
PHYSICAL REVIEW A 103, 022410 (2021)

Scalable W -type entanglement resource in neutral-atom arrays with Rydberg-dressed
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While the Rydberg-blockade regime provides the natural setting for creating W -type entanglement with
cold neutral atoms, it is demonstrated here that a scalable entanglement resource of this type can even be
obtained under completely different physical circumstances. To be more precise, a special instance of twisted
W states—namely, π -twisted ones—can be engineered in one-dimensional arrays of cold neutral atoms with
Rydberg-dressed resonant dipole-dipole interaction. In particular, it is shown here that this is possible even
when a (dressed) Rydberg excitation is coupled to the motional degrees of freedom of atoms in their respective,
nearly harmonic optical-dipole microtraps, which are quantized into dispersionless (zero-dimensional) bosons.
For a specially chosen (“sweet-spot”) detuning of the off-resonant dressing lasers from the relevant internal
atomic transitions, the desired π -twisted W state of Rydberg-dressed qubits is the ground state of the effective
excitation—boson Hamiltonian of the system in a broad window of the relevant parameters. Being at the same
time separated from the other eigenstates by a gap equal to the single-boson energy, this W state can be prepared
using a Rabi-type driving protocol. The corresponding preparation times are independent of the system size and
several orders of magnitude shorter than the effective lifetimes of the relevant atomic states.
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I. INTRODUCTION

The past decade has seen a surge of interest in ensembles
of Rydberg atoms [1] both from the fundamental-physics [2]
and technological standpoints [3]. Owing to the remark-
able properties of their atomic constituents, these systems
have gained prominence as analog simulators of many-body
phenomena [4–6]. Large strides have simultaneously been
made in the context of quantum-information processing (QIP)
with this class of atomic systems [7,8], a research direction
aimed at realizing a neutral-atom quantum computer [9,10].
In particular, the scalability milestones recently achieved with
arrays of laser-cooled atoms trapped in optical microtraps
(tweezers) [11–16] have rekindled interest in quantum-state
engineering in such systems [17–24]. Owing to the possibility
of integrating multiqubit storage, readout, and transport [25]
in these systems as well as their inherent capability for
the coherent control of spin and motional states of trapped
atoms [26], tweezer arrays have acquired their present status
of the most powerful platform for QIP with neutral atoms.

Rydberg blockade (RB) [27–29]—a phenomenon whereby
the van der Waals (vdW) interaction prevents Rydberg
excitation of more than one atom within a certain radius—
established itself as the enabling physical mechanism for QIP
with neutral atoms [9]. Although RB also lies at the heart of
many other phenomena [30,31], perhaps its most important
implication is that it gives rise to a conditional logic that
enables the realization of entangling two-qubit gates [9,32],
such as controlled-NOT [33–35]. Another important facet of
RB is that it leads to the creation of coherent-superposition
“superatom” states with a single Rydberg excitation being
shared among all atoms in an ensemble [34]. Such entangled

states [36] belong to a special “twisted” type of W states [37].
The latter represent one of the two most important classes
of maximally entangled multiqubit states; the other class,
inequivalent with respect to local operations and classical
communication [38], is furnished by Greenberger-Horne-
Zeilinger (GHZ) states [39]. W states are known to be the most
robust ones to particle losses among all N-qubit states [40]
and have proven useful in many QIP protocols [41,42]. This
prompted proposals for their preparation in various physical
systems [43–50].

While RB naturally engenders a W -type entanglement in
ensembles of cold neutral atoms, the present paper aims
to show that the same type of entanglement can also be
engineered in such systems under quite different physi-
cal circumstances. More precisely, this paper describes a
scheme for a fast deterministic preparation of π -twisted W
states in one-dimensional (1D) arrays of cold neutral atoms
with Rydberg-dressed resonant dipole-dipole interaction [51].
These arrays of atoms are assumed to be trapped in optical
tweezers [11–15].

Generally speaking, Rydberg dressing entails an off-
resonant laser coupling between the ground states and the
Rydberg states of an atom such that a small Rydberg com-
ponent is admixed to the ground state [52,53]. This allows
the dipole-dipole interaction to be felt even among atoms that
almost reside in their ground states. In particular, the use of
Rydberg dressing in the realm of QIP arose from the de-
sire to strengthen qubit-qubit interactions for Rydberg qubits
encoded in two long-lived low-lying atomic states (typically
two hyperfine sublevels of an electronic ground state [8]).
This, in turn, naturally led to the concept of Rydberg-dressed
qubits [54–57].
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The essential ingredient of the present paper is that
it explicitly takes into account the coupling of an itiner-
ant dressed Rydberg excitation to the motional degrees of
freedom of trapped atoms. Upon quantizing the latter into
dispersionless (zero-dimensional) bosons, the ensuing sys-
tem dynamics are governed by a nonlocal excitation-boson
(e-b) interaction [58–60]. In particular, for a specially chosen
[“sweet-spot” (ss)] detuning of the dressing lasers from the
relevant internal atomic transitions, the ground state of the
effective e-b Hamiltonian is the bare-excitation Bloch state
with the quasimomentum k = π (measured in units of the in-
verse period of the underlying lattice), which in the system at
hand coincides with the π -twisted W state of Rydberg-dressed
qubits.

In addition to being the ground state of the system in a
broad window of the relevant parameters, the sought-after W
state is separated from the other eigenstates by a gap equal
to the single-boson energy. This last circumstance—a generic
feature of systems in which an itinerant excitation is coupled
to gapped bosons—represents a key protection mechanism for
the desired W states and facilitates their preparation using
a simple Rabi-type driving protocol. Importantly, the result-
ing state-preparation times are independent of the system
size (i.e., the number of Rydberg-dressed qubits), thus, the
proposed system provides a scalable W -type entanglement re-
source. Another favorable property of the envisioned protocol
is that these last times are several orders of magnitude shorter
than the relevant Rydberg-state lifetimes.

The remainder of this paper is organized as follows. In
Sec. II the system under consideration is introduced, along
with the necessary notation and conventions to be used
throughout the paper. The effective Hamiltonian of the sys-
tem, describing an itinerant (dressed) Rydberg excitation
coupled to the motional degrees of freedom of atoms is dis-
cussed in Sec. III, first in its most general form (Sec. III A)
and then in the special case that corresponds to the ss detun-
ing (Sec. III B). The principal findings of the paper, which
pertain to this special choice of the detuning, are presented
and discussed in Sec. IV. The character of the ground states
of the system in different parameter regimes is first analyzed
in Sec. IV A, which also establishes the connection between
the obtained quasimomentum-π bare-excitation ground states
and the desired π -twisted W states. The envisioned state-
preparation protocol is then presented, and its robustness
discussed in Sec. IV B. Finally, the significance of the ob-
tained results in the context of QIP with Rydberg-dressed
qubits is briefly elaborated on in Sec. IV C. The paper is sum-
marized, along with conclusions and some general remarks,
in Sec. V.

II. SYSTEM

The system under consideration [for an illustration, see
Fig. 1(a)] is a 1D array of N cold neutral atoms (e.g., of 87Rb)
with mass m, each confined in its individual, approximately
harmonic optical-dipole microtrap. In particular, the distance
a between the minima of adjacent microtraps represents the
period of the underlying 1D lattice. Importantly, the quan-
tized displacement of the nth atom (n = 1, . . . , N) from its
equilibrium position is given by un ≡ (h̄/2mωb)1/2(bn + b†

n),

(a)

(b)

FIG. 1. (a) Illustration of the system under consideration: cold
neutral atoms are confined in individual, nearly harmonic, optical-
dipole microtraps whose minima are separated by distance a.
(b) Schematic level diagram of an atom with ground-states |g〉 and
|h〉, which are off-resonantly laser coupled to highly excited Rydberg
states |nqS〉 and |nqP〉, respectively.

where ωb is the longitudinal trap frequency and b†
n (bn) creates

(destroys) a boson with energy h̄ωb in the respective micro-
trap. It should be stressed that an effectively 1D system of
this kind is realized in practice by choosing the transverse
trapping frequencies to be an order of magnitude larger than
the longitudinal frequency ωb.

Unlike the vdW case, dressing resonant dipole-dipole in-
teractions necessitates the use of two laser couplings and
four electronic states (two ground states and two Rydberg
states) [51]. Thus, an off-resonant coherent coupling of two
ground states (i.e., two different levels in the hyperfine mani-
fold of the alkali-atom electronic ground state)—here denoted
by |g〉 and |h〉—to a pair of highly excited Rydberg states
|nqS〉 and |nqP〉 (where nq is the principal quantum number) is
envisaged here [for an illustration, see Fig. 1(b)]. The last two
states correspond to the angular momentum quantum numbers
l = 0, 1. In addition, all atoms are hereafter assumed to be
prepared in states corresponding to the value ml = 0 of the
azimuthal quantum number, never acquiring ml �= 0. Along
with the previously assumed geometric confinement of atoms,
this ensures that the effective dressing-induced interaction
potential for a pair of atoms will have no angular dependence.

As a result of Rydberg dressing, an atom that initially
resided in the ground-state |g〉 (|h〉) finds itself in the dressed
state |0〉 ≈ |g〉 + αs|nqS〉 (|1〉 ≈ |h〉 + αp|nqP〉), where αs,p ≡
�s,p/(2�s,p) are the effective (dimensionless) dressing pa-
rameters, fixed by the respective total Rabi frequencies �s,p

of the driving fields and the total laser detunings �s,p [cf.
Fig. 1(b)] [51]. [Note that because the coherent coupling
between the ground and the Rydberg states is in practice
realized through two-photon (or multiphoton) transitions, the
Rabi frequencies �s,p and the detunings �s,p have to be con-
sidered as effective quantities.] These parameters represent a
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quantitative measure for how far-detuned the coherent laser
coupling is. For the sake of simplicity, it is hereafter assumed
that αs = αp ≡ α and �s = �p ≡ �/2, where � ≡ �s + �p.
These assumptions imply that �s = �p ≡ � = �α.

The physical mechanism behind the coupling of the in-
ternal states of atoms in this system to their motional
degrees of freedom represents a twofold generalization of
the conventional excitation transport enabled by the resonant
dipole-dipole interaction [61]; the latter scales as the inverse
third power of the interatomic distance (Vdd = C3/R3). First,
in the usual setting for a pair of atoms prepared in two
different Rydberg states |s〉 and |p〉 (the latter state being
higher in energy—the “excited state”) the resonant dipole-
dipole interaction gives rise to the hopping of a p excitation
between the two atoms. Thus, this interaction is accompanied
by the electronic-state transfer |s, p〉 � |p, s〉 between the two
atoms [62–64]. On the other hand, here the role of the ordinary
Rydberg states is played by the dressed ones (denoted above
by |0〉 and |1〉) [51], which represent the logical qubit states.
Second, due to the vibrational motion of atoms interatomic
distances in the system under consideration are not fixed but
instead dynamically fluctuate so that, e.g., the distance be-
tween atoms n and n + 1 is given by a + un+1 − un. This leads
to an effective dependence of both the excitation’s on-site
energy and its hopping amplitude on the boson degrees of
freedom, two e-b coupling mechanisms reminiscent of those
encountered in solid-state systems [65–69].

III. EFFECTIVE EXCITATION-BOSON HAMILTONIAN

In what follows, an effective e-b Hamiltonian of the system
at hand is first presented (Sec. III A). The form of this Hamil-
tonian follows from the effective interaction potential for a
pair of Rydberg-dressed atoms (in the resonant dipole-dipole
configuration of their internal states), which was derived using
van Vleck perturbation theory in Ref. [51] (with the dressing
parameters αs and αp serving as small parameters for the
perturbative expansion). In the present paper this last result
is used as the point of departure for the treatment of an
ensemble of atoms with the additional assumption that the
interatomic distances dynamically fluctuate (recall the discus-
sion in Sec. II). Following the discussion of the most general
e-b Hamiltonian of the system, further considerations are de-
voted to a special case of relevance for the engineering of the
sought-after W states (Sec. III B).

A. General case

The system Hamiltonian, describing an itinerant dressed
Rydberg excitation coupled to dispersionless bosons, can suc-
cinctly be written as

H =
∑

n

εn(u)c†
ncn +

∑
n

tn,n+1(u)(c†
n+1cn + H.c.)

+ h̄ωb

∑
n

b†
nbn, (1)

where u ≡ {un| n = 1, . . . , N} is shorthand for the set of the
atom displacements and c†

n (cn) creates (destroys) an excita-

tion at site n, with

εn(u) = α4h̄�

2

[{
1 −

(
C3

h̄�

)2 1

(a + un+1 − un)6

}−1

+
{

1 −
(

C3

h̄�

)2 1

(a + un − un−1)6

}−1]
, (2)

being its corresponding on-site energy [51]. The latter de-
pends on the boson displacements not only on-site n, but also
on the adjacent sites n ± 1. At the same time,

tn,n+1(u) = α4C3

(a + un+1 − un)3

×
{

1 −
(

C3

h̄�

)2 1

(a + un+1 − un)6

}−1

(3)

is the excitation hopping amplitude between sites n and
n + 1 [51], which depends on the difference un+1 − un of
the respective displacements. To facilitate further analysis,
it is prudent to introduce the dimensionless quantity ζ ≡
C3/(h̄ �a3), the ratio of the most relevant energy scales in the
system at hand.

Before embarking on further discussion, it is useful to
stress that the very existence of the dressing-induced on-site
term in the Hamiltonian of Eq. (1), which has no analog in
the standard resonant dipole-dipole interaction case [62], is
a consequence of the fact that the effective dressing-induced
interaction potential for a pair of atoms has a nonzero diagonal
component [51].

For small displacements (un � a) it is pertinent to expand
the expressions on the right-hand side of Eqs. (2) and (3)
to linear order in the difference of displacements using the
approximation (1 ± x)r ≈ 1 ± rx (|x| � 1). The linear de-
pendence of εn(u) on un+1 − un−1 captures the coupling of the
excitation density at site n with the boson displacements on
the neighboring sites n ± 1 [breathing-mode-type (B) e-b cou-
pling]; similarly, the linear dependence of tn,n+1 on un+1 − un

describes how the excitation hopping between sites n and
n + 1 is affected by the boson displacements [Peierls-type (P)
coupling] [58–60]. This lowest-order expansion reads

εn(u) = ε0 + ξB(un+1 − un−1),
(4)

tn,n+1(u) = −te + ξP(un+1 − un),

where ξB and ξP are given by

ξB = 3
α4h̄�

a

ζ 2

(1 − ζ 2)2
,

(5)

ξP = 3
α4C3

a4

3ζ 2 − 1

(1 − ζ 2)2
,

and the bare on-site energy and hopping amplitude by

ε0 = α4h̄�

1 − ζ 2 , te = − α4C3

a3(1 − ζ 2)
. (6)

The positive sign of te [realized for |ζ | > 1, i.e.,
C3/(h̄|�|a3) > 1] corresponds to the conventional situation
where the bare-excitation dispersion ε0 − 2te cos k has
its minimum at k = 0. However, of principal interest
here is the opposite, negative sign of te [for |ζ | < 1, i.e.,
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C3/(h̄|�|a3) < 1]. This is the case with the band minimum at
k = π , which corresponds to the bare-excitation Bloch state,

|�k=π 〉 ≡ c†
k=π

|0〉e ⊗ |0〉b, (7)

where |0〉e and |0〉b are the excitation and boson vacuum
states, respectively.

The effective system Hamiltonian has a noninteracting part
that comprises free excitation and boson terms,

H0 = ε0

∑
n

c†
ncn − te

∑
n

(c†
n+1cn + H.c.) + h̄ωb

∑
n

b†
nbn.

(8)
Its interacting part is given by He-b = HB + HP, where

HB = gBh̄ωb

∑
n

c†
ncn(b†

n+1 + bn+1 − b†
n−1 − bn−1),

HP = gP h̄ωb

∑
n

(c†
n+1cn + H.c.)(b†

n+1 + bn+1 − b†
n − bn)

(9)

are the terms that correspond to the two different e-b cou-
pling mechanisms described above [cf. Eq. (4)] with gB ≡
ξB/(2mh̄ω3

b )1/2 and gP ≡ ξP/(2mh̄ω3
b )1/2 being the dimen-

sionless B and P coupling strengths. Importantly, owing to the
discrete translational symmetry of the system, the eigenstates
of H = H0 + He-b can be labeled by the eigenvalues of the to-
tal quasimomentum operator Ktot = ∑

k k c†
kck + ∑

q q b†
qbq.

The permissible eigenvalues of this operator belong to the
Brillouin zone that corresponds to the underlying 1D lattice.

The bare on-site energy ε0 in Eq. (8) plays the usual role of
the on-site energy in tight-binding models—that of a constant
energy offset (i.e., the band-center energy) for an itinerant
excitation. Although ε0 is inconsequential for the physical
mechanism that leads to π -twisted W states in the system at
hand (competition of the B and P couplings), the fact that it
depends on the dressing parameter α [cf. Eq. (6)] does have
some bearing on the preparation of such states (see Sec. IV B
below).

B. Special case: Sweet-spot detuning

Consider now the special case of the proposed system
with equal P and B coupling strengths, i.e., gP = gB ≡ g.
The latter physical situation corresponds to the ss value ζss =
(1 + √

13)/6 ≈ 0.77 of ζ . Assuming that the atomic species
and the principal quantum number are chosen, which fixes
the interaction constant C3, for each choice of the lattice
period a this last situation is realized for the detuning �ss ≡
C3/(h̄ζssa3) and a range of values for the Rabi frequency
�ss = �ssα [determined by the adopted range of values of the
dressing parameter (see below)]. In this special case, the e-b
coupling and the total Hamiltonians will be denoted by H ss

e-b
and H ss, respectively, in what follows.

To quantify the e-b coupling strength in the aforementioned
special case of the system under consideration, one invokes
the momentum-space form of H ss

e-b, which reads

H ss
e-b = N−1/2

∑
k,q

γ ss
e-b(k, q) c†

k+qck (b†
−q + bq) . (10)

The explicit form of the e-b vertex function γ ss
e-b(k, q) in the

last equation is

γ ss
e-b(k, q) = 2igh̄ωb [ sin k − sin q − sin(k + q)]. (11)

Consequently, the effective e-b coupling strength—generally
defined as λe-b = 〈|γe-b(k, q)|2〉BZ/(2|te|ωb) [70], where
〈· · · 〉BZ stands for the Brillouin-zone average—in this special
case evaluates to λss

e-b ≡ 3g2 h̄ωb/|te|, i.e.,

λss
e-b = 27

2
α4 C3

mω2
ba5

(
3ζ 2

ss − 1
)2

(
1 − ζ 2

ss

)3 . (12)

The obtained dependence of λss
e-b on α ≡ �ss/�ss implies that

the Rabi frequency �ss is the main experimental knob in
the system at hand. By varying �ss different characteristic
regimes of this system can be explored.

To set the stage for further analysis, it is prudent to
specify at this point the realistic range of values for each
of the relevant system parameters. The system at hand is
mostly analyzed in what follows for nq = 80 with the corre-
sponding value of C3 = 2π h̄ × 40 GHz μm3 of the resonant
dipole-dipole interaction constant for 87Rb atoms. As usual
for optical-tweezer arrays, the lattice period a is in the range
between about 3 μm and tens of micrometers. The corre-
sponding values of the ss detuning can vary in an extremely
wide range, depending on the choice of a; for example,
for a = 4 μm one obtains �ss ≈ 5.12 GHz, for a = 10 μm
one finds �ss ≈ 327.4 MHz, whereas for a = 15 μm one has
�ss ≈ 97 MHz. At the same time, the typical values for the
trapping frequency ωb are ωb/(2π ) ∼ (2–5) kHz. Finally, for
the dressing parameter α it is worthwhile to consider values in
the range of 0.01–0.1.

IV. RESULTS AND DISCUSSION

In the following, the principal findings of this paper are pre-
sented and discussed. The character of the ground states of the
system at hand is first analyzed (Sec. IV A); it is explained that
in a broad parameter window they coincide with the desired
π -twisted W states. The W -state preparation protocol is then
presented with emphasis on its robustness that stems from
the specific character of the energy spectrum of the system
(Sec. IV B). Finally, the significance of the obtained results
for QIP with Rydberg-dressed qubits is briefly discussed in
Sec. IV C.

A. Ground state and its connection to π-twisted W states

Lanczos-type exact diagonalization [70] of H ss = H0 +
H ss

e-b is carried out here for a system with N = 10 sites (i.e.,
atoms) and the maximal number M = 8 of bosons in the
truncated boson Hilbert space. This is performed using a well-
established procedure for a controlled truncation of bosonic
Hilbert spaces. This procedure entails a gradual increase in N
with the concomitant increase in M, until a numerical conver-
gence of the obtained results for the ground-state energy and
other relevant quantities is achieved [70].

The performed numerical calculation shows that the
ground state of H ss undergoes a sharp level-crossing transi-
tion [70] at a certain critical value (λss

e-b)c of λss
e-b. For λss

e-b <
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FIG. 2. Dependence of the ground-state energy of the system
without the on-site-energy contribution ε0, on the effective coupling
strength λss

e-b for a = 4 μm and three different values of the frequency
ωb.

(λss
e-b)c the ground state corresponds to the eigenvalue π of Ktot

and has a peculiar character. Namely, despite being the ground
state of an interacting e-b Hamiltonian, it has the form of the
bare-excitation Bloch state |�k=π 〉 [cf. Eq. (7)], and its energy
ε0 − 2|te| corresponds to a minimum of a 1D tight-binding
dispersion. By contrast, the strongly boson-dressed ground
state for λss

e-b � (λss
e-b)c is twofold degenerate and corresponds

to K = ±Kgs, where 0 < Kgs < π . The dependence of the
ground-state energy Egs (without the constant contribution ε0),
expressed in units of |te| on λss

e-b is depicted in Fig. 2.
Figure 3 illustrates how the ground-state total quasimo-

mentum Kgs depends on λss
e-b. In particular, Kgs = π in the

bare-excitation ground-state |�k=π 〉 has a vanishing bosonic
contribution as 〈�k=π | ∑n b†

nbn|�k=π 〉 = 0. The fact that this
bare-excitation Bloch state is a ground state of an inter-
acting e-b system is a direct implication of the assumption
that gP = gB ≡ g (recall Sec. III B), i.e., it is a consequence
of an effective mutual cancellation of P and B couplings
for a bare excitation with this particular quasimomentum
(k = π ).

It is pertinent at this point to establish the connection be-
tween the ground states of the system at hand and the desired
N-qubit W states. The bare-excitation Bloch state |�k〉, recast

FIG. 3. Dependence of the ground-state total quasimomentum on
the effective coupling strength λss

e-b for a = 4 μm and three different
values of the frequency ωb.

in terms of the pseudospin-1/2 (qubit) degrees of freedom,
coincides with the twisted W state,

|WN (k)〉 = N−1/2
N∑

n=1

eikn|0 · · · 1n · · · 0〉 (13)

parametrized by the quasimomentum k from the Brillouin
zone (i.e., −π < k � π ). In particular, |�k=π 〉—the ground
state of the system at hand for λss

e-b < (λss
e-b)c—corresponds

to the π -twisted W state |WN (k = π )〉 of Rydberg-dressed
qubits.

The conditions for realizing the desired states |WN (k =
π )〉 in the system under consideration are easily reached
with realistic values of the relevant experimental parameters
(a, ωb, α). To justify that, it is worthwhile to immediately
note that Figs. 2 and 3 correspond to a = 4 μm, a relatively
small lattice period which favors larger coupling strengths
[cf. Eq. (12)] and allows the onset of a sharp transition. Yet,
already for this choice of a, with a sufficiently large trap-
ping frequency (ωb � 2π × 3.5 KHz) the effective coupling
strength λss

e-b is always below the critical one, i.e., π -twisted
W states are accessible in the entire adopted range of values
(0.01–0.1) for the dressing parameter α. The fast decay of λss

e-b
with a ensures that for a � 5 μm the sought-after W are the
ground states of the system for any realistic choice of ωb and
α. For the sake of completeness, it is worthwhile mentioning
that by choosing a smaller principal quantum number these
conditions are even easier to satisfy because of the smaller
value of C3; for instance, for nq = 50 the corresponding value
of this interaction constant for 87Rb is an order of magnitude
smaller than for nq = 80.

It is interesting to observe that—in addition to being the
ground state of H ss for coupling strengths below the critical
one—the state |�k=π 〉 is an exact eigenstate of this Hamilto-
nian for an arbitrary λss

e-b. Namely, given that γ ss
e-b(k = π, q) =

0 for an arbitrary q [cf. Eq. (11)], it is straightforward to show
that H ss

e-b|�k=π 〉 = 0. Thus, |�k=π 〉 is an eigenstate of H ss
e-b.

Because this last state is an eigenstate of the free Hamiltonian
H0 as well, it follows immediately that it is also an eigen-
state of the total Hamiltonian H ss = H0 + H ss

e-b. To conclude,
even for those parameters (i.e., values of the Rabi frequency
that lead to coupling strengths above the critical one) for
which |�k=π 〉 does not coincide with the lowest-energy K =
π eigenstate of the system (for an illustration, see Fig. 4) this
state still remains an eigenstate in the discrete (bound-state)
part of the spectrum of H ss.

B. W -state preparation protocol

A deterministic Rabi-type driving protocol for the prepa-
ration of π -twisted W state is discussed in what follows,
assuming that the initial state of the system is |0〉e-b ≡ |0〉e ⊗
|0〉b, where |0〉e is the shorthand for an N-atom state with zero
Rydberg-dressed excitations (i.e., all atoms occupying dressed
state |0〉), whereas |0〉b is the collective boson vacuum, i.e., the
state with all atoms being in their motional ground state. For
the system to be prepared in state |0〉e-b, two preliminary steps
ought to be carried out. The first one is to prepare the state
|0〉e via Rydberg-dressing starting from the state |g〉e with all
atoms in their absolute ground-state |g〉. The other one is to
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FIG. 4. Dependence of the lowest-energy K = π eigenvalue
(without the on-site-energy contribution ε0), whose flat part at the
energy −2|te| corresponds to the π -twisted W state, on the Rabi
frequency �ss for a = 4 μm and two different trapping frequencies.

prepare all atoms in their motional ground states using the
established methodology for this purpose [26].

The envisioned state-preparation protocol is based on an
external driving given by

Fqd (t ) = h̄β(t )√
N

N∑
n=1

(σ+
n e−iqd n + σ−

n eiqd n) , (14)

where β(t ) accounts for its time dependence and the factors
e±iqd n allow for the possibility of applying external driving to
different Rydberg-atom qubits with a nontrivial phase differ-
ence. The transition matrix element of Fqd (t ) between |0〉e-b

and |�k=π 〉 ≡ |WN (k = π )〉 ⊗ |0〉b is equal to h̄β(t ) δqd ,k=π ,
indicating that the required phase difference between adja-
cent qubits is qd = π . Furthermore, by assuming that β(t ) =
2βp cos(ωdt ), where h̄ωd ≡ ε0 − 2|te| is the energy difference
between the two relevant states, in the rotating-wave approxi-
mation these states are Rabi coupled with the Rabi frequency
βp [71]. Therefore, π -twisted W states are prepared within
time τprep = π h̄/(2βp), which does not depend on the system
size (N) at all. For example, taking βp/(2π h̄) to be in the
range of (10–100) MHz, one finds τprep ≈ 3–25 ns, which is
four to five orders of magnitude shorter than typical lifetimes
of ordinary Rydberg states and seven to eight orders than those
of Rydberg-dressed states as they are scaled by an additional
factor of α−2.

Apart from being the ground state of the system in a broad
parameter window and remaining its eigenstate even outside
of that window, the desired W state has another property that
facilitates its preparation. Namely, it is separated from the
other eigenstates of H ss by an energy gap of h̄ωb. Systems
in which dispersionless bosons interact with a single itinerant
particle [59,60] generically possess such a gap, equal to the
single-boson energy, which separates their ground state from
the one-boson continuum (inelastic-scattering threshold). In
the weak-coupling regime ground states of such systems are
typically the only bound states they have [59]. Importantly,
apart from increasing the parameter window where W states
can be engineered, another advantage of increasing a is a
better separation of those states from other states. Namely,
an increase in a leads to a decrease in ωd ∝ α4C3/a3 so that
h̄ωb becomes a progressively larger fraction of the energy

difference h̄ωd . For instance, with α = 0.05 and a = 15 μm
for the chosen range of trapping frequencies ωb the gap energy
amounts to 15–40% of this energy difference, which ensures
that the above Rabi-type state-preparation protocol will not be
hampered by an inadvertent population of undesired states.

The analysis of the ground-state properties of the sys-
tem under consideration in Sec. IV A mostly featured the
results that correspond to the relatively small lattice period
a = 4 μm. It is important to stress that this choice, which
favors large effective e-b coupling strengths and a possible
onset of a sharp transition [cf. Sec. IV A], was intentionally
made in order to highlight the worst-case scenario as far as
the realization of the desired W -type entanglement resource
in the system at hand is concerned. However, from the point
of view of an actual W -state preparation, for the reasons stated
above it is more favorable to choose an intermediate or large
lattice period, say a � 12 μm. Not only that this precludes an
inadvertent population of undesired states in the continuum
part of the spectrum of the relevant coupled e-b system, but
it also leads to smaller values of the ss detuning (note that
�ss ∝ a−3), which makes this last detuning far smaller than
the typical energy spacings of Rydberg levels. (Recall that the
distribution of Rydberg energy levels becomes denser as the
principal quantum number nq increases such that the energy
difference �E of adjacent levels scales as n−3

q ; note also that
�E ∼ 1 GHz for nq ∼ 100 [1]) This, in turn, prevents the
possibility of inadvertently populating higher Rydberg levels
in the initial Rydberg-dressing step (i.e., in the preliminary
preparation of the state |0〉e) of the proposed W -state prepara-
tion protocol.

C. Significance for quantum-information processing
with Rydberg-dressed qubits

Owing to the rich energy-level structure of Rydberg atoms
and the existing wealth of techniques for the coherent manip-
ulation of atomic internal states, there are several possibilities
for storing and manipulating quantum information, i.e., QIP
with Rydberg qubits. Depending on the number of ground
or Rydberg states that make up the qubit (i.e., serve as its
logical |0〉 and |1〉 states), there are three main types of
Rydberg qubits: (i) Those based on one weakly interacting
state |g〉 ≡ |0〉 and one strongly interacting Rydberg state
|r〉 ≡ |1〉 (gr qubits), (ii) those encoded using two different
Rydberg states (rr qubits, where |r〉 ≡ |0〉 and |r′〉 ≡ |1〉),
and, finally, (iii) those encoded in two long-lived low-lying
atomic states |g〉 ≡ |0〉 and |h〉 ≡ |1〉 (gg qubits).

In particular, gg qubits typically involve two (usually mag-
netically insensitive) hyperfine sublevels of the electronic
ground state—such as states |g〉 and |h〉 of the system un-
der consideration [cf. Fig. 1(b)]. Such qubits offer the best
trade-off between coherence times and switchable interac-
tions, which makes them promising candidates for universal
quantum computing. On the other hand, compared to their
gr and rr counterparts, gg qubits are weakly interacting. One
possible approach for inducing stronger interactions between
such qubits relies on momentarily exciting and deexciting
them via Rydberg states using precisely timed or shaped
optical fields. An alternative approach for making gg qubits
interact more strongly—of relevance for the present paper—is
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to weakly admix some Rydberg-state character to the ground
states using an off-resonant laser coupling thereby effectively
transforming them into Rydberg-dressed qubits [54–57].

Generally speaking, creating quantum entanglement in
large systems on timescales much shorter than the relevant
coherence times is key to efficient QIP. In particular, it is
shown here that in neutral-atom arrays π -twisted W states
of Rydberg-dressed qubits can be engineered with the corre-
sponding preparation times being independent of the system
size. Importantly, those preparation times are several orders
of magnitude shorter than the typical lifetimes of the relevant
Rydberg states, being at the same time an even much smaller
fraction of the effective lifetimes of their Rydberg-dressed
counterparts.

Another favorable feature of the system at hand—and a
prerequisite for universal quantum computation—stems from
the XY character [72] of the effective qubit-qubit interaction
in this system, which is given by the free-excitation hopping
term in Eq. (8) and the Peierls-coupling term in Eq. (9). When
recast in terms of the pseudospin-1/2 degrees of freedom of
Rydberg-dressed qubits, the coupling between qubits n and
n + 1 is given by Jn,n+1(σ x

n σ x
n+1 + σ

y
n σ

y
n+1), where Jn,n+1 ≡

2[−te + gP h̄ωb(b†
n+1 + bn+1 − b†

n − bn)] is the effective XY -
coupling strength that depends dynamically on the boson
degrees of freedom. Such boson-dependent coupling strengths
are characteristic, for instance, of certain trapped-ion sys-
tems where collective motional modes (phonons) [73] play
the role of bosons [74]. Unlike such trapped-ion systems,
whose phonon spectra have a quasicontinuous character [73],
the system at hand merely involves dispersionless bosons of
one single frequency. This circumvents the spectral-crowding
problem that poses an obstacle for QIP in large trapped-ion
chains [75].

V. SUMMARY AND CONCLUSIONS

This paper proposed a scheme for a deterministic creation
of a large-scale W -type entanglement in optical tweezer ar-
rays of atoms with Rydberg-dressed resonant dipole-dipole
interaction. The resulting W -state preparation times are in-
dependent of the system size, being also several orders of
magnitude shorter than the effective lifetimes of the relevant
atomic states. It is demonstrated here that the mechanism

behind this scalable entanglement resource is robust against
the unavoidable coupling of an itinerant dressed Rydberg
excitation with the motional degrees of freedom of atoms.
Another argument in favor of the robustness of the proposed
scheme stems from the fact that π -twisted W states that it aims
to realize represent ground states of the underlying system,
which are at the same time separated from their other eigen-
states by a sizable spectral gap. The recent advances in the
manipulation, control, and readout of neutral-atom states in
optical dipole traps [76] and the scalability of tweezer arrays
bode well for an experimental implementation of this scheme.

In atomic physics, motional degrees of freedom [77,78]
have long been perceived exclusively as sources of decoher-
ence and dephasing [79] and have only in recent years been
viewed as a quantum resource [18]. The present paper con-
stitutes a demonstration as to how the influence of motional
degrees of freedom can be suppressed for the sake of carrying
out specific QIP tasks, even in systems where they may play a
useful role in other tasks. This particular aspect of the present
paper could be generalized to other systems, such as trapped
Rydberg ions [80]. Although the latter have quite recently
attracted considerable attention in the context of time-efficient
gate realizations [81], quantum-state engineering in such sys-
tems is a largely unexplored subject.

The concept of Rydberg dressing has in recent years been
utilized in diverse contexts [55]. In particular, the present
paper underscores its usefulness in engineering maximally
entangled states of Rydberg-dressed qubits. In this sense
the present paper is complementary to that of Ref. [18],
which discussed the preparation of various motional states of
Rydberg-dressed atoms. Along with their known advantage—
namely, that their effective lifetimes are significantly longer
than those of ordinary Rydberg states—the capability of creat-
ing entanglement in an ensemble of atoms provides additional
motivation to consider QIP with Rydberg-dressed states. Ex-
perimental realizations of the proposed W -state preparation
scheme—as well as theoretical explorations of its possible
generalizations—are clearly called for.
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