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Lower bounds on the failure probability of unambiguous discrimination
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We present a systematic approach for obtaining lower bounds on the failure probability of unambiguous state
discrimination by introducing an ancillary degree of freedom. Specifically, the lower bounds are obtained by
introducing a suitable homogeneous function of the off-diagonal entries of the reduced matrix in the ancillary
degree of freedom. A series of lower bounds on the failure probability of unambiguous discrimination of both
pure states and mixed states are derived using the lr-norm of the off-diagonal entries. Our method adds insights
into the problem of unambiguous state discrimination. In particular, since we have related the lower bound with
off-diagonal entries of density matrices, e.g., the l1-norm coherence, our work suggests that unambiguous state
discrimination may provide further applications in quantifying coherence, and vise versa.
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I. INTRODUCTION

It is fundamental in quantum mechanics that non-
orthogonal states cannot be perfectly discriminated [1–11].
For example, nonorthogonal states are used in quantum
cryptographic protocols [12–14], and state discrimination
is intimately related to the no-signaling principle [15–17],
quantum no-clone theory [18], sequential quantum measure-
ments [19], quantum change point problem [20] and some
fundamental quantum concepts, such as contextuality [21],
entanglement [22,23], coherence [24–26], etc. Therefore state
discrimination is not only important in understanding the
nature of quantum mechanics, but also useful in many quan-
tum information processing tasks. The objective of state
discrimination is to find the optimal measurement scheme
that produces the best discrimination results. In practice,
there exist different ways to quantify discrimination results,
e.g., sometimes one would like to minimize the average
discrimination error, while sometimes one would like to min-
imize the error of inconclusive discrimination. These two
figures of merit correspond to the two most popular dis-
crimination strategies, i.e., ambiguous discrimination (also
called minimum-error discrimination) [1,2] and unambiguous
discrimination [3–6], respectively. These discrimination prob-
lems turn out to be difficult to solve, except in a few simple
cases [1,3–6,27–30], people fail to find the optimal measure-
ment scheme analytically, instead, some upper bounds of the
success probability are derived without giving the correspond-
ing measurement operators explicitly [31–37]. In addition,
computing techniques, such as semidefinite programming, are
applied to solve this problem numerically [38–41].

In the following discussion, we focus on unambiguous
state discrimination exclusively. Given an ensemble of quan-
tum states {ρ j,w j}n

j=1 such that each positive number w j is
the weight of its corresponding state ρ j and all the weights
sum up to one, unambiguous discrimination of this ensemble
is to find the optimal measurement operators {Mi}n

i=0 such that

the failure probability

p0 =
n∑

j=1

w jTr(M0ρ jM
†
0 ) (1)

is minimized under the unambiguous condition

Miρ jM
†
i = δi jMjρ jM

†
j with i, j = 1, . . . , n, (2)

or equivalently, in terms of the probabilities of the measure-
ment outcomes

Tr(Miρ jM
†
i ) = δi jTr(Mjρ jM

†
j ) with i, j = 1, . . . , n.

(3)
Consequently, as long as i �= 0, the occurrence of the ith
measurement outcome implies that the state is ρi; on the other
hand, when the zeroth outcome happens, the discrimination
produces no conclusive results, and the probability p0 in (1)
of the zeroth measurement outcome is hence called the fail-
ure probability of unambiguous discrimination. This kind of
discrimination problem is first considered by Ivanovic [3] to
show the power of generalized measurements and manifests
the fact that nonorthogonal states cannot be perfectly discrim-
inated. Now it is known that unambiguous discrimination is
possible only when the states are linearly independent [23,42],
and several lower bounds are known for the failure probability
p0 [31–34]. In particular, Zhang et al. obtain the lower bound
for ensembles of pure states in Ref. [31] and Feng et al.
generalize this result to mixed states [34].

Recently the link between quantitative wave-particle du-
ality and state discrimination is discovered [24–26,43], e.g.,
Bera et al. have established the duality relation of path distin-
guishability and coherence via unambiguous discrimination
[24]. Such a relation provides insights into coherence from un-
ambiguous discrimination. It is reasonable to wonder whether
the converse is also possible, i.e., can coherence be used to
obtain information about unambiguous discrimination. This
is the motivation for us to consider the off-diagonal entries
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of density matrices here. In this paper, we present a unified
approach for obtaining lower bounds on the failure probability
p0 of unambiguous discrimination by introducing an ancillary
degree of freedom. We consider discrimination of both pure
states and mixed states. As a result, a series of lower bounds
is generated. In particular, the three known lower bounds
[31,32,34] are recovered from this perspective. Our method
is straightforward and involves no tedious computation, it
returns lower bounds once a proper homogeneous function
of the off-diagonal entries is constructed. Specifically, the lr
norm is used as an example, and by comparing the lower
bounds thus derived, we give the best lower bound that can
be derived from this consideration.

The problem of discrimination of pure states is considered
in Sec. II, where two known lower bounds [31,32] of the
failure probability p0 are derived via the l1 norm and l2 norm,
respectively. We also discuss the possibility of considering the
general lr norm and hence obtain a series of bounds in this
section. In Sec. III, the consideration is generalized to mixed
states, and a series of lower bounds of p0 are derived similarly
as in Sec. II. The paper is then closed with a summary.

II. DISCRIMINATION OF PURE STATES

In this section, we consider the problem of unambiguous
discrimination of n pure states {|φ j〉,w j} with unequal a priori
weights w j by introducing an ancillary degree of freedom and
therefore link the lower bound of the failure probability with
upper bounds of the l1 norm:

c1(ρ) =
∑

j

∑
k �= j

|ρ jk|, (4)

i.e., the sum of the all the absolute values of the off-diagonal
entries in the density matrix ρ and the l2 norm:

c2(ρ) =
( ∑

j

∑
k �= j

|ρ jk|2
)1/2

. (5)

Generally, the lr norm is defined as

cr (ρ) =
(∑

j

∑
k �= j

|ρ jk|r
)1/r

. (6)

We show that our method is still valid for the lr norm with r
bounded by a specific number rn when there are n states to be
discriminated.

Introduce the pure bipartite state

|�〉AB =
∑

j

√
w j | j〉A|φ j〉B, (7)

where {| j〉A}n
j=1 is an orthonormal basis of an ancillary n-

dimension space A, and the states to be discriminated live
in space B. In terms of density matrices, it is the following
composite state:

ρAB =
∑

j,k

√
w jwk| j〉〈k| ⊗ |φ j〉〈φk|, (8)

where the subscript A or B is omitted for brevity. The corre-
sponding state in each degree of freedom is obtained by taking

a partial trace. Explicitly, the state in space A is

ρA =
∑

j,k

√
w jwk〈φk|φ j〉| j〉〈k|, (9)

and in space B

ρB =
∑

j

w j |φ j〉〈φ j |, (10)

thus ρB is exactly the ensemble to be discriminated unambigu-
ously. Performing measurement {Mi}n

i=0 on system B yields

ρ
(i)
AB =

∑
j,k

√
w jwk

pi
| j〉〈k| ⊗ Mi|φ j〉〈φk|M†

i , (11)

with pi = TrMiρBM†
i = ∑

j w j〈φ j |M†
i Mi|φ j〉, so that p0 is

consistent with the earlier definition of the failure probability
in (1). The unambiguous condition (2) requires that

Mi|φ j〉 = δi jMj |φ j〉 with i �= 0, (12)

so that pi = wi〈φi|M†
i Mi|φi〉 and consequently

ρ
(i)
A = TrBρ (i)

AB =
∑

j,k

√
w jwk

pi
〈φk|M†

i Mi|φ j〉| j〉〈k|

= wi

pi
〈φi|M†

i Mi|φi〉|i〉〈i| = |i〉〈i| for i �= 0.

As a consequence, except ρ (0)
A, each ρ ( j)

A has no off-
diagonal entries. The normalization requirement

n∑
i=0

M†
i Mi = 1 (13)

of the measurement operators {Mi}n
i=0 implies that

ρA = TrB

(
1 ⊗

∑
i

M†
i Mi ρAB

)
=

n∑
i=0

piρ
(i)
A . (14)

For that reason, concentrated on the off-diagonal entries of
ρA, we have

ρA,offdiag = p0ρ
(0)
A,offdiag, (15)

so that, for any degree-d homogeneous function f of the off-
diagonal entries, the following equation is satisfied:

f (ρA) = f
(
p0ρ

(0)
A

) = pd
0 f

(
ρ

(0)
A

)
. (16)

In particular, the l1 norm c1 (4) and l2 norm c2 (5) are such
functions of degree one. Consequently, from (9) we establish
that

c1(ρA) =
n∑

j=1

∑
k �= j

√
w jwk|〈φk|φ j〉| = p0c1

(
ρ

(0)
A

)
, (17)

c2(ρA) =
√√√√ n∑

j=1

∑
k �= j

w jwk|〈φk|φ j〉|2 = p0c2
(
ρ

(0)
A

)
. (18)

In other words, the problem of calculating the failure prob-
ability p0 is transferred to the off-diagonal entries of the
reduced state in the ancillary system A. The positivity of
any n-dimensional density matrix ρ or, more precisely, the
non-negativeness of every 2×2 principal minor of ρ, and the
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normalization property of ρ imply that [where the maximum
is achieved by letting each of the n(n − 1) off-diagonal entries
equal 1/n]

c1
(
ρ

(0)
A

)
� n − 1, and (19)

c2
(
ρ

(0)
A

)
�

(
n − 1

n

)1/2

. (20)

Substituting (19) into (17), we immediately have

p0 � 1

n − 1

n∑
j=1

∑
k �= j

√
w jwk|〈φk|φ j〉|, (21)

which is exactly the lower bound found in Ref. [31], and
similarly (18) and (20) imply

p0 �
(

n

n − 1

n∑
j=1

∑
k �= j

w jwk|〈φk|φ j〉|2
)1/2

, (22)

the lower bound in Ref. [32]. Straightforward application of
Hölder’s inequality shows that, for r � s � 1,(

1

n(n − 1)

)1/r

cr (ρ) �
(

1

n(n − 1)

)1/s

cs(ρ), (23)

where cr (ρ) denotes the lr norm of the off-diagonal entries
of ρ defined in (6). In particular, the lower bound in (22) is
greater than or equal to the bound in (21).

As a result, the two known lower bounds in Refs. [31,32]
are obtained by a unified approach. One may suggest from
(23) that the lr norm with r > 2 will produce an even better
lower bound, and intuitively, the l∞ norm will offer the best
lower bound which depends only on the greatest off-diagonal
entry of the density matrix. Unfortunately, as observed in
Ref. [32], this is not the case. The problem is that, for the
lr norm with sufficiently large r, its maximum is no longer
reached with equal off-diagonal entries, and therefore one
may get a larger upper bound than expected from (19) and
(20). To be explicit, it is easy to see that the tight upper bound
of c∞(ρ) is 1/2 for any dimensional density matrix ρ, so that
our consideration produces the simple bound

p0 � 2 max
k �= j

{√w jwk|〈φ j |φk〉|}, (24)

which is significant only when the maximum of the off-
diagonal entries of ρA in (9) is large enough. An oversim-
plification. But, on the other hand, as long as the maximum of
cr (ρ) is achieved with equal off-diagonal entries, inequality
(23) suggests a better lower bound. Consequently, there must
be a largest number rn, which depends on the number n of the
states to be discriminated, such that the maximum of crn (ρ)
still happens when all the off-diagonal entries are equal, and
it will provide us the best lower bound from this reasoning.

Actually, for any matrix μA, the following two conditions:
(C1) Tr μA = 1, μA = μ

†
A and every diagonal entries of

μA are non-negative;
(C2) every 2×2 principal minor of μA is non-negative,
are sufficient to show the bounds

c1
(
μ

(0)
A

)
� n − 1, and (25)

c2
(
μ

(0)
A

)
�

(
n − 1

n

)1/2

, (26)

which is everything one needs in the consideration. By switch-
ing the notation from ρA to μA, we emphasize that the
restriction of the reduced matrix in space A to be a proper
quantum state is loosened. Of course, this relaxation does
not matter much for pure states, but it helps to obtain better
bounds for mixed states. To summarize, after introducing an
ancillary degree of freedom A such that the reduced matrix
μA in A fulfills the above two conditions, all one needs next
is a suitable homogeneous function of the off-diagonal entries
whose upper bound due to conditions (C1, C2) is apparent. In
the particular case of the lr norm, with constraints (C1, C2),
the maximum of cr (μ(0)

A ) is∑
j

∑
k �= j

(x jxk )r/2, (27)

where x j denotes the jth diagonal entry of μ
(0)
A so that∑

j x j = 1 and x j � 0 ∀ j by (C1), and the norm of the jkth
off-diagonal entry is not greater than

√
x jxk by (C2). Apply-

ing the Lagrange multipliers method, one finds that the local
maximums of (27) with the constraint (C1) happens when

x j1 = · · · = x jm = 1/m,

xk1 = · · · = xkn−m = 0, (28)

with m � n, i.e., m diagonal entries are nonzero and have the
same value, while the other n − m diagonal entries are zero.
The corresponding local maximum of (27) is then

c(m)
r = [m1−r (m − 1)]1/r . (29)

Let m1 < m2, direct calculation shows that c(m1 )
r � c(m2 )

r if and
only if

r � ln (m2 − 1) − ln (m1 − 1)

ln m2 − ln m1
+ 1. (30)

We would like c(n)
r to be the largest among all the {c(m)

r }, so
necessarily c(n−1)

r � c(n)
r , i.e.,

r � ln (n − 1) − ln (n − 2)

ln n − ln (n − 1)
+ 1. (31)

On the other hand, fixing m2, the right-hand side of (30) is
a decreasing function of m1, which guarantees that for such
r satisfying (31), c(n)

r is indeed larger than any c(m1 )
r with

m1 < n. In conclusion, the maximum of the lr-norm cr hap-
pens with equal off-diagonal entries, i.e.,the situation of
m = n in (29), if and only if the exponent r � rn, where

rn = ln (n − 1) − ln (n − 2)

ln n − ln (n − 1)
+ 1 > 2. (32)

Consequently, in dimension n, the lrn norm will provide the
best possible general lower bound in our consideration as

p0 �
(

nrn

n(n − 1)

∑
j

∑
k �= j

(
√

w jwk|〈φ j |φk〉|)rn

)1/rn

, (33)

with rn defined in (32). This rn also answers negatively to the
question left in Ref. [32]: The condition

r � ln (n − 1)

ln n − ln 2
+ 1 (34)

is too coarse to guarantee a better bound.

022216-3



XIN LÜ PHYSICAL REVIEW A 103, 022216 (2021)

III. DISCRIMINATION OF MIXED STATES

Now we move on to the general situation of unambiguous
discrimination of the ensemble {ρ j,w j}n

j=1. Similarly as in
Sec. II, an ancillary degree of freedom is introduced, and we
consider the following matrix:

μAB =
∑

j,k

√
w jwk| j〉〈k| ⊗ √

ρ jUjk
√

ρk, (35)

with the requirement

Uj j = 1 and Ujk = U †
k j ∀ j �= k, (36)

so that μA = TrBμAB satisfies the condition (C1). Viewing the
matrix μAB in (35) as a block matrix, it is straightforward to
verify that the block matrix

(
ρ j

√
ρ jUjk

√
ρk√

ρkU
†
jk
√

ρ j ρk

)
= XjkX †

jk � 0 (37)

for any pairs j �= k, with

Xjk = 1√
2

( √
ρ j

√
ρ jUjk√

ρkU
†
jk

√
ρk

)
. (38)

Similarly, any 2×2 block matrix of the form

(
Miρ jM

†
i Mi

√
ρ jUjk

√
ρkM†

i

Mi
√

ρkU
†
jk
√

ρ jM
†
i MiρkM†

i

)
(39)

is also positive semidefinite. In conclusion, the matrix μAB

defined in (35) and every matrix μ(i)
AB defined as

μ
(i)
AB = 1

pi

∑
j,k

√
w jwk| j〉〈k| ⊗ Mi

√
ρ jUjk

√
ρkM†

i , (40)

where

pi =
∑

j

w jTr(Miρ jM
†
i ), (41)

is the probability of the ith measurement outcome, and the set
of unitaries {Ujk, j, k = 1, . . . , n} fulfills condition (36), will
provide us the reduced matrices

μA =
∑

j,k

√
w jwkTr(

√
ρ jUjk

√
ρk )| j〉〈k| and

μ
(i)
A =

∑
j,k

√
w jwk

pi
Tr(Mi

√
ρ jUjk

√
ρkM†

i )| j〉〈k|

satisfying the conditions (C1, C2) listed in Sec. II, so that
similar analysis can be conducted.

The unambiguous condition (2) implies that

Mi
√

ρ j = δi jMj
√

ρ j with i �= 0, (42)

therefore similarly as in Sec. II,

μ
(i)
A = |i〉〈i| for i �= 0, (43)

so that condition (15) is valid. Everything else then follows in
the same way as in Sec. II, and we obtain the results

p0 �
(

nr

n(n − 1)

∑
j

∑
k �= j

∣∣√w jwkTr(
√

ρ jUjk
√

ρk )
∣∣r

)1/r

,

with the index r bounded above by the number rn defined in
(32). Now fixing the unitaries {Ujk} by the polar decomposi-
tion

Ujk
√

ρk
√

ρ j = |√ρk
√

ρ j | with j < k, (44)

and the requirement (36), we obtain the lower bound

p0 �
(

nr

n(n − 1)

∑
j

∑
k �= j

[w jwkF (ρ j, ρk )]r/2

)1/r

, (45)

where the trace Tr|√ρk
√

ρ j | is expressed by the square root
of the fidelity between ρ j and ρk [44,45]:

F (ρk, ρ j ) = (Tr|√ρk
√

ρ j |)2, (46)

which is the square of the fidelity in Ref. [46]. The above
result (45) is the best lower bound that one can get from matrix
(35) by varying the unitaries, since it is well known that√

F (ρ j, ρk ) = max
unitaryU

Tr(
√

ρk
√

ρ jU ). (47)

In particular, let r = 2, we obtain the known bound

p0 �
(

n

n − 1

∑
j

∑
k �= j

w jwkF (ρ j, ρk )

)1/2

, (48)

which has been derived in Ref. [34].
Note that, different from the situation of pure states, the

matrix μAB in (35) is not positive in general, therefore it
cannot be considered as a valid quantum state in the com-
posite system. Nevertheless, since only the weaker positivity
condition (C2) is necessary, mathematically we are still able
to derive lower bounds for mixed states this way. As a di-
rect application of these lower bounds, the bounds (21) and
(48) suggest the quantitative wave-particle duality relation
proposed in Refs. [24] and [26], respectively, which is not
surprising, since both quantitative wave particle duality and
unambiguous discrimination depend on the positivity of den-
sity matrices. To be precise, all known wave-particle duality
relations follow from the conditions (C1, C2). It is interesting
to wonder whether the bound (45) also suggests quantitative
wave-particle duality relations. We remark that Dürr has al-
ready shown that the l2 norm is the standard deviation of the
interference pattern averaged over all the phases [47], so these
lower bounds do have physical significance.

IV. CONCLUSION

We have systematically obtained a series of lower bounds
[(21), (22), (33), (45)] on the failure probability p0 of unam-
biguous discrimination. Notably, we have provided the largest
index rn in (32) such that the lrn norm of the off-diagonal
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entries will return a good lower bound of the failure prob-
ability p0. By introducing an ancillary degree of freedom,
the failure probability is directly linked with homogeneous
functions of off-diagonal entries of any matrix satisfying
conditions (C1, C2). As a result, there is no tedious mathe-
matics in our approach as in earlier similar works. It would
be interesting to generalize the consideration by using other
homogeneous functions of the off-diagonal entries other than
the lr norm, and to apply the idea also in the problem of am-
biguous discrimination to obtain upper bounds on its success
probability. Besides, since we have related the lower bound
with off-diagonal entries of density matrices, e.g., the l1 norm

coherence, our work also suggests that unambiguous state dis-
crimination may provide further applications in quantifying
coherence, and vise versa.
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