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Evidence of the entanglement constraint on wave-particle duality using the
IBM Q quantum computer

Nicolas Schwaller ,1,* Marc-André Dupertuis,1,† and Clément Javerzac-Galy1,2,‡

1Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
2Miraex, EPFL Innovation Park, Bâtiment L, Lausanne, CH-1015, Switzerland

(Received 22 February 2020; accepted 13 January 2021; published 9 February 2021)

We experimentally verify the link existing between entanglement and the amount of wave-particle duality in
a bipartite quantum system with superconducting qubits in the IBM Q quantum computer. We consider both
pure and mixed states, and study the influence of state purity on the observation of the complementarity triality
relation of Jakob and Bergou [arXiv:quant-ph/0302075; Opt. Commun. 283, 827 (2010)]. This work confirms
the quantitative completion of local Bohr’s complementarity principle by the nonlocal quantum entanglement
typical of a truly bipartite quantum system.
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I. INTRODUCTION

In 1924, physicist Louis De Broglie developed the theory
of electron waves [1], coming up with the idea that particles
behave like waves. This discovery is without a doubt one of
the most stunning ideas in physics. Indeed, four years later,
Niels Bohr formulated his principle of complementarity [2],
dealing with this nonintuitive property of nature. It is pos-
sible to detect particle and wave characteristics of a single
quantum object, but it never behaves fully like a wave and
a particle at the same time. This idea was democratized by
Richard Feynman in 1965, who underlined the strangeness of
the so-called wave-particle duality: “a phenomenon which is
impossible, absolutely impossible, to explain in any classical
way, and which has in it the heart of quantum mechanics.
In reality, it contains the only mystery.” [3] Experiments
have been conducted with photons, electrons, neutrons, atoms
and large molecules (see [4] and references therein), typi-
cally with double-slit setups, where a single quantum object
has two possible paths, before reaching a screen where its
position is measured. Knowing which path the object took
indicates the object is a pointlike particle, whereas observing
an interference pattern on the screen, formed by the detected
positions of the particles when the experiment is repeated,
is the manifestation of the wave characteristic of the object,
which apparently passes through both slits at once.

In 1979, Wootters and Zurek initiated a quantitative ap-
proach to wave-particle duality in a double slit experiment [5],
applicable to intermediate cases where the wave character
would be incompletely revealed and, in 1988, their surprising
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results prompted a simpler mathematical description of Bohr’s
principle by Greenberger and Yasin [6], namely,

V 2 + P2 � 1 , (1)

where V, P ∈ [0, 1] are, respectively, the a priori fringe vis-
ibility and the which-way a priori distinguishability (also
called predictability). V is commonly associated to the wavi-
ness and P to the particleness of a single quantum object.
Equality holds for pure states, or “coherent” beams. Such
type of inequality was later investigated and extended by a
few authors. Jaeger et al. [7] proved a similar relationship
in bipartite systems (two-particle interferometer) by relating
the visibility V of one-particle interference fringes to the vis-
ibility of two-particle fringes V12 ∈ [0, 1], i.e., V 2 + V 2

12 � 1.
Englert [8] also obtained a similar result,

V 2 + D2 � 1 , (2)

where D ∈ [0, 1] is this time the a posteriori distinguishability
(after detection, therefore also intrinsically bipartite). Equality
holds when the which-path detector is similarly in a pure
state. The analysis of the experiments for which relations of
type (1) or (2) hold can thus be significantly different and
easily induce misleading representations. Englert introduced
a more prudent definition of the notion of (wave-particle)
duality, i.e., “the observation of an interference pattern and the
acquisition of which-way information are mutually exclusive”
and emphasized also that duality might not be enforced only
by the use of position-momentum uncertainty relations as in
the historical Bohr-Einstein debates (opening another debate,
a recent account on this subtle aspect of complementarity can
be found in Xiao et al. [9]). The second duality relation (2)
was experimentally tested by Dürr et al. [10] with an atom
interferometer. For the first duality relation (1), earlier experi-
ments in neutron interferometers implicitly tested it [11,12].
For subsequent work, Englert and Bergou [11,12] included
a short review of experimental and theoretical work on this
topic (as of 2000), and also put on record an erasure inequality
quite similar to (2) but with different quantities outside our
scope here. Very recently, Norrman et al. [13] also derived
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interesting vector-light complementarity relations (1) and (2)
in the case of double pinhole vectorial interference, the
relevant visibility then becomes the Stokes visibility for po-
larization modulation.

Another important appreciation of wave-particle duality
came with the realization of delayed-choice experiments, pro-
posed by Wheeler [14] as gedanken experiments. In such a
case, the choice of the type of measurement is delayed at
a later stage, which allows us to challenge the idea that the
measurement configuration could dictate a priori the waviness
or particleness of the quantum system, as if the system would
adapt to the choice of measurement. Delayed choice experi-
ments were carried out for single particles by Jacques et al. in
2008 [15] and for two particles by Ma et al. in 2009 [16]. Since
then, a rich set of proposals and various experiments have
been carried out: Wheeler’s delayed-choice duality [17,18],
delayed-choice quantum erasure [19–21], and delayed-choice
entanglement swapping [22] to mention a few.

Despite such important and extensive progress, it is quite
obvious that duality relations envisaged so far, (1) and (2),
are incomplete because they are inequalities, which can only
bound duality. Indeed, if, for example, V = 1 is measured,
then P = 0, or vice versa, but if V = 0, nothing can be de-
duced about the range of P. This highlights in a striking way
the incompleteness of duality relations (1) and (2). Things
changed when people started to study quantitative comple-
mentarity occurring in composite systems (see Refs. [23,24]
and references therein). The simplest case is a bipartite com-
posite quantum system composed of two qubits. Jakob and
Bergou [23,25] have found the single missing quantity in this
case, which turned out to be the entanglement with the second
qubit (defined by the concurrence C ), so

V 2 + P2 + C 2 = 1 (3)

is a triality relation and an equality which holds for any pure
state of the two qubits. Furthermore, this equation can be inter-
preted as a complementarity relation between (wave-particle)
duality of any of the two single qubits on one hand (the first
two terms) and quantum entanglement with the second qubit
on the other hand (the remaining term). So, the amount of du-
ality (or complementarity) in any of the two local subsystems
determines the amount of bipartite nonlocal entanglement, the
latter also being understood as a property which can exclude
any of the two single-partite realities if C = 1. The beauty of
this relationship resides in the fact that it relates the two most
counterintuitive phenomenon of quantum physics, namely,
wave-particle duality and quantum entanglement, in a single
relation! Delayed-choice entanglement swapping experiments
have now illustrated in a particularly bright manner such
entanglement-separability duality for bipartite (and multipar-
tite) systems [14].

More recently, Qian et al. [26] derived a triality relation
which looks totally similar to the Jakob-Bergou relation (3).
In fact, the underlying mathematics is identical, thereby ex-
plaining the same identity, even though the physical content is
quite different as two completely classical beams are consid-
ered, including the polarization degree of freedom for both
beams. The analogy between the vector description of two
classical polarized beams and a two-qubit quantum system is
well known [27], and obtained at the price of the introduction

of a so-called position cebit together with the polarization
cebit (standard Jones vector of one of the beams). The notion
of classical entanglement that naturally ensues is still highly
debated [28,29] and is sometimes referred to as entanglement
of degrees of freedom, single-particle entanglement, or self-
entanglement, but it shows that quantum and classical physics
do cross-fertilize again (see, e.g., Refs. [30,31] and references
therein). While it led some to argue that the quantum-classical
boundary was shifting [32], we stress that in fact only the
domain of application of Bell-like inequalities changes.

Qian et al. also carried out a follow-up experiment in the
quantum limit to verify a similar triality relation for single
photons [33]. In this regard, it is necessary to point out that
single photons can only test the very same classical structure
of the field degrees of freedom: in a lossless linear optical
system, the transformation of single photon creation operators
is the same as for the classical beam amplitudes (which also
tells us that for more than one input photon, other effects
appear). So, Ref. [33] probes in fact the same triality rela-
tion as the classical experiment [26]. This type of point of
view was already exposed by Spreeuw [27]; we quote his
conclusion: “The term classical entanglement seems justified
even though a single particle is, strictly speaking, a quantum
system. Single-photon entanglement is what remained when
we took the low-intensity limit of a classical electromagnetic
wave.”

Another example of the Jakob-Bergou relation involving
entanglement of degrees of freedom is provided by a recent
analysis of potential experiments with atom interferometers
involving path and internal states of single atoms [34].

In the present paper, we offer an experimental check of
the original Jakob-Bergou triality relation (3) for a genuine
bipartite quantum system of two qubits, namely, the super-
conducting qubits of the IBM Q quantum computer [35],
harnessed by the current fascinating progress in widely ac-
cessible quantum technologies.

II. QUANTUM WAVINESS, PARTICLENESS AND
ENTANGLEMENT

Consider a general pure state of two qubits,

|ψ〉 = α|00〉 + β|01〉 + γ |10〉 + δ|11〉, (4)

with α, β, γ , δ ∈ C satisfying the normalization:

|α|2 + |β|2 + |γ |2 + |δ|2 = 1. (5)

The state (4) can be characterized by its density matrix:

ρ =

⎛
⎜⎜⎜⎝

αα∗ αβ∗ αγ ∗ αδ∗

βα∗ ββ∗ βγ ∗ βδ∗

γα∗ γ β∗ γ γ ∗ γ δ∗

δα∗ δβ∗ δγ ∗ δδ∗

⎞
⎟⎟⎟⎠. (6)

By convention, the first and second qubits will be, respec-
tively, called qubit A and qubit B. The corresponding reduced
density matrices of subsystems A and B are

ρA = TrB(ρ) =
(

αα∗ + ββ∗ αγ ∗ + βδ∗

γα∗ + δβ∗ γ γ ∗ + δδ∗

)
(7)
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and

ρB = TrA(ρ) =
(

αα∗ + γ γ ∗ αβ∗ + γ δ∗

βα∗ + δγ ∗ ββ∗ + δδ∗

)
. (8)

Three central quantities [23,25] can then be derived.
First, the concurrence, defined in the bipartite pure case by

C (ψ ) = 2|αδ − βγ |. (9)

The concurrence indicates the amount of entanglement be-
tween two quantum systems [36,37] as it is a monotone of
the entanglement of formation, E f , which is a measure of
entanglement based on the separability criterion: E f = 0 if
and only if the density matrix can be written as a mixture
of product states. Both C and E f take the value one for
maximally entangled states.

Second, the coherence Vk between the two orthogonal
states |0〉 and |1〉 of qubit k, which is therefore a quantity
related to a single qubit. It is directly proportional to the norm
of the off-diagonal elements of its density matrix and reads

Vk = 2|ρk12 |, k = A, B. (10)

Note that the counterpart of coherence in an interference ex-
periment is the visibility.

Third, the predictability Pk , which quantifies the knowl-
edge of which proportion of the system k is in state |0〉 or |1〉.
It is defined by

Pk = |ρk22 − ρk11 |, k = A, B. (11)

The predictability is analogous to the which-path information
in an interference experiment.

By replacing the definitions (6)–(8) in Eqs. (9)–(11), it is
easy to show that

V 2
k + P2

k + C 2 = (|α|2 + |β|2 + |γ |2 + |δ|2)2. (12)

One notices that the right-hand side of (12) is nothing else
than the norm of the state (4) raised to the power of 4. Thus,
one can conclude that for a pure state [23,25],

V 2
k + P2

k + C 2 = 1. (13)

Note that (13) remarkably claims that for a pure state of two
qubits, the amount of entanglement strictly pilots the amount
of duality of any qubit of the pair, namely, V 2

k + P2
k , k =

A, B, which has the same value for both qubits. Conversely,
Eq. (13) also nicely reflects the well-known fact that local
unitary transformations on any of the qubits cannot change
the amount of mutual entanglement.

III. EXPERIMENT ON IBM Q

We create a tunable state on the Bloch sphere with the
simple circuit shown in Fig. 1 and use linear tomography
to obtain Vk , Pk , and C , and check the Jakob-Bergou rela-
tion (13) [or the related inequality (21)]. In terms of the α and
θ parameters, the preparation stage creates (see Appendix A)

|ψ〉 = cos
α

2
|00〉 + cos

θ

2
sin

α

2
|10〉 + sin

θ

2
sin

α

2
|11〉.

(14)
Then we perform a two-qubit state tomography, allowing
us to retrieve the density matrix of the quantum state, an

FIG. 1. Quantum circuit composed of two gates to prepare the
initial state as a function of two angles, α and θ , followed by lin-
ear tomography circuits and measurements. Ry is the usual rotation
matrix, defined in appendix A.

intermediate step from which we compute Vk , Pk , and C .
The tomography procedure is the linear method proposed in
Ref. [38], using the set of four Stokes measurements {μ̂0 =
|0〉〈0|, μ̂1 = |1〉〈1|, μ̂2 = |+〉〈+|, μ̂3 = |�〉〈�|}, where |+〉 =

1√
2
(|0〉 + |1〉), |�〉 = 1√

2
(|0〉 + i|1〉). Following linear tomog-

raphy Vk , Pk , and C are retrieved via their direct link to the
measured density matrix [Eqs. (10), (11), and (18)]. Although
such a method is less direct than operational interferomet-
ric measurements of Vk and Pk , it provides more accurate
results since less quantum gates are required. The quantum
nondemolition circuit proposed by Ref. [39] would also be
necessary for an additional direct measurement of C (which
is possible only for two-qubit states with real coefficients in
the computational basis, as noted by Ref. [39]). This final
measurement would also require more gates, as well as two
additional ancillary qubits.

For a genuine test, it is important to check the potential
falsifiability of the Jakob-Bergou relation by our measurement
procedure. One may object that Eq. (13) [or the related in-
equality (21)] mathematically follows from the density matrix
properties, hence our procedure based on tomography cannot
be a serious test. This would indeed be true if one would
use maximum likelyhood tomography [38], which automati-
cally constructs perfect density matrices from a mathematical
perspective, for which the Jakob-Bergou relation is always
satisfied. However, in our case, we perform linear tomography
which consists of the strict minimum of 16 measurements
necessary to unambiguously deduce the matrix elements of a
4 × 4 Hermitian matrix with normalized trace, expected to be
the density matrix for two qubits, but there is no safety net that
would ensure automatic non-negativity of this matrix (occur-
rence of nonpositive matrices is well-known). Therefore, non-
physical results could also be produced for any physical ob-
servable subsequently computed with such matrices. The most
likely reason is of course noise, but nonvalidity of quantum
mechanics could also manifest as systematic violations, so in
our case the test is genuine even if it is indirect. Most impor-
tantly, it is as strained as possible due to the limited number of
gates used. Furthermore, we shall be able to check that among
the results produced for Vk , Pk , and C , there are rare viola-
tions of the Jakob-Bergou relation. Finally, we shall see that
these violations disappear with longer statistical averaging, so
they are clearly attributable to statistical noise, as expected.

To illustrate the equality (13), we display in Fig. 2 the
values of VA, PA, and C , which correspond to pure state
of two qubits of the form (14), and it covers the unit sphere
belonging to the first octant. We also show the position of the
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FIG. 2. Analytical VA, PA, and C for the 13 pure states de-
scribed by the angles listed in Table I of Appendix A. All points
lie on a sphere of unit radius.

points corresponding to the 13 states chosen in Appendix A,
and which will be subsequently measured on IBMQ.

With the aim of performing the experiment on the real
quantum computer, a noisy intermediate-scale quantum com-
puter [40], formulas need to be extended to mixed states. For
a mixed state with density matrix

ρ =
∑

j

p j |φ j〉〈φ j |, (15)

where |φ j〉 are pure states composing the complete state with
probabilities p j , it is possible to compute the concurrence [41]
by defining the spin flip matrix


 = σy ⊗ σy (16)

where σy is the standard Pauli matrix, and the matrix

R(ρ) = ρ
ρ∗
. (17)

The concurrence is given by

C = max(0,
√

r1 − √
r2 − √

r3 − √
r4), (18)

where r1 � r2 � r3 � r4 are the eigenvalues of R(ρ). Using
expressions (16) to (18) allows us to compute the concurrence
of the pair of qubits from the linear tomography step.

The coherence of the qubit k in the mixed bipartite
case [42] is given by

V (ρk ) = 2
∣∣Tr(ρkσ

(k)
+ )

∣∣, (19)

where σ
(k)
+ = (0 1

0 0

)
is the raising operator acting on qubit k.

It can be written as

Vk =
∑
i �= j

|ρki j |, (20)

which, for a pure state, is equivalent to (10) thanks to the
Hermiticity of the density matrix. Similarly, the predictability
(of the state) of a qubit [42] is given by (11) in the case of a
two-qubit mixed state.

FIG. 3. (a) Evaluations of VA, PA, and C for the states intro-
duced in Fig. 2, corrected with qiskit ignis measurement filter. For
visibility ellipsoids represent 3σ deviation from the mean. (b) Check
of triality relation (21) from the same data, error bars correspond this
time to standard deviation. Results with measurement filter and linear
scaling of C can be compared.

A. Experimental results

Given the possibility to compute the quantities for a mixed
state, we can now perform the experiment with the real qubits.
For this, the backend ibmq_rome is used [43]. We perform
1000 shots for each of the 16 linear tomography circuits used
to compute a density matrix and to subsequently evaluate Vk ,
Pk , and C . Then each experiment is repeated 100 times to
be able to evaluate the distribution of the results. Figure 3(a)
shows the experimental results corresponding to Fig. 2.

In each case, 3σ -ellipsoids centered around mean values
are represented and give an idea of the fitted normal distri-
bution of VA, PA, and C . In Fig. 3(a), we have used the
error mitigation tool provided by qiskit ignis [44] for the two
corresponding qubits. In this process, a measurement filter
is computed from the outcomes of the measurements of the
four computational basis states. Following the toolbox, the
filter is applied to the raw measurement outcomes of each of
our circuits before the density matrices are evaluated. This
is supposed to compensate for the noise and decoherence
taking place in the ibmq_rome backend, and we see that
indeed the results agree quite well with Fig. 2. A closer
look at the distance from Jakob-Bergou equality is provided
by the complementary Fig. 3(b), where V 2

A + P2
A + C 2 is
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FIG. 4. Raw values [43] of V 2
A + P2

A + C 2 appearing in the
triality relation (21) for the 13 states introduced in Fig. 2. The arrow
shows a result violating the Jakob-Bergou inequality.

reported for each state. We see that error mitigation is roughly
equivalent to upscaling the C axis of the raw results by
∼1/0.899, while leaving VA, PA unchanged. On the equa-
tor, where entanglement between the two qubits is vanishing
(not the most interesting part), the equality is best satisfied.
For all other states with nonvanishing concurrence, we see
that V 2

A + P2
A + C 2 clearly falls slightly below unity (this

is even more true without error mitigation or upscaling, cf.
Fig. 4). This is not surprising since the mixedness of the state
(due to unavoidable experimental decoherence and noise) im-
plies [23,25]

V 2
k + P2

k + C 2 � 1 (k = A, B). (21)

In the next section, we shall further prove that the limited
purity of the generated state does exclusively explain the max-
imum observed concurrence level (and justifies the scaling
factor).

Figure 4 offers a closer look at the 100 measured raw
values corresponding to Fig. 3(a), as a function of C . Two
features are noteworthy. First, for the states with highest con-
currence (states 1-4), we see elongated clouds which show that
the higher the concurrence the better the equality in (21). It is
a manifestation of the fact that purity limits concurrence, as
shown in the next section. The second feature worth noting
is the existence of points clearly violating the Jakob-Bergou
inequality (only one with C > 0, indicated by the arrow). In
such a case, we checked that the intermediate density matrix
is also nonpositive (necessary but nonsufficient prerequisite).
The frequency of such violations does strongly diminish with
the number of shots used before the intermediate density ma-
trix evaluation (and they are already rare for 1000 shots). This
disappearance is in accordance with the assumption that they
are due to noise and proves that the Jakob-Bergou relation is
valid, just as quantum mechanics. However, their mere exis-
tence confirms the potential falsifiability of the Jakob-Bergou
relation in our experiment.

B. Purity limits concurrence

To improve and understand better the scaling observed
between the experimental concurrence Cexp and its theoretical
counterpart Cth, we carry out a second experiment. Now a
thousand states with random values of α and θ are generated
and measured using the ibmq_rome backend [45], this time
with a larger number of 8192 shots per circuit. For each of
these states, the raw values of Vk , Pk , and C are displayed
for qubits A and B in Appendix B (Fig. 7(a)) and no viola-

FIG. 5. Concurrence Cexp for a given theoretical Cth; linear scal-
ing used between Cexp and Cth is also shown as a straight line. Cmax

is computed for all positive definite density matrices.

tion of the Jakob-Bergou inequality is observed anymore. We
have also measured a negative correlation (Pearson correla-
tion coefficient of −0.418) between the state purity Tr(ρ2)
and the distance Cth − Cexp. This fact is not surprising, as
entanglement is a fragile resource [46] to the environment, and
concurrence is known to be limited by the state purity [47].

In fact, it is possible to quantify the drop of concurrence
which is due to the mixedness of the two-qubit state. Indeed,
for all mixed states ρ with given purity (i.e., characterized by
a given set of eigenvalues λ1 � λ2 � λ3 � λ4 � 0), there is a
rigorous upper bound on possible concurrence [37,48]:

Cmax(ρ) = max(0, λ1 − λ3 − 2
√

λ2λ4). (22)

For all of our random states which have positive measured
density matrix, it is possible to compute Cmax. Figure 5
displays Cexp and Cmax as a function of the theoretical con-
currence of each generated state Cth. First, we see that Cexp is
fairly linear as a function of Cth and that the slope is less than
unity as expected. Second, and more interesting, we see that
states generated on the high end of the concurrence do reach
Cmax, showing that achievable purity is the limiting factor
for concurrence, and as a result the principal cause of the
flattening of the sphere along the C axis as observed in the raw
data [Fig. 7(a)]. The linear approximation used in the previous
section Cexp

Cth
= 0.899 is also displayed in Fig. 5 and corre-

sponds to the straight line joining the two end points since they
are the most relevant [and for enhanced accuracy the highest
end point at maximal concurrence (α = π/2, θ = π ) has been
computed using a hundred density matrix evaluations].

Concurrence is an entanglement monotone, so one could
say that the linearity indicates that the efficiency in the prepa-
ration of an entangled state is fairly constant, but limited on
the high end by achievable purity.

IV. CONCLUSION

Our work is an experimental explicit verification of the
beautiful Jakob-Bergou triality relation for bipartite pure
quantum states of two qubits [23–25]. This relation really
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represents the full quantitative completion of local Bohr’s
complementarity principle by quantum entanglement (con-
currence) for this case. The measurements on the two
superconducting qubits of the IBM Q quantum computer have
shown that the duality of each qubit can indeed be turned
off completely or set to any desired amount by controlling
the degree of entanglement between the qubits. Clearly, the
Jakob-Bergou relation can be separated into mutually exclu-
sive local and nonlocal parts as

S 2
k + C 2 = 1, (23)

where S 2
k = P2

k + V 2
k is the amount of locality since the

predictability Pk and the visibility (coherence) Vk are local
with respect to subsystem k. Maximal entanglement of the
bipartite system (C = 1) implies that the local realities must
totally disappear (Sk = 0), a synonym of the maximal amount
of nonclassical nonlocal phenomena such as violations of Bell
inequalities.

Finally, such experiments with the superconducting qubits
of the IBM Q quantum computer could be extended in
different fundamental directions. First, it would be in-
teresting to test a generalization of the Jakob-Bergou
relation derived for nonorthogonal alternatives using pos-
itive operator-valued measures (POVMs) in a similar
interference and which-state information experiments for two
qubits [49]:

V 2 + P2 + U 2 + C 2 = 1 . (24)

Here C remains the only purely bipartite quantity as be-
fore, but V, P would become the nonorthogonal counterparts
of visibility and predictability, and U would be a new sin-
gle qubit quantity involving the overlap of nonorthogonal
markers. Second, the test of generalized triality relation to
higher-dimensional systems like qudits (cf. Refs. [24], [50],
and references therein), or even more interestingly to contin-
uous variable systems, would also be one of the next steps
(note that qudits would be emulated by collections of qubits
on IBM Q). Third, we are also interested in the dynami-
cal evolution of these relations under decoherence, which is
inevitable in a quantum computer. For the resulting mixed
states, it is well-known that Eqs. (3) and (24) become un-
dersaturated inequalities (LHS < 1), but more interestingly
the evolution of C can be surprising, leading, for example,
to entanglement sudden death [51], and one may wonder
about the comparative evolution of each term. Fourth, one
expects that multipartite quantum states which are presently
realized on IBM Q quantum computers [52], and which are
essential for applications in quantum information, also pos-
sess rich entanglement-separability duality relations of their
own, which are of fundamental interest.

The code that supports this study is openly available in
GitHub [53].
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TABLE I. Couples of values (α, θ ) used to prepare the states of
Fig. 2 with our circuit.

State α θ

1 π/2 π

2 1.0472 π

3 1.1230 3.6216
4 1.3181 4.0016
5 π/2 4.0816
6 0.5236 π

7 0.7247 4.4416
8 1.1230 5.1196
9 π/2 5.1050
10 0 0
11 0.5236 0
12 1.0472 0
13 π/2 0

APPENDIX A: STATE PREPARATION

The left-hand side of the circuit in Fig. 1 prepares the
state |ψ〉 = cos α

2 |00〉 + cos θ
2 sin α

2 |10〉 + sin θ
2 sin α

2 |11〉 by
applying the unitary transformation:

(CRy(θ )A→B)(Ry(α) ⊗ I)

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 cos θ
2 − sin θ

2

0 0 sin θ
2 cos θ

2

⎞
⎟⎟⎟⎟⎠

×
[(

cos α
2 − sin α

2

sin α
2 cos α

2

)
⊗

(
1 0

0 1

)]
.

According to Eqs. (9)–(11), such a unitary operation acting
on state |00〉 allows the five quantities Vk , Pk (with k = A, B),
and C to reach their extremal values, i.e., 0 and 1, as shown
in Fig. 6 for k = A.

FIG. 6. Analytical values of VA, PA, and C as a function of α

and θ .
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APPENDIX B: RAW VALUES IN SECOND EXPERIMENT

Figure 7(a) reports the raw values of Vk and Pk (k = A, B),
as well as C , after 8192 shots per circuit, for 1000 two-qubit
states generated with the circuit of Fig. 1 using random values
of α, θ uniformly sampled in [0, π ] (implying an irrelevant
slight oversampling in the right corner of the octant). All
points are clearly interior to the unit sphere, showing that the
Jakob-Bergou triality inequality (21) is satisfied everywhere
for both qubits A, B, and that 8192 shots are sufficient to
eliminate all violations. Figure 7(b) displays in more detail

the triality relation for both qubits A, B as a function of
concurrence.

In Fig. 7(c), we plot the purity Tr(ρ2
exp) and the fidelity

F = Tr(
√√

ρthρexp
√

ρth )2 (B1)

of each of the measured thousand states ρexp, respectively, to
its target ρth. Not astonishingly, purity and fidelity decrease
with concurrence, the latter being limited by purity (cf. Fig. 5
and its discussion in the main text).
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FIG. 7. Raw values for 1000 states generated with random (α, θ ) values [45] of (a) the triality relation for qubits k = A, B (b) the triality
relation for k = A, as a function of C and (c) the purity and fidelity of the two-qubit states.
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