends on
the cloner Ucc. In this section, we discuss the techniques to
maximize this cloner so as to have more range of states whose
coherence can be cloned perfectly.

FIG. 3. Different cases of possible solutions: The figure shows
depending on the choice of k different CIRCk (the oblique circles)
intersect the rims of the CY L|ψ〉 (the two horizontal circles), the
number of points of intersections will vary from 0 to 4. Total number
of possible solutions will vary as 0, 2, 4, 6, or 8

022422-4



IMPOSSIBILITY OF CLONING OF QUANTUM COHERENCE PHYSICAL REVIEW A 103, 022422 (2021)

FIG. 4. Solutions with convex combinations: The cylinder with
the bigger diameter represents the states having the same coherence
as the known orthogonal states. The cylinder with the smaller diame-
ter represents the states having the same coherence as the input states.
Here, ρ

f 1( f 2)
A(B) are nothing but ρ

final 1 (final 2)
A(B) .

There can be an infinite number of unitaries that are defined
based on the transformation rules defined in Eq. (1). Every
unitary depends on six states |ψ1〉A, |ψ2〉A, ρ ′

A, ρ ′′
A, ρ ′

B, ρ ′′
B. The

cloner Ucc on system ABC transforms subsystem A which was
an arbitrary quantum state |ψ〉 = α|ψ1〉 + β|ψ2〉 and subsys-
tem B which was a blank state |0〉 to ρfinal

A = |α|2ρ ′
A + |β|2ρ ′′

A
and ρfinal

B = |α|2ρ ′
B + |β|2ρ ′′

B, respectively. ρfinal
A(B) is a convex

combination of ρ ′
A(B) and ρ ′′

A(B). Therefore, final state ρfinal
A(B)

should lie somewhere on the line segment joining the states
ρ ′

A(B) and ρ ′′
A(B) in the Bloch sphere, as we can see in Fig. 4.

Therefore, we can say that the possibility of perfect coherence
cloning for a state depends on whether the line segments
intersect the cylinder with Cl (ρfinal

A(B) ) or not. Given the fact that
they do intersect, they have to intersect with the same ratio
as each other, only then perfect cloning will be possible on
both the subsystems, otherwise we can definitely say that the
Cl (|ψ〉) cannot be perfectly copied.

This brings us to our first level of maximization of our
cloner Ucc. We can see in Fig. 2 that the cloners which have
their line segments joining ρ ′

A and ρ ′′
A and line segment joining

ρ ′
B and ρ ′′

B pass through the central axis allow for the possibil-
ity of perfect coherence cloning for a bigger range of states as
they will intersect all the cylinders above them.

The second level of maximization can be done in the fol-
lowing way. We can see that if the starting states |ψ1〉A and
|ψ2〉A of the assumed cloner lie on the equatorial plane, i.e.,
Cl (|ψ1〉) = Cl (|ψ2〉) = 1 and the output states will have equal
coherence to that of the starting states, then this cloner will
give maximum number of perfectly cloned copies as it will
intersect all the cylinders on the sphere. Then, the cloning
transformation is given by

|ψ1〉A|0〉B|X0〉C −→ |ψ1
′〉A|ψ1

′′〉B|X1〉C,

|ψ2〉A|0〉B|X0〉C −→ |ψ2
′〉A|ψ2

′′〉B|X2〉C .
(3)

Here, 〈ψ ′
1|ψ ′

2〉 = 0 and 〈ψ ′′
1 |ψ ′′

2 〉 = 0 as this would ensure
that the line segment joining ρ ′

A and ρ ′′
A and the line segment

joining ρ ′
B and ρ ′′

B both pass through the central axis.

FIG. 5. The vertical circle going through the states |ψ1〉 and |ψ2〉
indicates the states whose coherence can be perfectly cloned.

Interestingly, it is observed that a class of states whose
coherence can be cloned perfectly given the transforma-
tions defined in Eq. (3) and the conditions 〈ψ ′

1|ψ ′
2〉 = 0 and

〈ψ ′′
1 |ψ ′′

2 〉 = 0 are the states that lie on the great circle pass-
ing through the states |ψ1〉, |ψ2〉, |0〉, and |1〉 on the Bloch
sphere. The calculations for the same and the introduction of
approximate quantum coherence cloner is given in the ensuing
paragraph.

Approximate quantum coherence cloner for arbitrary quan-
tum state. The states |ψ1〉 = 1√

2
|0〉 + 1√

2
eiφ1 |1〉 and |ψ2〉 =

1√
2
|0〉 + 1√

2
ei(φ1+π )|1〉 represent a pair of orthogonal states

on the equatorial circle of the Bloch sphere. Then, any arbi-
trary state |ψ〉 = α|ψ1〉 + β|ψ2〉 can be written as cos θ

2 |0〉 +
sin θ

2 eiφ2 |1〉 in {|0〉, |1〉} basis. Then, Cl (|ψ〉) = | sin θ | in
the {|0〉, |1〉} basis. As α = 1√

2
(cos θ

2 + sin θ
2 ei(φ2−φ1 ) ) and

β = 1√
2
(cos θ

2 − sin θ
2 ei(φ2−φ1 ) ), the final coherence which is

given by Cl (|ψfinal〉) = ||α|2 − |β|2| = |2|α|2 − 1| becomes
| sin θ cos (φ2 − φ1)|. Here, as we can see that the ratio of
Cl (|ψfinal〉)

Cl (|ψ〉) = cos (φ2 − φ1), which means the higher the differ-
ence between two angles, the lower is the ratio of the initial
and final coherence. Similar to ratio, we can also see them as
the difference between initial coherence and final coherence.
Therefore, the approximate or perfect cloning of coherence
depends on the difference between those two angles. We see
that the only solution where initial coherence is equal to final
coherence is when φ1 = φ2. Therefore, for all values of θ the
final coherence Cl (|ψfinal〉) = Cl (|ψ〉) if φ1 = φ2. This means
that the cloner defined in Eq. (3) perfectly clones coherence
for all the states on the great circle passing through |ψ1〉, |ψ2〉,
|0〉, |1〉 as shown in Fig. 5.

V. NO CLONING OF QUANTUM COHERENCE WITHOUT
MACHINE STATES

In the previous section, we have shown that there does not
exist universal cloning transformation which will be able to
clone the coherence of any arbitrary state. In the previous
proof, the cloning transformation includes the ancilla states
representing the machine states. In this section, we investigate
whether there exists any unitary in general which will act on
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the input state and blank state without invoking an ancillary
state that will clone coherence for any arbitrary state. We find
that there exists no such unitary. Like in the previous section,
here also we assume that the perfect cloning is possible for
two known orthogonal states |ψ1〉 and |ψ2〉. The transforma-
tion is given by

|ψ1〉A|0〉B −→ |�1〉AB,

|ψ2〉A|0〉B −→ |�2〉AB,
(4)

where 〈ψ1|ψ2〉 = 0. Therefore, 〈�1|�2〉 = 0.
Theorem 2. It is impossible to clone the coherence of

any arbitrary quantum state |ψ〉 = α|ψ1〉 + β|ψ2〉, with the
cloning transformations given by Eq. (4).

Proof. Let us assume that there exists a unitary that clones
coherence of any arbitrary quantum state. Then this unitary
should clone coherence for the states |+〉 and |−〉 as well.
As these states are maximally coherent states, and this ma-
chine can clone the coherence perfectly, then the output states
should also be maximally coherent states. The transformation
would be given by Eq. (5). The output states in this case are
all pure because there are no mixed states whose coherence
can be 1:

|+〉A|0〉B −→ |ψ1
′〉A|ψ1

′′〉B,

|−〉A|0〉B −→ |ψ2
′〉A|ψ2

′′〉B,
(5)

where either 〈ψ1
′|ψ2

′〉 = 0 or 〈ψ1
′′|ψ2

′′〉 = 0. Let |φ〉 =
γ |+〉 + δ|−〉 be an arbitrary quantum state on the equa-
torial circle of the Bloch sphere. The transformation as
given in Eq. (5) results in the state of the system AB to
|�final〉 = γ |ψ1

′〉A|ψ1
′′〉B + δ|ψ2

′〉A|ψ2
′′〉B. For the coherence

to be cloned perfectly, |�final〉 needs to be a separable system
of two maximally coherent states. This makes either |ψ1

′〉A =
|ψ2

′〉A or |ψ1
′′〉A = |ψ2

′′〉A because one of this pair has to be
orthogonal.

Without loss of generality, let us assume that 〈ψ1
′|ψ2

′〉 = 0
and |ψ1

′′〉A = |ψ2
′′〉A, then any state |ψ1〉 with Cl (|ψ1〉) < 1

from Eq. (4) can be written as α|+〉 + β|−〉, but under this
transformation rules the system will transform to (α|ψ1

′〉 +
β|ψ2

′)A|ψ1
′′〉B. Although the coherence of subsystem A is

preserved, the coherence of subsystem B is still 1. �

VI. NO CLONING OF COHERENCE OF A QUDIT

In previous sections, we have shown the impossibility of
cloning of coherence of a qubit based on a particular measure
of coherence, i.e., l1 norm. Here in this section we generalize
the proofs in terms of the dimension of the quantum state and
coherence measures for which maximally coherent states are
pure states [42] (Result 1). Let us assume the dimension of
the quantum state ρ as d1 and denote the coherence measure
as C(ρ) in computational basis. Like in the previous sections,
here also we assume the perfect cloning is possible for known
orthogonal states |ψi〉, i = 1, . . . , d1 The cloning transforma-

tion Ucc for coherence is given as

|ψ1〉A|0〉B|X0〉C −→ |�1〉AB|X1〉C,

|ψ2〉A|0〉B|X0〉C −→ |�2〉AB|X2〉C,

...

|ψd1〉A|0〉B|X0〉C −→ |�d1〉AB|Xd1〉C .

(6)

Here, 〈Xj |Xi〉 = δi j based on the dependence of the above
transformation on machine states. The dimensions of the in-
put, blank, and machine states are d1, d2, and d3, respectively.
As we want to clone the coherence of the input state on
the blank state, it is important to note that as some of the
coherence measures are not normalized, the coherence value
of maximally coherent state of dimension d1 should be less
than equal to that of maximally coherent state of dimension
d2.

Theorem 3. It is impossible to clone the coherence of any
arbitrary quantum state |ψ〉 = ∑d1

i αi|ψi〉 of dimension d1,
with the cloning transformations given in Eq. (6).

Proof. Let us assume that the unitary transformation Ucc

given in Eq. (6) clones the coherence of any arbitrary quantum
state of dimension d1 into the blank state of dimension d2.
Thus, this unitary should also clone the coherence of max-
imally coherent state |ψm〉 = ∑d1

i βi|ψi〉 which should be a
pure state as mentioned before. Applying the unitary transfor-
mation Ucc on this maximally coherent state, we get

|ψm〉A|0〉B|X0〉C −→
d1∑
i

|�i〉AB|Xi〉C . (7)

But, as we know that the maximally coherent states are pure
states only and as we have assumed Ucc to be a universal
cloner, the coherence of |ψm〉 should be cloned perfectly and
the resultant state of subsystem A should be a pure state. It is
only possible when |ψi〉 = |ψm′ 〉, ∀ i. Here, |ψm′ 〉 is another
maximally coherent pure state. Therefore, the subsystem A
should be separable from the subsystem BC and the coher-
ence of subsystem A should be C(|ψm). As the subsystem A
always comes out to be separable from subsystem BC and its
coherence is equal to C(ψm), Ucc will not retain the coherence
of any other arbitrary state |ψ〉 with C(|ψ〉) on subsystem
A. Using contradiction on our initial assumption, we can say
that Ucc is not a universal coherence cloner irrespective of its
dependence on machine states. �

VII. CONCLUSION

To summarize, we have shown that it is impossible to clone
the coherence of the states whose coherences are greater than
the coherence of known states with which transformations
are defined. This establishes the impossibility of cloning of
coherence of any arbitrary quantum state. Since we know
that the coherence acts as a resource for creation of entan-
glement by incoherent operation, if we could clone coherence
exactly, then we will be able to build up a large amount of
entanglement, starting from a minimal amount of coherence
and repeated use of incoherent operations. However, from our
result it is evident that we can not build up a large amount
of entanglement from an arbitrary quantum state by cloning
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the coherence. Similarly, in the same spirit, if one aims to
generate coherence in the energy eigenbasis from thermal re-
sources, then our no-go result suggests that coherence cannot
be created in initially incoherent systems while maintaining
the machine in a fixed state. Aside from this, we characterize
the class of states for which coherence cloning will be possible
for a given choice of machine built on known orthogonal states
and find the maximum range of states whose coherence can be
cloned perfectly. Interestingly, we also show that the universal
cloner does not exist even in the situation where we have no
ancillary inputs. At last, we generalize the impossibility of
cloning of coherence in terms of dimension of the quantum
state and given all coherence measures.
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APPENDIX: HOW CLONING OF COHERENCE IS
DIFFERENT FROM CLONING OF STATES

Here, we illustrate some instances where coherence
cloning is not the same as the cloning of quantum states. As an
example, consider the Wootter-Zurich (WZ) cloning machine
[36] that performs the following operation:

|0〉A|0〉B|X0〉C −→ |0〉A|0〉B|X1〉C,

|1〉A|0〉B|X0〉C −→ |1〉A|1〉B|X2〉C .
(A1)

Here, A, B, and C are the input, output, and machine qubits,
respectively. When we apply the same WZ cloning machine
on an arbitrary quantum state α|0〉 + β|1〉 (|α|2 + |β|2 = 1)
whose coherence is 2|α||β| in the {|0〉, |1〉} basis, it transforms
to the state α2|0〉〈0| + β2|1〉〈1| which has zero coherence in
the {|0〉, |1〉} basis. This shows that even if the state gets
cloned approximately with the WZ cloning machine, there is
no cloning of the coherence as the WZ cloning machine does
not take into account the off-diagonal terms of the state.

Let us consider another example of the Buzek-Hillery
(BH) cloning machine [43] which is proved to be an optimal
state-independent quantum cloning machine [44]. The two-
dimensional BH cloning transformation is given as

|�1〉A|0〉B|X0〉C → c|�1〉A|�1〉B|X11〉C

+ d (|�1〉A|�2〉B + |�2〉A|�1〉B)|Y12〉C,

|�2〉A|0〉B|X0〉C → c|�2〉A|�2〉B|X22〉C

+ d (|�2〉A|�1〉B + |�1〉A|�2〉B)|Y21〉C,

where the coefficients c and d are real. The notations A, B,
and C represent the input, output, and machine qubits, respec-
tively. In case of cloning a single qubit, using the no-signaling
constraint and the fidelity as a parameter of quantum cloning
machine, Gisin proved that the BH state-independent quantum
cloner is the optimal one with the fidelity 5

6 [44]. But, if we
consider the ratio of the final coherence to the initial coher-
ence (l1 norm), the BH cloner gives 2

3 . That is, in other words,
two thirds of coherence is getting copied with the BH cloner.
This example shows that even though information gets cloned
up to 5

6 , coherence gets cloned only up to 2
3 . Possibly, this

suggests us that when we clone quantum information we try to
clone both the wave information and the particle information.
As the BH machine only clones wave information up to 2

3 it
may be the case that the higher value of 5

6 is due to particle
nature getting cloned more compared to wave information.

[1] M. Nielsen and I. Chuang, Quantum Computation and Quantum
Information (Cambridge University Press, Cambridge 2010).

[2] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Rev. Mod. Phys. 81, 865 (2009).

[3] M. Lostaglio, D. Jennings, and T. Rudolph, Nat. Commun. 6,
6383 (2015).

[4] H.-L. Shi, S.-Y. Liu, X.-H. Wang, W.-L. Yang, Z.-Y. Yang, and
H. Fan, Phys. Rev. A 95, 032307 (2017).

[5] A. Olaya-Castro, C. F. Lee, F. F. Olsen, and N. F. Johnson, Phys.
Rev. B 78, 085115 (2008).

[6] M. N. Bera, T. Qureshi, M. A. Siddiqui, and A. K. Pati, Phys.
Rev. A 92, 012118 (2015)

[7] Y. Yuan, Z. Hou, Y. Y. Zhao, H. S. Zhong, G. Y. Xiang, C. F. Li,
and G. C. Guo, Opt. Express 26, 4470 (2018).

[8] D. Abbott, P. Davies, and A. K. Pati, Quantum Aspects of Life
(Imperial College Press, London, 2008).

[9] J. N. Bandyopadhyay, T. Paterek, and D. Kaszlikowski, Phys.
Rev. Lett. 109, 110502 (2012).

[10] M. M. Wilde, J. M. McCracken, and A. Mizel, Proc. R. Soc.
London, Ser. A 466, 1347 (2010).

[11] A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso,
Phys. Rev. Lett. 115, 020403 (2015).

[12] J. K. Asboth, J. Calsamiglia, and H. Ritsch, Phys. Rev. Lett. 94,
173602 (2005).

[13] Z. Xi, Y. Li, and H. Fan, Sci. Rep. 5, 10922 (2015).
[14] A. Streltsov, E. Chitambar, S. Rana, M. N. Bera, A. Winter, and

M. Lewenstein, Phys. Rev. Lett. 116, 240405 (2017).
[15] X. Qi, T. Gao, and F. Yan, J. Phys. A: Math. Theor. 50, 285301

(2017).
[16] S. Chin, Phys. Rev. A 96, 042336 (2017).
[17] H. Zhu, Z. Ma, Z. Cao, S.-M. Fei, and V. Vedral, Phys. Rev. A

96, 032316 (2016).
[18] H. Zhu, M. Hayashi, and L. Chen, Phys. Rev. A 97, 022342

(2018).
[19] K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jennings,

New J. Phys. 18, 023045 (2016).
[20] Q. Zhao, Y. Liu, X. Yuan, E. Chitambar, and X. Ma, Phys. Rev.

Lett. 120, 070403 (2018).
[21] B. Regula, K. Fang, X. Wang, and G. Adesso, Phys. Rev. Lett.

121, 010401 (2018).

022422-7

https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1038/ncomms7383
https://doi.org/10.1103/PhysRevA.95.032307
https://doi.org/10.1103/PhysRevB.78.085115
https://doi.org/10.1103/PhysRevA.92.012118
https://doi.org/10.1364/OE.26.004470
https://doi.org/10.1103/PhysRevLett.109.110502
https://doi.org/10.1098/rspa.2009.0575
https://doi.org/10.1103/PhysRevLett.115.020403
https://doi.org/10.1103/PhysRevLett.94.173602
https://doi.org/10.1038/srep10922
https://doi.org/10.1103/PhysRevLett.116.240405
https://doi.org/10.1088/1751-8121/aa7638
https://doi.org/10.1103/PhysRevA.96.042336
https://doi.org/10.1103/PhysRevA.96.032316
https://doi.org/10.1103/PhysRevA.97.022342
https://doi.org/10.1088/1367-2630/18/2/023045
https://doi.org/10.1103/PhysRevLett.120.070403
https://doi.org/10.1103/PhysRevLett.121.010401


DHRUMIL PATEL et al. PHYSICAL REVIEW A 103, 022422 (2021)

[22] Q. Zhao, Y. Liu, X. Yuan, E. Chitambar, and A. Winter, IEEE
Trans. Inf. Theory 65, 6441 (2019).

[23] M. Hillery, Phys. Rev. A 93, 012111 (2016).
[24] C. Napoli, T. R. Bromley, M. Cianciaruso, M. Piani, N.

Johnston, and G. Adesso, Phys. Rev. Lett. 116, 150502 (2016).
[25] J. Goold, M. Huber, A. Riera, L. del Rio and P. Skrzypczyk, J.

Phys. A: Math. Theor. 49, 143001 (2016).
[26] M. Lostaglio, Rep. Prog. Phys. 82, 114001 (2019).
[27] J. Aberg, arXiv:quant-ph/0612146.
[28] T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett.

113, 140401 (2014).
[29] A. Winter and D. Yang, Phys. Rev. Lett. 116, 120404 (2016).
[30] A. Streltsov, S. Rana, P. Boes, and J. Eisert, Phys. Rev. Lett.

119, 140402 (2017).
[31] A. Streltsov, G. Adesso, and M. B. Plenio, Rev. Mod. Phys. 89,

041003 (2017).
[32] E. Chitambar and G. Gour, Phys. Rev. Lett. 117, 030401 (2016).

[33] T. Theurer, N. Killoran, D. Egloff, and M. B. Plenio, Phys. Rev.
Lett. 119, 230401 (2017).

[34] S. Das, C. Mukhopadhyay, S. S. Roy, S. Bhattacharya, A. S. De,
and U. Sen, J. Phys. A: Math. Theor. 53, 115301 (2020).

[35] M. T. Mitchison, M. P. Woods, J. Prior, and M. Huber, New J.
Phys. 17, 115013 (2015).

[36] W. K. Wootters and W. H. Zurek, Nature (London) 299, 802
(1982).

[37] A. K. Pati and S. L. Braunstein, Nature (London) 404, 164
(2000).

[38] A. K. Pati and S. L. Braunstein, arXiv:quant-ph/0303124.
[39] A. K. Pati and B. C. Sanders, Phys. Lett. A 359, 31 (2006).
[40] D. L. Zhou, B. Zeng, and L. You, Phys. Lett. A 352, 41 (2006).
[41] I. Chakrabarty, Int. J. Quantum Inf. 05, 605 (2007).
[42] Z. Bai and S. Du, arXiv:1503.07103.
[43] V. Buzek and M. Hillery, Phys. Rev. A 54, 1844 (1996).
[44] N. Gisin, Phys. Lett. A 242, 1 (1998).

022422-8

https://doi.org/10.1109/TIT.2019.2911102
https://doi.org/10.1103/PhysRevA.93.012111
https://doi.org/10.1103/PhysRevLett.116.150502
https://doi.org/10.1088/1751-8113/49/14/143001
https://doi.org/10.1088/1361-6633/ab46e5
http://arxiv.org/abs/arXiv:quant-ph/0612146
https://doi.org/10.1103/PhysRevLett.113.140401
https://doi.org/10.1103/PhysRevLett.116.120404
https://doi.org/10.1103/PhysRevLett.119.140402
https://doi.org/10.1103/RevModPhys.89.041003
https://doi.org/10.1103/PhysRevLett.117.030401
https://doi.org/10.1103/PhysRevLett.119.230401
https://doi.org/10.1088/1751-8121/ab741f
https://doi.org/10.1088/1367-2630/17/11/115013
https://doi.org/10.1038/299802a0
https://doi.org/10.1038/404130b0
http://arxiv.org/abs/arXiv:quant-ph/0303124
https://doi.org/10.1016/j.physleta.2006.05.077
https://doi.org/10.1016/j.physleta.2005.11.041
https://doi.org/10.1142/S0219749907003055
http://arxiv.org/abs/arXiv:1503.07103
https://doi.org/10.1103/PhysRevA.54.1844
https://doi.org/10.1016/S0375-9601(98)00170-4

