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High-fidelity entangling gates in a three-dimensional ion crystal under micromotion
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An ion trap is one of the most promising candidates for quantum computing. Current schemes mainly focus
on a linear chain of up to about 100 ions in a Paul trap. To further scale up the qubit number, one possible
direction is to use 2D or 3D ion crystals (Wigner crystals). In these systems, ions are generally subjected to large
micromotion due to the strong fast-oscillating electric field, which can significantly influence the performance
of entangling gates. In this paper, we develop an efficient numerical method to design high-fidelity entangling
gates in a general 3D ion crystal. We present numerical algorithms to solve the equilibrium configuration of the
ions and their collective normal modes. We then give a mathematical description of the micromotion and use
it to generalize the gate scheme for linear ion chains into a general 3D crystal. The involved time integral of
highly oscillatory functions is expanded into a fast-converging series for accurate and efficient evaluation and
optimization. As a numerical example, we show a high-fidelity entangling gate design between two ions in a

100-ion crystal, with a theoretical fidelity above 99.9%.

DOI: 10.1103/PhysRevA.103.022419

I. INTRODUCTION

Over the past few decades, quantum computing has
attracted wide interest because it challenges the strong
Church-Turing thesis and has a potential exponential speedup
over classical computers for certain problems [1]. To realize
quantum computing, some basic requirements, known as the
DiVincenzo’s criteria [2], need to be fulfilled, among which is
a universal gate set that any desired multiqubit unitary gates
can be generated from. A commonly used universal gate set
consists of a few single-qubit gates and a two-qubit entangling
gate [1]. While the single-qubit gates are relatively simple, the
two-qubit gate usually turns out to be much more difficult and
has become the focus of research. In addition, such entangling
gates also find applications in other fields such as digital
quantum simulation [3], variational hybrid quantum-classical
algorithms [4,5], and quantum metrology [6].

Trapped ions have become one of the leading platforms
for realizing quantum computing owing to the long coherence
time, convenient initialization and readout, and the strong
state-dependent coupling between ions mediated by laser
[7-10] or microwave [11-14] driving. Dedicated schemes for
high-fidelity entangling gates, known as the Mglmer-Sgrensen
gate [15] and its variants, have been developed for ion chains
in a linear Paul trap. The gate can be designed using different
collective motional modes of the ions [16,17], through var-
ious control and optimization methods for the driving field
[18-20], and have been demonstrated in experiments from two
to more than ten ions [21-27].

One major problem of the linear configuration is the scal-
ability. It is estimated that the current gate schemes can
be generalized to about 100 ions [28-30], while for larger
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number of qubits we need more complicated schemes like
ion shuttling [28,31] or photonic quantum networks [32-34].
Although noticeable progress has been achieved in these di-
rections in recent years, these approaches require additional
exquisite control of the ion system and their speed is limited
by the slow quantum wiring process.

Therefore, it is appealing to consider a scheme using the
current control techniques and move the complexity into the
design of the control sequence. One such possibility is to
increase qubit numbers by exploring higher dimensional ion
systems in 2D or 3D, where large Wigner crystals of ions
have been observed in experiments for hundreds to thousands
of ions [35,36]. Some pioneering works have been performed
in Refs. [37-40]. In particular, it has been shown that the
micromotion of the ions, which is inevitable for large 2D or
3D ion crystals in a Paul trap and leads to deviation from
the gate scheme in 1D, is not a source of decoherence. Ac-
tually, micromotion has been exploited earlier in experiments
for selective single-ion addressing [41]. The idea is then to
describe the micromotion of an ion crystal theoretically and
experimentally [42—45], and to find a suitable laser sequence
to realize high-fidelity gates under micromotion [37-39,46].
In previous works, approximations are made to the lowest
orders of micromotion; while for high gate fidelity, it will be
necessary to consider higher order corrections. In this paper,
we will develop an efficient algorithm to design entangling
gates in general ion crystals up to arbitrary orders of micro-
motion. We will assume a general 3D crystal, with our results
directly applicable to 2D as a special case of the trapping
potential.

The paper is organized as follows. First, we briefly review
a commonly used gate scheme in 1D ion chains in Sec. II
and describe the effects of micromotion when generalizing
it to 3D. In Sec. III A, we describe a numerical method to
solve the equilibrium positions and micromotion of the ions,
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from which we further solve all the collective normal modes
in Sec. I B. In Sec. IV, we provide efficient numerical al-
gorithms to include the micromotion into the gate design,
whose theoretical errors can be systematically controlled to
arbitrary orders. A numerical example is presented in Sec. V.
Finally we conclude in Sec. VI. Appendix A summarizes the
numerical algorithms and Appendix B gives an example of in-
corporating the robustness condition against certain parameter
drifts into our algorithms.

II. GATE SCHEME IN 1D ION CHAINS

In this section, we briefly review how two-ion entangling
gates can be realized in a linear chain of N ions. It will later
be generalized to a 3D ion crystal in the following sections.
Here we will follow the notation of Ref. [47].

The coupling between two ions is generated by off-
resonantly driving them near some motional sidebands
simultaneously. Assuming two driving fields on the ion j with
the same Rabi frequency €2, opposite detuning £ to the
atomic transition frequency and opposite wave vectors Ak
along a transverse direction x, which is known as the phase-
insensitive configuration [48], the qubit-phonon interaction
Hamiltonian takes the form

A= Zm, cos [t + ¢; — AkR;(1)167, 1)
J

where the index j runs over the two ions being driven,
¢; a motional phase depending on the initial phases of the
driving fields and the equilibrium positions of the ions, 67 the
corresponding Pauli X operators, and £;(¢) the time-evolved
position operators in the transverse direction. We can decom-
pose the transverse motion into normal modes,

h .
8500 = 30 5o @ afe, @)
k

where k labels a normal mode with a creation (annihilation)
operator al . (i), amode frequency wy, and a normalized mode
vector b% for j =1, 2, -+, N.

With the Lamb-Dicke parameter n; = Ak/h/2mw; < 1
for typical experiments, and assuming weak excitation of the
phonon modes during the gate (which is known as the Lamb-
Dicke regime), we only need to consider the lowest order
expansions in 7,

A= Z Z X O (e +

where x;(t) = i sin (ut + ¢;). The zeroth order term is
dropped as a single-qubit rotation which can be compensated
after the entangling gate. The error of neglecting the higher
order terms is shown to be O(n,‘(‘) in the gate fidelity [47].

lwkt ) (3)

qt /nseg

Time evolution under this Hamiltonian with duration 7 is
given by the unitary operator
X

U(t) = exp |:i D 405 +iY_04(1)8;
J i<j

$;(0) = =i ) [k (] — b (], (5)

k

where

o;(t) = _ﬁnkbj/() xj()e ™ dt, (6)

describe the spin-phonon coupling after the gate, and

1
@,»j(r)zgz Zb"b"/ dt1/ dn
k

x [xi(t)xj(t2) + xj@t)xi(t2)] sin [w (t1 — 12)]
@)

is the coupling between the two spins i and j.

For an ideal entangling gate, we want the qubit state to be
decoupled from the phonon modes, that is, oc']? = 0; we also
want ©;; = +m /4 for the maximal entanglement such that
the ideal gate exp(Limoj'o;/4) is equivalent to the CNOT
gate up to single-qubit rotations. To characterize the deviation
from the ideal gate, we compute the average gate fidelity over
different initial qubit states and a thermal distribution of the
phonon states. For small deviation from the ideal case, we
have [47]

8F=§ (®U¢n) +Z|‘¥k| Q@u+D &

where 7i; is the average phonon number in the k-th mode.

Up to this point, the formulation is general and we can
apply amplitude, frequency, or phase modulations [18-20] of
the driving field to optimize the gate fidelity. For concrete-
ness, below we will focus on a specific method of amplitude
modulation to optimize the gate performance.

Let us set the driving fields on the two ions to be the
same and divide the gate time 7 into ne, equal segments.
In each segment, we set the Rabi frequency on the two
ions to be a constant. Define a real column vector 2 =
(21, R, -+, Q,,mg)T corresponding to the Rabi frequency of
each segment, and we get

() =4t 6;=0"ye, ©)
where A’; is a row vector whose nth component is

keoy e gk
Aj(n) = —znkbj/

(n—1 )r/nseg

nT [Ngeg )

sin ut ¥ dt, (10)
and p’ is an ngg by ng, matrix with the (p, ¢) component
given by

2%, nzbkbk f(f:/ln)sf/n%g Gt dts sin ut sin pts sinfaop(t — )] (p > q)
V(P @) = 2 bk [l dn [ disin pty sin pt sinfor(t — )] (p=q) (1)
0 P <q.
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By suitably scaling €2, we can always set ©;; = +m /4.
Then the gate infidelity can be approximated as

SF =1Q"Me, (12)

where M = )", AX'A% (27 + 1). By definition, M is a Her-
mitian matrix, but actually we can express it in a real
symmetric form since TMQ = QT Re[M|Q. Similarly we
can define a symmetric matrix y = (' + »'7)/2 such that
9, = ye="yQ.

To optimize the gate fidelity, we minimize 7 M under
the constraint Q7 yQ = +7/4. We can introduce a La-
grange multiplier and consider the optimization of f (2, 1) =
QMR — (T yQ F 7 /4) as

M-y =0 Q'yQ==+n/4 (13)

This is a generalized eigenvalue problem. We can solve its
eigenvalue with the smallest absolute value and the corre-
sponding eigenvector, which, after suitable normalization,
gives us the optimal 2.

Let us now briefly discuss how this gate scheme can
be generalized to a general 3D ion crystal, which will be
expanded in more detail in the following sections. One
straightforward generalization is that we shall replace the
transverse normal modes in Eq. (2) by all the normal modes
in the 3D crystal, since the motions in different directions
are coupled together. However, there are more differences
between the 1D and the 3D cases. For the linear configuration,
the trap can be designed such that the ions align on the null
of the radio frequency (rf) field without micromotion. The
ions thus stay at their equilibrium positions and the small
perturbation can be well approximated by the normal modes
in a harmonic pseudopotential. On the other hand, in a 3D ion
crystal it is generally not possible to suppress the micromotion
of all the ions. Then the equilibrium solution is not a static
configuration of the ions, but a finite oscillation at the RF
frequency for all the ions. Such an oscillation can be absorbed
into @; in Eq. (1) as a time-dependent motional phase for
each ion. Moreover, when the amplitudes of these equilibrium
trajectories are comparable to the width of the laser beams,
the Rabi frequency £2; will also be time dependent. Finally,
the normal mode expansions in Eq. (2) will generally also
include the micromotion at the RF frequency, which need
to be considered in the evaluation of a§ [Eq. (6)] and ©;;
[Eq. (7)].

III. EQUILIBRIUM TRAJECTORIES AND NORMAL
MODES UNDER MICROMOTION

As mentioned above, to design the entangling gate, first
we need to solve the equilibrium trajectories of the ions and
the collective normal modes for small deviation away from
them. Important works on this topic have been performed in
Refs. [42,43] which are most suitable for a few ions to the
lowest orders of the micromotion. In this section, we briefly
review these results and generalize them to an efficient numer-
ical algorithm that can work for hundreds of ions and to the
arbitrary orders of micromotion.

For convenience, we define the length unit Ly =
I /47160mwr2f)1/ 3 and the time unit Ty = 2/wt. Then we can
consider the dimensionless equation of motion (EOM) of N

ions

Ris + Y (Agp — 205, cos20)R;,

o
_4 Z Rin - Rja

7 [, Ry — Rjp)?]?

wherei, j =1, 2, ---, N corresponds toeachionand o, p =
x, y, z for the three spatial directions. The first two terms
correspond to the well-known Mathieu equation for a single
ion in an RF trap, while the third term describes the Coulomb
interaction between different ions with the motions in differ-
ent directions coupled together. In the previous works (e.g.,
Refs. [8,42]), it is usually assumed for convenience that the
principal axes of the DC and the RF fields coincide, so A
and Q matrices are diagonal in the same frame. Since this
assumption may not hold for some trap designs, here we
choose to work with the more general case.

=0, (14)

A. Periodic equilibrium solutions

The potential in Eq. (14) has a period of 7 in the dimen-
sionless form, it is thus reasonable to expect a solution with =
period as well [42], that is, a micromotion at the rf frequency.
To find such a stable periodic solution, we can start from some
random initial configuration, time-evolve the system under a
weak damping term [a —yR;, term on the right-hand side
of Eq. (14)], and gradually turn down the damping until the
system reaches a stable solution. Similar to the case of a static
potential, there can be multiple stable solutions to Eq. (14).
Note that the process of gradually reducing the damping term
closely mimic the cooling stage of the ions in a real trap. Thus
we expect the solution found in this way to reflect the one
obtained in the experiment with high probability.

This method works well for a small number of ions, but
difficulty appears as the ion number increases: to approach
the desired solution, we need to reduce the damping term
y, which in turn slows down the convergence and requires
smaller step sizes in the time evolution to suppress the nu-
merical errors. This motivates us to consider the solution to
Eq. (14) directly without the damping term.

Following Ref. [42], we expand the equilibrium solution
with the period of 7 into a Fourier series

+o0
R, ()= ) Bujee™. (15)

n=—00

Note that due to the time-reversal symmetry of Eq. (14), we
have By, j; = B2, jo = B3, ;,- Therefore all the expansion
coefficients are real.

Since R7 (t) has a period of 7, so does any function of
the coordinates. Therefore, the Coulomb interaction term in
Eq. (14) can also be expanded into a Fourier series:

R, (1) — R}, (1)
DI () 542 : 2.3/2
X, (R, = R},0]'}

+00
= Z Dznﬁiaelzm. (16)
n=-—00
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On the other hand, from the definition, we also have [42]

DL(t) =4 GLOR, (1), (17)
J

where

1
Gf(t) ESUZ R
! ki {Zp [Ri»’,,(t) - RZp(t)]z}g/z

1
4 7 2132
{Zp [Rip(l) - R_ip(t)] }

— (I —=36ij)

+00
= Z Gznyijelzm. (18)
n=—0oo

These expansions are used in Ref. [42] to analyze the proper-
ties of the micromotion assuming small Mathieu parameters
(elements of A and Q matrices). Here we generalize these
equations to find the numerical solutions.

Plugging these expansions into Eq. (14) with a suitable
division of the Coulomb interaction term into the above two
alternative forms, we get a recurrence relation

Z[(A(rp - 4n280p)32n,ip - Q(Tp(B2n—2$ip + BZn+2,ip)]
o

+ 4o Z G2n72m,ijB2m,ja = (1 + a)DZH,iG» (19)

m,j

where the index m runs over all the orders of Fourier series,
while the o-dependent terms on the two sides cancel each
other for a periodic solution.

For a desired accuracy of the solution, suppose we can trun-
cate at some finite order of the Fourier series. Then Eq. (19)
is a system of linear equations for {B», -} and can be solved
iteratively: We can use the old solution of {B,, ;, } to calculate
{D2,.is} and {G», i } and then find the new solution of {B5, ;s }.
The simplest case is to set @ = 0. Unfortunately, numerically
we find that in this case the solution is unstable: if we start
from an approximate solution, it will deviate further and fur-
ther away after iterations. The reason is that for the leading
order term By ;», we have n = 0 and thus its coefficient is a
small parameter. When computing the new solution from the
old one, we take the inverse of these small parameters and
therefore the error gets enlarged.

The above analysis suggests that we need large o for the
iterative method to converge. Numerically we find that o > 1
leads to convergence around the periodic solution, if we start
from the approximate solution we found with a weak damping
term. Note that if in By, , we truncate at n = M, then in
Gy,,ij we need to truncate at n = £2M.

B. Normal modes

Having solved the equilibrium trajectories {R7 (¢)} of
the ions, now we consider small perturbation around them
and decompose them into collective normal modes. Let
us first derive the EOM for a small deviation. Follow-
ing Ref. [42], we define a matrix function K(¢) whose

elements are

Kis j2 (1)
3 SRR (i#j.0#0)
[Z(lfsza),]:()'e]f“ (i#jo=1)
N b2 (i=jo#0)
Y B (=0 =)
(20)

as the time-dependent Hessian matrix of the Coulomb in-
teraction. In the above equation, the ¢ dependence of RT  is
omitted for simplicity. Now we have the linear EOM for small
perturbation r;, around the periodic crystal solution:

Fis + Y _(Agp — 200, c0820)riy +4 Y Kig jp(t)rj, = 0.

P jp

21
Because K(¢) also has a period of 7, we can expand it as
K(t) =Ky, — 2K, cos2t — 2K cosé4t — - - - . (22)

If we absorb K and K, into the definition of A and Q matrices
and neglect the higher order terms (we will later describe
how the higher order terms can be included), Eq. (21) can be
written in the vector form (the vectorial Mathieu equation)

F+ (A —20cos2t)r=0, (23)

where r is a 3N by 1 column vector.

Consider a normal mode at the dimensionless frequency S
(modulated by micromotion at the RF frequency). Following
Ref. [42], such a solution can be expanded as

+00
r= Z CZH[Cei(2n+ﬁ)f +C*e—i(2n+ﬂ)r]' (24)

n=—00

Here the real 3N by 1 vector C,, is the generalized mode
vector and ¢ is a complex amplitude. Now our task is to de-
termine all the mode frequencies #’s. An imaginary 8 means
instability, while all 8’s being real corresponds to oscillatory
behavior.

We define Ry, = A — (2n + B)*1, where I is the identity
matrix. Plugging these expressions into Eq. (23), we get a
recurrence relation

QCZn—Z = R2nC2n - QC2n+2~ (25)

Further applying the infinite continued matrix inversion
method [43], the normal mode frequencies are finally deter-
mined by

det [P2(B) — QP1(B)Q] =0, (26)

with Cy the eigenvector of P, — QP 0 corresponding to the
eigenvalue of zero, while

Pi(B)={R, —Q[Rs —Q(Rs —---)'Q17'Q}™"  (27)

and

P,(B)=Ro—QR>—QR_4+—--)'01"'Q  (28)
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are two matrices dependent on 8 and can be evaluated by
truncating at some large value of |n|.

Note that det(P, — QP,Q) is just a numerical function of
B. Therefore, to solve all the normal modes, in principle we
only need to find all the roots of this function numerically, as
done in Refs. [42,43]. However, for large ion number N, the
separation between these 3N roots is small and it is difficult to
solve all of them without any a priori knowledge about their
distribution. Moreover, some of the 8’s may be imaginary for
an instable crystal solution, which makes the numerical search
even harder. Also note that when writing down Eq. (23), we
have neglected higher order terms in Eq. (22). The effect of the
K, term is considered in Ref. [43], but the method is difficult
to generalize to higher order terms. Now we describe a new
method that can be efficiently applied to a large number of
ions and can include arbitrarily high order terms.

In general, we can rewrite Eq. (21) as

F+ (A —20cos2t —20Q,cos4t —---)r =0, 29)

with Q,, = 4K>, (n > 2) from the Fourier expansion of K ()
[Eqg. (22)]. Again we have absorbed K and K, into the defi-
nition of A and Q.

Using the expansion of Eq. (24), we get a general recur-
rence relation

R2,.Con = Q(Cau2 + Crpi2) + Qu(Cryg + Coppa)

+ Q6(Cru6+Copi6) + -, (30)
where again R, = A — (2n + ,3)21.

If we truncate these equations at the order of £n, we can
assemble them into a matrix form

R—2n _Q _Q4 0 0 0 C—Zn
-0 R_op -0 0 0 0 C i
-0, -0 Ry 0 0 0 C onta
: : : : T . | =o 31
0 0 0 R4 -0 -0, Cois
0 0 0 _Q R2n—2 _Q C2n—2
0 0 0 -0, -0 R, Cy,

where @,,’s can be truncated at some different order m, which
is not shown explicitly in the above equation. Note that the
diagonal blocks {R;,} of this matrix depend on S. Again a
normal mode frequency B is a root of the determinant of this
matrix, and the mode vector is given by the corresponding
eigenvector with the eigenvalue of zero.

The direct search of g suffers the same numerical difficulty
as mentioned before. Instead, we observe that if we have
an approximate mode frequency S, the above matrix should
have an eigenvalue close to zero. Therefore, we start from
an approximate solution and solve the eigenvalue A closest
to zero. Note that the diagonal blocks of this matrix R,, =
A —(Q2n+ B =A — (4n* + 4nB)I — B*I have a common
—B?I term in the diagonal, which can be combined with
the small nonzero eigenvalue A. That is, we update 8 by
VB%+ A and then repeat the above process. The iterations
will quickly converge such that A — 0. In the case of degen-
eracy of, say, two normal modes, we can similarly look for
the two eigenvalues with the smallest absolute values and the
corresponding eigenvectors, and use the desired one for the
next iteration.

To efficiently apply the above method, it is desirable to
have a complete set of approximate normal modes to start
with. Therefore here we describe a simple approximate so-
Iution based on Eq. (26). Consider small elements of the A
and Q matrices [after absorbing Ky and K, as in Eq. (23)],
and we expect the mode frequencies 8 also to be small. Now
we consider the following expansion for n # 0:

Ry =[A—Qn+ Y1 = (A —dn’ —dnp — )"
~ L B B -A p?
N_MO_;_ i +n—2>, (32)

(

where we have omitted the identity matrix I for simplicity. We
also have

P ~[R,—OR;'Q] ' ~R;' +R;'OR;'OR;"  (33)
and
P, ~Ry—Q[R»—QR"}0]"'Q
~Ro— QR )0 — QR JQR"\OR)Q.  (34)
Therefore,
T =pP,—0P,Q
~A+l 2+l A _}_L 4 2<l_§ 2)
A0+ 00+ o0 - B :2 )
(35)

Because Cy satisfies TCy = 0, all the normal modes are
now given by a generalized eigenvalue problem

1 1 1 3
A+ -0+ -0A0+ —0")|Co = p*( 1 - =07 | Cy.
(a4 50+ goao+ 0t e = (1 - 1)
(36)
To describe the normal modes to the same order of approx-
imation we include oscillations at the multiples of the RF
frequency, which are given by

— 1
Ci2 = (Rs2 — QRLQ)'QCo ~ — (1 F F)QC0.  (37)

1 3
Cis =R,0Cs ~ <1¢§ﬁ)Q2Co. (38)

64
Finally, we want to mention that we have been consider-
ing quadrupole traps in the above derivations (represented by
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the A and Q matrices). By exploring symmetries in the trap
design, octupole, or even higher-order multipole traps can be
achieved, which have been used to trap large ion crystals [49].
These trapping forces oscillating at the multiples of the RF
frequency can be treated in a similar way as the nonlinear
Coulomb interaction in the above expressions and therefore
our method is still applicable.

C. Quantization of normal modes

Having solved all the 3N normal mode frequencies f; and
the mode vectors C g;) finally we want to quantize them to
design the entangling gate. In this section, we recover the di-
mensions of the variables. In analog to the quantum harmonic
oscillators, we can decompose the position and momentum
operators of the N ions as [8]

F)=Y
k

oo . Lt
T [au®* () + aju® @), (39)

and
R hm . oo. e
o) = Z,/z—wk[aku“) ®)+aa®m].  (40)
k
where
+00
u(")(t) — Z Cg;)ei(nwrf-&-a)k)z (41)

is a solution to Eq. (21) we get in Sec. III B with the time
dimension recovered. wy = Brwys/2 is the frequency of the
kth mode and a; and &; are the annihilation and creation
operators. What remains to be determined is the normaliza-
tion of Cg;), which is fixed by the commutation relations
[7i5(0), Ppjp(0)] = ilid;j65, and [a, &IT] = &i;. According to
Ref. [43], we need

> @n+ pocy,)” ZC“ Bidi- (42)

n

Actually, the orthogonal condition is already satisfied
from our solution in Sec. IIIB; here we just need

>,Cn4 YTy ¢ =g (k=1,2,---,3N) for
normalization.

IV. GATE SCHEME IN 3D

Having solved the equilibrium trajectories and the normal
modes of the ions, now we can consider the gate design.
Recall that, without micromotion, the optimization of the
entangling gate is achieved by minimizing the residual entan-
glement to the phonon modes [Eq. (6)],

i ’ .
otf(r) = —Er;k/ b’;)(j(t)e""’“’dt, (43)
0

while maintaining the desired two-qubit phase ©;; = +m /4
[Eq. (7],

1 T 1 )
Oy =5 )i Im fdfl / diye’ ="
e 0 0

x [BB ittt (1) + BB () xi(12)] } (44)

where we have considered the possibility of a complex mode
vector b’; for reasons that will become clear later, and

xj (@) = hQ;()sin (ut + ¢;) (45)

describes the driving field felt by the ion ;.

In Sec. II, we consider piecewise-constant £2;(¢). The ad-
vantage is that the time integrations above can be performed
analytically on each segment. Then the optimization becomes
a generalized eigenvalue problem [Eq. (13)], which can be
solved efficiently. Note that, strictly speaking, an analytical
expression for the time integral is not necessary in the above
process. Given a gate time t and the number of segments
Nseg, WE can also evaluate the integral numerically. However,
for the highly oscillatory functions we are considering, such
a numerical integration requires very high accuracy and is
usually slow. In comparison, if we can derive an analytical ex-
pression for the integral, its evaluation becomes much faster,
which allows efficient optimization of the gate design. This
understanding is important for efficient gate design in the
general case.

A. Effects of micromotion

Now we consider the effects of the micromotion on the
gate design. As briefly discussed in Sec. II, it appears in the
following three aspects.

1. Time-dependent motional phase

As we have shown in Sec. III A, the equilibrium trajec-
tories of the ions are oscillating at the RF frequency. In
Eq. (1), it appears as a (classical) oscillating phase in the form
of Ak -R;(t) where R;(r) = [R], (), R} (1), R;FZ(t)]T is the
equilibrium trajectory of the ion j. We can absorb it into the
motional phase ¢; for each ion in Eq. (45) with a period of
21 /wys. Hence we have the Fourier expansion

o
0;j(1) = ¢\ coslaxt, (46)

where the superscript [ represents the /th order of expansion.
Note that by definition, ¢;(¢) follows the same time-reversal
symmetry as R (1), so in the Fourier series only the cosine
terms survive. Also, ¢;(¢)’s depend not only on the amplitude
of the micromotion, but also on its angle with the direction of
Ak.

2. Time-dependent complex normal modes

The micromotion also leads to high-frequency modulation
on each normal mode, as shown in Sec. III B. From Egs. (2)
and (39), we observe that be* is now replaced by u® (1),
that is,

+00
> m-CY) e (47)
n=—00

where m is a unit vector along the direction of Ak and

(k) (k) (k) (k) T . .
2n i =[G, I 2n v G, ]Z] This gives a time-dependent

multiplicative factor in the integration in aj? [Eq. (43)] and
0©;; [Eq. (44)], but because it is a trigonometric function, an
analytical expression is still easy to obtain. Also note that our

022419-6



HIGH-FIDELITY ENTANGLING GATES IN A ...

PHYSICAL REVIEW A 103, 022419 (2021)

expression for ®;; in Sec. II [Eq. (7)] is derived for a real mode
vector. For the complex mode vector here, Eq. (44) should be
used instead.

3. Time-dependent modulation of laser intensity

If the micromotion has a component perpendicular to the
direction of the laser beam, it will also lead to a variation in
the laser intensity felt by the ion during the gate. This becomes
important if the amplitude of the micromotion is greater than
or comparable to the width of the laser beam. Mathematically
it is described by a time-dependent effective Rabi frequency
Q;(t) in Eq. (45) oscillating at the RF frequency. Given the
spatial power distribution of the driving laser and the equilib-
rium trajectories of the ions, these terms can be computed and
again can be expanded into a Fourier series. Therefore again
they are multiplicative trigonometric functions and can be
treated in the same way as the time-dependent normal modes.
We will not consider this effect below for simplicity, which
corresponds to a small micromotion amplitude compared with
the width of the driving laser beam for individual addressing,
or a beam that follows the equilibrium micromotion of the
ions.

B. Series expansion for evaluating highly oscillatory functions

As mentioned above, to efficiently design the gate, we want
analytical expressions for Eqs. (43) and (44) with piecewise
constant £2;(¢) on arbitrary intervals.

The last two effects of micromotion we described are not
difficult to treat because for them the integrand is still the
product of trigonometric functions, and therefore simple an-
alytical expressions exist. On the other hand, the first effect
of a time-dependent motional phase, even if only expanded to
the first order, will give us something like cos((p(l) COS wyft)
whose analytical integral on a general time interval is not
known. Without such an analytical expression, we will have
to numerically integrate highly oscillating functions, which
significantly increases the computational cost.

As hinted by Ref. [50], this problem can be solved by a
series expansion of the motional phase. For each expansion
term, we can still derive an analytical expression, while the
overall errors can be systematically suppressed by considering
higher order terms. At the essence of our algorithm is the
following formula [51]:

exp(ig cos wt) = Jy(p) + 2 Z i"J,(¢) cos(nwt). (48)

n=1
Note that for 0 < ¢ < +/n + 1, we have

ni)~ (%Y (49)

thus the high-order terms vanish quickly as n increases, and
we can expect a fast convergence.

C. Residual spin-phonon coupling

For the af terms [Eq. (43)], we want to derive an analytical
expression for the integral

“+o00 o0
/dt Z Cg‘l?jae""“'f’ sin (Mt + Z (p;[) cos la)rft>e”“k’. (50)
1=0

n=—00

Because C (2];) decreases quickly with |n| (for small Mathieu ¢
parameters, that is, elements of the Q matrix), we can truncate
the summation over n at small ny;.

Note that we can regard nwis + @i as a new variable
in the above expression. Then once we derive an analytical
expression as a function of w, we immediately get the results
for all the orders of n by plugging in the value of nwys + w.
Therefore, we only need to consider

[0 ]
/dt sin (ut + Z (p;.l) cos la)rft>e"‘“’

=0

1 . > .
— Z_i/dt [el(ﬂf+(ﬂ;-0)) l_lel(ﬂ;-”COSla)rfl _ C.C.}@lw[. (51)
=1

We can now expand exp(i<p;l) cos lwt) into cosine func-

tions using Eq. (48). Suppose the go}l), w}z), -+ terms are

expanded to the order of ny, ny, - - -, respectively. Then one
term of the integral becomes

i(ut+<p(-m) it
dte i e'™ cos(niwst) cosnywygt) - - -, (52)

with the coefficient [], 2i”’J,,l(goj(.l)) (for a term with n;, =0
the coefficient is smaller by one half). Then we sum over
all possible {n;, ny, ---} to get the total integral. The other
half of Eq. (51) for the complex conjugate can be computed
similarly. We just need to replace p and (p}o) in Eq. (52)

by —p and —go}o), and to take the complex conjugate of the
corresponding coefficients.

It seems that the number of terms to be evaluated is
exponentially large, so that even if we have analytical
expressions for Eq. (52) and the evaluation of a single term
is fast, the overall time cost is still high. Fortunately, in the
small g regime typical for current ion trap quantum computing
experiments, the micromotion amplitude decreases quickly
with the order of expansion, so that (py) will be close to zero
for large /. For such terms, we have exp(igoj(.” coslwgt) = 1,
so discarding them has negligible effects on the integrand of
Eq. (51). Therefore, we can truncate at [ < L for some small

L in Eq. (52). Even for the remaining (p}l) terms, the corre-

sponding coefficients J,, (90;.”) quickly vanish for large n;, so
the number of terms we need to evaluate is small. Note that all
the truncations described above can be performed according
to a chosen error tolerance, say, 1078, and the accuracy can
be systematically improved by including higher order terms.
What remains is to evaluate Eq. (52) for up to L cosine
functions. For a given L, an analytical expression for this
integral is possible, but it can be complicated even for mod-
erate L and in particular can be difficult for coding. Therefore
we further split each cosine function into two exponential
functions using cosx = (™ + e~*)/2. In this way, Eq. (52)
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finally turns into at most 2% integrals of exponential functions,
whose analytical expressions are simple. Since the truncation
L is typically small and we do not need to split for the /th
term if n; = 0, this algorithm gives a good balance between
the time cost of programming and that of running.

D. Two-qubit rotation angle

For the ©;; terms [Eq. (44)], we want to derive an analyti-
cal expression for

+00
/dtl/dtzeiwk(tl —lz)z Cé’:l)ipeina)rfll Cél;n) o e_ima)rfl‘z

n,m=—00

o0
X sin (lﬂl + Zﬁﬂi(l‘) cosllwrm)

1 =0

o0
X sin (Mtz + Z (pj.h) cos lza)rft2> (53)
L=0
for one term in Eq. (44), and the other term can be obtained
by exchanging i and j.

Recall that in Eq. (11), we need two types of integral limits:

PT /Nseg qT [Nseg PT/Nseg 4]
/ dt / dt, and/ dn / dty.
(p_l)f/nseg (q_l)f/nseg (p_l)f/”seg (p_l)r/nseg

(54)

For the first type, the integrations over #; and #, are separable
and are exactly what we have solved for the af terms. The
remaining problem is just the second type.

Following the derivations for the oc']? terms, we define
new variables w; = wy + now and wy = wy + Moy, split the
sine function into two exponential functions, and expand
exp(:l:iq);“ cos laxst) using Eq. (48). Now we want an analyt-
ical expression for

. () . )y . it
/dh/dtzeil(lﬂlﬂ(?,- )eil(ﬂlz-‘r(ﬂ, )elwme iwnty
L,

L,
X 1_[ COS(lll’lll a)rftl) l_[ COS(lzmlzwrfl‘z). (55)
L=1 L=1

Again we truncate at large values of L;, L, and n;,, my, in
the expansions and express the cosine functions as the sum
of two exponential functions, then analytical formulas for the
remaining integrals are simple.

V. NUMERICAL RESULTS

Finally, we show a numerical example for the whole
process from solving the dynamics of the ions to the
gate design. Consider 100 '"'Yb™ ions in a trap with
trapping parameters a = (—0.015, —0.015, 0.03) and ¢q =
(0.3, —0.3, 0) (which correspond to diagonal A and Q
matrices), and an RF frequency w; = 27 x 50 MHz. The
equilibrium trajectories are plotted in Fig. 1 using the nu-
merical methods of Sec. IIT A. As we can see, in general the
ions have large micromotion amplitudes comparable to their
separations.

Using the methods described in Sec. III B, we solve all the
collective normal modes of the ion crystal under micromotion.

FIG. 1. Equilibrium trajectories of 100 ions in a trap with @ =
(—0.015, —0.015, 0.03) and g = (0.3, —0.3, 0). The length dimen-
sion is Ly = (€*/4mwegmw’)"/? = 0.20 um. The two ions colored in
blue (labeled 1) and in green (labeled 2) are used in Fig. 2 to compare
the solved normal modes with direct molecular dynamics simulation.
The two ions colored in red (labeled 3 and 4) are used in Fig. 3 for
entangling gates.

Instead of presenting all the 300 modes, in Fig. 2 we plot the
response of a particular ion along a particular direction, when
two normal modes, the lowest one at 8; = 0.001340 and the
highest one at B399 = 0.3032, are selectively excited. In both
cases, we see perfect agreement between the prediction of the
normal mode expansion (red curves) and the direct numeri-
cal results from molecular dynamics (MD) simulation (blue
curves), such that their difference (green dashed lines) stay
at zero during the simulated time periods. Note that the full
MD simulation results correspond to the periodic equilibrium
trajectories plus the normal mode expansions, hence the good
agreement in Fig. 2 indicates that both our numerical methods
in Secs. IIT A and III B are of high accuracy.

Next we consider the entangling gate between two ions col-
ored in red (labeled as 3 and 4) in Fig. 1. Similar to Ref. [47],
we consider counter-propagating Raman laser beams with a
wavelength around A = 355nm in the x direction, and we
assume Doppler temperature kzT = Al'/2 where I' = 27 X
20 MHz is the spontaneous emission rate of the !”'Yb* ions.
Note that in real experiments we may need the two Raman
beams to be at an angle to selectively address individual ions
at their intersection. For convenience, we set the static mo-
tional phase (p(p) to zero, which can be realized by a suitable
phase shift on the path of the laser beams, and only consider
the oscillating motional phase (p;l) (I = 1) due to the micro-
motion. Suppose we use 7, = 15 segments for a total gate
time T = 300 us. The optimal gate infidelity is shown in Fig. 3
as we scan the laser detuning . Due to the increased compu-
tational cost under micromotion and the large range of u to be
scanned over, first we perform a coarse scan in Fig. 3(a) and
then a finer scan in the region with potential high gate fidelity
in Fig. 3(b). It seems that higher fidelity is possible in the
low-frequency end, but here we purposely avoid this region,
which may strongly drive the low-frequency soft modes and
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FIG. 2. Comparison between the computed normal modes and
the numerical results from molecular dynamics simulation. The
100-ion crystal we consider is shown in Fig. 1. The length unit is
Ly = 0.20 um and each dimensionless RF period 7 corresponds to
0.02 us. (a) Evolution of the x coordinate of ion 1 (colored in blue
in Fig. 1) over 1000 RF periods for a weak excitation of 0.01 in the
lowest mode with 8; = 0.001340. (b) Evolution of the y coordinate
of ion 2 (colored green in Fig. 1) over 1000 RF periods for a weak
excitation of 0.01 in the highest mode with B30 = 0.3032. In both
plots, the blue curve is from direct molecular dynamics simulation
using a fourth-order symplectic integrator (see, e.g., Ref. [52]), 1000
steps per RF period and double precision, the red curve is computed
from the normal mode expansions and the green dashed line is their
difference. The blue and the red curves almost coincide with each
other and can hardly be distinguished in these plots, which suggests
that our computed normal modes are accurate for a wide range of
spectra over two orders of magnitude. The equilibrium trajectories
RT (¢) oscillating at an amplitude of the order O(1) is already sub-
tracted from these curves to highlight the small deviation [Eq. (21)].

(®) 10°

0 2 4 6 8 726 728 73 732 734 736
/27 (MHz) /27 (MHz)

FIG. 3. (a) Optimal gate infidelity §F for a scan of the
laser detuning @ over the whole spectrum of the normal
modes of the crystal. Note that this is a coarse scan and the
resolution is not enough to show all the structures of the
curve. We then zoom in into a region with potential high
fidelity. The calculation is performed for a truncation of
L =5 for the equilibrium trajectories and n, =5 for the
high-frequency modulation of the normal modes. (b) A
zoomed-in scan for a small range of frequencies at the
high-frequency end. (We avoid using the low-frequency end,
which may be sensitive to the soft modes, even though it seems
to have higher theoretical fidelity.) The blue solid curve is
optimized for ions’ motions truncated at L = 5 and n., = 5. The
red dashed curve is what we would have gotten using the same
optimized laser sequence if we truncated at L =1 and ng, = 1,
while the upper green curve is that for L = 0 and ng, = 0, that is,
without considering micromotion.

12 3 45 6 7 8 910111213 14 15
Segments

FIG. 4. The optimized laser pulse sequence 2(¢) for T = 300 us,
Mg = 15, u = 27 x 7.3124 MHz.

break down the approximations in the gate scheme. Here we
have not yet optimized over gate time T and segment number
Nseg, but as we can see, a high gate fidelity of 99.9% can
already be achieved. In Fig. 4, we further show the optimized
Rabi frequency €2(¢) at the detuning u = 27 x 7.3124 MHz
[labelled by a black square in Fig. 3(b)]. Note that we have
|2()| < p so strong excitation of the phonon modes can be
avoided [47].

In Fig. 3, we assume that the gate starts right at the begin-
ning of an RF period [t = 0 in Eq. (14)]. If the laser sequence
is not locked to the RF signal or if the time resolution is not
high enough, the starting point of the gate can locate anywhere
in an RF period, which can be a source of errors. In Fig. 5,
we plot the gate infidelity versus the initial time 7y using the
optimized gate parameters in Fig. 4. As expected, the gate
infidelity varies with #y and returns to the original value after
one RF period. The variation is not significant and on average
we still have a fidelity of 99.88%.

In Fig. 3(b), we also show a comparison for different
truncations of the micromotion. The blue solid curve is
computed for a high-order expansion (truncated at L =5
for the equilibrium trajectories and n., = 5 for the high-

2
1.8
1.6

€3

14

1.2

0 0.2 0.4 0.6 0.8 1
wrft()/Qﬂ'

FIG. 5. Gate infidelity §F versus the starting point 7, of the gate
during an RF period, using the optimized gate parameters in Fig. 4.
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frequency modulation of the normal modes), while the red
dashed curve is to apply the same optimized gate sequence on
a hypothetical ion crystal truncated at L = 1 and n¢, = 1. The
high-order calculation is about 50 times slower than the lower-
order one, with small but noticeable difference in the gate
fidelity. We expect the difference to increase for larger crystals
and larger micromotion, for which the high-order computation
will be necessary. On the other hand, if we apply the same
gate sequence on a hypothetical ion crystal with L = 0 and
neye = 0, that is, without considering micromotion, then the
gate infidelity can differ by two orders of magnitude, as shown
by the upper green curve. This clearly reveals the nonnegligi-
ble effects of micromotion on the gate performance.

As we can see from Fig. 1, in this example, the micromo-
tion along the z direction is much smaller than those in other
directions, so we could have gotten much faster convergence
had we applied the laser beams in the z direction. This sim-
plification can be used for practical gate design, while here
we just want large micromotion to demonstrate our algorithm.
Note that the time cost of the algorithm increases linearly with
the number of ions (number of normal modes) and linearly
with the number of segments (because the bottleneck of the al-
gorithm is the p = ¢ double integral of the two-qubit rotation
angle). Also, the scan of the gate parameters can be performed
in parallel, and we can first perform a low-order calculation
to help locate the parameter regions with potential high gate
fidelity. Therefore, even though the design of the gate with mi-
cromotion is much slower than that without micromotion, we
can still expect it to work for hundreds of ions and hundreds
of pulse segments.

VI. DISCUSSION AND CONCLUSION

In this paper, we mainly focus on the effects of micromo-
tion on the gate design and we obtain a theoretical gate fidelity
of about 99.9% in Fig. 3. This fidelity is mainly limited by
the use of small segment number ng, = 15 to suppress the
residual entanglement to all the 3N = 300 phonon modes,
which also exists in earlier works without considering the
micromotion [47]. In Fig. 6, we further increase the segment
number and observe that the gate infidelity can be reduced to
2 x 107 using nee = 100 segments. To save some compu-
tational resources, for nge = 100 we scan the detuning u in
a more restricted region which is expected to give high gate
fidelity from a coarse scan using low-order truncations. With
enough control degrees of freedom, the intrinsic gate design
error can be made arbitrarily small compared with the other
experimental errors.

The robustness against parameter drifts and noise can be
studied in the same way as in previous works [47]. Here
we would like to mention that the numerical algorithms we
describe in this paper are not restricted to the specific method
for gate design in Sec. II and can be easily generalized to
take certain robustness conditions against parameter drifts into
consideration. For example, in Ref. [53] it has been shown
that the robustness of the residual spin-phonon entanglement
[Eq. (43)] against drift in trap frequency wy can be enforced
by requiring the pulse sequence to be symmetric and the time
integral of (x’]?(t) over the whole gate sequence to vanish.
We can approximately incorporate this criteria into the gate

7.26 7.28 7.3 7.32 7.34 7.36
wu/2m(MHz)

FIG. 6. Optimal gate infidelity 6 F' for a scan of the laser detuning
w1 in the same range as Fig. 3(b) for ny, = 15 (blue solid curve),
nge = 30 (red dashed curve) and ng; = 100 (green dots). For ne, =
100, we only scan around the two regions with the highest fidelity to
save the computational resource.

design without increasing the complexity of the algorithm
(see details in Appendix B). Similarly, we can enforce the
robustness of the two-qubit rotation angle [Eq. (44)]. By
replacing the optimization conditions with these robustness
requirements, we get the pulse sequence presented in Fig. 7(a)
using nge = 100 segments. It can achieve a fidelity above

(b) 2x1o'3
1.5 . ®
0.5 ‘. .-'
0
20 40 60 80 100 -1 -0.5 0 0.5 1
Segments op/2m(kHz)
(C) x10™ (d) x10™
. 6 “ °
: 3 4
. 500 % ¥
4 . o % d
= Sa Y\ j
> ...-.’... ° 3

2
-0.01 -0.005 0
50/

0.005 0.01
0T (us)

FIG. 7. (a) Pulse sequence of ne, = 100 segments at 7 = 300 s
and u = 2w x 7.3374 MHz computed using the method described
in Appendix B. (b) Gate infidelity under the detuning drift 5« of
427 x 1kHz. (c) Gate infidelity under the gate time drift 6t of
40.1 us. Small fluctuation may be caused by the high-frequency
micromotion. (d) Gate infidelity under the fluctuation of €2(¢) on each
segment. Here we assume that each segment is scaled independently
by a factor following a Gaussian distribution N (1, ¢2) with o up to
1%. Each data point is averaged over 1000 random samples and the
positive and the negative parts are symmetric.
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99.9% for 2 x 0.7 kHz drift in laser detuning, 0.1 ws shift in
gate time, and 1% random fluctuation of the laser amplitude
on each segment. We note that these results are comparable to
those in Ref. [47] without considering micromotion effects.
To sum up, we have presented a scheme to design
entangling gates between two ions in a general ion crystal.
The effect of micromotion can be mathematically described as
a time-dependent phase of the driving laser, a high-frequency
modulation of the laser intensity, and time-dependent mode
vectors of ions’ collective motional modes. To generalize
the gate scheme from a 1D ion chain, first we solve the
equilibrium trajectories of the ions for given trapping
parameters and then determine the collective normal modes
up to arbitrary orders of micromotion. The time integral of
the highly oscillatory functions appearing in the gate design is
efficiently treated by a series expansion, whose errors can be
systematically suppressed by including higher and higher or-
der terms. Numerical examples are also provided to show the
functioning of our algorithm. Our work lays the foundation
for direct quantum computing on a large 2D or 3D ion crystal,
and can also help to improve the high-fidelity gate design in
1D ion chains when the transverse micromotion is important.
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APPENDIX A: ALGORITHMS

In this Appendix, we briefly summarize the algorithms
used in this paper.

1. Periodic equilibrium solutions

To solve the periodic equilibrium solutions satisfying
Eq. (14), we take two steps. First we find an approximate so-
lution by introducing a weak damping and then we iteratively
improve the accuracy.

Algorithm 1. Approximate periodic equilibrium solutions.
1: Choose accuracy target € and initial damping rate y. Start from

random initial positions R, .

2: Simulate time-evolution under Eq. (14) plus a damping force
—yR;, for Ny RF periods. Get final positions R,.

3:If |Ric — R, |l = €, set R;; <— R;_ and repeat step 2.

4: Simulate time-evolution under Eq. (14) without damping force
for N, RF periods. Get final positions R .

5:If |Ric — R || > €, reduce y and repeat steps 2-4.

Algorithm 2. Iteratively approaching periodic equilibrium solutions.
Input: Approximate periodic solution R;, (t)

1: Choose truncation order L, accuracy target € and parameter
a > 1.

2: Compute Fourier series D,, ;, up to orders L using Eq. (16)
and G, ;; up to orders +=2L using Eq. (18).

3: Solve By, ;» up to orders =L using Eq. (19).
4: Solve new periodic solution R;_(t) using Eq. (15).

5:If |[Ris (1) — R, (t)|l > €, set R (t) < R (¢) and repeat
steps 2—4.

2. Normal modes

To solve all the normal modes satisfying Eq. (23) or, more
generally, Eq. (29), we expand the solution into the form of
Eq. (24).

Algorithm 3. Compute normal modes.
1: Choose the accuracy target €.

2: Compute approximate mode frequencies f; and mode vectors
C(()k) using Eq. (36). Compute Ci‘% using Eq. (37) and C(ﬁ using
Eq. (38). Use them to construct the approximate vectorial
solution C*® in Eq. (31).

3: For each mode k, use §; to compute the matrix in Eq. (31).
Compute its eigenvector C* with the corresponding
eigenvalue A closest to zero, using C*) as the initial solution.

4: Compute g = /B2 + A.

5.0 |Be — Byl = €, set B < B and C® < C*V. Repeat steps
3 and 4.

6: Repeat steps 3-5 for all the modes.

In the case of degeneracy or near degeneracy of n modes,
we can resolve them by solving n eigenvalues closest to zero
in step 3. Then we order them as A} < Ay < --- < A, with
corresponding eigenvectors ck ¢k ... %) Forthe ith
mode, we need to keep using A; and C*? in the iterations from
steps 3-5.

Finally, we can verify that the solved normal modes satisfy
the orthonormal condition of Eq. (42).

3. Gate design

To design the entangling gate, we need to evaluate integrals
in Egs. (43) and (44) with x;(t) given by Eq. (45), ¢;(t)
given by Eq. (46), b’; replaced by Eq. (47), and 2;(¢) being
constant on each segment. Actually, for the specific method
of amplitude modulation with piecewise constant £2;(), we
only need to integrate Eqgs. (43) and (44) for unit £;(z) on
each segment to obtain the row vector AX in Eq. (10) and the
matrix ¥'(p, ¢) in Eq. (11). Then the remaining part of the gate
design follows that in Ref. [47] as we review in Sec. 11
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Now for each element in the row vector A’J‘-, we have

Al(n) = —in Y m, x Eq. (50), (A1)

where m,, is the o = x, y, z component of the unit vector m
of the direction of the Raman laser beams Ak and the time
integral in Eq. (50) is on the interval [(n — 1)T /Rgeg, AT [Ngeg].
Our evaluation of Eq. (50) is based on the following two
functions through depth-first search.

1: function SINGLE_INTEGRAL(?y, tp, i, @, Wy, L, {¢p(1)},
{nk(D)}, k, co) > Evaluation of Eq. (51)

2 Preset precision € and cutoff 7.,

3 If |co| < € then return O

4:  endif

5 if £ > L then return [cy x prod_cos(ty, tp, i, w, wy, L,
{nk(1)}, 1)—c§xprod_cos(t, t2, 1, w, wy, L, {nk(1)}, 1)1/2i

6:  else

7: nk(k) < 0

8: v <single_integral(t;, &, i, @, i, L, {p(1)}, {nk(1)},
k+1, co x Jo(p(k)))

9: for n < 1, ny,y do

10: ¢ < 2i"J,(p(k))

11: if n > |p(k)| and |cy X c| < € then break

12: end if

13: nk(k) < n

14: v < v+single_integral(z,, f2, i, o, wye, L, {p(1)},
{nk(D)}, k+1,co x ¢)

15: end for

16: return v

17:  endif

18: end function

1: function PROD_COS(?{, 5, 4, @, i, L, {nk(l)}, k)
> Evaluation of Eq. (52)
2:  ifk > L then return [¢/*+t®2 — W+ /[i(1 + w)]

3:  endif

4: if nk(k) = O then return prod_cos(zy, 1, 1, ®, wy, L, {nk(l)},
k+1)

5. else

6: return %prod_cos(tl, ty, W, @ — k X nk(k) X wy, wy, L,

{nk(D)}, k + 1) + 1 prod_cos(t1, &2, i, @ + k x nk(k) x w,
o, L, {nk(1)}, k + 1)
end if

8: end function

~

The evaluation of Eq. (50) is now given by

Algorithm 4. Evaluation of Eq. (50) for ion j, mode k and spatial
direction ¢ on the time interval [#, ,].
1: Preset precision € and cutoff 7,

2:v <0
3: {nk(l)} <0
4:forn < 0, £1, .-+, £ny., do

50 o< +/2q |C2(’,‘[)ﬂ7

6:  if |cy| < € then break

7:  endif

8: v<v+C 2n N/coxsmgle integral(t;, t, i, W + Ny, Wi,
L, {o)}, {nk(D}, 1, co)

9: end for

For the (p, ¢) element of the matrix p’, we have
Y (p.q) = Z ntm,m, x Im[Eq. (53) + Exch;;Eq. (53)],
kpo

(A2)
where Exch;; means exchanging the indices 7 and j in the fol-
lowing expression. For p > ¢, the double integral in Eq. (53)
becomes separable and reduces to

Eq. (53);,, ;, = Eq. (50);, x Eq. (50)} (A3)

ip.jq jr
where the subscript ip means the terms related to the ion i is
integrated over the segment p and similarly for the subscript
Jjg. The superscript * represents the standard complex conju-
gate.

To evaluate Eq. (53) for p = ¢, again we use depth-first

search by defining the following functions.

1: function DOUBLE_INTEGRAL(t1, t, i, Wy, W2, Wy, L, {1 (1)},
{o2 (D}, {nki (D}, {nk2 (D}, K, 1, €2)
Preset precision € and cutoff 7,

2

3 if |cic2| < € then return O
4:  endif

5 if k > L then return

[c1ca xprod_cos_plus(ty, t2, i, @y, ws, wy, L,
{nki (D}, {nk2(D}, 1)
—cicsxprod_cos_minus(ty, t, 4, w1, W2, Wy, L,
{nki(D)}, {nk2 (D}, 1)
—ccoyxprod_cos_minus(ty, ,

{nki (D}, {nk2 (D}, 1)

+-cjc; xprod_cos_plus(t,, t,,

{nk2 (D}, D]/ (=4)

—W, @1, W, W, L,

—i, ©1, W, Wy, L, {nki (1)},

6 else

7: v<«0

8 for n; < 0, ny. do
9 if n; = 0 then

10: ¢y < Jo(pi(k))
11: else
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(Continued.) (Continued.)

12: ¢y < 2i"J, (p1(k)) 10: end if
13: end if 11: return

1
14: ifn; > | (k)| and |cjcac)| < € then break gprod_cos_plus(ty, 1o, pt, w1 — k x ki (k) X i,
5 endif — k x ks () x @i, o, L (nky (D), (ko) + 1)

+3 prod_cos_plus(ty, 2, i, wy + k x nky (k) x wy,
16: nki(k) < m

— k x nky(k) x o, o, L, {nki (D}, {nky (D}, k + 1)

17: for n, < 0, 1y do +3 prod_cos_plus(ty, to, h, w — k x nk; (k) X s,
18: if 7, = O then wy + k X nky(k) X o, o, L, {nki (D}, {nky (D}, k + 1)
19: ¢ < Jo(ga(k)) +1 prod_cos_plus(ty. ta, 1, @; + k X nk, (k) X oy,

wy +k X nky(k) X o, wr, L, {nki (1)}, {nko(D)}, K+ 1)
20: else 12: end function
21: ¢y < 2", (g2 (k)
22: end if
23: if ny > |2(k)| and |c cac|cy| < € then break In the above functions, integral_plus is an analytical ex-
24 end if pression for
25: nky(k) < ny

1 iut zul za)lt —iwst’
26: v < v+double_integral(t, t, 1, w1, wy, oy, L, {@1(1)}, f dt/ dr'e . (A4)
{p2(D}, {nki (D}, {nka (D}, k + 1, cicq, ac)
27: end for The function prod_cos_minus is defined by making a suitable
28: end for substitution for prod_cos_plus and similarly we define inte-
gral_minus as an analytical expression for

29: return v
30:  endif

31: end function

1: function PROD_COS_PLUS(t, t, i, W1, W2, Wy, L,
{nk, ()}, {nka(D)}, k) > Evaluation of Eq. (55)
if £ > L then return integral_plus(z,, f2, i, @1, w2)
end if
if nk; (k) = 0 and nk,(k) = O then
return prod_cos_plus(;, &, i, @y, w3, Wy, L,
{nki(D)}, {nk2 (D}, k + 1)
6: endif
7. if nk;(k) = O then return

%prod_cos_plus(tl, th, b, w1, Wy — k X nky(k) X wyg, o, L,

{nk, (D}, {nkx (D)}, k+ 1) +%prod_cos_plus(t1, b, [k, 01,
wy + k x nky (k) X o, o, L, {nky (D}, {nk (D}, K+ 1)

8: endif
9:  if nky(k) = O then return
%prod_cos_plus(tl, tr, b, w1 —k X nki(k) X wy, wy, o, L,

{nki()}, (nka (D)}, k + 1) +3prod_cos_plus(1, 1, 1,
o) + k X nky (k) X o, wy, o, L, {nki (D)}, {nky (D}, k+ 1)

(AS5)

/ dt/ dt/ l/Lt 71/11 elw]tefl(l)zf

These analytical expressions can be computed easily and here
we do not present the detailed expressions for simplicity.
Finally, we can evaluate Eq. (53) for p = g as

Algorithm 5. Evaluation of Eq. (53) for ions i and j, mode k and
spatial directions p and ¢ on the time interval [#,, ,].
1: Preset precision € and cutoff 7,

2:v <« 0

3:{nki (D} < 0, {nkx (1)} < 0
4:forny < 0, £1, -+, Tn,., do
5: forny <~ 0,£1, -, Enn do

6: o /Y IC) ,,p|2
k

7: /D C;n; o

8.

if |cic2| < € then break
: end if
10: v—v+CP c®

anyipCany, jo / (C1€2) X double_integral(zy, £, i,
W + Ny, W + Maoxt, o, L, {91 (D}, {p2(D)},
{nki (D)}, {nk2 (D)}, 1, ¢, €2)

11:  end for

12: end for
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APPENDIX B: ROBUSTNESS AGAINST TRAP
FREQUENCY DRIFT

It has been shown in Ref. [53] that robustness of the
residual spin-phonon entanglement af(t) against the trap fre-
quency drift w; can be achieved by requiring fOI o;f (t)dt = 0.
One can easily check that this condition still holds with the
existence of micromotion for Eq. (43). Similarly, one can
check that the robustness of the two-qubit phase ©®;;(t) is
ensured by taking the real part rather than the imaginary part
in Eq. (44) (this comes from the partial derivative with respect
to wy which gives us a factor of i) and then requiring the
time integral to vanish. Evaluating these integrals are again
numerically intense. Fortunately, for the numerical algorithms
described in the main text and summarized in Appendix A,
we already get the desired integral on each segment. From
these results, not only can we obtain af(r) and ®;;(7) but also
their values [for ©;;(t), we need to keep the complex values
before taking the imaginary part] at the time points nt /ngeg
(n=0, 1, ---, ngg), from which we can approximate the
their time integral.

Specifically, after computing the row vector

A% = [AN(D), AKQ), -+, Al(ngy)] (B1)

as described in Appendix A, we can construct a new row
vector

A]; = [nsegA];'(l), (nseg - I)AI;(Z): Tt Al;(nseg)]s (B2)

such thatA];SZ is proportional to the approximate time integral
of af (¢). Similarly, after evaluating all the elements y'(p, q)
of the p’ matrix (we denote the matrix before taking the imag-
inary part by I such that Im[I""] = y’), we can define a new
matrix ¥’ whose (p, ¢) element is (ne, — p + DRe[IV(p, g)]
(1 € g < p < ngeg). Then Q7 y'Q is proportional to the de-
sired time integral for the robustness of ®;;(7). For the small
segment number considered in this paper, we are not able
to set all these expressions to zeros. Instead, we replace the
optimization condition by minimizing

QMR+ (QTyR)? (B3)

under the constraint @7Y'Q = +r/4, where M =
N Aljfllj{.(Zﬁk + 1). We further require the pulse sequence
to be symmetric [53], namely, Q(n) = Q(ngeg — n+ 1). This
gives us the pulse sequence presented in Fig. 7 in the main
text. Note that now the cost function is nonlinear and we can
no longer solve it as an eigenvalue problem. However, this
cost function is still simple enough with the Jacobian and
the Hessian matrix computable, thus the time cost to find an
optimal gate design is still negligible compared with the cost

for numerical integration.

[1] M. Nielsen and I. Chuang, Quantum Computation and Quantum
Information (Cambridge University Press, New York, 2000).

[2] D. P. DiVincenzo, Fortschr. Phys. 48, 771 (2000).

[3] I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86,
153 (2014).

[4] E. Farhi, J. Goldstone, and S. Gutmann, arXiv:1411.4028.

[5] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik,
New J. Phys. 18, 023023 (2016).

[6] V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330
(2004).

[7]1 J. 1. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).

[8] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod.
Phys. 75, 281 (2003).

[9] R. Blatt and D. Wineland, Nature 453, 1008 (2008).

[10] C. Monroe and J. Kim, Science 339, 1164 (2013).

[11] F. Mintert and C. Wunderlich, Phys. Rev. Lett. 87, 257904
(2001).

[12] A. Khromova, C. Piltz, B. Scharfenberger, T. F. Gloger, M.
Johanning, A. F. Varén, and C. Wunderlich, Phys. Rev. Lett.
108, 220502 (2012).

[13] C. Ospelkaus, C. E. Langer, J. M. Amini, K. R. Brown, D.
Leibfried, and D. J. Wineland, Phys. Rev. Lett. 101, 090502
(2008).

[14] C. Ospelkaus, U. Warring, Y. Colombe, K. Brown, J.
Amini, D. Leibfried, and D. J. Wineland, Nature 476, 181
(2011).

[15] A. Sgrensen and K. Mglmer, Phys. Rev. Lett. 82, 1971
(1999).

[16] J. J. Garcia-Ripoll, P. Zoller, and J. I. Cirac, Phys. Rev. A 71,
062309 (2005).

[17] S.-L. Zhu, C. Monroe, and L.-M. Duan, Phys. Rev. Lett. 97,
050505 (2006).

[18] Shi-Liang Zhu, C. Monroe, and L.-M. Duan, Europhys. Lett.
73, 485 (2006).

[19] T. J. Green and M. J. Biercuk, Phys. Rev. Lett. 114, 120502
(2015).

[20] P. H. Leung and K. R. Brown, Phys. Rev. A 98, 032318 (2018).

[21] C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer,
C.J. Myatt, M. Rowe, Q. Turchette, W. M. Itano, D. J. Wineland
et al., Nature 404, 256 (2000).

[22] D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J.
Britton, W. M. Itano, B. Jelenkovi¢, C. Langer, T. Rosenband
et al., Nature 422, 412 (2003).

[23] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg,
W. A. Coish, M. Harlander, W. Hénsel, M. Hennrich, and R.
Blatt, Phys. Rev. Lett. 106, 130506 (2011).

[24] T. Choi, S. Debnath, T. A. Manning, C. Figgatt, Z.-X. Gong,
L.-M. Duan, and C. Monroe, Phys. Rev. Lett. 112, 190502
(2014).

[25] C.J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M.
Lucas, Phys. Rev. Lett. 117, 060504 (2016).

[26] T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler,
R. Rines, S. X. Wang, I. L. Chuang, and R. Blatt, Science 351,
1068 (2016).

[27] K. Wright, K. Beck, S. Debnath, J. Amini, Y. Nam, N. Grzesiak,
J.-S. Chen, N. Pisenti, M. Chmielewski, C. Collins et al., Nat.
Commun. 10, 1 (2019).

[28] D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E.
King, and D. M. Meekhof, J. Res. Natl. Inst. Stand. Technol.
103, 259 (1998).

022419-14


https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1103/RevModPhys.86.153
http://arxiv.org/abs/arXiv:1411.4028
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1126/science.1104149
https://doi.org/10.1103/PhysRevLett.74.4091
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1038/nature07125
https://doi.org/10.1126/science.1231298
https://doi.org/10.1103/PhysRevLett.87.257904
https://doi.org/10.1103/PhysRevLett.108.220502
https://doi.org/10.1103/PhysRevLett.101.090502
https://doi.org/10.1038/nature10290
https://doi.org/10.1103/PhysRevLett.82.1971
https://doi.org/10.1103/PhysRevA.71.062309
https://doi.org/10.1103/PhysRevLett.97.050505
https://doi.org/10.1209/epl/i2005-10424-4
https://doi.org/10.1103/PhysRevLett.114.120502
https://doi.org/10.1103/PhysRevA.98.032318
https://doi.org/10.1038/35005011
https://doi.org/10.1038/nature01492
https://doi.org/10.1103/PhysRevLett.106.130506
https://doi.org/10.1103/PhysRevLett.112.190502
https://doi.org/10.1103/PhysRevLett.117.060504
https://doi.org/10.1126/science.aad9480
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.6028/jres.103.019

HIGH-FIDELITY ENTANGLING GATES IN A ...

PHYSICAL REVIEW A 103, 022419 (2021)

[29] R. J. Hughes, D. F. V. James, E. H. Knill, R. Laflamme, and
A. G. Petschek, Phys. Rev. Lett. 77, 3240 (1996).

[30] R. Clark, in Proceedings of the Ist International Conference
on Experimental Implementation of Quantum Computation:
Sydney, Australia, 16-19 January 2001 (Rinton Press, Paramus,
2001).

[31] D. Kielpinski, C. Monroe, and D. J. Wineland, Nature 417, 709
(2002).

[32] L.-M. Duan, B. B. Blinov, D. L. Moehring, and C. Monroe,
Quantum Info. Comput. 4, 165 (2004).

[33] L.-M. Duan and C. Monroe, Rev. Mod. Phys. 82, 1209 (2010).

[34] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P.
Maunz, L.-M. Duan, and J. Kim, Phys. Rev. A 89, 022317
(2014).

[35] A. Mortensen, E. Nielsen, T. Matthey, and M. Drewsen, Phys.
Rev. Lett. 96, 103001 (2006).

[36] B. Szymanski, R. Dubessy, B. Dubost, S. Guibal, J.-P.
Likforman, and L. Guidoni, Appl. Phys. Lett. 100, 171110
(2012).

[37] C. Shen and L.-M. Duan, Phys. Rev. A 90, 022332 (2014).

[38] S.-T. Wang, C. Shen, and L.-M. Duan, Sci. Rep. 5, 8555 (2015).

[39] A. Bermudez, P. Schindler, T. Monz, R. Blatt, and M. Miiller,
New J. Phys. 19, 113038 (2017).

[40] P. Richerme, Phys. Rev. A 94, 032320 (2016).

[41] Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D.
Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, Phys.
Rev. Lett. 81, 3631 (1998).

[42] H. Landa, M. Drewsen, B. Reznik, and A. Retzker, New J. Phys.
14, 093023 (2012).

[43] H. Landa, M. Drewsen, B. Reznik, and A. Retzker, J. Phys. A:
Math. Theor. 45, 455305 (2012).

[44] H. Kaufmann, S. Ulm, G. Jacob, U. Poschinger, H. Landa, A.
Retzker, M. B. Plenio, and F. Schmidt-Kaler, Phys. Rev. Lett.
109, 263003 (2012).

[45] K. Arnold, E. Hajiyev, E. Paez, C. H. Lee, M. D. Barrett, and J.
Bollinger, Phys. Rev. A 92, 032108 (2015).

[46] H. Landa, A. Retzker, T. Schaetz, and B. Reznik, Phys. Rev.
Lett. 113, 053001 (2014).

[47] Y. Wu, S.-T. Wang, and L.-M. Duan, Phys. Rev. A 97, 062325
(2018).

[48] P. J. Lee, K.-A. Brickman, L. Deslauriers, P. C. Haljan, L.-M.
Duan, and C. Monroe, J. Opt. B: Quantum Semiclass. Opt. 7,
S371 (2005).

[49] K. Okada, T. Takayanagi, M. Wada, S. Ohtani, and H. A.
Schuessler, Phys. Rev. A 80, 043405 (2009).

[50] M. Condon, A. Deafio, and A. Iserles, ESAIM: M2AN 43, 785
(2009).

[51] G. B. Arfken, H.-J. Weber, and F. E. Harris, Mathemati-
cal Methods for Physicists: A Comprehensive Guide, Tth ed.
(Academic Press, Waltham, 2013).

[52] J. Thijssen, Computational Physics, 2nd ed. (Cambridge Uni-
versity Press, New York, 2007).

[53] P. H. Leung, K. A. Landsman, C. Figgatt, N. M. Linke, C.
Monroe, and K. R. Brown, Phys. Rev. Lett. 120, 020501 (2018).

022419-15


https://doi.org/10.1103/PhysRevLett.77.3240
https://doi.org/10.1038/nature00784
https://doi.org/10.1103/RevModPhys.82.1209
https://doi.org/10.1103/PhysRevA.89.022317
https://doi.org/10.1103/PhysRevLett.96.103001
https://doi.org/10.1063/1.4705153
https://doi.org/10.1103/PhysRevA.90.022332
https://doi.org/10.1038/srep08555
https://doi.org/10.1088/1367-2630/aa86eb
https://doi.org/10.1103/PhysRevA.94.032320
https://doi.org/10.1103/PhysRevLett.81.3631
https://doi.org/10.1088/1367-2630/14/9/093023
https://doi.org/10.1088/1751-8113/45/45/455305
https://doi.org/10.1103/PhysRevLett.109.263003
https://doi.org/10.1103/PhysRevA.92.032108
https://doi.org/10.1103/PhysRevLett.113.053001
https://doi.org/10.1103/PhysRevA.97.062325
https://doi.org/10.1088/1464-4266/7/10/025
https://doi.org/10.1103/PhysRevA.80.043405
https://doi.org/10.1051/m2an/2009024
https://doi.org/10.1103/PhysRevLett.120.020501

