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Transforming pure and mixed states using an NMR quantum homogenizer
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The universal quantum homogenizer can transform a qubit from any state to any other state with arbitrary
accuracy, using only unitary transformations to perform this task. Here we present an implementation of a finite
quantum homogenizer using nuclear magnetic resonance (NMR), with a four-qubit system. We compare the
homogenization of a mixed state to a pure state and the reverse process. After accounting for the effects of
decoherence in the system, we find the experimental results to be consistent with the theoretical symmetry in
how the qubit states evolve in the two cases. We analyze the implications of this symmetry by interpreting the
homogenizer as a physical implementation of pure state preparation and information scrambling.
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I. INTRODUCTION

The quantum homogenizer can transform a qubit initial-
ized in any state, whether pure or mixed, arbitrarily close to
any other state. It was originally proposed as a theoretical
model for analyzing many-body entanglement within unitary
thermalization, with an additional possible application as a
quantum safe [1,2]. More generally, it can be used to imple-
ment processes such as quantum information scrambling and
pure state preparation using only unitary interactions. In this
work, we present a nuclear magnetic resonance (NMR) im-
plementation of the quantum homogenizer, using a system of
four qubits. We compare the limiting cases of transforming a
qubit from a mixed to a pure state and the reverse process and
explain how the entropy changes in quantum homogenization
are consistent with unitary quantum theory.

The quantum homogenizer is a machine consisting of N
identical reservoir qubits. These each interact, one by one,
with the system qubit (the qubit whose state is to be trans-
formed) via a unitary partial swap:

U = cos η 1 + i sin η S. (1)

The partial swap is a combination of the identity 1 (which
does nothing to the two input qubits) and SWAP operation S
(which swaps the states of the two input qubits), weighted by
the coupling strength parameter η.

It has been shown [1] that if the system qubit interacts
with N reservoir qubits via the partial swap, then as N → ∞,
the system qubit state converges to the original state of the
reservoir qubits, for any coupling strength η �= 0. Further-
more, all of the reservoir qubits after the interaction are within
some distance d of their original state, which can be made
arbitrarily small as coupling strength η → 0. The limit of a
perfect homogenization is achieved asymptotically, as N tends
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to infinity, with an infinitesimal η. In that limit, any system
qubit ρ is sent to the reservoir qubit state ξ , with all the
reservoir qubits remaining unchanged:

UN . . .U1(ρ ⊗ ξ⊗N )U †
1 . . .U †

N ≈ ξ⊗N+1, (2)

where Uk := U ⊗ (⊗ j �=k1 j ) denotes the interaction between
the system qubit and the kth reservoir qubit. As already re-
marked in [1], this is not in contrast with the no-cloning
theorem, because the homogenizer realizes an approximate,
not exact, copying of the quantum state ξ .

The information about the original system qubit’s state is
seemingly erased, despite all the interactions being unitary
and thus information preserving. The information has actually
become stored in the infinitesimal entanglement between in-
finitely many reservoir qubits, which sums to a finite value [1].
This means the homogenizer can be considered as a unitary
implementation of an eraser, in the limit of infinitely many
qubits.

Erasure began its critical role in fundamental physics with
Landauer’s principle, used by Bennett to solve the Maxwell’s
Demon paradox [3]. Since the logical reset process is key
for classical information processing, the limits of erasure are
likely to constrain practical devices in the near future [4].
While commercial processors are several orders of magnitude
away from the fundamental limits on erasure, experiments
are beginning to reach the required sensitivity [5–7]. How-
ever, the physical implications of information erasure remain
controversial [8,9]. There are various proposals for the true
constraints on erasure when performed by a physical ma-
chine [10–12]. Experimental implementations of systems that
perform erasure arbitrarily well through unitary interactions,
such as the quantum homogenizer, could enable fundamental
insights into the limits of information erasure within quantum
theory.

In general, the homogenizer performs quantum infor-
mation scrambling, where a local quantum state becomes
distributed in many-body entanglement and correlations with
other qubits [13]. Scrambling is a specific type of decoher-
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FIG. 1. A quantum homogenizer with two system qubits and two reservoir qubits designed to operate on a linear chain system where two
qubit gates are possible only between adjacent qubits. Homogenization is achieved using the partial swap gates, labeled as η, which connect
the two middle qubits, while full SWAP gates are used to rotate the system and reservoir registers to bring other qubit pairs into contact. The
dashed lines divide the simulation into its initialization, homogenization and readout phases. Qubit labels on the right hand side correspond to
spins in the NMR spin system in Fig. 2.

ence, which has been incorporated into unitary models for
thermalization in quantum thermodynamics [14,15]. More
exotically, it has also been proposed as a model for the
information processing of a black hole [16,17]. Addition-
ally, it provides a mechanism for cryptography: a scrambled
qubit’s original quantum state can only be recovered with the
classical knowledge of its past interactions, securing the quan-
tum information [1]. Homogenization through scrambling
forms a many-body entangled system, notoriously difficult
to probe analytically due to the exponential complexity
when entangling additional qubits. This heightens the need
for experimental implementations of information scrambling
systems.

As a special case of homogenization, the homogenizer can
be used to transform a qubit from any state to a pure state, to
arbitrary accuracy. Pure state preparation has crucial practical
implications for the resources required for quantum computa-
tion. The achievement of fault-tolerant quantum computation
requires error correction, which has been proven to require a
constant supply of pure ancillary qubits [18]. Hence, quantum
models that can produce pure states through unitary dynamics
are of particular interest for quantum technology.

II. EXPERIMENTAL SIMULATION

The quantum circuit used in our simulation is shown in
Fig. 1. This circuit simulates the homogenization between
two system qubits, initially in the pure state |0〉, and two
reservoir qubits, initially in the maximally mixed state ρMM,
and has been designed for implementation on a linear chain
where two-qubit gates are only available between adjacent
qubits. Partial swap gates are implemented between qubits B
and C, while full SWAPs are used to rotate the system and
reservoir registers, permitting indirect contact between any
pair of qubits.

As we are using an NMR implementation for our simu-
lation we do not have access to qubits in pure states, but
instead use ensemble qubits in pseudopure states [19,20], or
effective-pure states [21,22]. As the pure component of these
mixed states evolves in precisely the same way under unitary
transformations as the desired pure state, and the maximally

mixed component is not detectable in NMR experiments,
pseudo-pure states behave exactly like the corresponding pure
states except that the signal intensity is reduced. Note, how-
ever, that preparation of a pure initial NMR state is possible in
special cases [23], and that NMR implementations run using
such states produce identical results to those with pseudo-pure
states except for the increased signal size [24,25].

The four qubit state before the final readout stage depends
on the coupling strength η, but in general is an entangled state.
However the final readout stage involves an implicit partial
trace over the other three qubits, leaving four separate single-
qubit states, all of which lie along the z axes of the respective
Bloch spheres, permitting the state to be fully characterized
by measurements in the computational basis. We can write for
each qubit

ρ = 1

2
+ f (η) × σz

2
, (3)

where

f = tr(ρσz ) (4)

lies in the range ±1, and corresponds to the difference be-
tween the probabilities of finding |0〉 or |1〉 when measuring a
qubit in the computational basis. For our circuit, f is confined
to lie between 0 and 1, and in particular, we find for the
individual qubits the forms

fB = cos4(η) (5)

and fC = 1 − fB, so that fB falls smoothly from 1 to 0, while
fC rises in the opposite way. Similarly,

fA = 4 cos2(η) − 9 cos4(η) + 8 cos6(η) − 2 cos8(η) (6)

also falls from 1 to 0, but following a more complex pattern,
with fD = 1 − fA once again rising in the opposite way.

As the coupling strength η is increased the homogenization
becomes more effective, and for circuits with the same num-
ber of system and reservoir qubits the states are completely
interchanged in the limiting case η = π/2. This symmetry
permits the roles of the system and reservoir qubits to be
interchanged, and so this homogenization circuit can equally
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FIG. 2. The molecular structure and NMR spectrum for 13C la-
beled crotonic acid with 1H decoupling. The multiplet labeled S
comes from the solvent, deuterated acetone; the second solvent peak
at around 16.4 kHz lies outside the spectral range plotted here. As in
all NMR spectra the scale of the vertical axis is arbitrary and frequen-
cies are measured from the RF transmitter frequency with frequency
increasing from right to left. For more details see Appendix A.

well be viewed as a process that randomizes the pure qubits
or polarizes the mixed qubits.

A. The NMR system

Our experiment to simulate a quantum homogenizer was
performed on a four-qubit liquid-state NMR quantum pro-
cessor, given by the four 13C nuclei in a sample of fully 13C
labeled crotonic acid dissolved in deuterated acetone [26,27],
as described in Appendix A. The Hamiltonian parameters
obtained on a 600 MHz (1H frequency) Varian Unity In-
ova spectrometer at 300 K are listed in Appendix A and
are the same as given in [28]. This four-qubit quantum pro-
cessor can be approximated by a linear chain with strong
nearest-neighbour couplings (between 42 and 72 Hz) and
weak long-range couplings (no more than 7 Hz). A 13C NMR
spectrum of the thermal equilibrium state with 1H decoupling
is shown in Fig. 2. The multiplet labeled S comes from the
solvent, and so can be ignored.

B. Initialization

NMR experiments [29] are performed on macroscopic en-
sembles in high temperature thermal states. For this four-spin
homonuclear system, the thermal equilibrium state can be
approximated as

ρth ≈ 1

16
+ p(Az + Bz + Cz + Dz ), (7)

where p ∼ 10−6 is the thermal population difference and Az =
(σz/2) ⊗ 1 ⊗ 1 ⊗ 1 corresponds to the z spin state of spin A,
and similarly for the other three terms. The first term, which
is the four-spin maximally mixed state, is not visible in NMR
experiments, and the population difference simply determines
the signal strength, so it is common to describe this state using
just the deviation density matrix [30,31], which is Az + Bz +
Cz + Dz.

As the thermal state is highly mixed NMR quantum in-
formation processing experiments normally begin with the
preparation of a pseudopure state [19,20], or effective-pure
state [21,22], whose deviation density matrix corresponds to
the desired pure state. Placing spins A and B in the pseudopure

state |00〉 and spins C and D in the maximally mixed state
corresponds to the deviation density matrix Az + Bz + 2AzBz

[31], but, as discussed below, only the first two terms give
any visible signal in our experiments and so it suffices to use
the simpler state Az + Bz. This is trivial to prepare from the
thermal state by applying 90◦ excitation pulses to spins C and
D followed by a crush gradient [31].

C. Homogenization

The homogenizer circuit was implemented using gradient-
ascent pulse engineering (GRAPE) [32], which assembles a
single shaped pulse from a large number of short segments,
each of which is individually controlled. We designed GRAPE
pulses to implement each logic gate in Fig, 1, except that when
two SWAP gates are written vertically above one another a sin-
gle GRAPE pulse was used to implement both gates together.
Separate pulses were prepared for ten different partial swap
gates, varying η in 10◦ steps between 0 (an identity gate, for
which the simplest implementation is just to omit the gate
entirely) and 90◦, corresponding to a full SWAP.

Although we have described our NMR spin system as a
four-qubit device, the molecule also contains spin-1/2 1H
nuclei, which are coupled to the four 13C nuclei we use as
qubits. (The 16O nuclei are spin-0, and so can be safely ig-
nored.) The conventional approach to this problem is to use
continuous 1H decoupling [29] throughout the pulse sequence,
but we were unable to obtain good results with this method
as the length of the pulses limited the radio frequency (RF)
power that could be used. Instead we repeated the approach
used previously in this system in which we avoid decoupling
during the pulse sequence, but designed each GRAPE pulse
to tolerate couplings to 1H nuclei [28] by averaging their
fidelity over the variation in the 13C Hamiltonian which arises
from such coupling terms, as described in Appendix B. Pulses
were also designed to tolerate some RF inhomogeneity by
averaging their performance over a range of RF amplitudes.

When designing GRAPE pulses in NMR it is frequently
necessary to add amplitude penalties to the function being
optimized to prevent the algorithm from finding solutions with
unfeasibly high RF powers. We adopted a simpler approach,
using a single pre-determined amplitude for each pulse and
varying only the RF phase between individual segments. In
addition to sidestepping the need for amplitude limits this
simplifies the underlying search, but at the cost of requir-
ing that the individual segments are quite short, so that the
effective rotation induced by each segment is small. More-
over, this approach to GRAPE avoids the computationally
expensive operation of matrix exponentiation, leading to enor-
mous speed-ups over conventional approaches. As a result
this approach, when combined with the sub-system GRAPE
approach described in Ref. [33], could lead to efficient scal-
able control. Further details of this approach can be found in
Appendix C.

D. Readout

The circuit in Fig. 1 assumes conventional projective mea-
surements in the computational basis, so that it is necessary
to repeat the experiment many times to estimate f , the z

022414-3



MARIA VIOLARIS et al. PHYSICAL REVIEW A 103, 022414 (2021)

component of the Bloch vector describing each qubit. Here
the ensemble nature of NMR comes into its own, as NMR
spectra directly reveal the desired expectation value.

Direct observation of the NMR signal, known as the free
induction decay [29], reveals the expectation value of the
x and y components of the Bloch vector. To observe the z
component we first apply a crush gradient, dephasing any
pre-existing xy components, and then apply a 90◦ pulse to
excite all four spins. The integrated signal intensity of each
of the four multiplets seen in Fig. 2 is then proportional to
f . Note that integrating to find the total signal in each multi-
plet is equivalent to performing a partial trace over the other
spins [34].

Because we are integrating each multiplet it is not neces-
sary to apply 1H decoupling even during readout. However
it is desirable to do so, as this reduces the width of each
multiplet and so reduces the effects of noise in the integrated
signal. To obtain accurate integrals it is important to process
the data carefully, paying attention to phasing and baseline
correction [35]. As NMR signal intensities are only propor-
tional to the desired z component it is essential to obtain a
suitable reference intensity against which all other intensities
can be normalized. In the results below, we use two different
choices of normalization, which emphasize different features
of the experimental results. The use of normalized intensities
means that experimental errors can take measured values of f
slightly outside the theoretical limits of ±1, and such appar-
ently unphysical values should not cause concern.

III. RESULTS

The experimental results are shown in Fig. 3, with the two
subfigures corresponding to the two different normalization
choices. In each case, the lines show the expected polariza-
tions for each of the four qubits calculated as described in
the previous section, while data points show the measured po-
larizations on the corresponding spins. Each experiment was
repeated ten times, with the error bars showing the standard
deviation around the mean.

The upper panel shows the results of normalising each
intensity with respect to the average intensity of the A and
B multiplets in the initial state. The experimental signal in-
tensity is systematically lower than expected, with almost all
data-points lying below the theoretical lines. The agreement
for spins A and B is generally better than for spins C and D,
although in all cases agreement is best close to f = 0.

This general pattern of signal loss is easily explained as
arising from the inevitable errors in any experimental imple-
mentation. Decoherence will normally lead to signal loss, and
so will coherent errors which become effectively incoherent
when averaged over the experimental ensemble, for example,
over different RF powers in different parts of the sample.
Finally the readout process, including the initial crush gra-
dient and the implicit partial trace, itself removes all terms
in the density matrix other than single spin z magnetization.
Thus errors of any kind can only appear as a change in
the measured values of f , usually reducing these towards
zero.

The experimental asymmetry observed between the erasure
of pure spins A and B and the polarization of initially mixed
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FIG. 3. Experimental results and theoretical predictions for the
quantum homogenizer. Data points show the results from ten
repetitions of the experiment, while solid lines show theoretical
calculations using Eqs. (3)–(6). For the upper panel, signal strengths
were normalized against the average intensity from spins A and B
in the initial state Az + Bz, while in the lower panel, the signal from
each spin is normalized against a reference signal chosen for that
spin.

spins C and D, in comparison with the symmetry of the theo-
retical predictions, is also easily understood. For spins A and
B, the signal loss acts in the same direction as the quantum
homogenizer process, but for spins C and D it acts against the
desired process, making the effects easier to see.

The lower panel shows the results when each spin was indi-
vidually normalized against its intensity in the η = 0 spectrum
(for spins A and B) or η = 90◦ spectrum (for spins C and
D). This removes the effects of signal loss during the SWAP

gates, and for C and D also removes losses due to partial swap
gates. The experimental data-points now lie much closer to the
theoretical predictions and the expected symmetry is largely
restored.

IV. INTERPRETATIONS

The experimental data show the convergence of the system
qubit to the state of the reservoir qubits. This has been tested
for the limiting cases of transforming a qubit from a mixed
state to a pure state and from a pure to a mixed state, demon-
strating that the homogenization is effective regardless of the
initial states of the system or reservoir qubits. After account-
ing for the bias towards mixed states caused by decoherence,
the experimental results are consistent with the theoretical
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FIG. 4. Von Neumann entropies of qubits B and C against cou-
pling strength, calculated from the experimental results and plotted
against the theoretical predictions.

symmetry in the evolution of how the states evolve, where the
states for the pure-to-mixed homogenization vary inversely
compared to the states for the mixed-to-pure homogenization.

Pure state preparation. Figure 4 plots the von Neumann
entropy

S = −
(

1 + f

2

)
log2

(
1 + f

2

)
−

(
1 − f

2

)
log2

(
1 − f

2

)

(8)

of the theoretical and experimental qubit states against cou-
pling strength, where f was defined in Eq. (3). Theoretical
curves were calculated using Eq. (5) for fB and fC = 1 − fB.
The qubit B is the system qubit for the pure-to-mixed homog-
enization, while C is the system qubit for the mixed-to-pure
homogenization. As expected, the qubit being transformed
from a mixed to a pure state decreases in entropy, with the
effect being strongest for strong coupling, while the qubit
being transformed from a pure to a mixed state increases in
entropy. Since all the interactions are unitary, the total von
Neumann entropy of the combined homogenizer and system
must remain constant. Hence it can be deduced that the en-
tropy decrease of the mixed-to-pure system qubit C must be
accompanied by an increase in the entropy of the homoge-
nizer (qubits A and B), which is the irreducible entropic cost
associated with preparing a pure state.

Scrambling. The initial pure or mixed state of a system
qubit becomes indistinguishable from the original state of the
homogenizer qubits, which is a special case of information
scrambling. As explained in Ref. [1], the information about
the system’s initial state becomes hidden in mutual correla-
tions between the homogenizer qubits. If there were no mutual
correlations, one would expect the sum of the von Neumann
entropies of the four qubits to equal two for all coupling
strengths. The actual sum of the von Neumann entropies is in
Fig. 5. While this is two for the cases of an identity or a SWAP

operation, for intermediate coupling strengths it is larger.
This indicates that the negative contribution to von Neumann
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FIG. 5. Total von Neumann entropies of the four individual
qubits, calculated from the experimental results and plotted against
the theoretical predictions.

entropy from mutual correlations has been unaccounted for,
which is due to considering only reduced density operators to
describe the qubit states.

Reusability. The results in Ref. [1] show that for the regime
of weak coupling and a large reservoir, the reservoir qubits
remain almost unchanged by the interaction. We can therefore
hypothesize that the same homogenizer could be reused for
a second time (or more) to successfully homogenize more
system qubits. Whilst the system we have tested here only
has a small homogenizer, we can explore the hypothesis by
comparing the states of the four qubits in the weak coupling
regime.

Qubit A can be interpreted as interacting with a homog-
enizer that has already been “used” once, to homogenize B.
Similarly, qubit D can be interpreted as being homogenized
by a homogenizer that has already been used to homogenize
C. These second system qubit states are closely aligned with
the first system qubit counterparts for weak coupling, and
diverge for strong coupling, in Fig. 3. This indicates that
the homogenizer is minimally changed from its original state
in the weak coupling regime, allowing it to perform just as
effective a homogenization on the second system qubit as it
did on the first. Hence, the homogenizer can be reused to some
extent to give the same incremental changes in system qubit
state, in the weak coupling regime. Quantifying how far the
homogenizer can be reused, depending on its initial state, is a
line of further theoretical and experimental work in this area,
which we leave for a future paper.

V. CONCLUSIONS

We have performed an NMR demonstration of the quan-
tum homogenizer, using the partial swap on a system of four
qubits. This demonstrates the principle behind a machine that
can perform processes such as information erasure and the
preparation of pure states using entirely unitary interactions.
The experiments show the homogenization of a pure state and
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of a mixed state. The asymmetry in the evolution of the states
with coupling strength can be explained by the decoherence
within the experiment. After accounting for this, the results
are consistent with the theoretical symmetric evolution of the
pure and mixed qubit states.

Our experiment was limited to showing the principles
behind a homogenization machine with a small number of
NMR qubits. In theory, the quantum homogenizer can per-
form homogenization to arbitrarily high accuracy in the limit
of an infinitely large reservoir, with vanishing deterioration
to its own state in the limit of weak coupling. This is of
particular interest for a number of approaches which aim to
study entities that undergo no net change while enabling a
transformation: resource theory [36], where such entities are
called catalysts, and the theory of quantum reference frames
[37], in the studies of the emergence of classicality. It is also of
particular interest for the constructor theory of thermodynam-
ics [38,39], where thermodynamic irreversibility is associated
with there being tasks that can be performed to arbitrarily high
accuracy in one direction, but not in the reverse. The homoge-
nizer is therefore a candidate toy-model to demonstrate these
phenomena within quantum theory.

Expanding the experimental demonstration of the homog-
enizer to different regimes and quantum technologies could
give an additional insight into the fundamental limits to
homogenizing pure and mixed states by physical machines.
This may ultimately help define the limiting capabilities of
quantum computation protocols, and new devices in the field
of quantum thermodynamics.
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APPENDIX A: THE NMR SPIN SYSTEM

The NMR sample comprises a solution of fully 13C la-
beled crotonic acid (trans-CH3CH=CHCO2H) dissolved in
deuterated acetone and held at a temperature of 300 K. The
structure is shown in Fig. 2 as a “ball and stick” diagram,
with carbon atoms coloured black, hydrogen atoms white, and
oxygen atoms red. As usual for liquid state NMR samples
rapid molecular tumbling means that the different molecules
are rendered effectively identical, and direct dipole–dipole

couplings between nuclei in different molecules are averaged
out, so the system can be treated as an ensemble of identical
independent copies. The deuterium signal of the solvent is
used to provide a field-frequency lock, which holds the NMR
transition frequencies constant.

The spin system contains ten spin-1/2 entities, four 13C
nuclei and six 1H nuclei. The two 16O nuclei can be com-
pletely ignored as they are spin-0, and so have no effect on
the other spins. The 1H nucleus in the hydroxyl group can
also be ignored as it undergoes rapid chemical exchange [29],
averaging out its interaction with other spins, leaving us with
a nine spin system. This can be described by the Hamiltonian

H = HH + HC + HHC, (A1)

where HH and HC comprises the chemical shifts of and
homonuclear couplings [29] between the five 1H and four 13C
nuclei, respectively, while HHC represents the heteronuclear
couplings between the different nuclear types.

The RF transmitter frequency was set to 150.852078 MHz,
which corresponds to zero-frequency in the NMR spectrum
shown in Fig. 2. For this spectrum the HHC terms were re-
moved by 1H decoupling [29]. The frequencies in HC are
given in the table below.

A B C D

−11962.2 41.6 1.5 7.1 A
7306.0 69.6 1.2 B

3972.1 72.3 C
10626.1 D

Here the resonance frequencies for each spin are given
down the diagonal, and couplings between spins are listed off
the diagonal; all frequencies are in hertz.

APPENDIX B: ROBUST GRAPE PULSES

Of the nine relevant spin-1/2 nuclei in the spin system
(see Appendix A), we only seek to perform quantum gates
on the four 13C nuclei, which form the system qubits, with
the five 1H nuclei providing an unwanted environment. The
traditional approach is to apply a broadband decoupling se-
quence [29] to the 1H environment qubits so as to average out
their interactions with the system qubits. As the environment
spins are not directly observed, decoupling the environment
qubits is equivalent to deleting the HH and HHC terms from
the overall Hamiltonian thereby leaving just the Hamiltonian
HC, and GRAPE [32] can now be used to design quantum
gates on this four-qubit system.

However, in practice it is not possible to achieve perfect 1H
decoupling, completely tracing out the environment qubits so
as to allow an ideal four-qubit treatment of the system. Perfect
decoupling requires extremely high RF powers, beyond real-
istic hardware capabilities, and will also led to heating of the
sample. Our simulations suggest that imperfect 1H decoupling
is the main source of error encountered while implementing
GRAPE pulses on this system. The most direct approach to
overcome this is to design a nine-qubit quantum gate that
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controls both 1H and 13C excitation so as to perform an iden-
tity operation on the environment qubits, while implementing
the desired four-qubit operation on system qubits. However,
designing nine-qubit gates using GRAPE is computationally
expensive and impractical.

Here, we adopt the approach described in Ref. [28] for
designing GRAPE pulses that totally avoid environment de-
coupling and also have a similar computational complexity
scaling to four-qubit systems. The idea is to leave the 1H
nuclei completely untouched while implementing the quan-
tum gate, so that they can be treated as remaining in fixed
eigenstates. These five spins give rise to 25 = 32 possible
eigenstates {00000, 00001, . . . , 11111}, but there are only 16
genuinely distinct eigenstates as the three 1H nuclei in the
methyl group are completely equivalent. By considering each
of these 16 eigenstates one at a time, we obtain 16 separate
system Hamiltonians. Designing a GRAPE pulse that is robust
over these 16 Hamiltonians is equivalent to tracing out HH

and HHC terms from the combined Hamiltonian. Therefore,
at modest computational overhead, the GRAPE pulses can be
made robust to the environment qubits.

APPENDIX C: PHASE-ONLY GRAPE PULSES

In GRAPE [32], the control sequence is made piecewise
continuous by discretizing the total control duration T into
N segments each of duration �t = T/N . Generally, the con-
trols for each segment j are characterized by an amplitude
�( j) and phase φ( j) which are constant for a duration �t .
However, here we restrict the control sequence to have a
fixed amplitude � across all N segments. In such a case, the
propagator during the jth segment for a homonuclear spin
system is given by

Uj = exp

(
− i

h̄
[H0 + � cos φ( j)Ix + � sin φ( j)Iy]�t

)
,

(C1)

where H0 is the internal Hamiltonian of the spin system and
Ix and Iy are the total x- and y-Pauli spin-1/2 operators acting
on all the spins. As described in Ref. [41], this propagator can

be expressed as a series of z and x rotations,

Uj = Z jXZ†
j , (C2)

where Z j = exp [−iφ( j)Iz] is a diagonal matrix and X =
exp [−i(H0 + �Ix )�t] is a constant matrix, which is the same
for all N segments. The operator X can thus be evaluated
once, and then stored for reuse, while the diagonal matrix
Z j can be treated as a column vector to perform elementwise
multiplication with X . As a result, the evaluation of the prop-
agator Uj can be greatly sped up, with the only computation
required being elementwise multiplication of a matrix and a
vector. Thus, by setting a fixed amplitude across all segments,
it is possible to entirely avoid the expensive computation of
matrix exponentials, while simultaneously avoiding the need
for amplitude penalty functions.

Further, this construction of the propagator can greatly
simplify the evaluation of gradient of the propagator with re-
spect to the control variables, a necessary step for the GRAPE
algorithm to update the controls. The only variable controls
present in the propagator Uj are the phases φ( j) that appear
in the diagonal matrix Z j . Since, Z j is diagonal, it is also
possible to evaluate the exact result

dZ j/dφ( j) = −iIzZ j (C3)

analytically. Applying the chain rule, the exact gradient of the
propagator Uj with respect to the phase φ j is

dUj

dφ( j)
= i[Uj, Iz]. (C4)

Unlike the original GRAPE algorithm [32] which relied on
gradients approximated to first-order, our method can evaluate
exact analytic gradients at no additional cost.

Methods for evaluating exact gradients have been dis-
cussed in Ref. [42], where evaluation of the propagators by
eigendecomposition gives the exact gradients at no additional
cost. However, in our method, by simply fixing the amplitudes
the exact gradients can be calculated without the need of
matrix exponentiation or eigendecomposition for evaluating
propagators. Moreover, exact gradients are necessary [43]
while using second order optimization routines like BFGS
[44]. Further, the exact Hessian can also be evaluated analyt-
ically if desired, giving accelerated convergence while using
Netwon–Raphson type methods [45].
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