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Multipath wave-particle duality with a path detector in a quantum superposition
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According to Bohr’s principle of complementarity, a quanton can behave either as a wave or a particle,
depending on the choice of the experimental setup. Some recent two-path interference experiments have devised
methods where one can have a quantum superposition of the two choices, thus indicating that a quanton may
be in a superposition of wave and particle natures. These experiments have been of interest from the point
of view of Wheeler’s delayed-choice experiment. However, it has also been claimed that this experiment can
violate complementarity. Here we theoretically analyze a multipath interference experiment that has a which-path
detector in a quantum superposition of being present and absent. We show that a tight multipath wave-particle
duality relation is respected in all such situations, and complementarity holds well. The apparent violation of
complementarity may be due to incorrect evaluation of path distinguishability in such scenarios.
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I. INTRODUCTION

The discourse of wave-particle duality has always attracted
attention from the early days of quantum mechanics. It is be-
lieved that it lies at the heart of quantum mechanics [1]. It was
understood from the beginning that the object exhibits both
wave and particle natures. Objects showing both wave and
particle natures are often called quantons [2]. It was Bohr who
first pointed out that both properties are mutually exclusive
and formulated it as a principle of complementarity [3]. Woot-
ters and Zurek [4] revisited Bohr’s complementarity principle
from the information-theoretic approach, looking at two-slit
interference in the presence of a path detector, and found
that simultaneous observation of both natures is possible with
the proviso that the more you observe one, the more it will
obscure the other. Later, Greenberger and Yasin [5] formu-
lated a quantitative bound in terms of the predictability and
fringe visibility. The predictability was defined as a priori
information, i.e., it tells one the difference between probabil-
ities of going through different paths. Englert [6] proposed
a stronger path quantifier which was based on a posteriori
path information acquired using a path detector, and derived
a bound on the path distinguishability and fringe visibility,
D2 + V2 � 1. This relation, generally called the wave particle
duality relation, is understood to be a quantitative statement of
Bohr’s principle. Of late, the concept of wave particle duality
has been generalized to multipath interference [7–11].

In a Mach-Zehnder interferometer, it is understood that in
the balanced mode, only one of the detectors registers all the
photons and no photons arrive at the other detector due to de-
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structive interference. In this situation, it is logical to believe
that the photon follows both paths, which later interfere. If
the second beam splitter is removed, photons from one path
can only reach a particular detector. So it is logical to assume
that each photon detected by any detector came from only
one path and not both. So the presence of the second beam
splitter makes the photons behave as a wave, following both
paths, and in its absence they behave like particles, following
only one path at a time. Wheeler introduced an idea that if
the choice of removing or retaining the beam splitter is made
after the photon has traversed most of its path, one can affect
the past of the particle in the sense of making sure, even
after a delay, that the photons behave like a wave or like a
particle [12]. This “delayed choice” idea has been a subject
of debate for a long time. Some years back, a proposal was
made by Ionicioiu and Terno [13] suggesting that the second
beam splitter could be a quantum beam splitter (QBS), such
that it is in a quantum superposition of being present and
absent (see Fig. 1). The idea was that this would force the
photon to be in a superposition of wave and particle natures.
This “quantum delayed choice” experiment with a quantum
beam splitter immediately became a subject of attention,
and many experimental and theoretical studies were carried
out [14–19].

Apart from the obvious relevance of this new class of
experiments to Wheeler’s delayed choice idea, there have
been speculations that the superposition of wave and particle
natures might violate complementarity. In particular, some
claims of exceeding the bound set by the two-path duality
relation of the kind D2 + V2 � 1 have been made [15]. In this
paper, we investigate the issue of wave particle duality in the
more general scenario of n-path interference, where the path
detector is in a quantum superposition of being present and
absent.
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FIG. 1. Schematic diagram to illustrate a typical interference ex-
periment with a quantum which-path device BS2. The beam-splitter
BS2 is in a superposition of being present in the path of the photon
and being away from it.

II. WAVE-PARTICLE DUALITY IN MULTIPATH
INTERFERENCE

A. Duality relation for pure quanton and quantum path detector

Consider an n-path interference experiment (see Fig. 2)
with pure initial quanton state

|ψin〉 =
n∑

i=1

√
pi |ψi〉, (1)

where pi is the probability of acquiring the ith path and |ψi〉
forms an orthonormal basis.

We use a quantum path detector (QPD) to detect the path
acquired by a quanton. There are two degrees of freedom as-
sociated with it. One is its location, which is assumed to have
two states, |Y 〉 corresponding to it being present in the paths
of the quantum and |N〉 corresponding to be being absent
from the path. The other degree of freedom is its internal state
denoted by |di〉, which corresponds to it detecting the path of
the quanton. Initially, the QPD is assumed to be in the state
|d0〉, and if the quanton goes through the kth path, the QPD
state changes to |dk〉. So the full initial detector state is given
by

|φ0〉 = |d0〉(c1 |Y 〉 + c2 |N〉), (2)

FIG. 2. Schematic drawing of an n-path interference experiment
with a quantum which-path detector. The path detector is in a super-
position of being present and absent in the path of the photon.

where c1 is the amplitude of QPD presence and c2 the ampli-
tude of its absence; c2

1 + c2
2 = 1. The state represents the QPD

being in a superposition of the two locations.
Initially, the joint state of quanton and QPD is given by

|�in〉 = |ψin〉|φ0〉 =
n∑

i=1

√
pi |ψi〉|d0〉(c1 |Y 〉 + c2 |N〉), (3)

which denotes a pure state of the quanton with amplitude
√

pk

to go through the kth path, being in the state |ψk〉, and the QPD
in a superposition of being present and absent. The interaction
can be represented by a controlled unitary operation, U . The
combined state of quanton and QPD, after the quanton has tra-
versed the paths and interacted with the QPD, can be written
as

|�〉 = c1

[
n∑

i=1

√
pi |ψi〉|di〉

]
|Y 〉 + c2

[
n∑

i=1

√
pi |ψi〉

]
|d0〉|N〉.

(4)

The first term in the above equation represents the quanton
states entangled with the internal states of the QPD when the
QPD is present in the path of the quanton, i.e., it is in the
state |Y 〉. Here path information of the quanton is encoded
in the |di〉 states of the QPD, and the quanton behaves as
a particle. The second term represents the pure state of the
quanton in a superposition of n paths, acting like a wave, and
the QPD away from its path, in the state |N〉. The state (4)
can be written as c1|particle〉|Y 〉 + c2|wave〉|N〉 and repre-
sents a superposition of particle nature and wave nature, with
amplitudes c1 and c2, respectively. It is the most natural gener-
alization of the wave and particle superposition states studied
earlier (without a QPD) [14–19], to the case where there is a
real QPD present. A similar state has also been used in a very
recent work using a QPD [20]. It may be convenient to use
the density operator formalism if one wants to generalize the
analysis to mixed states. The density operator for the state (4)
is given by

ρQD =
n∑

i, j=1

√
pi p j |ψi〉〈ψ j | ⊗ Ui|φ0〉〈φ0|U †

j , (5)

where Ui|φ0〉 = c1 |di〉|Y 〉 + c2 |d0〉|N〉.
The above interaction creates entanglement between the

quanton and path detector. Thus, for gaining knowledge of
the path of the quanton, it is sufficient to do a measurement on
the states |di〉 of the QPD. Here we will use the unambiguous
quantum state discrimination (UQSD) method for gaining the
path information [7,8]. For wave information, we will use l1
norm measure of coherence [8,21,22]. Let us now look at the
path distinguishability and the measure of coherence.

Path distinguishability: Based on UQSD, the path distin-
guishability for n-path interference [7,8] is given by

DQ := 1 − 1

n − 1

∑
i �= j

√
pi p j |〈φ0|U †

j Ui|φ0〉|

= 1 − 1

n − 1

∑
i �= j

√
pi p j

(
c2

1 |〈d j |di〉| + c2
2

)
. (6)
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It is essentially the maximum probability with which the states
Ui|φ0〉 can be unambiguously distinguished from each other.

Quantum coherence: Quantum coherence [8,21,22] gives
the wave nature of a quanton, given by

C(ρ) := 1

n − 1

∑
i �= j

|ρi j |, (7)

where n is the dimensionality of the Hilbert space. The re-
duced density matrix of the quanton can be obtained by
tracing out all the states of the QPD:

ρQ =
n∑

i, j=1

√
pi p j Tr(Ui|φ0〉〈φ0|U †

j )|ψi〉〈ψ j |. (8)

The set {|ψi〉} forms a complete basis for the n path setup.
Thus, the coherence can be obtained using the reduced density
matrix:

C = 1

n − 1

∑
i �= j

|〈ψi|ρQ|ψ j〉|

= 1

n − 1

∑
i �= j

√
pi p j |Tr(Ui|φ0〉〈φ0|U †

j )|. (9)

Using Eq. (2), we get the following form:

C = 1

n − 1

∑
i �= j

√
pi p j

(
c2

1 |〈d j |di〉| + c2
2

)
. (10)

Combining Eqs. (6) and (10), we get

DQ + C = 1. (11)

This is a tight wave particle duality relation which had been
derived earlier for n-path interference [8]. So, the relation
continues to hold even in the case of a QPD.

Two-path experiment: For n = 2 and p1 = p2 = 1
2 , the path

distinguishability (6) and coherence (10) becomes

DQ = c2
1(1 − |〈d1|d2〉|), (12)

C = 1 − c2
1 + c2

1|〈d1|d2〉|. (13)

Our result reproduces the earlier result [23] for a two-path
experiment in the presence of a QPD, while recognizing that
for two paths, the coherence C is identical to the traditional
visibility V [22]. It also satisfies Eq. (11) in the same way.

B. Superposition of wave and particle natures

The preceding analysis is for the behavior of the quanton
irrespective of the location state of the QPD. One might argue
that one would get the same result if QPD were not in the
superposition state (2) but in a mixed state of being present
and absent. To really see the effect of the QPD being in a
superposition, one should look at the behavior of the quanton
conditioned on obtaining a superposition location state of the
QPD. To this end, let us assume the QPD location is measured
in certain basis and collapses to

|φα〉 = cos α |Y 〉 + sin α |N〉, (14)

which is the state just for the location degree of the QPD.

The interaction can be represented by a controlled unitary
operation, U. The combined state of quanton and QPD can be
written as

ρQD =
n∑

i, j=1

√
pi p j |ψi〉〈ψ j | ⊗ |d ′

i 〉〈d ′
j |. (15)

where |d ′
i 〉 ≡ 〈φα|Ui|φ0〉 = c1 cos α |di〉 + c2 sin α |d0〉; with

normalization condition c2
1 cos2 α + c2

2 sin2 α = 1.

The above interaction creates the entanglement between
the quanton and path detector, with the QPD out of the picture
now. Following the earlier procedure, we will use the UQSD
method for gaining the path information and coherence for
wave information. Based on UQSD, the path distinguishabil-
ity for n-path interference is given by

DQ = 1 − 1

n − 1

∑
i �= j

√
pi p j

∣∣∣(c2
1 cos2 α 〈d j |di〉 + c2

2 sin2 α

+ c1c2

2
sin 2α(〈d j |d0〉 + 〈d0|di〉)

)∣∣∣. (16)

The reduced density matrix of the quanton can be obtained by
tracing out the detector states:

ρQ =
n∑

i, j=1

√
pi p j Tr(|d ′

i 〉|〈d ′
j |)|ψi〉〈ψ j |. (17)

The set {|ψi〉} forms a complete incoherent basis for n path
setup. Thus, the coherence can be obtained using the reduced
density matrix:

C = 1

n − 1

∑
i �= j

√
pi p j |〈d ′

j |d ′
i 〉|. (18)

Using Eq. (2), we get the following form:

C = 1

n − 1

∑
i �= j

√
pi p j

∣∣∣(c2
1 cos2 α 〈d j |di〉 + c2

2 sin2 α

+ c1c2

2
sin 2α(〈d j |d0〉 + 〈d0|di〉)

)∣∣∣. (19)

Combining Eqs. (16) and (19), we get

DQ + C = 1. (20)

Thus, even when quanton is forced to be in a superposition of
wave and particle natures, the usual wave-particle duality re-
lation continues to hold. This is at variance with earlier claims
suggesting that wave-particle duality relations are violated in
such a situation.

C. Perspectives

At this stage, it may be useful to analyze these results in
light of various earlier works. It is widely believed that the
superposition of wave and particle natures may lead to a viola-
tion of the complementarity. However, most experiments that
have been carried out do not involve a path-detecting device.
Rather, the beam-splitter BS2 (see Fig. 1) is in a superposition
of being present and absent. So, in the situation where BS2
is in a superposition, there is no way of knowing if a partic-
ular photon received at (say) D1 followed one path or both
paths. In such a situation, one can only talk of the probability
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of taking one path or the other; the duality relation that is
meaningful is the one derived by Greenberger and Yasin [5].
The duality relation pertaining to detecting which path the
quanton followed, derived by Englert [6], is not applicable in
such scenarios.

The analysis carried out in the previous subsections shows
that complementarity is always respected in the multipath
interference experiment which has a path-detecting device in
the superposition of being present and absent. Equation (6)
has a nice interpretation that the path-detecting states |di〉 are
present with a probability c2

1 and absent with probability c2
2.

And it leads to the perfect duality relation (11). However,
if one naively uses the same definition, which appears
reasonable, for the case where the quanton is really forced
to be in a superposition of wave and particle behaviors,
one will run into a problem. With that reasoning, one
would imagine that the path-detecting states |di〉 are present
with a probability c2

1 cos2 α and absent with probability
probability c2

2 sin2 α. The distinguishability will then come
out to be DQ = 1 − 1

n−1

∑
i �= j

√
pi p j |(c2

1 cos2 α 〈d j |di〉 +
c2

2 sin2 α)|. But the coherence in this situation will
be C = 1

n−1

∑
i �= j

√
pi p j |(c2

1 cos2 α 〈d j |di〉 + c2
2 sin2 α +

c1c2
2 sin 2α(〈d j |d0〉 + 〈d0|di〉))|. It is easy to see that

the sum DQ + C may exceed 1 because of the term
c1c2

2 sin 2α(〈d j |d0〉 + 〈d0|di〉), which is a signature of interfer-
ence between the wave and particle natures. One may naively
interpret it as a violation of complementarity. However,
recognizing that the paths of the quanton are correlated with
|d ′

i 〉 ≡ 〈φα|Ui|φ0〉 = c1 cos α |di〉 + c2 sin α |d0〉, and not just
with |di〉, one can see that the unambiguous discrimination of
|d ′

i 〉 is what will yield the correct distinguishability (16). This
distinguishability leads to the correct duality relation (20).

So we see that even in the scenario where there is an
interference between the wave and particle natures, quantum
complementarity is fully respected, governed by the wave
particle duality relation (20). In the experiments where there
is no real path detector in place, it is all the more likely to
come to an erroneous conclusion regarding the violation of
complementarity.

D. Generalized duality relation

We extend our analysis for a noisy scenario. The mixed
quanton state can be taken as ρin = ∑

i j ρi j |ψi〉〈ψ j |. The ini-
tial joint state of a quanton and a detector system can be
written as ρ

′(in)
QD = ρin ⊗ ρ

(0)
φ . The effect of noise on the QPD

can be represented as

ρ
(0)
φ −→ ρ̃

(0)
φ =

∑
i

Kiρ
(0)
φ K†

i , (21)

with completeness relation
∑

i K†
i Ki = I. The spectral de-

composition of the transformed QPD can then be written as

ρ̃
(0)
φ =

∑
k

rk|φk〉〈φk|, (22)

where
∑

k rk = 1, rk � 0, and 〈φk|φl〉 = δkl .

The combined quanton-QPD state, when QPD is consid-
ered in state Eq. (14), can be written as

ρ ′
QD =

n∑
i, j=1

ρi j |ψi〉〈ψ j | ⊗
∑

k

rk|d ′
ki〉〈d ′

k j |, (23)

where |d ′
ki〉 ≡ 〈φα|Ui|φk〉 = c1 cos α |dki〉 + c2 sin α|dk〉. The

path distinguishability for mixed QPD (22) can be calculated
using

D′
Q = 1 − 1

n − 1

∑
k

rk

∑
i �= j

√
ρiiρ j j |〈d ′

k j |d ′
ki〉|. (24)

To find the measure of coherence, let us first calculate the
reduced density matrix of the quanton, given by

ρ ′
Q =

n∑
i, j=1

ρi jTr

(∑
k

rk|d ′
ki〉〈d ′

k j |
)

|ψi〉〈ψ j |. (25)

The coherence comes out to be

C ′ = 1

n − 1

∑
i �= j

∣∣∣∣∣ρi j

∑
k

rk〈d ′
k j |d ′

ki〉
∣∣∣∣∣

� 1

n − 1

∑
k

rk

∑
i �= j

|ρi j ||〈d ′
k j |d ′

ki〉|. (26)

Combining Eqs. (24) and (26), we get

D′
Q + C ′ + 1

n − 1

∑
k

rk

∑
i �= j

(
√

ρiiρ j j − |ρi j |)|〈d ′
k j |d ′

ki〉| = 1.

(27)
Every principal 2 x 2 sub matrix of (23) is positive semidefi-
nite [24], thus we have

√
ρiiρ j j − |ρi j | � 0. (28)

Therefore, we find that Eq. (27) reduces to

D′
Q + C ′ � 1, (29)

where the inequality is saturated for pure initial quanton
states.

III. ARE EXPERIMENTS WITH A QUANTUM DEVICE
REALLY UNIQUE?

Two-path interference experiments with a quantum device
have attracted lots of attention. But are these experiments
really unique? In this section, we try to answer this question.

Let us consider the setup shown in Fig. 1. Since it does
not use a path detector, the duality relations derived in the
previous section are not directly applicable here. For simplic-
ity, let us consider the QBS to be in an equal superposition
state |φ〉 = 1√

2
(|Y 〉 + |N〉), |Y 〉 represents the situation when

BS2 is in the path and |N〉 when it is not. Let the quanton in
the two paths also be in an equal superposition state |ψ〉 =

1√
2
(eiθ |ψ1〉 + |ψ2〉), θ being an arbitrary phase difference be-

tween the two paths. The effect of BS2 is to take |ψ1〉, |ψ2〉 to
|D1〉, |D2〉, the detector states of the two detectors D1 and D2,
respectively. The transformation can be written as UY |ψ1〉 =

1√
2
(|D1〉 + |D2〉) and UY |ψ2〉 = 1√

2
(|D1〉 − |D2〉). If BS2 is

absent, the transformation is as follows: UN |ψ1〉 = |D2〉 and
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UN |ψ2〉 = |D1〉. The action of the QBS can be represented
by a unitary operator UQBS = UY ⊗ |Y 〉〈Y | + UN ⊗ |N〉〈N |.
Using this, the effect of the QBS on the quanton can be written
as follows:

UQBS|ψ〉 ⊗ |φ〉 = 1

2
[(UY (eiθ |ψ1〉 + |ψ2〉)|Y 〉

+UN (eiθ |ψ1〉 + |ψ2〉)|N〉]

=
( |N〉

2
+ e

iθ
2 cos

θ

2

|Y 〉√
2

)
|D1〉

+ e
iθ
2

(
e

iθ
2
|N〉
2

+ i sin
θ

2

|Y 〉√
2

)
|D2〉. (30)

The above relation implies that detectors D1 and D2 click with
probabilities 1

2 + 1
4 cos θ and 1

2 − 1
4 cos θ , respectively.

Let us consider a setup similar to the one shown in Fig. 1,
except that the second beam splitter BS2 is not a quantum
device but a classical biased beam splitter with reflection
and transmission coefficients given by |r|2 and |t |2, respec-
tively, such that |r|2 + |t |2 = 1. The action of a biased beam
splitter can be described by the operator UBBS = (r|D1〉 +
t |D2〉)〈ψ1| + (t |D1〉 − r|D2〉)〈ψ2|. It transforms the incoming
state |ψ〉 as

UBBS|ψ〉 = 1√
2

[(eiθ r + t )|D1〉 + (eiθ t − r)|D2〉]. (31)

One can verify that if θ = 0 and r = t = 1√
2
, the quanton will

always land at the detector D1. The state (31) implies that
detectors D1 and D2 click with probabilities 1

2 + rt cos θ and
1
2 − rt cos θ , respectively. For rt = 1

4 , one cannot experimen-
tally distinguish between this situation and the previous one,
described by (30), involving a QBS. The original proposal
claimed that one can correlate the detected quantons with the
|Y 〉 and |N〉 states, and get wave or particle natures [13]. But
even in doing that, at a time one can see either wave nature or
particle nature. A similar effect can be achieved by randomly
removing BS2 from the quanton path.

Recognizing the fact that correlating with |Y 〉 and |N〉
states was like a statistical effect, some authors referred
to it as a classical mixture of wave and particle natures,
and suggested that to get a true superposition, the quanton
be observed conditioned on detection of the state |φα〉 =
cos α|Y 〉 + sin α|N〉 [15,17,19]. For the interesting case of
α = π/4, the (unnormalized) state of the quanton in that
situation will be

〈φα|UQBS|ψ〉 = 1

2

(
1√
2

+ e
iθ
2 cos

θ

2

)
|D1〉

+ 1

2
e

iθ
2

(
e

iθ
2

1√
2

+ i sin
θ

2

)
|D2〉. (32)

This state is indeed different from (30), and the two will
yield different results. However, the state for a classical biased
beam splitter, given by (31), may be rewritten as

UBBS|ψ〉 =
√

2r

(
t − r

2r
+ e

iθ
2 cos

θ

2

)
|D1〉

+
√

2re
iθ
2

(
e

iθ
2

t − r

2r
+ i sin

θ

2

)
|D2〉. (33)

For t−r√
2r

= 1, (33) is very similar in form to (32) and the
probability of (say) D2 clicking will show the same behavior
with respect to the phase θ .

The message from the preceding analysis is that the quan-
tum case of the QBS is different from the classical mixture
case of the QBS, as has been experimentally observed ear-
lier [18]. However, both these situations can also be mimicked
by an appropriately biased classical beam splitter. We feel it
will be interesting to explore the implications of the connec-
tion between a QBS and a biased classical beam splitter.

What about a two-path interference experiment with a real
two-state path-detecting device, which is in a superposition
of being present and absent, one may ask. In the following,
we will show even this experiment is completely equivalent
to a two-path interference experiment with a real two-state
path-detecting device, which is always present, and is not
in a superposition in the sense that is being discussed here.
Let us consider a two-path interference experiment with a
which-way detector whose two states that correlate with the
two paths of the quanton are not orthogonal to each other. The
state of the quanton and path detector may be written as

|�〉 = 1√
2

(|ψ1〉|d1〉 + |ψ2〉|d2〉), (34)

where 〈d1|d2〉 �= 0. Now it can be shown that the states
|d1〉, |d2〉 can be represented in terms of an expanded Hilbert
space as follows [25,26] :

|d1〉 = γ |q1〉 + β|q3〉, |d2〉 = γ |q2〉 + β|q3〉, (35)

where |q1〉, |q2〉, |q3〉 are orthonormal states, and γ , β are
certain constants which we need not specify for the present
purpose. In this basis, the entangled state (34) has the follow-
ing form:

|�〉 = 1√
2
γ [|ψ1〉|q1〉 + |ψ2〉|q2〉] + 1√

2
β[|ψ1〉 + |ψ2〉]|q3〉.

(36)

This state can be interpreted as a representation of a superposi-
tion of wave and particle natures. The quanton state correlated
with |q3〉 represents a quanton showing wave nature, and the
rest showing particle nature. If one were to measure an ob-
servable Q which has |q1〉, |q2〉, |q3〉 as three eigenstates with
distinct eigenvalues, the quantons detected in coincidence
with |q3〉 will show full interference, and those detected in
coincidence with |q1〉, |q2〉 will show full particle nature. This
state will show all the features that the state (5) can show,
although it involves only a conventional path detector and not
a quantum device. Such a state can also be produced without
expanding the Hilbert space but by introducing a two-state
ancilla system interacting with the path detector [27].

From this analysis, we conclude that although a lot of re-
search interest was generated by the interference experiments
with a quantum device, the effect they show can also be seen
in conventional interference experiments.

IV. CONCLUSIONS

In conclusion, we have theoretically analyzed an n-path
interference experiment where the path detector is assumed
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to exist in a superposition of being present and absent from
the interference path. We have shown that the n-path wave
particle duality relation derived earlier [8] continues to hold
even in this case. The duality relation remains tight even in the
situation where there is expected to be interference between
the wave and particle natures of the quanton. So, the various
interference experiments, with a quantum device, may be of
interest for various reasons but are completely within the
realm of complementarity. We have also shown that the effects
seen due to a path detector in a quantum superposition can

also be seen in interference experiments with a conventional
which-way detector. The effects seen in the quantum delayed
choice experiment, i.e., without a real path detector but with a
QBS, can also be seen in a conventional Mach-Zehnder setup
with a biased beam splitter.
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