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Quantum speed of evolution in a Markovian bosonic environment
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We present explicit evaluations of quantum speed limit times pertinent to the Markovian dynamics of an
open continuous-variable system. Specifically, we consider the standard setting of a cavity mode of the quantum
radiation field weakly coupled to a thermal bosonic reservoir. The evolution of the field state is ruled by the
quantum optical master equation, which is known to have an exact analytic solution. Starting from a pure input
state, we employ two indicators of how different the initial and evolved states are, namely, the fidelity of evolution
and the Hilbert-Schmidt distance of evolution. The former was introduced by del Campo et al. [Phys. Rev.
Lett. 110, 050403 (2013)], who derived a time-independent speed limit for the evolution of a Markovian open
system. We evaluate it for this field-reservoir setting, with an arbitrary input pure state of the field mode. The
resultant formula is then specialized to the coherent and Fock states. On the other hand, we exploit an alternative
approach that employs both indicators of evolution mentioned above. Their rates of change have the same upper
bound, and consequently, provide a unique time-dependent quantum speed limit. It turns out that the associate
quantum speed limit time built with the Hilbert-Schmidt metric is tighter than the fidelity-based one. As apposite
applications, we investigate the damping of the coherent and Fock states by using the characteristic functions
of the corresponding evolved states. General expressions of both the fidelity and the Hilbert-Schmidt distance
of evolution are obtained and analyzed for these two classes of input states. In the case of a coherent state, we
derive accurate formulas for their common speed limit and the pair of associate limit times. We also find exact
expressions of the same quantities in the limiting case of thermalization of the vacuum state, as well as for
dissipation of one- and two-photon states.
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I. INTRODUCTION

The ingenious derivation of a time-energy uncertainty re-
lation by Mandelstam and Tamm [1] can be considered the
starting point of an intense research regarding a fundamen-
tal limit imposed by quantum mechanics on the minimal
evolution time between two distinguishable states of an iso-
lated quantum system. Such a system has a time-independent
Hamiltonian Ĥ . Mandelstam and Tamm found that its time of
evolution between two orthogonal pure states, denoted t⊥, has
a lower bound which is inversely proportional to the standard
deviation of the energy, �E =

√
〈Ĥ2〉 − 〈Ĥ〉2:

t⊥ � τ
(MT)
⊥ = π

2

h̄

�E
. (1.1)

This inequality is related to that presented in many textbooks,
for instance in Ref. [2], as the time-energy uncertainty re-
lation: T �E � h̄

2 . Here T denotes a conventional time of
evolution of an isolated quantum system, which is equal to the
minimal characteristic evolution time of any time-independent
observable. However, τ

(MT)
⊥ has a simpler meaning, because it

is defined in terms of the nondecay probability over a given
time interval [0, t]. By scrutinizing the Mandelstam-Tamm
proof, Bhattacharyya [3] recovered Eq. (1.1), as well as a
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lower bound for the half-life of a nonstationary state of an
isolated quantum system:

t1/2 � τ
(MT)
1/2 = π

4

h̄

�E
.

More recently, Margolus and Levitin [4] found an alter-
native lower bound to the orthogonalization time t⊥ that is
inversely proportional to the mean excitation energy, i.e.,
the difference between the average energy E = 〈Ĥ〉 and the
ground-state energy Eg = 0:

t⊥ � τ
(ML)
⊥ = π

2

h̄

E
. (1.2)

The elegant Margolus-Levitin derivation of the bound (1.2)
was later generalized in a versatile way that allows one to
retrieve the Mandelstam-Tamm bound (1.1) to the orthog-
onalization time t⊥ as another distinct particular case [5].
Obviously, the actual limit time of orthogonalization τ⊥ is the
largest one from the pair of bounds (1.1) and (1.2):

τ⊥ = max{τ (MT)
⊥ , τ

(ML)
⊥ }

= π h̄

E + �E − |E − �E | . (1.3)

Although the bound (1.3) can be attained only if �E = E , it
remains tight for any values of E and �E [6].

The classic paper by Anandan and Aharonov [7] is devoted
to the geometry underlying the unitary evolution of a closed
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quantum system. The authors proved that the Fubini-Study
distance s(t ) between an initial pure state and the evolved one
along a suitable path C in the projective Hilbert space has the
velocity of change

ṡ(t ) = �E (t )

h̄
. (1.4)

By using the time-averaged standard deviation

�E (t ) := 1

t

∫ t

0 (C)
dt ′�E (t ′),

Eq. (1.4) provides the Fubini-Study evolution distance along
the path C:

s(t ) = t
�E (t )

h̄
. (1.5)

An insightful application concerns the precession of the
magnetic dipole moment μ of a spin- 1

2 particle driven by a
uniform, variable magnetic field, B(t ) = B(t )ez. This evolu-
tion is ruled by the Hamiltonian Ĥ (t ) = −μB(t )σ̂z, acting
on the Euclidean Hilbert space C2. The associate projective
Hilbert space CP 1 is diffeomorphic with the unit 2-sphere
S2 via the stereographic projection. Further, the Fubini-Study
metric on CP 1 is proportional to the round metric on S2:

ds2 = 1
4 [dθ2 + sin2(θ ) dφ2],

where θ and φ are the spherical polar angles. Note that
two orthogonal pure spin states are antipodal points on the
Bloch sphere S2. By definition, any Fubini-Study distance be-
tween them cannot be shorter than the geodesic one: s(t⊥) �
s(τ⊥) := π

2 . Taking into account Eq. (1.5), this inequality
reads

t⊥ � π

2

h̄

�E (t )
(1.6)

and becomes saturated when the spin precession about the
magnetic field follows a geodesic.

The formula (1.6) is twofold meaningful. First, this exam-
ple affords a generalization of the Mandelstam-Tamm bound
(1.1) to a closed quantum system whose evolution is driven
by a time-dependent Hamiltonian. Accordingly, although the
above-discussed bound becomes now time-dependent, there
is no practical impediment to estimate its tightness. Second,
Eq. (1.6) reveals the deep connectionbetween the limit times
for a unitary pure-state evolution and the Fubini-Study metric
on the projective Hilbert space, when chosen as a measure of
distinguishability between pure states.

Interesting analyses regarding the unitary evolution of an
isolated quantum system are made in Refs. [8,9]. In these
notes, two distinct straightforward methods are applied to
evaluate the maximal speed of the probability of transition
from an initial pure state to an evolved one. The final result
is a constant quantum velocity (1.4), which is equivalent to
the Mandelstam-Tamm lower bound (1.1). In fact, Vaidman
introduced the notion of quantum speed limit (QSL) for a
pure-state unitary evolution [8] as a necessary tool for ob-
taining what are currently called quantum speed limit times
(QSLTs) [10].

As shown by Poggi in a recent overview of quantum con-
trol times [11], Eq. (1.5) encompasses the unitary evolution of

a system driven towards a target state. The control field enters
the Hamiltonian Ĥ (u(t )) as a bounded vector function u(t ) ∈
Rn, ||u(t )|| � ||u||max, whose time dependence is unknown.
A fruitful application of Eq. (1.5) in order to obtain a lower
bound on the minimum control time, which is independent
of the actual form of the function u(t ), goes back to Pfeifer’s
letter [12].

The innovative use in Ref. [7] of the Fubini-Study met-
ric to characterize the pure-state evolution paved the way to
an important extension to the case of mixed states treated
in Ref. [10]. Here, a general definition of the QSL to the
evolution of a system towards a given quantum state (pure or
mixed) relies on the generalization of the Fubini-Study metric
for pure states to the Bures metric for mixed ones [13]. As
such, the quantum fidelity [14–16] between the initial and the
evolved state emerges as a measure of their distinguishability.
Specifically, in Ref. [10], the QSLT is redefined as the time
τε indicating how fast the fidelity between an initial state ρ̂(0)
and the evolved one ρ̂(t ) could reach a given value ε ∈ [ 0, 1).

Another major development was then achieved with the
generalization of the QSLs to the evolution of open quantum
systems [17–23]. For any open system initially prepared in
a state ρ̂(0), and then left to evolve under Markovian or
non-Markovian dynamics, the rate of change of a carefully
chosen measure of distinguishability between the initial state
ρ̂(0) and the evolved one ρ̂(t ) could be used to define a
QSL. According to this procedure, Taddei et al. [17] found
an expression in terms of the quantum Fisher information,
while del Campo et al. [18] established upper bounds to the
rate of change of the relative purity for both Markovian and
non-Markovian systems. A treatment based on purity was
recently proposed in Ref. [21]. Furthermore, Deffner and Lutz
[19] derived geometric generalizations to open quantum sys-
tems of both limit times known for unitary evolutions, the
Mandelstam-Tamm bound, as well as the Margolus-Levitin
one. Note that the geometric QSLs previously proposed in
Refs. [24,25] are derived as upper bounds on the rate of
change of a distance-type measure of distinguishability. Gen-
eral geometric QSLs are analyzed in Ref. [26] using as
measures of distinguishability a family of Riemannian metrics
that are contractive under stochastic maps. Among them, geo-
metric QSLs based on the quantum Fisher information metric
(involving fidelity) [27] and the Wigner-Yanase information
metric (involving affinity) [28] were compared in Ref. [26]
for unitary dynamics and several examples of open-system
evolutions. More recently, some other QSLs were introduced,
although they are not proper distance-type measures of quan-
tum evolution. For instance, in Ref. [22] one finds a definition
based on a “quantumness” notion, while Ref. [29] shows that
quantum coherence plays an important role in setting the QSL.

It is worth emphasizing the importance of the feasibility
of a QSL, defined as the easiness of evaluating the distance
between the involved states [30,31]. Finding tight and feasible
QSLs for various evolutions became meanwhile an issue of
interest in some areas of quantum information science [32,33],
such as quantum computation [34], quantum metrology [35],
and quantum control [36,37], as we learn from the recent
surveys [31,36,38,39]. Feasibility could be achieved by avoid-
ing the squared root of operators entering formulas based
on fidelity or affinity, which are used in Refs. [19,26,29]
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and employing instead the Hilbert-Schmidt (HS) metric. In
spite of all noticed inconsistencies of the HS metric [40,41],
there is already a large amount of work on feasible QSLs
in finite-dimensional systems using the HS metric [30,31] or
some Bures-metric relatives obtained by defining alternative
formulas for the fidelity [20,31,42,43]. Especially interesting
for continuous-variable systems, a feasible treatment of QSLs
based on the rate of change of the Wigner function was devel-
oped in Refs. [44,45].

In the present work, we reconsider from the QSL-
perspective the standard setting of a cavity mode of the
radiation field interacting weakly with a thermal bosonic
reservoir. The evolution of the one-mode field state is gov-
erned by a quantum optical master equation [46–54], which
is a continuous-variable prototype of the Lindblad-form equa-
tion [55–57]. Whereas several geometric QSLs are employed
so far to describe the evolution of finite-dimensional systems
[18–20,26,31], we select two of them to be applied to the
continuous-variable system specified above. These are based,
respectively, on the quantum fidelity and the HS metric. We
evaluate them by choosing an initial pure state and making use
of the quantum optical master equation, which is analytically
solvable.

A treatment based on the relative purity, which is devel-
oped in Ref. [18] for a general Markovian evolution, allows
one to get a time-independent QSL. This is determined only
by the Lindblad form of the master equation and the initial
state of the system. For any initial pure state, the relative purity
reduces to the fidelity between the initial state ρ̂(0) and the
evolved one ρ̂(t ),

F (t ) := Tr[ρ̂(0)ρ̂(t )], (1.7)

which is fairly termed fidelity of evolution.
In order to find time-dependent upper bounds to the speed

of quantum evolution one usually applies a slightly different
version of the method pointed out in Ref. [18]. One starts from
the rate of change for a convenient measure of distinguishabil-
ity between the initial state and the evolved one. Doing so and
then employing the Cauchy-Schwarz inequality for HS opera-
tors, we recover lower bounds to the driving times, which are
associated with the envisaged figures of merit: the fidelity of
evolution and the HS evolution distance. To evaluate the latter,
we need, in addition, the purity of the transient state:

P (t ) := Tr{[ρ̂(t )]2} � 1. (1.8)

We evaluate both QSLTs by using the characteristic function
(CF) of the evolved state ρ̂(t ), obtained by solving the quan-
tum optical master equation. An interesting goal is to compare
them for specified input states.

Explicit solutions are found and analyzed in some detail
for two families of pure states which are currently used in
quantum physics: the coherent and the Fock states. The former
are the only pure states that are classical; they are ubiquitous
since the advent of the laser. The latter are the eigenstates of
the energy operator of a free-field mode: Ĥ = h̄ω â†â. Except
for the vacuum state, they are highly nonclassical.

The paper is structured in the following way. Section II
starts with a review of ideas and methods put forward in
Refs. [18,19,26]. To the original treatment developed in
Ref. [18] we add an alternative fidelity-based QSL, which

was first written in Ref. [19] in connection with the Bures-
angle measure and holds also for non-Markovian evolutions.
Remarkably, the latter QSL turns out to coincide with that
stemming from the rate of change of the HS distance between
a pure initial state and the evolved one, as discussed earlier in
Ref. [31]. Section III deals with the time-independent QSL
obtained by using the fidelity of evolution, as initiated in
Ref. [18]. We derive here a general formula that holds for
an arbitrary pure one-mode state decaying under the quantum
optical master equation. Then we apply it to the coherent
and number states. In Sec. IV, we review the CF method
of describing the damping of a field mode governed by the
quantum optical master equation. Owing to Weyl’s expansion
formula, the main ingredients employed in this paper are
finally written as phase-space integrals. We perform two of
them in Sec. V for coherent-state inputs and in Sec. VI for
number-state ones, to get compact formulas for the fidelity
of evolution and the HS evolution distance. We evaluate and
analyze in Sec. V the time-dependent QSLs for thermaliza-
tion of the coherent states. Some associate QSLTs are then
compared. In Sec. VI, we restrict ourselves to evaluate the
time-dependent QSL for dissipation of one- and two-photon
states. The pair of associate QSLTs is then examined. Our
conclusions are summarized in Sec. VII. The paper includes
three appendices. In Appendix A, which deals with coherent
states other than vacuum, we justify the replacement of the
Schrödinger-picture fidelity of evolution by its interaction-
picture counterpart, made in Sec. V. Appendix B develops a
straightforward method to perform the basic integral needed
for describing the damping of the Fock states. In Appendix
C we carefully analyze the decay of a one-photon state, re-
vealing the nonmonotonic behavior of the HS distance of
evolution.

II. QUANTUM SPEED LIMITS FOR MARKOVIAN
OPEN SYSTEMS

The Markovian dynamics of an open quantum system with
the unperturbed Hamiltonian Ĥ is described by a Lindblad-
type master equation for its density operator ρ̂(t ) in the
Schrödinger picture [55]:

∂ρ̂(t )

∂t
= Lρ̂(t ) := − i

h̄
[Ĥ, ρ̂(t )]

+
∑

k

[
L̂k ρ̂(t )L̂†

k − 1

2
{L̂†

k L̂k, ρ̂(t )}
]
. (2.1)

In Eq. (2.1), L̂k are the time-independent Lindblad operators
and L is called the Liouville super-operator. The latter is
the time-independent generator of a one-parameter family of
quantum dynamical maps,

V (t ) := exp(tL), (t � 0), (2.2)

displaying the semigroup property

V (t1 + t2) = V (t1)V (t2), (t1 � 0, t2 � 0),

and with V (0) being the identity map. It can be shown that
any map V (t ), describing the state change of the open system
over time t , represents a convex linear, completely positive,
and trace-preserving quantum operation [56].
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A bound to the speed of evolution from the initial state
ρ̂(0) to an evolved one ρ̂(t ) under the dynamical map (2.2)
can be defined in terms of the decay rate of an accepted mea-
sure of distinguishability between the states ρ̂(0) and ρ̂(t ).
The original request for such a bound was that it should be
determined only by the unperturbed Hamiltonian Ĥ and the
Lindblad operators in Eq. (2.1), as well as by the input state
ρ̂(0) [18]. Were this to be possible, then the associate lower
bound to the actual driving time could lead to an inequality
analogous to Eqs. (1.1) or (1.2), with no need of explicitly
solving the master equation (2.1).

A. Using the fidelity of evolution

A convenient candidate to this procedure turned out to be
the relative purity proposed in Ref. [18] and exploited also in
Refs. [19,23,30]:

f (t ) := Tr[ρ̂(0)ρ̂(t )]

Tr{[ρ̂(0)]2} . (2.3)

Recall that the fidelity of two arbitrary quantum states, ρ̂1

and ρ̂2, introduced by Uhlmann, has the intrinsic expression
[14]:

F (ρ̂1, ρ̂2) = {Tr[(
√

ρ̂1ρ̂2

√
ρ̂1)

1
2 ]}2. (2.4)

If at least one of the states ρ̂1 and ρ̂2 is pure, Uhlmann’s
fidelity simplifies to F (ρ̂1, ρ̂2) = Tr(ρ̂1ρ̂2).

For a pure-state input to the master equation (2.1), ρ̂(0) =
|�(0)〉〈�(0)|, the relative purity (2.3) reduces thus to the
fidelity of evolution (1.7). In Ref. [18], del Campo et al.
found an upper bound for the rate of change of the fidelity
of evolution (1.7):

Ḟ (t ) = Tr[ρ̂(0)Lρ̂(t )] = Tr[ρ̂(t )L†ρ̂(0)]. (2.5)

This is obtained by applying the Cauchy-Schwarz inequality
for Hilbert-Schmidt (HS) operators,

|Tr(Â†B̂)| � ||Â||2||B̂||2, (2.6)

to the second form of Eq. (2.5). The HS norm of such an
operator Â is defined as

||Â||2 :=
√

Tr(Â†Â). (2.7)

Introducing the positive quantity

vF (0) :=
√

Tr{[L†ρ̂(0)]2} (2.8)

and its nonstatic natural extension,

vF (t ) := vF (0)
√
P (t ) � vF (0), (2.9)

where P (t ) is the purity (1.8), the Cauchy-Schwarz inequality
for the second form of Eq. (2.5) reads simply:

|Ḟ (t )| � vF (t ). (2.10)

Therefore, when choosing the fidelity (1.7) as a feasible indi-
cator of evolution, both quantities (2.8) and (2.9) are speed
upper bounds within the Markovian approach. The former,
Eq. (2.8), is looser, but is a time-independent QSL that can be
evaluated without solving the master equation (2.1). Indeed,
this static speed limit is determined by the generator of the
dynamical semigroup of the Markovian master equation (2.1)

and by the initial pure state of the system. That is why it was
preferred in Ref. [18]. The latter, Eq. (2.9), albeit tighter, has
the drawback of being time-dependent, so that its evaluation
requires the explicit solution of the master equation (2.1).

It is convenient to employ the time-averaged speed of evo-
lution

vF (t ) := 1

t

∫ t

0
dt ′ vF (t ′) � vF (0). (2.11)

Integration of Eq. (2.10) over the time interval [0, t] provides
the inequality

1 − F (t ) � t vF (t ). (2.12)

Accordingly, we introduce the conventional time

τF (t ) := 1 − F (t )

vF (t )
, (2.13)

as well as its minimum with respect to the variable vF (t ) at
fixed fidelity:

τmin
F (t ) := 1 − F (t )

vF (0)
. (2.14)

Both times (2.13) and (2.14) are lower bounds to the time
of evolution from the pure state ρ̂(0) to the state ρ̂(t ), i.e.,
QSLTs:

t � τF (t ) � τmin
F (t ). (2.15)

Let us mention that a similar treatment of Markovian dy-
namics, which is based on the purity (1.8) of the state as a
decaying figure of merit, also avoids an explicit knowledge
of the evolved state when deriving a QSLT. This is written
in terms of the HS norms of the Lindblad operators L̂k [21].
However, this method is not applicable to continuous-variable
systems, whose Lindblad operators are usually unbounded.

For further insight, we now choose to apply the Cauchy-
Schwarz inequality in the first form of the rate of evolu-
tion (2.5):

|Ḟ (t )| �
√

Tr{[Lρ̂(t )]†[Lρ̂(t )]} =
∣∣∣∣
∣∣∣∣∂ρ̂(t )

∂t

∣∣∣∣
∣∣∣∣
2

. (2.16)

With the notation

ṽ(t ) :=
∣∣∣∣
∣∣∣∣∂ρ̂(t )

∂t

∣∣∣∣
∣∣∣∣
2

, (2.17)

Eq. (2.16) takes the same form as Eq. (2.10):

|Ḟ (t )| � ṽ(t ). (2.18)

By using the average of the bound (2.17) over the current time
of evolution,

ṽ(t ) := 1

t

∫ t

0
dt ′ ṽ(t ′), (2.19)

we write the following inequality derived by integrating
Eq. (2.19):

1 − F (t ) � t ṽ(t ). (2.20)

Equation (2.20) is an analog of Eq. (2.12) and leads to an
alternative QSLT:

t � τ̃F (t ) := 1 − F (t )

ṽ(t )
. (2.21)
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Note that the QSL (2.19) can be evaluated only by making
use of the explicit solution ρ̂(t ) of the master equation (2.1).
The QSLT (2.21) is derived above following the pure-state
treatment of Deffner and Lutz in Ref. [19] and holds for
non-Markovian dynamics as well.

B. Using the Hilbert-Schmidt metric

In quest of feasible QSLs, one could take inspiration
from the considerable efforts and results on applications of
distance-type measures in quantifying various kinds of quan-
tum correlations [58]. Geometric measures based on the HS
metric are known for a long time as working fairly well for
quantification of non-Gaussianity [59,60] or for the evaluation
of quantum discord [61]. However, we recall that the geo-
metric measures of quantum correlations defined with the HS
metric were found to display some inconveniences due to its
noncontractivity under completely positive, trace-preserving
maps [40]. It will therefore be interesting to examine the
behavior of a QSLT built with the HS metric [31]. We start
by writing the HS distance between the initial pure state ρ̂(0)
and the evolved one ρ̂(t ):

G(t ) := ||ρ̂(t ) − ρ̂(0)||2. (2.22)

The above Hilbert-Schmidt distance of evolution depends on
both the fidelity of evolution F (t ), Eq. (1.7), and the purity
P (t ) of the evolved state, Eq. (1.8):

G(t ) = [1 + P (t ) − 2F (t )]
1
2 . (2.23)

We apply the Cauchy-Schwarz inequality (2.6) to its rate of
change,

|Ġ(t )| = 2

∣∣∣∣Tr

{
∂ρ̂(t )

∂t
[ρ̂(t ) − ρ̂(0)]

}∣∣∣∣ 1

2G(t )
� ṽ(t ) :

|Ġ(t )| � ṽ(t ). (2.24)

Remarkably, as shown by Eqs. (2.18) and (2.24), the rates
of evolution of both the fidelity (1.7) and the HS distance
(2.22) share the upper bound ṽ(t ), Eq. (2.17). In addition, by
integrating Eq. (2.24) over the time interval [0, t], one gets the
inequality

G(t ) � t ṽ(t ), (2.25)

providing the Hilbert-Schmidt QSLT:

t � τ̃G (t ) := G(t )

ṽ(t )
. (2.26)

We stress that the QSLT (2.26) was derived by Campaioli, Pol-
lock, and Modi, in Ref. [31], regardless of the purity P (0) of
the initial state, by employing an ingenious geometric method
which holds for a finite-dimensional Hilbert space.

The QSLTs (2.21) and (2.26) differ only by the figures of
merit employed to distinguish the states ρ̂(0) and ρ̂(t ). This
allows us to establish an inequality between these two QSLTs
that is valid for any input pure state. Indeed, we apply once
again the Cauchy-Schwarz inequality (2.6) to write

Tr[ρ̂(0)ρ̂(t )] � ||ρ̂(t )||2 : F (t ) �
√
P (t ). (2.27)

Equation (2.27) implies the inequality

G(t ) � 1 − F (t ) (2.28)

and hence,

τ̃G (t ) � τ̃F (t ). (2.29)

Let us make clear what is usually meant by a tight QSL.
When employing contractive Riemannian metrics as measures
of distinguishability between an initial pure state ρ̂(0) and the
evolved one ρ̂(t ), one could identify the tightness of a QSL
with the closeness of the given dynamical evolution to the
corresponding geodesic [26]. In order to discuss the tightness
of the QSLTs we deal with in the present work, we follow the
simpler idea put forward in Refs. [19,30,31] to compare how
close they are to the actual time of evolution t . For instance,
according to Eq. (2.29), the QSLT τ̃G (t ), Eq. (2.26), expressed
in terms of the HS metric, is tighter than the fidelity-based one,
τ̃F (t ), Eq. (2.21).

Another distinctive property of the HS QSLT (2.26) is its
robustness under composition [31]. Indeed, the addition of an
uncorrelated ancillary system, whose state is mixed and time-
independent, changes the HS distance of evolution (2.22),
multiplying it by the square root of the purity of the ancilla
state [41]. Then the QSL (2.19) is multiplied by the same
factor. As a consequence, the HS QSLT τ̃G (t ), Eq. (2.26),
remains unchanged when one modifies the quantum system
by adding or removing an uncorrelated ancilla in such a state.

We conclude this section with some few remarks. The
treatment of del Campo et al. [18] provides the time-
independent QSL, Eq. (2.8). Therefore this is the unique
bound that can be evaluated without explicitly solving the
master equation (2.1). We have derived three other QSLs that
are time-dependent, Eq. (2.11) and Eq. (2.19) twice. This
happens because, in view of Eqs. (2.18) and (2.24), the last
two QSLs coincide. Their evaluation requires the solution
of the master equation (2.1). However, the associate QSLTs,
Eqs. (2.13), (2.21), and (2.26), are tighter to the actual driv-
ing time t than the QSLT (2.14), which was introduced in
Ref. [18]. This last one may be used in a straightforward way,
without solving the master equation (2.1). For instance, one
can readily evaluate the QSLT (2.14) concerning the half-life
t1/2 of the input state, defined by the condition F (t1/2) = 1

2 .

III. QUANTUM OPTICAL MASTER EQUATION:
THE SPEED LIMIT vF (0)

While a large amount of research has been done on
the speed of evolution of finite-dimensional open quantum
systems [26,31,36,39], analogous examples in the continuous-
variable settings are scarce [44,45]. Two important Markovian
master equations involving such a system were derived and
frequently applied for a long time: the quantum optical mas-
ter equation [46–48,50–52] and the master equation for the
quantum Brownian motion of a particle in high-temperature
regime [62–66]. Their solutions were used to investigate the
evolution of various properties of the open quantum system.
For instance, in the case of quantum optical master equation,
the alteration of coherence and squeezing under dissipation
received considerable attention [47,48,50], as well as the
emergency of classicality for the field state [53,54,65,66]. In
what follows, we apply the concepts and methods discussed in
the preceding section to a continuous-variable system which is
fundamental in quantum optics: a cavity mode of the quantum
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radiation field which interacts weakly with a thermal bosonic
reservoir.

A. Quantum optical master equation

Here we choose to employ the master equation for a
damped harmonic oscillator [46,56] as a simplified version
of quantum optical master equation [56]. The corresponding
mode of the radiation field with the angular frequency ω and
the amplitude operators â and â† is sustained by a cavity which
stands for the environment. The effective interaction between
the mode and the cavity consists in photon scattering by atoms
into and out of the mode. These radiative processes produce
a damping of the cavity mode characterized by the field-
reservoir coupling constant γ . The mean number of photons
n̄R in any mode of the reservoir having the same frequency ω

is given by the Bose-Einstein distribution function:

n̄R =
[

exp

(
h̄ω

kBT

)
− 1

]−1

. (3.1)

Recall also the Hamiltonian Ĥ = h̄ω â†â for the free evolution
of the mode. Under the weak-coupling condition γ � ω, one
can describe the damping of the cavity mode by the following
quantum optical master equation in the Schrödinger picture
[46,56]:

∂ρ̂(t )

∂t
= −iω[â†â, ρ̂(t )]

+ γ n̄R
{
â†ρ̂(t )â − 1

2 [ââ†ρ̂(t ) + ρ̂(t )ââ†]
}

+ γ (n̄R + 1)
{
âρ̂(t )â† − 1

2 [â†âρ̂(t ) + ρ̂(t )â†â]
}
.

(3.2)

The master equation (3.2) can be derived starting from the
von Neumann equation for the density operator of the field-
reservoir system in the interaction picture, by applying three
distinct approximations, namely, the Born, Markov, and rotat-
ing wave approximations [56]. The Markov approximation is
valid provided that a strong inequality between the relaxation
times of the field mode, τF , and the reservoir, τR, is fulfilled:
τF � τR. The former has the order τF ≈ γ −1, where γ is
essentially a typical value for the rates of the electric dipole
transitions in atoms, i. e., 107 s−1 to 109 s−1. On the other
hand, the latter is of same order as the vacuum correlation time
of the bosonic reservoir, which is given by the inverse of a typ-
ical transition frequency in the optical domain: τR ≈ ω−1 ≈
10−15 s. To sum up, the condition of validity for the Markov
approximation, τF � τR, coincides with that for the Born
approximation, namely, the weak-coupling condition γ � ω.
This is largely fulfilled in the optical domain, where γ /ω ≈
10−6. Finally, the rotating wave approximation is justified as
well, since the terms containing factors exp[i(ω′ − ω)t] with
ω′ 
= ω are rapidly oscillating on the time scale τF ≈ γ −1 of
the mode damping and can therefore be neglected.

The quantum optical master equation (3.2) has the Lind-
blad form and therefore it preserves the positivity of the den-
sity operator. As a consequence, the Robertson-Schrödinger
uncertainty relation holds at any time [67]. By comparison
of Eqs. (3.2) and (2.1), we identify two unbounded Lindblad

operators:

L̂1 = √
γ n̄R â†, L̂2 =

√
γ (n̄R + 1) â.

B. The quantum speed limit vF (0)

We consider an arbitrary pure input one-mode state ρ̂(0) =
|�(0)〉〈�(0)|, After a routine calculation we get the square of
the QSL vF (0), Eq. (2.8):

[vF (0)]2 = 2

h̄2

[
1 +

(
n̄R + 1

2

)2
γ 2

ω2

]
[(�E )0]2

+ 4γω Im(〈â〉0〈â†ââ†〉0)

+ γ 2{2[3n̄R(n̄R + 1) + 1]〈â†â〉0 (〈â†â〉0 + 1)

+ 2n̄R(n̄R + 1)(|〈â2〉0|2 + 1) + 1

− 2(2n̄R + 1)2Re(〈â〉0〈â†ââ†〉0)}. (3.3)

In Eq. (3.3) as well as in subsequent ones, the subscript 0 of
an expectation value means that it is taken at t = 0.

The no-damping limit of Eq. (3.3), γ = 0, specifies the
QSL (2.8) for the free evolution of the field mode:

vF (0) =
√

2
(�E )0

h̄
. (3.4)

The corresponding QSLT (2.14) reads

τmin
F (t ) = [1 − F (t )]

√
2

2

h̄

(�E )0
. (3.5)

Recall that the passage time t⊥ under a unitary pure-state
evolution is defined as the minimum time required for the
evolving state |�(t )〉〈�(t )| to become othogonal to its initial
value: F (t⊥) = 0. As a particular case of the general formula
derived in Ref. [18], the passage time inferred from Eq. (3.5)
has a bound considerably looser than the Mandelstam-Tamm
bound (1.1) for an isolated system:

τmin
F (t⊥) =

√
2

2

h̄

(�E )0
=

√
2

π
τ

(MT)
⊥ . (3.6)

For a zero-temperature reservoir (n̄R = 0), the squared QSL
(3.3) simplifies to

[vF (0)]2 = 2

h̄2

(
1 + 1

4

γ 2

ω2

)
[(�E )0]2

+ 4γω Im(〈â〉0〈â†ââ†〉0)

+ γ 2[2〈â†â〉0 (〈â†â〉0 + 1) + 1

− 2 Re(〈â〉0〈â†ââ†〉0)]. (3.7)

We apply the general formula (3.3) to a couple of families
of pure states that are ubiquitously employed in quantum
optics. The first one consists of the coherent states, which are
usually defined as the eigenstates of the photon annihilation
operator [68]:

â|α〉 = α|α〉, (α ∈ C).

The coherent states are Gaussian and classical. Moreover, they
are the only classical pure states [69]. For any coherent state
|α〉〈α|, we employ the expectation value

〈α|(â†)l âm|α〉 = (α∗)lαm
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to evaluate the squared QSL (3.3):

[vF (0)]2 = 2
(
ω2 + 1

4γ 2
)|α|2

+ γ 2[2n̄R(n̄R + 1) + 1]. (3.8)

When starting at t = 0 from a coherent state, a free field
mode evolves in a time-dependent coherent state:

exp [−iωt (â†â)]|α〉 = |α(t )〉 with α(t ) = α exp(−iωt ).

The corresponding formulas

E := 〈Ĥ〉 = |α|2h̄ω, Eg = 0, �E = |α| h̄ω (3.9)

provide the following unified bound (1.3):

τ⊥ = π

ω |α| (|α| + 1 − | |α| − 1|)−1. (3.10)

This is a strictly decreasing, continuous function of |α| defined
on R+. If α 
= 0, the bound (3.10) is finite and unattainable,
since the fidelity of evolution

F (τ⊥) = |〈α|α(τ⊥)〉|2 = exp (−2|α|2)

does not vanish. Nevertheless, it becomes tighter in the high-
intensity regime |α| � 1, for which we mention the vanishing
limits:

lim
|α|→∞

(τ⊥) = 0, lim
|α|→∞

[F (τ⊥)] = 0.

On the other hand, the no-damping limit γ = 0 of the
square root of the non-negative quantity (3.8) is the QSL (3.4)
for the free evolution of the field mode in a coherent state:

vF (0) =
√

2 |α| ω. (3.11)

The associate QSLT (3.6) for the passage time reads

τmin
F (t⊥) =

√
2

2

1

|α| ω =
√

2

π
τ

(MT)
⊥ . (3.12)

The second class of states we are dealing with is that of
the Fock states, i.e., the eigenstates of the photon-number
operator:

(â†â)|M〉 = M|M〉, (M = 0, 1, 2, 3, . . . ).

Accordingly, their characteristic property is

(�E )0 = 0. (3.13)

Any excited Fock state |M〉〈M|, (M > 0), is neither Gaus-
sian, nor classical. By use of the expectation value

〈M|(â†)l âm|M〉 = M!

(M − m)!
δlm,

we get the squared QSL (3.3) of an arbitrary Fock state:

[vF (M; 0)]2 = γ 2{2[3n̄R(n̄R + 1) + 1]M(M + 1)

+ 2n̄R(n̄R + 1) + 1}. (3.14)

Let us now consider the free evolution of the field
mode (γ = 0) in an arbitrary Fock state. Then, in view of
the stationarity condition (3.13), the QSL (3.4) vanishes:
vF (M; 0) = 0. Consequently, the QSLT (3.6) of the passage
time becomes infinite:

τmin
F (M; t⊥) =

√
2

π
τ

(MT)
⊥M = ∞. (3.15)

At the same time, the Margolus-Levitin bound (1.2) remains
finite for any excited Fock state,

τ
(ML)
⊥M = π

2

1

Mω
, (M > 0),

so that, by virtue of Eq. (1.3), it is physically irrelevant.
For a nonzero coupling γ > 0, the most striking difference

between the evolutions of the above two classes of states
in the optical domain is due to the dominant frequency-
dependent term in Eq. (3.8). Indeed, the influence of the
thermal reservoir on the fast evolution of an initial coherent
state is extremely small. On the contrary, Eq. (3.14) shows
that the field-reservoir interaction fully determines the slow
decay of an initially stationary state.

Remark also that the squared QSLs (3.8) and (3.14) are
increased by the thermal noise n̄R of the reservoir, Eq. (3.1),
as well as by their input mean number of photons |α|2 and M,
respectively. In both equations, the last two terms proportional
to γ 2 coincide and describe an influence of the environment
which is independent of |α|2 or M. Moreover, in each of
them there is a γ 2 term that is proportional to |α|2 and M,
respectively. Beyond these similarities, Eq. (3.14) includes
additional γ 2 terms in comparison with Eq. (3.8), stemming
from the field-reservoir interaction. Therefore this interaction
depends significantly on the input state of the field mode.

The relevance of the input states we have chosen to deal
with in this paper is nicely illustrated by the nonclassicality
properties of the photon-added coherent states. In Ref. [70]
one evaluates the maximal value Qmax

p (α, α∗) of the Husimi
Q function of a coherent state |α〉〈α| with p added photons.
Its HS degree of nonclassicality, equal to 1 − π Qmax

p (α, α∗),
is shown to decrease with the coherent intensity |α|2 and to
increase with the photon number p. It follows that in the class
of photon-added coherent states, the coherent ones (p = 0)
display the least nonclassicality, while the excited Fock states
(α = 0, p > 0) are the most nonclassical. In particular, it is
proven that the HS degree of nonclassicality of any Fock state
increases with its number of photons. On the same lines, in
Ref. [71], both the coherent and Fock states are the simplest
examples of what are now termed extremal quantum states.
The sense of this concept is that, for instance, the photon-
added coherent states appear to be intermediate between the
coherent ones, which possess the least quantumness, and the
excited Fock states, which exhibit the most quantumness.

IV. DAMPING OF A FIELD MODE

In order to apply the general ideas outlined in Sec. II,
we find it suitable to exploit some analytic solutions of the
quantum optical master equation (3.2). A straightforward way
to proceed is to employ the normally-ordered characteristic
function (NCF) of the evolving one-mode state ρ̂(t ) [72]:

χ (N )(λ, λ∗, t ) := Tr[ρ̂(t ) exp(λâ†) exp(−λ∗â)]. (4.1)

The master equation (3.2) can be converted into a linear first-
order partial differential equation for the NCF (4.1), as shown

022221-7



PAULINA MARIAN AND TUDOR A. MARIAN PHYSICAL REVIEW A 103, 022221 (2021)

in Refs. [46,50]:

∂χ (N )

∂t
= −γ n̄R|λ|2χ (N ) −

(γ

2
− iω

)
λ

∂χ (N )

∂λ

−
(γ

2
+ iω

)
λ∗ ∂χ (N )

∂λ∗ . (4.2)

By using the method of the characteristic curves [73], we
get the explicit solution of Eq. (4.2) as the following product
expressed in terms of its given initial form χ (N )(λ, λ∗, 0) :

χ (N )(λ, λ∗, t ) = χ (N )(λ(t ), λ∗(t ), 0) exp [−n̄T (t )|λ|2]. (4.3)

In Eq. (4.3), we have introduced the time-dependent parame-
ter

λ(t ) := λ exp
[
−

(γ

2
− iω

)
t
]
, (4.4)

while the occurring exponential factor is precisely the NCF of
a thermal state (TS),

χ
(N )
T (λ, λ∗, t ) = exp [−n̄T(t )|λ|2], (4.5)

with the mean photon occupancy at time t

n̄T(t ) := n̄R [1 − exp(−γ t )]. (4.6)

Recall the Weyl expansion of an evolving one-mode den-
sity operator [74]:

ρ̂(t ) = 1

π

∫
d2λ χ (λ, λ∗, t )D̂(−λ,−λ∗), (4.7)

where

D̂(λ, λ∗) := exp(λâ† − λ∗â)

= exp
(− 1

2 |λ|2) exp(λâ†) exp(−λ∗â) (4.8)

is a Weyl displacement operator [68], whose expectation
value,

χ (λ, λ∗, t ) := Tr[ρ̂(t )D̂(λ, λ∗)]

= exp
(− 1

2 |λ|2)χ (N )(λ, λ∗, t ), (4.9)

is the CF of the state ρ̂(t ). Here and subsequently, we de-
note an area element in the plane of the complex integration
variable λ by d2λ := dRe(λ) dIm(λ). We also mention the
HS orthonormalization relation of the unitary displacement
operators:

Tr[D̂†(λ, λ∗)D̂(μ,μ∗)] = πδ(2)(λ − μ), (4.10)

with δ(2)(λ − μ) := δ[Re(λ − μ)] δ[Im(λ − μ)].
The simplest consequences of the multiplication law (4.3)

of NCFs are two addition rules, which reveal its significance:

〈â〉(t ) = 〈â〉0 exp
[
−

(γ

2
+ iω

)
t
]

+ 〈â〉T(t ),

where 〈â〉T(t ) = 0, (4.11)

〈â†â〉(t ) = 〈â†â〉0 exp(−γ t ) + n̄R[1 − exp(−γ t )]. (4.12)

Indeed, the above couple of equations shows that the NCF
(4.3) describes the linear superposition of two field modes
which have the same defining features (frequency, direction
of propagation, and polarization), but are in distinct evolving
states: the former is an attenuated mode whose initial state
ρ̂(0) may be chosen at will, while the latter is the thermal

mode with the time-increasing mean photon occupancy n̄T(t ),
Eq. (4.6). According to the addition rule (4.12), n̄T(t ) is the
average number of photons transferred in the time interval
[0, t] from the thermal reservoir into the cavity mode.

On the other hand, at sufficiently large times (γ t � 1), the
transient one-mode state ρ̂(t ) of the radiation field with the
NCF (4.3), tends to a steady-state regime by reaching the TS
ρ̂T(n̄R), whose mean photon occupancy (3.1) is imposed by
the reservoir. Stated concisely, the decay of the field mode
governed by the quantum optical master equation (3.2) is a
thermalization process, i. e., an irreversible evolution towards
thermal equilibrium.

In order to compare the feasibility and tightness of the
QSLTs discussed in Sec. II, we have to evaluate some neces-
sary ingredients: the fidelity of evolution F (t ), Eq. (1.7), the
purity P (t ) of the evolved state, Eq. (1.8), and the bound of
the speed of evolution ṽ(t ), Eq. (2.17). By applying the Weyl
expansion formula (4.7) in conjunction with the orthonor-
malization property (4.10), we get the following general
expressions in terms of the CF χ (λ, λ∗, t ), Eq. (4.9):

F (t ) = 1

π

∫
d2λ χ∗(λ, λ∗, 0)χ (λ, λ∗, t ), (4.13)

P (t ) = 1

π

∫
d2λ |χ (λ, λ∗, t )|2, (4.14)

and

[ṽ(t )]2 = 1

π

∫
d2λ

∣∣∣∣∂χ (λ, λ∗, t )

∂t

∣∣∣∣
2

. (4.15)

It is known for a long time that purity is important in its own
right when analyzing from a quantum-optical perspective the
decay of a single mode of the radiation field in a dissipative
environment [51,52].

Note that the Wigner quasiprobability distribution
W (β, β∗, t ) is the Fourier transform of the CF χ (λ, λ∗, t ),
[72]:

W (β, β∗, t ) = 1

π

∫
d2λ exp (βλ∗ − β∗λ) χ (λ, λ∗, t ).

Owing to Parseval’s formula, the integral representations
(4.13)–(4.15) may be paralleled with similar ones, where the
CF χ is replaced by the Wigner function W . For instance,
Eq. (4.15) is equivalent to the formula:

[ṽ(t )]2 = 1

π

∫
d2β

∣∣∣∣∂W (β, β∗, t )

∂t

∣∣∣∣
2

. (4.16)

In Ref. [44], the right-hand side of Eq. (4.16) was shown
to represent the rate of the Wasserstein-2-distance between
time-dependent Wigner distributions. Equations (4.15) and
(4.16) display the explicit equality of the two QSLs defined
in Ref. [44] and provide an explanation for Fig. 1 therein.

To conclude this section, Eqs. (4.13)–(4.15) are gen-
eral formulas obtained by employing the continuous-variable
Weyl expansion (4.7). They are useful when one applies the
straightforward CF method to solve any master equation that
rules the evolution of a continuous-variable system. We could
readily prove the equivalence between the CF method and
the Wigner-function approach developed in Ref. [44]. In the
next two sections, we will take advantage of the benefits of
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describing some interesting states of the damped radiation
field by their CFs.

V. THERMALIZATION OF A COHERENT STATE

A. Evolved state

It is well known that the quantum optical master equa-
tion (3.2) preserves the Gaussian character as well as the
classicality of the initial state [50]. An input coherent state
ρ̂(0) = |α〉〈α| is Gaussian, since its NCF is the exponen-
tial χ (N )(λ, λ∗, 0) = exp (α∗λ − αλ∗), and lies at the limit of
classicality, since its Glauber-Sudarshan P representation is a
Dirac δ distribution: P(β, β∗, 0) = δ(2)(β − α).

The transient NCF (4.3) reads

χ (N )(λ, λ∗, t ) = exp[−n̄T(t )|λ|2 + α∗(t )λ − α(t )λ∗], (5.1)

where

α(t ) := α exp
[
−

(γ

2
+ iω

)
t
]
, (5.2)

in accordance with Eq. (4.11). It describes an evolving dis-
placed thermal state (DTS):

ρ̂DT(t ) = D̂[α(t ), α∗(t )] ρ̂T[n̄T(t )] D̂†[α(t ), α∗(t )]. (5.3)

The one-mode DTSs are special Gaussian states, whose sta-
tistical properties are systematically studied in Ref. [49]. The
expected extremity limits of the evolved state (5.3),

lim
t→0

[ρ̂DT(t )] = |α〉〈α|, lim
t→∞ [ρ̂DT(t )] = ρ̂T(n̄R),

are readily checked.
Being the Fourier transform of the Gaussian func-

tion π−1χ (N )(λ, λ∗, t ) [72], the Glauber-Sudarshan quasi-
probability distribution is also a regular Gaussian function for
t > 0:

P(β, β∗, t ) = 1

π n̄T(t )
exp

[
−|β − α(t )|2

n̄T(t )

]
, (t > 0),

with the appropriate limit δ(2)(β − α) at t = 0.
We mention two extreme situations that are insightful:
(1) Dissipation of a coherent state (α 
= 0, n̄R = 0). The

evolving state (5.3) becomes the coherent state |α(t )〉〈α(t )|
with the attenuated oscillating amplitude (5.2).

(2) Thermalization of the vacuum state (α = 0, n̄R > 0).
If ρ̂(0) = |0〉〈0|, then the transient state (5.3) reduces to the
evolving TS ρ̂T[n̄T(t )].

B. Main ingredients

At this point, we find it convenient to introduce the time-
decreasing variable

η := exp(−γ t ), η ∈ (0, 1]. (5.4)

In order to evaluate the integrals (4.13)–(4.15) for the evolving
DTS (5.3), we make use of Eqs. (4.9) and (5.1), finding the

exact explicit formulas:

F (t ) = 1

1 + n̄T(t )
exp

[
−|α|2 1 − 2

√
η cos(ωt ) + η

1 + n̄T(t )

]
,

(5.5)

P (t ) = 1

1 + 2n̄T(t )
, (5.6)

[ṽ(t )]2 = 2

[
ω2 +

(
1

2
γ

)2]
|α|2 η

[1 + 2n̄T(t )]2

+ 2(γ n̄R)2 η2

[1 + 2n̄T(t )]3 . (5.7)

An analysis of the above functions will suggest us how to
exploit them in an efficient way.

1. Fidelity of evolution

The fidelity of evolution (5.5) is equal, up to a factor π , to
the Husimi Q function of the transient DTS (5.3):

F (t ) = 〈α|ρ̂DT(t )|α〉 =: π Q DT(α, α∗, t ). (5.8)

Its value at thermal equilibrium,

lim
t→∞[F (t )] = 〈α|ρ̂T(n̄R)|α〉 =: πQT(n̄R; α, α∗),

reads

lim
t→∞ [F (t )] = 1

1 + n̄R
exp

(
− |α|2

1 + n̄R

)
. (5.9)

If α 
= 0, the fidelity of damping (5.5) suffers from the
drawback that, under the weak-coupling condition γ � ω,
and at the scale of the field relaxation time τF ≈ γ −1, it
oscillates very rapidly due to the presence of the function
cos(ωt ) at the exponent. In the present case, this is a major
inconvenience concerning the figures of merit occurring in
the QSLTs (2.13), (2.21), and (2.26). In principle, one can
remedy it by replacing the oscillating function cos(ωt ) either
with one of its convenient values or with a significant average
connected to it. In Appendix A, we point out the appropriate
approach of this kind. The conclusion is that the fidelity of
evolution in the interaction picture is the only suitable one.
This means that instead of the oscillating function (5.5), we
will use exclusively the smooth fidelity

F (1)(t ) = 1

1 + n̄T(t )
exp

[
−|α|2 (1 − √

η)2

1 + n̄T(t )

]
. (5.10)

Let us mention the short-time approximation of the func-
tion F (1)(t ), Eq. (5.10):

F (1)(t ) = 1 − n̄R(γ t ) + 1

2

[
n̄R(1 + 2n̄R) − 1

2
|α|2

]
(γ t )2

+ O
[
(γ t )3

]
, (γ t � 1), (5.11)

as well as its asymptotic behavior:

F (1)(t ) = 1

1 + n̄R
exp

(
− |α|2

1 + n̄R

)[
1 + 2

|α|2
1 + n̄R

√
η

+O(η)], (γ t � 1). (5.12)
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From Eq. (5.11) one gets the rate of dechorence of the field
mode: �

(1)
d := −Ḟ (1)(0) = n̄Rγ ; its inverse is the decoher-

ence time τ
(1)
d = 1/(n̄Rγ ).

2. Purity

The purity (5.6) of the transient DTS (5.3) does not depend
on the coherent amplitude α. It is a strictly monotonic and
strictly convex function of time, which decreases from the
initial pure-state value P (0) = 1 towards the steady-state limit
P (∞) = (1 + 2n̄R)−1.

We write down an expansion of the purity (5.6) that is valid
at short times:

P (t ) = 1 − 2n̄R(γ t ) + 1
2 [2n̄R(1 + 4n̄R )](γ t )2 + O[(γ t )3],

(γ t � 1), (5.13)

and the asymptotic formula:

P (t ) = 1

1 + 2n̄R

[
1 + 2n̄R

1 + 2n̄R
η + O

(
η2)], (γ t � 1).

(5.14)

According to Eq. (5.13), the rate of mixing of the initially
coherent state is �m := −Ṗ (0) = 2n̄Rγ ; its inverse defines a
conventional mixing time: τm = 1/(2n̄Rγ ).

On the one hand, from Eqs. (5.11) and (5.13), we get the
short-time expression of the HS evolution distance (A6):

G (1)(t ) = Ġ (1)(0) t + O[(γ t )2], (γ t � 1), (5.15)

with the slope at the origin

Ġ (1)(0) =
√

2γ
(
n̄2

R + 1
4 |α|2) 1

2 . (5.16)

On the other hand, Eqs. (5.12) and (5.14) provide a steady-
state sign rule:

sgn
{

lim
t→∞

[
F (1)(t ) − P (t )

]}

= sgn

[
(1 + n̄R) ln

(
1 + n̄R

1 + n̄R

)
− |α|2

]
.

3. Upper bound for the speed of evolution

In the sequel, we employ two approximations of the exact
formula (5.7) obtained by keeping only its most important
term:

ṽ(t ) =
√

2

[
ω2 +

(
1

2
γ

)2] 1
2 |α| √η

1 + 2n̄T(t )
, (|α|ω � n̄Rγ );

(5.17)

ṽ(t ) =
√

2
n̄Rγ η

[1 + 2n̄T(t )]
3
2

, (|α|ω � n̄Rγ ). (5.18)

The condition for the validity of Eq. (5.17) is largely ful-
filled. For instance, when choosing |α| = 10−3 and at room
temperature, it holds for laser frequencies ranging from UV
to IR. Therefore, Eq. (5.18) may only be used for a low-
intensity laser whose frequency is in the far IR. Note that
Eq. (5.17) becomes exact for a dissipating coherent field mode
(α 
= 0, n̄R = 0), while Eq. (5.18) is rigorously exact when
describing the thermalization of the vacuum (α = 0, n̄R > 0).

C. Quantum speed limit times

1. Exact general formulas

When using the purity (5.6) of the transient DTS, we find
the following explicit expression of the QSL (2.11):

vF (t ) = vF (0)
√
P (t ) = vF (0)

(1 + 2n̄R)
1
2

×
{

1 + ln

(
1 + −1 + [1 + 2n̄T(t )]

1
2

1 + (1 + 2n̄R)
1
2

)}
. (5.19)

In the above formula, the QSL vF (0), Eq. (3.8), is the only
factor that depends on |α|2. Let us write down the short-time
approximation of the QSL (5.19):

vF (t ) = vF (0)
{
1 − 1

2 n̄R(γ t ) + 1
6 n̄R(1 + 3n̄R)(γ t )2

+ O[(γ t )3]
}
, (γ t � 1), (5.20)

as well as its long-time behavior:

vF (t ) = vF (0)

(1 + 2n̄R)
1
2

{
1 + 2

γ t
ln

[
2

1 + (1 + 2n̄R)−
1
2

]

− n̄R

1 + 2n̄R

1

γ t
O(η)

}
, (γ t � 1). (5.21)

2. Approximate formulas for α �= 0

Further, we employ the approximate formulas (5.17) and
(5.18) to obtain two alternative QSLs (2.19):

ṽ(t ) =
√

2

[
1 + (

γ

2ω

)2

(1 + 2n̄R)2n̄R

] 1
2
ω|α|
γ t

× {2 ln[(1 + 2n̄R)
1
2 + (2n̄R)

1
2 ]

+ 2 ln[(1 + 2n̄R)
1
2 − (2n̄Rη)

1
2 ]

− ln[1 + 2n̄T(t )]}, (|α| ω � n̄Rγ ), (5.22)

and, respectively,

ṽ(t ) =
√

2

t
{1 − [1 + 2n̄T(t )]−

1
2 }, (|α| ω � n̄Rγ ).

(5.23)

The QSL (5.22) has the following short-time behavior:

ṽ(t ) =
√

2
[
1 +

( γ

2ω

)2] 1
2

ω|α|
{

1 − 1

4
(1 + 4n̄R)(γ t )

+ 1

24

(
1 + 16 n̄R + 32 n̄2

R

)
(γ t )2

+O[(γ t )3]

}
, (|α| ω � n̄Rγ , γ t � 1), (5.24)
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while it vanishes in the steady-state regime:

ṽ(t ) =
√

2

[
1 + (

γ

2ω

)2

(1 + 2n̄R)2n̄R

] 1
2
ω|α|
γ t

×
{

2 ln[(1 + 2n̄R)
1
2 + (2n̄R)

1
2 ] − 2

(
2n̄R

1 + 2n̄R
η

) 1
2

+ O(η
3
2 )

}
, (|α|ω � n̄Rγ , γ t � 1). (5.25)

For a dissipating coherent field, (n̄R = 0), the formula (5.22)
becomes exact, simplifying to

ṽ(t ) =
√

2
[
1 +

( γ

2ω

)2] 1
2 ω|α|

γ t
2(1 − √

η), (n̄R = 0).

(5.26)

In turn, the short-time behavior of the QSL (5.23) reads

ṽ(t ) =
√

2 n̄Rγ
{
1 − 1

2 (1 + 3n̄R)(γ t )

+ 1
6

(
1 + 9n̄R + 15 n̄2

R

)
(γ t )2 + O[(γ t )3]

}
,

(|α| ω � n̄Rγ , γ t � 1), (5.27)

As expected, it has a vanishing asymptotic limit:

ṽ(t ) =
√

2

t

[
1 − (1 + 2n̄R)−

1
2

(
1 + n̄R

1 + 2n̄R
η
)

+ O(η2)

]
, (|α| ω � n̄Rγ , γ t � 1). (5.28)

The new QSLTs are similar to the old ones, Eqs. (2.13),
(2.21), and (2.26),

τ
(1)
F (t ) : = 1 − F (1)(t )

vF (t )

� τ
(1)min
F (t ) = 1 − F (1)(t )

vF (0)
, (5.29)

τ̃
(1)
F (t ) := 1 − F (1)(t )

ṽ(t )
, (5.30)

τ̃
(1)
G (t ) := G (1)(t )

ṽ(t )
, (5.31)

but are comparatively smaller. Owing to the inequality
F (1)(t ) �

√
P (t ) and to its consequence,

G (1)(t ) � 1 − F (1)(t ),

we get a relation analogous to the general formula (2.29):

τ̃
(1)
G (t ) � τ̃

(1)
F (t ). (5.32)

In Fig. 1, the above QSLTs, Eqs. (5.29)–(5.31), are visualized
for the dissipation (n̄R = 0) of an input coherent field with
amplitude α = 2. For convenience, we choose a ratio γ /ω =
0.1.

3. Exact formulas in the limiting case α = 0

When one deals with thermalization of the vacuum
(α = 0, n̄R > 0), all five functions (A1)-(A4) coincide with

FIG. 1. The QSLTs τ
(1)min
F (t ), Eq. (5.29) (dotted green line),

τ̃
(1)
F (t ), Eq. (5.30) (dotted-dashed purple line), and τ̃

(1)
G (t ), Eq. (5.31)

(dashed red line) for a coherent field of amplitude α = 2, evolving
in contact with a zero-temperature reservoir under the condition
γ /ω = 0.1. Comparison with the actual time of evolution (solid
black line) shows that these lower bounds are not tight.

the exact fidelity of evolution (5.5), which is denoted F0(t )
and reads:

F0(t ) = 1

1 + n̄T(t )
. (5.33)

On the other hand, the QSL (3.8) simplifies to

vF (0; 0) = γ [1 + 2n̄R(1 + n̄R)]
1
2 . (5.34)

Further, the purity P0(t ) has the general expression (5.6),
while the approximate QSL (5.23) becomes exact:

ṽ0(t ) =
√

2

t

[1 + 2n̄T(t )]
1
2 − 1

[1 + 2n̄T(t )]
1
2

. (5.35)

The HS measure of evolution (2.23),

G0(t ) = [1 + P0(t ) − 2F0(t )]
1
2 , (5.36)

has the expression

G0(t ) =
√

2 n̄T(t )

[1 + 2n̄T(t )]
1
2 [1 + n̄T(t )]

1
2

. (5.37)

Hence, we get the fidelity-based QSLTs:

τmin
F (0; t ) = 1 − F0(t )

vF (0; 0)

= 1

γ

n̄T(t )

1 + n̄T(t )
[1 + 2n̄R(1 + n̄R)]−

1
2 , (5.38)

τ̃F (0; t ) = 1 − F0(t )

ṽ0(t )

=
[

1 + 2n̄T(t )

2 + 2n̄T(t )

] 1
2 1 + [1 + 2n̄T(t )]

1
2

2[1 + n̄T(t )]
1
2

t, (5.39)

as well as the HS-metric-based one,

τ̃G (0; t ) = G0(t )

ṽ0(t )
= 1 + [1 + 2n̄T(t )]

1
2

2[1 + n̄T(t )]
1
2

t . (5.40)
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(a)

(b)

FIG. 2. (a) The QSLTs (5.38) (dotted green line), (5.39) (dotted-
dashed purple line), and (5.40) (dashed red line) for thermalization
of the vacuum (α = 0, n̄R = 0.5) compared with the actual time of
evolution (solid black line). (b) The Hilbert-Schmidt QSLT (5.40)
remains tight even for noisier thermal environments. From top to
bottom: n̄R = 0.5 (solid green line), n̄R = 2 (dotted purple line),
n̄R = 4 (dotted-dashed blue line), and n̄R = 10 (dashed black line).

Figure 2(a) displays the expected hierarchy of the QSLTs
(5.38)–(5.40). The HS QSLT (5.40) is so close to the actual
driving time t that their graphs are practically superposed
when γ t � 1. Its tightness is quite remarkable even for higher
values of the Bose-Einstein mean photon occupancy n̄R, as
illustrated in Fig. 2(b).

Since the field mode is fed only by the reservoir, all pho-
tons are thermal: 〈â†â〉(t ) = n̄T(t ), Eq. (4.6). In the twofold
limiting case n̄R = 0, there are no photons in the cavity, while
all atoms could be trapped to form a Bose-Einstein condensate
in its ground-state configuration. The absence of any interac-
tion means that the field-reservoir coupling constant vanishes:
γ = 0. Consequently, there is no field-state evolution and both
QSLs (5.34) and (5.35) vanish:

vF (0; 0) = 0, ṽ0(t ) = 0, (n̄R = 0).

VI. THERMALIZATION OF A FOCK STATE

A. Transient state

The CF (4.9) of an initial number state |M〉〈M| is

χM (λ, λ∗, 0)) := 〈M|D̂(λ, λ∗)|M〉
= exp

(− 1
2 |λ|2)LM (|λ|2), (6.1)

where LM (x) stands for the Laguerre polynomial of degree M,
Eq. (B2). According to Eqs. (4.3), (4.4), and (4.9), the CF and
the NCF of the thermalized number state ρ̂M (t ) are given by
the formula::

χM (λ, λ∗, t ) = exp
(− 1

2 |λ|2)χ (N )
M (λ, λ∗, t )

= exp
(−[

1
2 + n̄T(t )

]|λ|2)LM (η |λ|2). (6.2)

Therefore, the transient state ρ̂M (t ) describes the linear super-
position of an attenuated mode with a definite initial number
of photons M and a thermal mode whose mean photon number
n̄T(t ), Eq. (4.6), is fed by the reservoir..

The Fourier transforms of the CF and the NCF in Eq. (6.2)
are respectively the Wigner function WM (β, β∗, t ) and, up to
a factor π, the Glauber-Sudarshan P function πPM (β, β∗, t )
[72]. In Ref. [54], these functions are evaluated and found to
have a similar structure:

WM (β, β∗, t ) = 2

1 + 2n̄T(t )
exp

[
− 2|β|2

1 + 2n̄T(t )

]

×
[

1 + 2n̄R − 2(1 + n̄R)η

1 + 2n̄T(t )

]M

× LM

(
− 4η|β|2

[1+2n̄T(t )][1+2n̄R−2(1+n̄R)η]

)
;

(6.3)

PM (β, β∗, t ) = 1

π

1

n̄T(t )
exp

[
− |β|2

n̄T(t )

][
n̄R − (1 + n̄R)η

n̄T(t )

]M

× LM

(
− η |β|2)

n̄T(t )[n̄R − (1 + n̄R)η ]

)
. (6.4)

In what follows, we leave out the special case M = 0,
since thermalization of the vacuum is already treated in the
preceding section. For M > 0, the regular functions (6.3) and
(6.4) are positive on the whole phase space if the arguments
of their Laguerre polynomials are negative:

t � tw := 1

γ
ln

(
1 + 1

1 + 2n̄R

)
�⇒ WM (β, β∗, t ) > 0;

(6.5)

t � tc := 1

γ
ln

(
1 + 1

n̄R

)
�⇒ PM (β, β∗, t ) > 0. (6.6)

As shown in Ref. [54], the damping of an excited number state
involves three successive stages, each of them with specific
features of the evolved state.

(1) t ∈ [ 0, tw). Strong nonclassicality: Both functions
WM (β, β∗, t ) and PM (β, β∗, t ) have some negative values.

(2) t ∈ [ tw, tc). Weak nonclassicality:WM (β, β∗, t ) > 0,
while PM (β, β∗, t ) is negative somewhere.

(3) t � tc. Classicality: (2π )−1WM (β, β∗, t ) > 0 and
2−1PM (β, β∗, t ) > 0, so that both functions are genuine den-
sities of probability in the phase space.

The threshold times tw and tc do not depend on the initial
number of photons M. We term them the weak nonclassicality
threshold and the classicality one, respectively. Remark that
the transient state ρ̂M (t ) of a dissipating mode (n̄R = 0) is
always nonclassical because tc = ∞; on the contrary, its weak
nonclassicality threshold is finite: tw = 1

γ
ln(2).
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B. Main ingredients

For initial Fock states, we write the specific versions of the
general formulas (4.13)–(4.15), where the initial CF (6.1) and,
respectively the transient one (6.2) should be substituted.

1. Fidelity of evolution

The fidelity of evolution (4.13) is evaluated making use of
the integral (B11):

FM (t ) = ηM [u(t )]−M

[1 + n̄T(t )]2M+1 2F1( − M,−M; 1; u(t )). (6.7)

In Eq. (6.7), the Gauss hypergeometric function 2F1, Eq. (B9),
is a monic polynomial of degree M with the positive
variable

u(t ) := 1

n̄R(1 + n̄R)

η

(1 − η)2
, (n̄R > 0). (6.8)

This variable is a strictly decreasing and strictly convex func-
tion of time: it decreases from u(0) = ∞ to u(∞) = 0. The
above-mentioned property of the hypergeometric polynomial
2F1 in Eq. (6.7) enables us to write the formula:

lim
u→∞[u−M

2F1(−M,−M; 1; u)] = 1. (6.9)

Therefore, in the limit case n̄R = 0, corresponding to the dis-
sipation of the mode, Eq. (6.7) simplifies to

FM (t ) = ηM, (n̄R = 0). (6.10)

The time derivative of the fidelity (6.7) has a rather com-
plicated expression:

ḞM (t ) = −γFM (t )

{
M + (2M + 1)

n̄R η

1 + n̄T (t )

+
[
−M + M2u(t ) 2F1(−M + 1,−M + 1; 2; u(t ))

2F1(−M,−M; 1; u(t ))

]

×1 + η

1 − η

}
. (6.11)

For that very reason, it is hard to answer the general ques-
tion whether the function of time (6.7) is monotonic or not,
whatever values of its parameters M and n̄R are chosen. Nev-
ertheless, in the simplest case M = 1, a thorough analysis of
damping is carried out in Appendix C.

The fidelity of evolution (6.7) has the short-time expansion:

FM (t ) = 1 − [M + (2M + 1)n̄R](γ t )

+ 1
2

[
M2 + (6M2 + 4M + 1)n̄R

+ 2(3M2 + 3M + 1)n̄2
R

]
(γ t )2

+ O[(γ t )3], (γ t � 1), (6.12)

Accordingly, the modulus of the slope of its graph at
t = 0, i.e., the rate of decoherence of the initial Fock state
is �d (M, n̄R) := −ḞM (0) = γ [M + (2M + 1)n̄R].

We also write the asymptotic formula:

FM (t ) = 1

1 + n̄R

( n̄R

1 + n̄R

)M[
1 + (M − n̄R)2

n̄R(1 + n̄R)
η

+ 1

2[n̄R(1 + n̄R)]2

(
1

2
[M(M − 1)]2 + 2n̄R{Mn̄R

+ (M − n̄R)[−2M(M − 1) + n̄R(3M − n̄R)]}
)

η2

+ O(η3)

]
, (n̄R > 0, γ t � 1). (6.13)

From Eq. (6.13), one learns that the steady-state limit

lim
t→∞[FM (t )] = 1

1 + n̄R

( n̄R

1 + n̄R

)M

(6.14)

is always reached from above. In fact, this limit is an input-
output fidelity, i. e., the fidelity between the initial Fock state
|M〉〈M| and the TS ρ̂T(n̄R), which is eventually imposed by
the bosonic reservoir to the field mode at equilibrium:

lim
t→∞[FM (t )] = 〈M|ρ̂T(n̄R)|M〉.

At the classicality threshold tc, Eq. (6.6), the variable (6.8)
is equal to one,

u(t ) = 1 ⇐⇒ t = tc, (n̄R > 0).

Consequently, the fidelity (6.7), as well as its time derivative
(6.11) reduce to a single monomial owing to Gauss’s summa-
tion formula (B12):

FM (tc) =
(

2M

M

)
(n̄R)M (1 + n̄R)M+1

(1 + 2n̄R)2M+1 , (n̄R > 0); (6.15)

ḞM (tc) = −γ
M + 2n̄2

R

2(1 + 2n̄R)
FM (tc) < 0, (n̄R > 0). (6.16)

Both fidelities (6.14) and (6.15) decrease with the initial num-
ber of photons M.

2. Purity

We perform the integral (4.14) by employing once more
Eq. (B11) to get the evolved purity:

PM (t ) = η2M [w(t )]−M

[1 + 2n̄T(t )]2M+1 2F1(−M,−M; 1; w(t )). (6.17)

Here we have introduced the positive variable

w(t ) :=
(

1

1 + 2n̄R

η

1 − η

)2

, (6.18)

which is a strictly decreasing and strictly convex function of
time: it decreases from w(0) = ∞ to w(∞) = 0. The Gauss
hypergeometric functions 2F1 in Eqs. (6.7) and (6.17) share
the same parameters, but have distinct time-dependent vari-
ables. We stress that, while the expression (6.7) of the fidelity
of evolution is a new result, the purity (6.17) of a thermalized
number state was first written and analyzed in Ref. [52].
However, in the sequel we extend this previous investigation.

The purity of a dissipating M-photon Fock state takes a
simpler form:

PM (t ) = (1 − η)2M
2F1

(
−M,−M; 1;

(
η

1 − η

)2 )
,

(n̄R = 0). (6.19)
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Coming back to the general formula (6.17), the time derivative
of the purity has an expression analogous to Eq. (6.11):

ṖM (t ) = −(2γ )PM (t )

{
M + (2M + 1)

n̄R η

1 + 2n̄T(t )

+
[
−M + M2w(t ) 2F1(−M + 1,−M + 1; 2; w(t ))

2F1(−M,−M; 1; w(t ))

]

× 1

1 − η

}
. (6.20)

Further, the evolved purity (6.17) has the following short-
time approximation:

PM (t ) = 1 − 2[M + (2M + 1)n̄R](γ t )

+ 1
2

[
6M2 + 2(12M2 + 6M + 1)n̄R

+8(3M2 + 3M + 1)n̄2
R

]
(γ t )2

+ O[(γ t )3], (γ t � 1), (6.21)

From Eq. (6.21), we get the rate of mixing of the
initial Fock state, which is �m(M, n̄R ) := −ṖM (0) =
2γ [M + (2M + 1)n̄R].

It is important to write the large-time expansion of the
purity (6.17):

PM (t ) = 1

1 + 2n̄R

{
1 − 2

M − n̄R

1 + 2n̄R
η

+ 1

2

2

(1 + 2n̄R)2
[4(M − n̄R)2

− M(M + 1)]η2 + O(η3)

}
, (γ t � 1). (6.22)

According to Eq. (6.22), the purity at thermal equilibrium

lim
t→∞[PM (t )] = 1

1 + 2n̄R
= Tr{[ρ̂T(n̄R)]2} (6.23)

is reached from below if n̄R � M, and from above if
n̄R > M. As a consequence, there are some few regimes of
mixing which are illustrated in Fig. 3(b). In view of the initial
slope of its graph displayed by Eq. (6.21), the purity (6.17) has
at least a minimum when n̄R � M, while this is not necessarily
true when n̄R > M [52].

At the weak nonclassicality threshold tw, Eq. (6.5), the
variable (6.18) becomes equal to one:

w(t ) = 1 ⇐⇒ t = tw.

Therefore, at the time t = tw, the purity (6.17) and its time
derivative (6.20) are expressed more compactly via the Gauss
summation formula (B12):

PM (tw) = 2−2M

(
2M

M

)
1 + n̄R

1 + 2n̄R
, (6.24)

ṖM (tw) = −γ n̄RPM (tw) � 0. (6.25)

The purity (6.24) decreases to zero when the initial number of
photons M increases indefinitely. In addition, for a dissipating
mode (n̄R = 0), the transient purity (6.19) has a minimum at

(a)

(b)

FIG. 3. (a) The decrease of the fidelity of evolution FM (t ),
Eq. (6.7), is faster for larger M. (a) We plot it for n̄R = 0.5 and the
following initial numbers of photons: M = 1 (dotted-dashed purple
line), M = 2 (solid blue line), M = 3 (dashed magenta line), and
M = 5 (dotted black line). (b) The evolution of the purity PM (t ),
Eq. (6.17), is not monotonic for M � n̄R. At a fixed initial number
of photons M = 2, we present its plots for several values of the ther-
mal mean occupancy: n̄R = 0 (dotted-dashed purple line), n̄R = 0.5
(solid blue line), n̄R = 1.5 (dashed magenta line), and n̄R = 3 (dotted
black line).

the threshold of weak nonclassicality tw = 1
γ

ln(2), since

P̈M (tw) = 2−2(M−1)

(
2(M − 1)

M − 1

)
γ 2 > 0, (n̄R = 0).

Despite their resembling analytic expressions, the fidelity
of damping (6.7) and the evolving purity (6.17) have different
monotonicity properties, as shown in Fig. 3. As a matter of
fact, the possible existence of a minimum of the purity P (t )
during thermalization, which is smaller than its steady-state
limit, was proven long ago for two classes of input pure states,
namely, the even coherent states [51] and the Fock states [52].
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The sufficient condition for the existence of such a minimum
is that the initial mean photon number in the mode exceeds
or is at least equal to the corresponding mean occupancy of
the reservoir: 〈â†â〉0 � n̄R. In Appendix C we prove that this
condition is not necessary.

Figure 3(a) shows the evolution of the fidelity (6.7) for sev-
eral initial M-photon states at a fixed thermal mean occupancy
n̄R = 0.5. The decrease of the fidelity of evolution from one
to the thermal-equilibrium value (6.14) is stronger for larger
M. In Fig. 3(b), we illustrate both regimes of evolution of the
purity (6.17) conditioned by the relation between the thermal
mean occupancy n̄R and a fixed input number of photons
M = 2:

(i) the nonmonotonicity property of the evolving purity
(6.17), which exhibits a minimum when n̄R � M;

(ii) the strict decrease of the purity (6.17) under the reverse
condition.

We now consider the HS distance of evolution (2.23)
adapted to this section:

GM (t ) = [1 + PM (t ) − 2FM (t )]
1
2 . (6.26)

This is a feasible indicator of a Fock-state damping, being
built with the fidelity of evolution (6.7) and the purity (6.17).
Two remarks are noteworthy. First, Eqs. (6.12) and (6.21) pro-
vide the short-time behavior of the HS distance of evolution
(6.26):

GM (t ) = ĠM (0) t + O[(γ t )2], (γ t � 1), (6.27)

with the slope at the origin

ĠM (0) =
√

2γ [(M − n̄R)2 + 3M(M + 1)n̄R(1 + n̄R)]
1
2 .

(6.28)

Second, from Eqs. (6.13) and (6.22), we infer that the steady-
state limit

lim
t→∞[GM (t )] =

√
2

[
1 + n̄R

1 + 2n̄R
− 1

1 + n̄R

( n̄R

1 + n̄R

)M] 1
2

(6.29)

is attained from below if n̄R � M.
Figure 4 displays the HS distance of evolution (6.26) at a

fixed thermal mean occupancy n̄R = 0.5, for the same input
Fock states as in Fig. 3(a). All four plots drawn here point
out a convenient monotonic increase of the function GM (t ),
i.e., of the HS distinguishability between the initial number
state and the evolved one through the master equation (3.2).
A rapid increase towards its input-output value (6.29) shows
that the interaction with the reservoir makes the states ρ̂M (0)
and ρ̂M (t ) to become more and more distinguishable. This
happens faster for larger M, confirming that the fragility of a
Fock state under the influence of thermal noise increases with
M [52].

3. Upper bounds for the speed of dissipation

By reason of feasibility, we restrict the next analytic treat-
ment to the case of dissipation (n̄R = 0) of a mode whose
initial state has only one or two photons. Then, Eq. (6.2)
simplifies to

χM (λ, λ∗, t ) = exp
(− 1

2 |λ|2)LM (η|λ|2). (6.30)

FIG. 4. The monotonic behavior of the Hilbert-Schmidt distance
of evolution GM (t ), Eq. (6.26), for n̄R = 0.5 and the same initial
photon numbers M as in Fig. 3(a).

On account of Eqs. (5.4) and (B2), we get the general formula:

∂

∂t

[
χ

(N )
M (λ, λ∗, t )

] = Mγ η |λ|21F1(−M + 1; 2; η |λ|2).

(6.31)

In particular,

∂

∂t

[
χ

(N )
1 (λ, λ∗, t )

] = γ η |λ|2, (6.32)

∂

∂t

[
χ

(N )
2 (λ, λ∗, t )

] = 2γ η |λ|2
(

1 − 1

2
η |λ|2

)
. (6.33)

Use of Eq. (4.15) provides the corresponding upper bounds
for the speed of dissipation:

ṽ1(t ) =
√

2γ η,

ṽ2(t ) = 2
√

6 γ η

(
η2 − η + 1

3

) 1
2

. (6.34)

C. Quantum speed limit times for dissipation

We specialize Eq. (3.14) to write the following constant
QSLs for the dissipation of the field mode:

vF (1; 0) =
√

5 γ , vF (2; 0) =
√

13 γ . (6.35)

Then, insertion of the speeds (6.34) into Eq. (2.19) gives the
time-dependent QSLs for dissipation (n̄R = 0):

ṽ1(t ) =
√

2

t
(1 − η), (6.36)

and, respectively,

ṽ2(t ) = 1

t

√
6

12

{
2
√

3 − ln

[(
η − 1

2

)
+

(
η2 − η + 1

3

) 1
2

]

+ ln

(
1

2
+ 1√

3

)
− 12

(
η − 1

2

)(
η2 − η + 1

3

) 1
2

}
.

(6.37)
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From Eq. (6.19), one gets

P1(t ) = (1 − η)2 + η2, (6.38)

P2(t ) = (1 − 2η)2 + 6 η2(1 − η)2. (6.39)

Taking account of the fidelity (6.10) and the purities (6.38),
(6.39), we get the corresponding values of the HS evolution
distance (6.26):

G1(t ) =
√

2(1 − η), (6.40)

G2(t ) =
√

2(1 − η)
(
1 + 3η2

) 1
2 . (6.41)

We now are ready to evaluate the fidelity QSLTs (2.14),

τmin
F (M; t ) = 1 − FM (t )

vF (M; 0)
, (M = 1, 2), (6.42)

and (2.21),

τ̃F (M; t ) = 1 − FM (t )

ṽM (t )
, (M = 1, 2), (6.43)

as well as the HS-metric ones (2.26),

τ̃G (M; t ) = GM (t )

ṽM (t )
, (M = 1, 2). (6.44)

With appropriate substitutions in Eqs. (6.42)–(6.44), we get
two pairs of fidelity-based QSLTs:

τmin
F (1; t ) = 1 − η√

5 γ
, τmin

F (2; t ) = 1 − η2

√
13 γ

, (6.45)

τ̃F (1; t ) =
√

2

2
t, τ̃F (2; t ) = 1 − η2

ṽ2(t )
, (6.46)

and a pair of HS-metric-based QSLTs:

τ̃G (1; t ) = t, τ̃G (2; t ) =
√

2

ṽ2(t )
(1 − η)(1 + 3η2)

1
2 . (6.47)

The HS-metric QSLTs (6.47) are obviously tighter than the
analogous fidelity QSLTs (6.46), in agreement with the gen-
eral inequality (2.29). Moreover, the time bounding (2.26) is
saturated for M = 1.

Figure 5 illustrates the evolution of the above QSLs and
their associate QSLTs during the dissipation of one- and two-
photon states, which are of primary experimental interest.

VII. SUMMARY AND CONCLUSIONS

Quite long after the pioneering derivation of a more in-
sightful time-energy uncertainty relation by Mandelstam and
Tamm in 1945, many efforts were orientated towards the
evaluation of upper bounds on the speed of evolution for
various types of quantum dynamics: unitary evolution, open-
and multipartite-system dynamics, as well as an extension to
the evolution of mixed states [10]. We mention some of the
most significant advances on quantum evolution issues, which
have been obtained so far [4,7,8,17–19,23,26,28,31,33,38].

The present work is devoted to the evaluation of QSLTs
for a well-known continuous-variable open system: a cavity
field mode weakly coupled to a bosonic reservoir. The field
is initially in a pure state and its evolution is a Markovian
thermalization, being ruled by the quantum optical master

FIG. 5. (Top) The static QSLs of dissipation, Eq. (6.35), for M =
1 (horizontal solid green line) and M = 2 (horizontal dotted purple
line), together with the variable ones, Eq. (6.36), for M = 1 (dashed
green line), and Eq. (6.37), for M = 2 (dotted-dashed purple line).
(Bottom) QSLTs for one- and two-photon input states of a mode
weakly coupled to a zero-temperature reservoir. The fidelity-based
QSLTs, Eq. (6.45), for M = 1 (bottom dashed magenta line) and
M = 2 (bottom solid magenta line), as well as Eq. (6.46), for M = 1
(middle dashed purple line) and M = 2 (middle solid purple line), vs
those built with the Hilbert-Schmidt metric, Eq. (6.47), for M = 1
(top dashed green line superposed on the top solid black line) and
M = 2 (top solid green line). The tightness of these lower bounds
to the actual time of interaction (top solid black line) is clearly
visualized.

equation, Eq. (3.2). We develop here the ideas and exploit
the tools put forward in the remarkable papers by del Campo,
Egusquiza, Plenio, and Huelga [18], Deffner and Lutz [19],
and Campaioli, Pollock, and Modi [31]. In Refs. [18,19],
the QSL is built by using the fidelity of evolution (1.7),
while Ref. [31] employs instead the HS distance of evolution,
Eqs. (2.22) and (2.23).

The QSL (2.8) derived in Ref. [18] is time-independent,
being determined by the initial pure state of the quantum
system, as well as by the unperturbed Hamiltonian and the
Lindblad operators occurring in the master equation. The
associate QSLT (2.14), besides its feasibility, is the natural
generalization of that describing the pure-state evolution of an
isolated quantum system. Here we have tightened the QSLT
(2.14) to another one, Eq. (2.13), whose time-dependent QSL
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(2.11) involves the time-averaged square root of the current

purity,
√
P (t ). Anyway, its evaluation requires the knowledge

of the solution ρ̂(t ) of the master equation.
More important, the common upper bound (2.17) found

in Ref. [19] for the rate of the fidelity of evolution and in
Ref. [31] for the rate of the HS distance of evolution leads
to the same time-dependent QSL (2.19). We have proven in
a straightforward way this equality, provided that the initial
state is pure. According to the inequality (2.29), which follows
immediately, the QSLT (2.26), built with the HS metric, is
tighter than the fidelity-based QSLT (2.21). However, in order
to evaluate the QSL (2.19), one needs to solve the master
equation and then to handle its solution analytically or nu-
merically.

We derive an expression of the time-independent QSL
vF (0), Eq. (2.8), valid for any input pure one-mode state.
This general formula is then applied to a couple of complete
systems of states which are widely used in quantum physics:
the coherent states and the Fock states. In order to evaluate
the other two time-dependent QSLs, we recall the CF of the
evolved state under damping. Then we use it to write, via
the Weyl expansion, the general expressions of three main
ingredients: the fidelity of evolution, the evolved purity, and
the upper bound for the speed of evolution.

In the case of coherent states, in order to use the fidelity of
evolution as a figure of merit, we have to replace its expression
in the Schrödinger picture, Eq. (5.5), which is an oscillating
function, by its interaction-picture counterpart, Eq. (5.10).
This one is a convenient approximate fidelity, strictly de-
creasing in time, and thereby it provides the desired good
distinguishability of the evolved states.

The exact expression of the upper bound for the squared
speed of evolution (5.7) has two terms. The former is an
excellent approximation in the optical domain, while the lat-
ter describes quite accurately the damping of a low-intensity
laser radiation. Besides the exact formula (5.19) established
for the QSL vF (t ), we derive and analyze the QSLs ṽ(t ),
Eqs. (5.22) and (5.23), obtained with the above-mentioned
approximations. The associate QSLTs of the former become
exact for dissipation, but are not tight; the loosest bound is
that corresponding to the QSL vF (0). A separate discussion
is devoted to the thermalization of the vacuum state, where all
results are exact.

Then we review the evolution of any excited Fock state
during thermalization [54]. This process consists of three suc-
cessive stages: strong nonclassicality, weak nonclassicality,
and classicality. They are separated by two threshold times, tw
and tc, which are determined by the equilibrium photon num-
ber n̄R, being independent of the initial number of photons M.
The exact formulas established for the fidelity of evolution,
Eq. (6.7), the evolving purity, Eq. (6.17), and the HS distance
of evolution, Eq. (6.26), valid for any M, are thoroughly ana-
lyzed. Here we content ourselves with evaluating the QSLs
(6.35)–(6.37) for dissipation of one- and two-photon input
states. By examining the associate QSLTs, Eqs. (6.45)–(6.47),
we remark the quite impressive accuracy of those based on the
HS distance of evolution. Moreover, according to Eq. (6.47),
the inequality (2.26) is even saturated for M = 1. In Appendix
C, a special attention is paid to the damping of a one-photon
state. We focus on a conditioned nonmonotonic evolution of

the HS distance G1(t ), Eq. (C4), essentially due to a similar
behavior of the purity P1(t ). Nevertheless, concerning the
damping of other Fock states, a numerical approach is at hand
for all needed cases.

We are left to draw some noteworthy conclusions.
(1) The fidelity-based QSL vF (0), Eq. (2.8), derived in

Ref. [18], is rather unique, owing to the remarkable feature
of being time-independent. This makes it possible to get out
of solving the master equation that describes the Markovian
dynamics of an open system. As far as we know, Eq. (3.3) is
its first application to a continuous-variable setting.

(2) The time-dependent QSLs based on the fidelity of
evolution and on the HS distance of evolution are especially
useful for non-Gaussian input states, when other fidelity ap-
proaches [17] are analytically difficult.

(3) For any initial pure state, our proof of the inequality
(2.29) is straightforward and general.

(4) The QSLTs built using the HS metric, Eq. (2.26), have
some attractive qualities: they are feasible, tight, and robust
under composition [31]. For instance, the dissipation of one-
and two-photon states displays a surprisingly good tightness
of the QSLTs based on the HS metric.

(5) Even in the simplest case of the damping of a one-
photon state, the HS distance of evolution G1(t ), Eq. (C4),
could exhibit a slightly nonmonotonic behavior. However,
these possible deviations from monotonicity are too small to
alter the capacity to provide a suitable QSL.
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APPENDIX A: SMOOTHING THE FIDELITY OF DAMPING
OF A COHERENT STATE

In order to smooth the fidelity of evolution (5.5), one
should replace the oscillating function cos(ωt ) with one or
another of its most significant values. We choose here its
extrema, as well as its zero value, to get the approximate
fidelities:

F (±1)(t ) = 1

1 + n̄T(t )
exp

[
−|α|2 (1 ∓ √

η)2

1 + n̄T(t )

]
, (A1)

F (0)(t ) = 1

1 + n̄T(t )
exp

[
−|α|2 1 + η

1 + n̄T(t )

]

= [F (1)(t )F (−1)(t )]
1
2 . (A2)

We also contemplate two other reasonable averages. The for-
mer is the arithmetic mean of the smoothed fidelities (A1):

F (A)(t ) : = 1

2

[
F (1)(t ) + F (−1)(t )

]
= F (0)(t ) cosh

[
2|α|2 √

η

1 + n̄T(t )

]
. (A3)

The latter is the time average over a period T = 2π/ω of the
fidelity of evolution (5.5), which is considered to be a function
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FIG. 6. The smoothed approximate fidelities (A1)–(A4) vs the
oscillating exact fidelity of evolution (5.5) for |α|2 = 2: F (t ) (oscil-
lating solid red curve), F (1)(t ) (upper solid green envelope), F (−1)(t )
(lower solid black envelope), F (0)(t ) (dotted blue line), F (A)(t )
(dashed cyan line), and F (T )(t ) (dotted-dashed purple line). The ratio
ω/γ = 10 chosen here is much smaller than the value ω/γ ≈ 106

met in an optical cavity.

of the variable ωt only, with the large-scale parameter (5.4)
kept constant:

F (T )(t ) : = 1

2π

∫ π

−π

d (ωt )F (t )

= F (0)(t ) I0

[
2|α|2 √

η

1 + n̄T(t )

]
. (A4)

In Eq. (A4), I0(z) is the modified Bessel function of the first
kind and order zero [75]:

I0(z) =
∞∑

m=0

1

m! m!

(
1

2
z

)2m

, (z ∈ C). (A5)

The inequalities F (1)(t ) � F (t ) � F (−1)(t ) become satu-
rated at times

ωt = 2nπ and ωt = (2n + 1)π, (n = 0, 1, 2, 3, . . . ),

respectively. They show that the graphs of the functions (A1)
are upper and lower envelopes for the oscillating fidelity of
evolution (5.5), which are periodically touched. On the other
hand, from the general inequalities

ex > cosh(x) > I0(x) > 1 > e−x > 0, (x > 0),

we infer the following strict hierarchy, valid for any finite time
t � 0, provided that |α| > 0:

F (1)(t ) > F (A)(t ) > F (T )(t ) > F (0)(t ) > F (−1)(t ) > 0.

However, all five smoothed approximate fidelities (A1)–(A4)
share the same steady-state limit (5.9), which is precisely that
of the exact fidelity of evolution (5.5).

Figure 6 illustrates the above-mentioned hierarchy of
smoothed approximate fidelities of evolution (A1)–(A4) su-
perposed on the oscillating exact one, Eq. (5.5).

Let us introduce the function F (1)(t ) instead of F (t ) into
Eq. (2.23), in order to replace the HS evolution distance G(t )
by its modified version,

G (1)(t ) := [1 + P (t ) − 2F (1)(t )]
1
2 . (A6)

Among the five selected candidates (A1)-(A4), the function
F (1)(t ) is the only one to possess the following two properties,
valid at any time and for all values of their parameters |α| and
n̄R:

(1) Its associate figures of merit fulfill the inequalities

1 − F (1)(t ) � 1 − F (t ), G (1)(t ) � G(t ),

which are necessary for preserving the QSLs vF (t ),
Eq. (2.11), and, respectively, ṽ(t ), Eq (2.19), when we replace
the fidelity F (t ) by F (1)(t ).

(2) The function F (1)(t ) is strictly decreasing, regardless
of the values taken by its parameters |α| and n̄R: it decreases
from the initial value F (1)(0) = 1 to reach from above the
asymptotic limit (5.9). This behavior is particularly attractive
because it endows the approximate fidelity F (1)(t ) with the
best distinguishability between evolved states, and thereby
secures a maximal efficiency of the above-mentioned figures
of merit.

Moreover, F (1)(t ) is the fidelity of evolution in the interac-
tion picture,

F (1)(t ) = 〈α|(ρ̂DT)I (t )|α〉, (A7)

which is the smooth version of its counterpart in the
Schrödinger picture, Eq. (5.8). Indeed, in Eq. (A7), the state
(ρ̂DT)I (t ) stands for the transform in the interaction picture
of the DTS (5.3), which is given in the Schrödinger pic-
ture [76]. In general, being a two-time transition probability,
such a fidelity of evolution is picture-dependent.

To sum up, the only smooth approximate fidelity of evolu-
tion that can replace the oscillating exact one F (t ), Eq. (5.5),
without any damage, is its interaction-picture counterpart
F (1)(t ), Eq. (5.10). For α 
= 0, this will consistently be done
in the present paper.

APPENDIX B: AN INFINITE INTEGRAL INVOLVING
LAGUERRE POLYNOMIALS

Our aim here is to evaluate the integral

LM (s, σ, σ ′) :=
∫ ∞

0
dt exp(−st )LM (σ t )LM (σ ′t ),

(s � σ > 0, s � σ ′ > 0). (B1)

Throughout this paper we denote the Laguerre polynomial of
degree M by LM (x). To write it explicitly, it is convenient to
use its expression as a confluent hypergeometric function 1F1

[77]:

LM (z) = 1F1(−M; 1; z) =
∞∑

m=0

(−M )m

(1)m m!
zm, (B2)
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with the Pochhammer symbol defined as follows:

(a)0 := 1, (a)m := �(a + m)

�(a)
= a(a + 1) . . . (a + m − 1),

(m = 1, 2, 3, . . . ).

We exploit a particular case of the Hille-Hardy summation
formula [77]:

∞∑
m=0

Lm(x)Lm(y)zm = (1 − z)−1 exp
[
− z

1 − z
(x + y)

]

× I0

[
2

(xyz)
1
2

1 − z

]
, (|z| < 1), (B3)

where I0(z) is the modified Bessel function of the first kind
and order zero, Eq. (A5). The function on the right-hand side
of Eq. (B3) is called the bilinear generating function of the
Laguerre polynomials (B2). One gets the Laplace transform
of the function I0(bt ) by integrating its Maclaurin series (A5)
term by term:∫ ∞

0
dt exp(−at )I0(bt ) = (a2 − b2)−

1
2 , (a > b � 0).

(B4)

We choose x = σ t, y = σ ′t, z ∈ (0, 1) ⊂ R+ in Eq. (B3) and
then introduce the positive parameters

a = s + z

1 − z
(σ + σ ′) and b = 2

z
1
2

1 − z
(σσ ′)

1
2 (B5)

into Eq. (B4). As a result, Eqs. (B1), (B3), and (B4) yield the
sum of the following power series:

∞∑
m=0

Lm(s, σ, σ ′)zm = [(1 − z)a]−1

(
1 − b2

a2

)− 1
2

, (B6)

provided that the condition a2 − b2 > 0 is fulfilled. This is
equivalent to the positivity of the quadratic trinomial

p(z) := Az2 − 2Bz + C : A = (s − σ − σ ′)2 � 0,

B = (s − σ )(s − σ ′) + σσ ′ > 0, C = s2 > 0. (B7)

One has the following alternative:
(a) A = 0 ⇐⇒ s = σ + σ ′. Then,

p(z) = 4σσ ′(1 − z) + (σσ ′)2 > 0, (z � 1).

(b) A > 0 ⇐⇒ s 
= σ + σ ′. Owing to its non-negative
discriminant, � = 16 σσ ′(s − σ )(s − σ ′) � 0, the quadratic
trinomial (B7) has two real roots that are both positive:

z1,2 = 1

A

(
B ∓ 1

2

√
�

)
> 0.

Accordingly, p(z) > 0 for z < min{1, z1}.
To sum up, there is always a subinterval of (0, 1) ⊂ R+ on

which p(z) > 0 and therefore Eq. (B6) is valid.
Taking into account the notations (B5), we expand the

right-hand side of Eq. (B1) into a double binomial series and
then rearrange it as an ascending power series of the variable

z, which converges in the interval specified above:

[(1 − z)a]−1

(
1 − b2

a2

)− 1
2

= 1

s

∞∑
m=0

[
s − (σ + σ ′)

s

]m

zm

× 2F1

(
−m, m + 1; 1; − σσ ′

s[s − (σ + σ ′)]

)
. (B8)

Recall that the Gauss hypergeometric function 2F1 is the sum
of a hypergeometric series [78]:

2F1(a, b; c; z) =
∞∑

m=0

(a)m(b)m

(c)m m!
zm,

(c 
= 0,−1,−2,−3, . . . , |z| < 1). (B9)

Substitution of Eq. (B8) into Eq. (B6) gives the formula:

LM (s, σ, σ ′) = 1

s

[
s − (σ + σ ′)

s

]M

× 2F1

(
−M, M + 1; 1; − σσ ′

s[s − (σ + σ ′)]

)
,

(B10)

where the Gauss hypergeometric function is a polynomial of
degree M. One gets an alternative expression by performing
Pfaff’s linear transformation [79],

2F1(a, b; c; z) = (1 − z)−a
2F1

(
a, c − b; c;

z

z − 1

)
,

in Eq. (B10):

LM (s, σ, σ ′) = (s − σ )M (s − σ ′)M

s2M+1

× 2F1

(
−M,−M; 1;

σσ ′

(s − σ )(s − σ ′)

)
,

(s � σ > 0, s � σ ′ > 0). (B11)

In the special case s = σ + σ ′, by virtue of Gauss’s summa-
tion theorem [80],

2F1(a, b; c; 1) = �(c) �(c − a − b)

�(c − a) �(c − b)
,

(c 
= 0,−1,−2,−3, . . . , Re(c − a − b) > 0), (B12)

the polynomial (B11) can be written as a single monomial:

LM (σ + σ ′, σ, σ ′) =
(

2M

M

)
(σσ ′)M

(σ + σ ′)2M+1
.

APPENDIX C: DAMPING OF A ONE-PHOTON STATE

The fidelity of evolution of an initial one-photon state is a
strictly decreasing function of time, no matter how large is the
mean photon occupancy n̄R at thermal equilibrium. Indeed, for

022221-19



PAULINA MARIAN AND TUDOR A. MARIAN PHYSICAL REVIEW A 103, 022221 (2021)

M = 1, Eq. (6.11) has a simpler form, whose sign is manifest:

Ḟ1(t ) = − γ η

[1 + n̄T(t )]4 (aη2 − 2bη + c) :

a = n̄2
R(1 + n̄R), b = n̄R

(
n̄2

R − 2
)
,

c = (1 − n̄R)
(
1 − n̄2

R

)
: Ḟ1(t ) < 0. (C1)

The fidelity of evolution F1(t ) is plotted in Fig. 3(a).
Further, the purity rate (6.20) reduces to

Ṗ1(t ) = − 2γ η

[1 + 2n̄T(t )]4 (Aη2 + 2Bη + C) :

A = 2n̄R[1 + 2n̄R(1 + n̄R)], B = (1 + 2n̄R)
(
1 − 2n̄2

R

)
,

C = −(1 − n̄R)(1 + 2n̄R)2. (C2)

The roots of the quadratic trinomial in Eq. (C2),

η1,2 = 1 + 2n̄R

2n̄R[1 + 2n̄R(1 + n̄R)]

{(
2n̄2

R − 1
)

±[1 + 2n̄R(1 − n̄R)]
1
2
}
, (C3)

allow us to distinguish the following situations:
(1) n̄R = 0 : η1 = 1

2 , η2 = −∞;
(2) 0 < n̄R < 1 : η1 ∈ (0, 1), η2 < 0;
(3) n̄R = 1 : η1 = 3

5 , η2 = 0;
(4) 1 < n̄R < 1

2 (1 + √
3) : 0 < η2 < η1 < 1;

(5) n̄R = 1
2 (1 + √

3) : η2 = η1 = 1
2 ;

(6) n̄R > 1
2 (1 + √

3) : η2 = η∗
1, Im(η1) > 0.

Accordingly, when n̄R ∈ [ 0, 1], the purity P1(t ) decreases
from the intial value equal to one to its single minimum at
the time t1 = − 1

γ
ln(η1) and then increases to reach asymp-

totically the equilibrium value (6.23). By contrast, when n̄R ∈
(1, 1

2 (1 + √
3)), the time t1 of minimal purity is followed

by the time t2 = − 1
γ

ln(η2), where the purity P1(t ) has a
maximum greater than the steady-state value (6.23). For n̄R =
1
2 (1 + √

3), the purity P1(t ) becomes a decreasing function
of time, because the two extrema merge at t1 = t2 = 1

γ
ln(2)

into a stationary point of inflection whose ordinate is slightly
greater than the asymptotic limit (6.23). Finally, when n̄R >
1
2 (1 + √

3), the function of time P1(t ) is strictly decreasing.
To sum up, in the case M = 1, there are three regimes of

mixing determined by the mean thermal photon occupancy
n̄R.

(1) 0 � n̄R � 1. The purity starts to decrease and reaches
its minimum at the time t1; then it increases attaining from
below an asymptotic limit (6.23) lying in the interval [ 1

3 , 1].
(2) 1 < n̄R < (1 + √

3)/2. The purity decreases up to its
minimum at t1, then increases to a maximum at the subsequent
time t2, and finally it decreases again reaching from above an
asymptotic limit (6.23) belonging to the interval ( 1

2+√
3
, 1

3 ).

(3) n̄R � (1 + √
3)/2. The purity P1(t ) decreases starting

from one to attain eventually from above the limit (6.23) with
a positive value smaller than or at most equal to 1

2+√
3
.

Let us write explicitly the HS distance of evolution (6.26)
for M = 1:

G1(t ) =
√

2(1 − η){ p[n̄R; n̄T(t )]} 1
2

{[1 + n̄T(t )][1 + 2n̄T(t )]} 3
2

, (C4)

where p[n̄R; n̄T(t )] is a polynomial in the variable n̄T(t ),
Eq. (4.6), with non-negative coefficients depending on the
parameter n̄R,

p[n̄R; n̄T(t )] =
4∑

j=0

c j (n̄R) [n̄T(t )] j > 0 :

c0(n̄R) = 1 + 4n̄R + 7n̄2
R,

c1(n̄R) = 3
(
1 + 3n̄R + 8n̄2

R

)
,

c2(n̄R) = 3 + n̄R + 27n̄2
R,

c3(n̄R) = 1 − 6n̄R + 12n̄2
R, c4(n̄R) = 4n̄2

R. (C5)

The value at η = 0 of the polynomial (C5),

p(n̄R; n̄R) = (1 + n̄R)(1 + 2n̄R)2
[
(1 + n̄R)2 + n̄3

R

]
, (C6)

yields the steady-state limit of the HS evolution distance (C4):

lim
t→∞[G1(t )] =

√
2[(1 + n̄R)2 + n̄3

R]
1
2

(1 + n̄R)(1 + 2n̄R)
1
2

, (C7)

in agreement with the general formula (6.29).
Making use of Eqs. (C4) and (C5), we find the rate of

change of the HS evolution distance G1(t ):

Ġ1(t ) = γ η q[n̄R; n̄T(t )]{2p[n̄R; n̄T(t )]}− 1
2

{[1 + n̄T(t )][1 + 2n̄T(t )]} 5
2

, (C8)

where q[n̄R; n̄T(t )] is a polynomial in the variable n̄T(t ),
whose coefficients are functions of the parameter n̄R,

q[n̄R; n̄T(t )] =
5∑

k=0

dk (n̄R) [n̄T(t )]k :

d0(n̄R) = 2
(
1 + 4n̄R + 7n̄2

R

)
,

d1(n̄R) = 3
(
2 + 5n̄R + 17n̄2

R

)
,

d2(n̄R) = 4
(
1 − 7n̄R + 13n̄2

R

)
,

d3(n̄R) = −(
4 + 81n̄R + 3n̄2

R

)
,

d4(n̄R) = −2
(
3 + 20n̄R + 6n̄2

R

)
,

d5(n̄R) = 2
(−1 + 6n̄R + 6n̄2

R

)
. (C9)

Its value at η = 0 is a polynomial in the variable n̄R:

q(n̄R; n̄R) = (1 − n̄2
R)(1 + 2n̄R)2

[
2 + 6n̄R + 3n̄2

R(1 − n̄R)
]
.

(C10)

The time derivative (C8) has the asymptotic behavior:

Ġ1(t ) = γ
q(n̄R; n̄R)[2p(n̄R; n̄R)]−

1
2

[(1 + n̄R)(1 + 2n̄R)]
5
2

exp(−γ t )

+ O[exp(−2γ t )], (γ t � 1). (C11)

The sign of the vanishing leading term in Eq. (C11) coincides
with that of the polynomial (C10). This polynomial has two
positive roots: n̄R = 1 and n̄R = n̄′

R � 2.1022. The function
q(n̄R; n̄R) is positive outside the interval [1, n̄′

R] and negative
inside it. Consequently, the HS evolution distance (C4) attains
its input-output limit (C7) from below if n̄R < 1 or n̄R > n̄′

R,

022221-20



QUANTUM SPEED OF EVOLUTION IN A MARKOVIAN … PHYSICAL REVIEW A 103, 022221 (2021)

and from above if n̄R ∈ (1, n̄′
R). Therefore we draw the follow-

ing conclusions. For n̄R � 1, the function G1(t ), Eq. (C4), is
monotonic, increasing from the initial value G1(0) = 0 to the
asymptotic limit (C7); this case is illustrated in Fig. 4. When
1 < n̄R < n̄′

R, then the HS distance G1(t ) evolves nonmono-
tonically, having a maximum higher than the equilibrium

value (C7), because this is reached from above. Finally, for
n̄R > n̄′

R, either the maximum is followed by a minimum
that is lower than the asymptotic limit (C7), or the function
G1(t ) is monotonic. These evolutions of the HS distance G1(t )
originate in the analogous ones of the purity P1(t ), which are
discussed above.
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