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Quantum mereology: Factorizing Hilbert space into subsystems with quasiclassical dynamics
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We study the question of how to decompose Hilbert space into a preferred tensor-product factorization without
any preexisting structure other than a Hamiltonian operator, in particular the case of a bipartite decomposition
into “system” and “environment.” Such a decomposition can be defined by looking for subsystems that exhibit
quasiclassical behavior. The correct decomposition is one in which pointer states of the system are relatively
robust against environmental monitoring (their entanglement with the environment does not continually and dra-
matically increase) and remain localized around approximately classical trajectories. We present an in-principle
algorithm for finding such a decomposition by minimizing a combination of entanglement growth and internal
spreading of the system. Both of these properties are related to locality in different ways. This formalism is
relevant to questions in the foundations of quantum mechanics and the emergence of spacetime from quantum
entanglement.
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I. INTRODUCTION

If someone hands you two qubits A and B, there is a
well-understood procedure for constructing the quantum de-
scription of the composite system constructed from the two of
them. If the individual Hilbert spaces are HA � C2 and HB �
C2, the composite Hilbert space is given by the tensor product,
H � HA ⊗ HB � C4, where � represents isomorphism. The
total Hamiltonian is the sum of the two self-Hamiltonians, ĤA

and ĤB, acting on HA and HB, respectively, plus an appropri-
ate interaction term, Ĥint, coupling the two factors.

What about the other way around? If someone hands you
a four-dimensional Hilbert space and a Hamiltonian, is there
a procedure by which we can factorize the system into the
tensor product of two qubits? In general there will be an
infinite number of possible factorizations, each defined by a
bijection of the form

λ:H → HA ⊗ HB. (1)

Unitary transformations Û can be used to define different
bijections,

λ̃ = λ ◦ Û :H → HA ⊗ HB. (2)

While some unitaries will simply induce rotations within the
factors HA and HB, generically the factorization defined by λ̃

will not be equivalent to that defined by λ. Is there some notion
of the “right” factorization for a given physical situation?

In almost all applications, these questions are begged rather
than addressed. When someone hands us two spin-1/2 parti-
cles, it seems obvious how to assign Hilbert spaces to each
and form the relevant tensor product. But there are circum-
stances,when we might know nothing more than the total

*seancarroll@gmail.com
†ashmeet@caltech.edu

Hilbert space and the Hamiltonian (and perhaps a specified
initial state), and want to use that information to reverse-
engineer a sensible notion of what physical system is being
described, including what its individual parts are. This is the
subject of “Quantum Mereology,” where “mereology” is the
study of how parts relate to the whole. It is especially impor-
tant in the context of finite-dimensional Hilbert spaces, where
any Hermitian operator defines an observable, and there is no
notion of preferred observables that can be used to define a
corresponding factorization.

This is an important problem for the foundations of
quantum mechanics, in particular within an Everettian (Many-
Worlds) framework. The basic postulates of this approach are
that the world is fully described by a vector in Hilbert space,
evolving according to the Schrödinger equation with some
given Hamiltonian. Semiclassical “worlds” branch off from
each other when quantum systems in superposition become
entangled with the environment. Such a description clearly
relies on a factorization of Hilbert space into system and
environment, which is usually taken as assumed. But that
factorization is a human convenience, not part of the basic
formulation of the theory itself. We would therefore like to
have a set of objective criteria for starting the the fundamental
ingredients—Hilbert space, state, and Hamiltonian—and de-
riving everything else, including the appropriate factorization
[1].

Another motivation comes from quantum gravity. The
holographic principle [2,3], black-hole complementarity [4],
and the AdS/CFT correspondence [5] provide evidence that
the ultimate theory of quantum gravity does not arise from a
straightforward quantization of general relativity or any other
theory with strictly local degrees of freedom. String theory
is an attempt to posit what those degrees of freedom might
be, but it might be fruitful to tackle the question from a more
general perspective, asking how states in Hilbert space evolv-
ing in certain ways can predict emergent behavior describing
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semiclassical spacetimes obeying Einstein’s equation [6–9].
For such a program, it is crucial to be able to factorize would-
be classical states into system and environment, without such
a decomposition necessarily being given ahead of time.

In this paper we seek to address this problem in a system-
atic way. Given nothing more than a Hilbert space of some
dimensionality, the Hamiltonian, and an initial state, what
is the best way to factorize Hilbert space into subsystems?
Since we are not given a preferred factorization to begin with,
there is no preferred basis other than the eigenstates of the
Hamiltonian. The Hamiltonian itself is therefore specified by
its spectrum (the set of energy eigenvalues), and the initial
state by its components in the energy eigenbasis. Our task
is to use these meager data to find the most useful way of
decomposing Hilbert space into tensor factors.

The key here is “useful,” and we interpret this as meaning
“allows for a quasiclassical description of the dynamics within
the subsystems (or one subsystem coupled to an environ-
ment).” A well-understood feature of conventional quantum
dynamics is the selection of pointer states of a system that is
being monitored by an environment. In general the reduced
density matrix of the system can always be diagonalized in
some basis, but for systems that can exhibit quasiclassical be-
havior, the pointer states define a basis in which the system’s
density matrix will rapidly approach a diagonal form. These
pointer states then obey quasiclassical dynamics. This implies
in particular that a system in a pointer state remains relatively
unentangled with the environment, and that we can define
pointer observables that approximately obey classical equa-
tions of motion. This suggests a criterion for determining the
proper system-environment factorization: choose the tensor-
product decomposition in which the system has a pointer
basis that most closely adheres to these properties. As we will
see, generic Hamiltonians will have no such decomposition
available, so quasiclassical behavior is nongeneric.

In this paper we develop an algorithm for making this
criterion precise. For any given decomposition, we start with
an unentangled state and calculate the growth of entangle-
ment. Since our interest is in finite-dimensional Hilbert spaces
[10–12], we use Generalized Pauli Operators (which have
their algebraic roots in generalized Clifford algebra) to de-
fine conjugate operators q̂ and p̂; in the infinite-dimensional
limit, these obey the Heisenberg canonical commutation re-
lations. The position operator q̂ is the one that appears in
the interaction Hamiltonian. We can then calculate the rate
of spread of the uncertainty in the position variable. Both the
entanglement between system and environment and the spread
of the system’s position can be characterized by an entropy.
Our criterion is that the correct decomposition minimizes the
maximum of these two entropies, for initially localized and
unentangled states.

While this question has not frequently been addressed
in the literature on quantum foundations and emergence of
classicality, a few works have highlighted its importance and
made attempts to understand it better. Brun and Hartle [13]
studied the emergence of preferred coarse-grained classical
variables in a chain of quantum harmonic oscillators. Efforts
to address the closely related question of identifying classical
set of histories (also known as the “Set Selection” problem) in
the Decoherent Histories formalism [14–19] have also been

undertaken. Tegmark [20] has approached the problem from
the perspective of information processing ability of subsys-
tems and Piazza [21] focuses on emergence of spatially local
subsystem structure in a field theoretic context. Hamiltonian
induced factorization of Hilbert space which exhibit k-local
dynamics has also been studied by Cotler et al. [22]). The
idea that tensor product structures and virtual subsystems
can be identified with algebras of observables was originally
introduced by Zanardi et al. in Refs. [23,24] and was further
extended in Kabernik, Pollack, and Singh [25] to induce more
general structures in Hilbert space. In a series of papers (e.g.,
Refs. [26–29]; see also Ref. [30]) Castagnino, Lombardi, and
collaborators have developed the self-induced decoherence
(SID) program, which conceptualizes decoherence as a dy-
namical process which identifies the classical variables by
inspection of the Hamiltonian, without the need to explicitly
identify a set of environment degrees of freedom. Similar
physical motivations but different mathematical methods have
led Kofler and Brukner [31] to study the emergence of classi-
cality under restriction to coarse-grained measurements.

The paper is organized as follows. Section II describes the
important features of a quasiclassical factorization, settling on
two important features: “robustness,” referring to slow growth
of entanglement between pointer states and the environment,
and “predictability,” meaning that pointer observables ap-
proximately obey classical equations with low variance. We
emphasize how these features will not be manifest in any arbi-
trary factorization and use a bipartite example to demonstrate
these characteristics. We then examine these two features in
turn. Section III considers robustness, showing that it is non-
generic, and investigating what kinds of decompositions will
minimize the growth of entanglement. In Sec. IV, we discuss
predictability of classical states under evolution, and outline a
method to quantify the spread induced in initially predictable
states of the pointer observable. In Sec. V we will outline an
algorithm to sift through different decompositions of Hilbert
space, given a Hamiltonian to pick out the one with manifest
quasiclassicality. We will define an entropy-based quantity
that we call Schwinger Entropy whose minimization ensures
the existence of low entropy states that are both resistant
to entanglement production and have a pointer observable
that evolves quasiclassically. In Sec. VI we make contact
with the notion of conjugate variables and describe under
what conditions one can interpret them as classical position
and momentum. We connect quasiclassicality with features
of the Hamiltonian. These include the “collimation” of the
self-Hamiltonian, needed to ensure that initially peaked states
remain relatively peaked, and the pointer observables approx-
imately obeying classical equations of motion. We close with
a worked example and some discussion.

II. FACTORIZATION AND CLASSICALITY

There is a great deal of freedom in the choice of factoriza-
tion of Hilbert space corresponding to different subsystems. In
principle any factorization can be used, or none; for purposes
of unitary dynamics, one is free to express the quantum state
however one chooses. For purposes of pinpointing quasiclas-
sical behavior, however, choosing the right factorization into
system S and environment E is crucial. Similar considerations
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will apply to further factorization of the system into subsys-
tems. Let us therefore review what is meant by “quasiclassical
behavior.”

Consider a bipartite split of a finite-dimensional Hilbert
space H ≡ (A ⊗ B){θ} into subsystems A and B in a fac-
torization labeled by {θ} relative to some arbitrary chosen
one. (In Appendix A we establish some notation and formulas
relevant to factorizations and transformations between them.)
The dimension of A is dimA = dA and dimB = dB, with
dimH = D = dAdB. There is some freedom in the choice
of dA and dB as long as they satisfy dAdB = D, for a fixed
dimension D of the global Hilbert space. We assume that D
is nonprime, and hence can be factorized further, as required
to obtain subsystem structure. In this work, we focus on the
case where dA and dB are a priori fixed, or specified by certain
conditions. For instance, in the case where A is a quantum
system of interest, and B a macroscopic environment, we
expect dB � dA. It seems likely that our procedure could be
extended to fix the best choice of system dimensionality, but
we don’t explore that here.

The Hamiltonian Ĥ in this decomposition can be written
as a sum of self terms and an interaction term, following
Eq. (A6),

Ĥ = ĤA ⊗ ÎB + ÎA ⊗ ĤB + Ĥint. (3)

We consider only traceless Hamiltonians, so there is no need
for a trace term h0 = Tr Ĥ/D. Under factorization changes,
even though Tr Ĥ is preserved, there would be an ambiguity
in assigning the trace terms to either of the self-Hamiltonians
of A or B. Also, since we are not considering gravity as an
external field, subtracting off a constant from Ĥ is physically
trivial.

The form of the Hamiltonian is dependent on the choice of
the decomposition {θ}. The interaction term can be expanded
in the SU(dA) ⊗ SU(dB) operator basis as following Eq. (A8),

Ĥint =
d2

A−1∑
a=1

d2
B−1∑
b=1

hab
(
�̂(A)

a ⊗ �̂
(B)
b

)
. (4)

One can rewrite Ĥint in a diagonal form,

Ĥint =
nint∑
α=1

λα (Âα ⊗ B̂α ), (5)

where Âα and B̂α are combinations of the Hermitian genera-
tors1 in Eq. (4) and the total number of terms will generically
be nint = (d2

A − 1)(d2
B − 1). The coefficients λα characterize

the strength of each contribution in the interaction Hamil-
tonian, which we ensure by absorbing any normalization of
operators Âα and B̂α in λα such that ||Âα|| = ||B̂α|| = 1 under
a suitable choice of operator norm ||.||. While there appear to

1While in a general diagonal decomposition of the interaction
Hamiltonian, the operators Âα and B̂α can be unitary but not neces-
sarily Hermitian, but our form of Eq. (5) is obtained by relabeling
and recollecting terms in an expansion with Hermitian terms of
Eq. (4), hence Âα and B̂α will be Hermitian. This will also help us
make easy contact with talking about observables being monitored
by subsystems.

be a large number of terms in the expansion in Eq. (5), we will
see later how in the preferred, quasiclassical decomposition,
most of these terms condense into familiar local operators that
serve as pointer observables.

A quasiclassical (QC) factorization of H that we will de-
note by {θ}QC can be associated with the following features:

(1) Robustness: There exist preferred pointer states of the
system (and associated pointer observables) that, if initially
unentangled with the environment, typically remain unentan-
gled under evolution by Ĥ .

(2) Predictability: For states with near definite value of the
pointer observable, it will serve as a predictable quasiclassical
variable, with minimal spreading under Hamiltonian evolu-
tion.

Informally, these two criteria correspond to the conven-
tional notions that “wave function branchings are rare” and
“expectation values of observables remain peaked around
classical trajectories in the appropriate regime.” We can now
examine in detail how these features can be characterized
quantitatively.

III. ROBUSTNESS AND ENTANGLEMENT

It is a feature of the universe (albeit as yet imperfectly
explained) that entropy was low at early times, and has been
subsequently increasing [32,33]. In the quantum context, this
corresponds to relatively small amounts of initial entangle-
ment between subsystems, and between macroscopic systems
and their environment. Here we are imagining a bipartite split

H = S ⊗ E (6)

into S , which corresponds to “system” degrees of freedom we
wish to track, and an environment E , which is the part we
are not interested in or do not have control over. In Everettian
quantum mechanics [34], this feature underlies the fact that
the wave function branches as time moves toward the future,
not the past. Our interest is therefore in initially low-entropy
situations, where the system is unentangled with its environ-
ment.

With a generic Hamiltonian in a generic factorization, we
would expect any initially unentangled system state to quickly
become highly entangled with its environment, on timescales
typical of the overall Hamiltonian. By “highly entangled” we
mean that the entropy of the system’s reduced density matrix
would approach log(dim HS ). In Everettian language, that
would correspond to splitting into a number of branches of
order dim HS . This is not what we expect from robust qua-
siclassical behavior; to a good approximation, Schrödinger’s
cat splits into two branches, not into the exponential of Avo-
gadro’s number of branches.

We will therefore ask, given some Hamiltonian Ĥ , how we
can factorize H into S ⊗ E such that the entanglement growth
rate of certain initially unentangled states is minimized. We
will explicitly work to O(t2), which we will see is the lowest
nontrivial contribution to the entanglement growth. This will
help us quantify robustness and quasiclassicality for small
times. (Factorizations that are not quasiclassical for small
times will not be quasiclassical for later times either.)
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A. Decoherence is nongeneric

It is well known that wave functions tend to “collapse”
(or branch) into certain preferred pointer states, depending
on what observable is being measured. The decoherence
paradigm outlines how in an appropriate factorization, we
search for a pointer observable ÔS ∈ L(S ) such that eigen-
states {|s j〉 | j = 1, 2, . . . , dS} of ÔS serve as pointer states
[35], which are robust to entanglement production with states
of the environment. Thus, there exist special product states
|s j〉 ⊗ |E〉 that do not entangle (or stay approximately un-
entangled) under the evolution by the total Hamiltonian Ĥ .
This feature allows suppression of interference between su-
perpositions of different pointer states, and in the eigenbasis
of ÔS , the reduced density operator for S given by ρ̂S (t )
evolves toward a diagonal form, since the conditional environ-
mental states corresponding to different pointer states of the
system become dynamically orthogonal 〈E (s j )|E (sk )〉 → δ jk

relatively fast in time.
In particular in the Quantum Measurement Limit (QML)

[36], when the Hamiltonian is dominated by interactions Ĥint

(when the spectral frequencies available in Ĥint are much
larger than those of the self term Ĥself ), the pointer observable
satisfies Zurek’s commutativity criterion [35],

[Ĥint, ÔS] ≈ 0 ⇒ [Ĥint, ÔS ⊗ ÎE ] ≈ 0. (7)

This is interpreted as saying that the environment E robustly
monitors [37] a certain observable ÔS of the system (typically
a “local” one, such as position) that is compatible with the
interaction Hamiltonian Ĥint and selects this to serve as the
pointer observable.2 This commutativity criterion of Eq. (7)
further implies that generically all terms Âα occurring with
λα 
= 0 will individually satisfy

[Âα, ÔS] ≈ 0 ∀ α. (8)

The discussion can be extended to the quantum limit of de-
coherence [36], where the self term Ĥself dominates over Ĥint

and selects eigenstates of the self-Hamiltonian for the system
ĤS to be the pointer states. In general, Zurek’s “predictability
sieve” [39] sifts through different states in the system’s Hilbert
space S to search for states that are robust to entanglement
production under evolution by the full Hamiltonian Ĥ . In this
paper, we primarily focus on the quantum measurement limit
(QML) since a broad class of physical models exhibit this
feature where interactions play a dominant and crucial role
in the emergence of classicality.

Decoherence and the existence of low-entropy states in
H that do not get entangled under the action of Ĥ depend
sensitively on the Hamiltonian and factorization H = A ⊗ B
taking a particular, nongeneric form. In the quasiclassical
factorization, we will identify subsystem A as the “system” S ,

2There is a related notion of entanglement robustness associated
with coherent states (which are eigenstates of the non-Hermitian
annihilation operator) in the context of quantum optics ([38] and ref-
erences therein). In this paper, we focus on the robustness of pointer
states of system observables being monitored by an environment (for
a given Hamiltonian) in the context of Zurekian decoherence, and
their emergent classicality.

and the subsystem B as the “environment” E . In general, as we
saw in Eq. (4) and particularly in the diagonal decomposition
Eq. (5), the interaction term has a slew of noncommuting
terms Âα in the summand. Searching for a “pointer observ-
able” is equivalent to finding an operator compatible with Ĥint ,
and hence satisfying [Ĥint, Ô] ≈ 0. Due to the presence of
large number of noncommuting terms in Ĥint, the eigenstates
of Ô will be highly entangled and not be low entropy states
that can be resilient to entropy production.

Said differently, the “pointer observable” Ô will not be of a
separable form Ô 
= ÔA ⊗ ÔB, and only specific factorizations
for Hamiltonians can allow decoherence, where many terms
of Ĥint in Eq. (5) conspire together to collect into a few local
and compatible terms allowing for consistent monitoring of
the system by the environment. (To emphasize, by “decoher-
ence” here we mean not simply “becoming entangled with the
environment,” but the existence of a preferred set of pointer
states that define a basis in which the reduced density matrix
dynamically diagonalizes.) As we saw, the existence of initial
low entropy states ρ̂(0) = ρ̂A(0) ⊗ ρ̂B(0) that are robust under
evolution to entanglement production is highly constrained
and only in particular cases when many of the λα strengths
vanish or terms conspire to condense into a few local terms
will they exist to serve as the pointer states for subsystems
being robustly monitored by the environment (other subsys-
tems). This can be further understood by considering the
constraint counting discussed in Sec. III B below.

In Appendix D we detail this behavior more explicitly.

B. Minimizing entropy growth

In an arbitrary decomposition H ≡ (A ⊗ B){θ}, let us be-
gin with an initial (t = 0) pure state of zero entropy for the
factors, which we take to be a product state,

ρ̂(0) ≡ |ψ (0)〉 〈ψ (0)| = ρ̂A(0) ⊗ ρ̂B(0)

≡ |ψA(0)〉 〈ψA(0)| ⊗ |ψB(0)〉 〈ψB(0)| . (9)

At this stage, the decomposition {θ} is completely general and
has no notion of preferred observables or classical behavior.
Let us work with a traceless Hamiltonian of Eq. (3) even
though the calculation below holds for Tr Ĥ 
= 0 since this
will only be an overall phase in the unitary evolution of den-
sity matrices and hence, cancels out. Time evolution of states
is implemented using a unitary operator Û (t ) ≡ exp (−iĤt ),
where we are working in units with h̄ = 1, and the time
evolved state is |ψ (t )〉 = Û (t ) |ψ (0)〉. Let us write Û (t ) in a
more suggestive form working explicitly to order O(t2).

In Appendix B we compute the linear entanglement en-
tropy3 Slin(ρ̂A(t )) = [1 − Tr ρ̂2

A(t )] for the reduced density
matrix of A given by Eq. (B7), which corresponds to starting
with an unentangled (and hence, zero entropy) state ρ̂(0).

3A common entanglement measure used is the von Neumann entan-
glement entropy SvN (ρ̂) = −Tr (ρ̂ log ρ̂ ) for a given density matrix
ρ̂. However, the presence of the logarithm makes the entropy hard to
analytically compute and give expressions for, hence we will focus
on its leading order contribution, the Linear Entropy (which is the
Tsallis second-order entropy measure), Slin (ρ̂) = (1 − Tr ρ̂2).
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Putting these together in Eq. (B15), we obtain

Slin(ρ̂A(t ))

= t2
∑
α,β

λαλβ[〈ÂαÂβ〉0〈B̂αB̂β〉0 + 〈Âβ Âα〉0〈B̂β B̂α〉0

− 〈Âα〉0〈Âβ〉0(〈{B̂α, B̂β}+〉0 − 〈B̂α〉0〈B̂β〉0)

− 〈B̂α〉0〈B̂β〉0(〈{Âα, Âβ}+〉0 − 〈Âα〉0〈Âβ〉0)] + O(t3).
(10)

For condensed notation, let us write Slin(ρ̂A(t )) = S̈lin(0) t2 +
O(t3). The quantity S̈lin will play an important role in quanti-
fying the quasiclassicality of different factorizations of Hilbert
space. In particular, for the important case when the interac-
tion Hamiltonian takes the simple form Ĥint = λ(Â ⊗ B̂), we
notice that the expression for Slin simplifies to

Slin(ρ̂A(t )) = 2λ2t2
(〈Â2〉0 − 〈Â〉2

0

)(〈B̂2〉0 − 〈B̂〉2
0

)
. (11)

Let us note a few key features of the entropy growth
Eq. (10). We are working in the context of unentangled (low
entropy) states. As we have seen, the entanglement growth
rate depends on the interaction strengths λα; stronger inter-
actions would entangle subsystems more quickly. One might
be tempted to conclude that finding a decomposition where
the interaction Hamiltonian has the minimum strength would
ensure least entanglement production, but we must take note
of the important role played by the initial (unentangled) state
in determining the rate of entanglement generation.4 In par-
ticular, we notice from Eqs. (11) and (10) the presence of
variance-like terms of the interaction Hamiltonian in the initial
state. States that are more spread relative to terms in the
interaction Hamiltonian (hence more variance) allow for more
ways for the two subsystems to entangle and such features will
play an important role in distinguishing the QC factorization.
Interestingly, the self-Hamiltonian plays no role in entan-
glement production for initially unentangled states to O(t2).
As we will see later, the self term is nevertheless important
in determining the collimation of pointer observables under
evolution and will serve as an important feature of the QC
factorization.

Not all unentangled states will allow for S̈lin(0) = 0,
even approximately, and only a special class of states for a
given factorization will be robust to entanglement produc-
tion. For an arbitrary factorization, there will not exist such
entanglement-resilient states that do not get entangled [to
O(t2)] under evolution. When S̈lin(0) = 0, for an arbitrary
factorization where all nint terms are present in the interaction
Hamiltonian without any constraints or relationship among
different terms, each individual summand in Eq. (10) will typ-
ically have to vanish separately, giving us (nint )(nint + 1)/2

4This is in line with Tegmark’s [20] “Hamiltonian Diagonality
Theorem,” which proves that the Hamiltonian is maximally sepa-
rable (with minimum norm of the interaction Hamiltonian) in the
energy eigenbasis. Tegmark further argues that this factorization
corresponding to the energy eigenbasis is not the quasiclassical one
despite maximum separability due to a crucial role played by the
state.

equations in the variables that make up the initial unentan-
gled state |ψ (0)〉A ⊗ |ψ (0)〉B. A generic unentangled state of
this form has (2dA − 2)(2dB − 2) � (nint )(nint + 1)/2 real,
free parameters (twice the dimension accounting for real
coefficients; reduce two degrees of freedom, one due to nor-
malization and one for the overall phase), hence forming an
overdetermined set of equations. Only in very special cases,
where quasiclassicality will be manifest, will we see that
many terms in Ĥint will vanish having λα = 0 or will conspire
together to reduce or condense into familiar classical observ-
ables being monitored by other subsystems for there to exist
robust, unentangled states that are resilient to entanglement
production (and will serve as the pointer basis of the system).
Such states will also be important for allowing decoherence to
be an effective mechanism to suppress interference between
superpositions of such pointer states.

IV. PREDICTABILITY OF DYNAMICS

A. Pointer observables and predictable diagonal sliding

The mere existence of a pointer observable consistently
monitored by other subsystems is not enough for classical
evolution of states starting with a peaked value of the ob-
servable. In addition to slow entanglement growth of initially
unentangled pointer states, we must ensure that such states de-
fine a predictable variable that evolves classically. A possible
measure for the predictability of an operator under evolution
is the change in variance of the observable under an initial
state with almost definitive value of the observable. Let us
compute the time rate of change in variance of an observable
ÔA ∈ L(A) under the evolution by Ĥ . As one might expect,
will see that the self-Hamiltonian ĤA becomes important in
determining the how quickly the observable spreads. This fea-
ture will be tied with collimation properties of the ĤA, which
we discuss in detail in Sec. VI B in the context of conjugate
variables.

The variance of ÔA as a function of time is defined as


2ÔA(t ) = Tr
[
ρ̂A(t )Ô2

A

] − Tr2[ρ̂A(t )ÔA]. (12)

We will use the expression for ρ̂A(t ) to O(t ) from Eq. (B9)
since this is the lowest nontrivial order at which the effect of
the Hamiltonian can be seen,

ρ̂A(t ) = σ̂A(t ) − it
∑

α

λα〈B̂α〉0[Âα, ρ̂A(0)] + O(t2), (13)

which gives us

Tr
[
ρ̂A(t )Ô2

A

] = 〈
Ô2

A

〉self

t − it
∑

α

λα〈B̂α〉0Tr
{
[Âα, ρ̂A(0)]Ô2

A

}
+ O(t2)

= 〈
Ô2

A

〉self

t − it
∑

α

λα〈B̂α〉0

〈[
Ô2

A, Âα

]〉
0 + O(t2),

(14)

and similarly,

Tr[ρ̂A(t )ÔA] = 〈
Ô2

A

〉self

t − it
∑

α

λα〈B̂α〉0〈[ÔA, Âα]〉0 + O(t2),

(15)

022213-5



SEAN M. CARROLL AND ASHMEET SINGH PHYSICAL REVIEW A 103, 022213 (2021)

where the self-evolved variance (
2ÔA)
self

is found similarly,
depending on the self-Hamiltonian ĤA,

(
2ÔA)self (t ) = Tr
[
σ̂A(t )Ô2

A

] − Tr2[σ̂A(t )ÔA] + O(t2)

= (
2ÔA)0 − it
(〈[

Ô2
A, ĤA

]〉
0

− 2〈[ÔA, ĤA]〉0〈ÔA〉0
) + O(t2). (16)

We can now put everything together to get the variance

2ÔA(t ) to O(t ),


2ÔA(t ) = (
2ÔA)self
0 − it

∑
α

λα〈B̂α〉0

(〈[
Ô2

A, Âα

]〉
0

− 2〈[ÔA, Âα]〉0〈ÔA〉0

) + O(t2). (17)

We can now obtain the leading order contribution to the
time derivative of the variance that captures the contribution
to various terms in the Hamiltonian,

d

dt

2ÔA(t ) = (〈

i
[
ĤA, Ô2

A

]〉
0 − 2〈i[ĤA, ÔA]〉0〈ÔA〉0

)

+
(〈

i

[∑
α

λα〈B̂α〉0Âα, Ô2
A

]〉
0

− 2

〈
i

[∑
α

λα〈B̂α〉0Âα, ÔA

]〉
0

〈ÔA〉0

)

+ O(t ). (18)

The spreading of the variance depends on terms which re-
semble those in the Heisenberg equation of motion of the
observable ÔA (and its square) under evolution by both the
self-Hamiltonian ĤA and relevant terms in Ĥint.

Let us now analyze this variance change for the case where
the interaction Hamiltonian Ĥint in the chosen factorization
admits a consistent pointer observable (in the QML) satisfying
Eq. (7), in which case [ f̂ (ÔA), Âα] ≈ 0 ∀ α for any function
f̂ (ÔA) depending only on ÔA. For such a pointer observable,
the time derivative of the variance from Eq. (18) simplifies
and depends only on self-dynamics governed by ĤA,

d

dt

2ÔA(t ) = 〈

i
[
ĤA, Ô2

A

]〉
0 − 2〈i[ĤA, ÔA]〉0〈ÔA〉0

+ O(t ) for [ÔA, Âα] ≈ 0. (19)

For the pointer observable ÔA to offer a predictable variable, it
should obey d

dt 

2ÔA(t ) � 1 for initial states that are peaked

around some eigenvalue of ÔA. Having states as peaked su-
perpositions of the pointer states instead of exact eigenstates
fits in well with the idea of “predictability sieve” following
Zurek [39]: while the pointer observable is chosen using the
compatibility criterion with Ĥint as seen in Eq. (7), the most
robust states (under the full Hamiltonian Ĥ) will have a small
width instead of being exact eigenstates due to the effects of
the (systematically smaller) self-Hamiltonian (in the QML).
Such peaked states, for a predictable ÔA, will not spread
much, and offer candidates for classical states that evolve
primarily under the action of the self-Hamiltonian ĤA.

The reduced density matrix of A in such a pointer basis
will be mostly diagonal (due to decoherence, as discussed
in Sec. III A), and a peaked state of ÔA will slide along the

diagonal under self-dynamics [20]. This “diagonal sliding”
feature can also be seen from the expression for ˙̂ρA(t ) from
Eq. (D8), where the diagonal entries of the decoherence term
D(ρ̂A(t )) of Eq. (D9) in the pointer basis {|s j〉} vanish iden-
tically, and the diagonal entries in ˙̂ρA(t ) in the pointer basis
evolve as[

d

dt
ρ̂A(t )

]
j j

= {−i[ĤA(t ), ρ̂A(t )] j j} + O(t2), (20)

since even the interaction pieces from the effective self-
Hamiltonian also vanish in the pointer basis (see Appendix
D for details), 〈a j |[Âα, ρ̂A(t )]|a j〉 ≡ [Âα, ρ̂A(t )] j j = 0. Thus,
these diagonal terms evolve under the action of the self-
Hamiltonian and dictate the diagonal sliding of the density
matrix in the pointer basis once it has decohered.

Based on this motivation, we would like to capture pre-
dictability of the pointer observable to be used in conjunction
with the entropy growth rate from Sec. III B to quantify
the classicality of the system in question. One can try
d (
2ÔA)/dt from Eq. (19) as a measure of the predictabil-
ity of the pointer observable, but such a quantity will not
be a good homogeneous measure on the same footing as a
dimensionless entropy like Slin. This is because from the point
of view of constructing an algorithm, we want to take into
account both low entanglement growth and predictability of
pointer observables to determine the QC factorization.

B. Pointer Entropy

To discuss an entropy measure that captures essentially the
same physics as d (
2ÔA)/dt , we define a Pointer Entropy
as the second-order (q = 2) Tsallis entropy of the probability
distribution given by ρ̂A(t ) in the basis of an observable ÔA,

Spointer (t ) = 1 −
dA∑
j=1

p2
j (t ), (21)

where p j (t ) is the probability distribution defined by

p j (t ) = Tr A[ρ̂A(t ) |a j〉 〈a j |] ≡ Tr A[ρ̂A(t )Ô j]

= 〈a j |ρ̂A(t )|a j〉, (22)

where {|a j〉} is the set of eigenstates of ÔA, and Ô j ≡ |a j〉 〈a j |.
Our goal is to be able to compare pointer entropy with linear
entanglement entropy of Eq. (10). As we saw in Sec. III B, a
quantifier for entanglement robustness of unentangled states
is S̈lin(0), and on similar lines we would like to use S̈pointer (0)
as a quantifier for the rate of spread of the pointer observable.
Following the discussion of Sec. IV above, the reader should
think of ÔA as being the pointer observable of the system in
the quasiclassical factorization, or else, if one is in a generic
factorization, ÔA should be thought of as the closest notion
of a pointer observable (which we define precisely in Sec. V
below), which would best satisfy Zurek’s commutativity crite-
rion of Eq. (7) of being a pointer observable. Unlike arbitrary
factorizations, for the case of the QC factorization, ÔA would
be the actual pointer observable and hence, would have pre-
dictable dynamics.

Spointer is an entirely information-theoretic construction and
is based on the probability distribution of ρ̂A(t ) in the basis of
ÔA. It is insensitive to any ordering structure of eigenvalues
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FIG. 1. Plot showing correlation between pointer entropy growth S̈pointer (0) and the rate of change of variance of the pointer observable
for a peaked state in pointer eigenspace. Each point in the plot represents a different Hamiltonian. We kept ÔA fixed (as the position operator,
the finite-dimensional version of which is defined in Sec. VI below) and changed the self-Hamiltonian ĤA and computed the correlation for a
peaked state in φ̂A eigenspace in a Hilbert space of dimA = 27.

and peaked states in this space. Spointer measures how far the
spread of the probability distribution is from being completely
certain, but does not capture its variance structure pertaining
to a certain set of eigenvalues. Fortunately, for the class of
states we are considering, i.e., those initial states which are
peaked superpositions around some eigenvalue of ÔA (and
hence, are initially predictable states of ÔA), changes in Spointer

correlate with a change in the variance d (
2ÔA)/dt of the
state itself.

To further understand this point, let us focus on the QC
factorization (while working in the QML) where ÔA is the
consistent pointer observable which satisfies Zurek’s com-
mutativity criterion of Eq. (7). In Appendix E, we compute
S̈pointer (0) for this case when ÔA is the pointer observable in
the QC factorization, and we obtain

S̈pointer (0) = 2
dA∑
j=1

〈[Ô j, ĤA]〉2
0

+ 2
dA∑
j=1

[p j (0)〈Ô jĤ
2
A + Ĥ2

AÔ j − 2ĤAÔ jĤA〉0]

+ 2
dA∑
j=1

[
p j (0)

∑
α

λα〈B̂α〉0〈[Ô j, [ĤA, Âα]]〉0

]
.

(23)

Based on the properties of the self-Hamiltonian, the rate of
change of variance d (
2ÔA)/dt strongly correlates with the

rate of growth of pointer entropy S̈pointer (0) for peaked ini-
tial states, and we plot this result in Fig. 1 (details in the
caption). We will make further contact with features of the
self-Hamiltonian that lead to small changes in Spointer (as in
the QC factorization) in Sec. VI B when we discuss the role of
emergent classical conjugate variables.

V. THE QUANTUM MEREOLOGY ALGORITHM

Given a Hilbert space and a Hamiltonian, how does one sift
through Hilbert space factorizations and pick out the one cor-
responding to the QC decomposition? This section aims to use
the features described in Sec. II as pointers to outline an algo-
rithm that quantifies the quasiclassicality of each factorization
and uses this to pick out the one in which the QC features
are most manifestly seen. We will do this for the bipartite
case we have focused on in this paper. We will be focusing
on the case where the dimension of each subsystem is fixed,
i.e., dA and dB are specified a priori (not necessarily prime).
The goal is to find the factorization which exhibits manifestly
classical dynamics corresponding to the given, fixed sizes of
the two subsystems. The question of iterating over possible
dimension split D = DAdB is left for future investigation. As
we have seen, features like existence of low entropy states
and robustness against entanglement production, nongeneric
decoherence, and predictability of pointer observables are
highly special and particular to the QC factorization and will
not be seen in other, arbitrary factorizations. Hence, for an
algorithm that sifts through Hilbert space factorizations, we
need to identify a homogeneously defined quantity for each
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factorization that would be extremized for the QC factoriza-
tion. We will use the Slin computation from Sec. III B and
predictability of the pointer observable from Sec. IV A to
identify such a quantity.

A. Candidate pointer observables

As we have seen, low entropy states obtained as eigenstates
of a consistent pointer observable that are resilient to entan-
glement production [S̈lin = 0 to O(t2) in our calculation] are
highly nongeneric; they are a special feature of the QC factor-
ization. To belabor this point a little more, consistent pointer
observables of the form ÔA ⊗ ÔB with [Ĥint, ÔA ⊗ ÔB] ≈ 0
do not exist generically exist. This motivates us to define a
Candidate Pointer Observable (CPO) for an arbitrary factor-
ization {θ} that can serve as a proxy for the pointer observable
by being the closest observable consistently monitored by the
environment. Of course, for the QC decomposition {θ}QC,
the CPO coincides with the pointer observable, and for other
factorizations away from the QC, the CPO will introduce a
“penalty” term in our measure of predictability and robustness
of classical states in the factorization.

The CPO ÔCPO is the nontrivial observable (i.e., not the
null operator, or a multiple of the identity operator) most
compatible with Ĥint that has a factorizable form akin to a
typical pointer observable,

ÔCPO ≡ ˆ̃OA ⊗ ˆ̃OB, (24)

for some operators ˆ̃OA ∈ A and ˆ̃OB ∈ B. Thus, ÔCPO serves
as the best (with regard to a norm measure, which we choose
to be the Frobenius norm denoted by a subscript “F”) product
operator that is compatible with Ĥint , and can therefore serve
as a proxy or best possible notion of a consistent pointer
observable,

ÔCPO = ˆ̃OA ⊗ ˆ̃OB such that ||[Ĥint, ÔCPO]||F is minimized .

(25)
In the QC factorization, ÔCPO will coincide with an actual
pointer observable which is consistently monitored by the
environment. To obtain the CPO, and to ensure it is nontrivial,
we can parametrize ˆ̃OA and ˆ̃OB using the Hermitian, traceless
Generalized Gell-Mann matrix basis (see details in Appendix
A4),

ˆ̃OA =
d2

A−1∑
j=1

a j�̂
(A)
j , ˆ̃Ob =

d2
B−1∑
k=1

bk�̂
(B)
k , (26)

for a j, bk ∈ R (to ensure hermiticity of the CPO), with at
least one element of the set {a j}, and one element of the set
bk being nonzero. To ensure uniformity in searching for the
CPO, we also demand that || ˆ̃OA||F = || ˆ̃OB||F = 1 which
constrains the values the sets {aj} and {bk} can take. Since
there is no support of the identity element in the matrix ex-
pansion of Eq. (26), and the Generalized Gell-Mann matrices
are hermitian and traceless, we ensure that the obtained CPO
is nontrivial and therefore can neither be the null operator nor
any multiple of the identity. The minimization of Eq. (25) can
then be carried out, albeit numerically if necessary.

The next thing to focus on is the kind of state we
will be using to quantify the quasiclassicality of a given

factorization {θ}. As we have seen, peaked states of a con-
sistent pointer observable can serve as good candidates for
studying predictability, and in the correct limit be identified
as classically predictable states. Following this motivation, we
can construct states that represent peaked states of the CPO ˆ̃OA

on A,

|ψ j (0)〉CPO = |ψ̃ (0)〉A ⊗ |ψ̃ (0)〉B. (27)

They represents an initially predictable state for our sub-
system A having a definite value of the candidate pointer
observable. One possible prescription for the state {|ψ̃ j (0)〉A}
is to construct a peaked state around an eigenstate of ˆ̃OA,
and take the state on B to be a uniform superposition of all
eigenstates of ˆ̃OB to represent a ready state for the candidate
environment B.

To measure the robustness to entanglement following the
discussion in Sec. III, one can now compute S̈lin for the state
|ψ (0)〉CPO,

S̈lin(0) =
{

d2

dt2
Slin[ρ̂A(t )]

}∣∣∣∣
t=0

(28)

[by using Eq. (10) for the explicit expression] which will serve
as a measure of the entanglement resilience of low entropy
states in the decomposition {θ}. For the particular case of the
QC factorization {θ}QC, we will find S̈lin for |ψ (0)〉CPO to van-
ish (or even approximately so) since the state will correspond
to one constructed out of a consistent pointer observable that is
robust to entanglement production under evolution. For other
factorizations S̈lin 
= 0 will serve as a penalty quantifier, with
higher the value of S̈lin, the more nonclassical the factoriza-
tion.

The other side of the story comes from predictability
of dynamics as discussed in Sec. IV. Since we established
the connection between pointer entropy and rate of variance
change established for the case of a consistent pointer ob-
servable in the QC factorization, we can broaden now our
computation of S̈pointer (0) to a more general situation that
will be useful in quantifying a predictability measure for the
Candidate Pointer Observable (CPO). Using the general ex-
pressions for ρ̂A(t ) and d ρ̂A/dt from Eqs. (E3) and (D8), we
find

S̈pointer (0) = −2
dA∑
j=1

[
ṗ2

j (0) + p j (0) p̈ j (0)
]
. (29)

We refrain from writing the full general expression here to
avoid unnecessary clutter, but the important thing to remem-
ber is that for an arbitrary factorization, S̈pointer (0) for a peaked
initial state for the Candidate Pointer Observable will serve as
a quantifier for predictability of the candidate. As one goes
closer to the QC factorization {θ}θ , the CPO matches with a
true pointer observable, and thus becomes highly predictable.
In other factorizations, the value of S̈pointer (0) will typically be
higher as a penalty for the factorization not admitting a good
pointer observable.

B. The algorithm

We can now summarize the Quantum Mereology Algo-
rithm, which sifts through various bipartite factorizations of
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Hilbert space and searches for the QC factorization. The
algorithm will extremize an entropic quantity built from a
combination of Slin and Spointer to pick out the QC factorization
which shows both features of robustness and predictability as
outlined in Sec. II.

For an arbitrary decomposition {θ}, of a Hilbert space with
fixed dimensions dA and dB of the bipartite subsystems,

(1) Find the Candidate Pointer Observable ÔCPO = ˆ̃OA ⊗
ˆ̃OB from Eq. (25), which is the best tensor product observable

compatible with the interaction Hamiltonian.
(2) Construct a set of states that represent peaked states of

the CPO ˆ̃OA on A, |ψ j (0)〉CPO = |ψ̃ j (0)〉A ⊗ |ψ̃ (0)〉B. They
represent an initially predictable state for our subsystem un-
der consideration A having a definite value of the candidate
pointer observable. To ensure quasiclassical conditions hold
for all pointer states in the QC factorization, construct dA

number of such states, labeled by j = 1, 2, . . . , dA. One pos-
sible prescription for these dA states {|ψ̃ j (0)〉A} is to construct

peaked states around each eigenstate of ˆ̃OA, and take the
state on B to be a uniform superposition of all eigenstates of
ˆ̃OB in each case to represent a ready state for the candidate

environment B.
(3) For each of these states, |ψ (0)〉CPO, compute S̈lin(0)

and S̈pointer (0) from Eqs. (10) and (29), respectively. These
are measures of the quasiclassicality of the factorization.
Lower S̈lin(0) indicates a factorization whose pointer states
(from the CPO) are robust to entanglement production, and
lower S̈pointer (0) indicates a factorization which preserves pre-
dictability of classical states under evolution.

(4) Define Schwinger Entropy (here, its second derivative)
as follows:

S̈Schwinger = max(S̈lin(0), S̈pointer (0)). (30)

Average over the dA states from the eigenstates CPO to obtain
the value of S̈Schwinger for the given factorization. We choose
to label this quantity as Schwinger Entropy to serve as a
reminder that we are using Schwinger’s unitary basis (from
the GPOs) to define our construction in a finite-dimensional
context.

(5) Find the factorization that minimizes S̈Schwinger. This
will be the quasiclassical factorization.

Using this procedure, one can sift through different fac-
torizations of Hilbert space, and pick out the one that shows
features of robustness and predictability of pointer states as
the quasiclassical factorization. In the next section, we will
make contact with finite-dimensional conjugate variables, and
understand features of the Hamiltonian which allow us to
interpret the conjugates as classical positions and momenta.

VI. EMERGENCE OF CLASSICAL CONJUGATE
VARIABLES

Before turning to an explicit example of the algorithm in
action, we would like to examine the way in which the clas-
sical limit arises according to our procedure. At an abstract
level, a classical system is described by points in a symplec-
tic manifold that evolve according to a vector field derived
from a Hamiltonian function. But in practice, real-world sys-
tems have additional features such as locality, which work to

distinguish position variables from momentum variables.
Here we argue that this feature can be understood in terms
of how factorizations of Hilbert space are chosen to recover
classical behavior. In particular we introduce the idea of the
collimation of an operator, which helps characterize the self-
Hamiltonian of subsystems that exhibit classical behavior.

A. Finite-dimensional conjugate variables

Classical mechanics is formulated in phase space, with
conjugate position and momentum variables. For quan-
tum mechanics in infinite-dimensional Hilbert spaces, we
can define corresponding quantum operators, subject to the
Heisenberg canonical commutation relations (CCR). Since we
are explicitly focusing on finite-dimensional Hilbert spaces,
we will use Generalized Pauli Operators (GPOs, which find
their algebraic roots in the generalized Clifford algebra) to
provide us with finite-dimensional conjugate variables that
obey the CCR in the infinite-dimensional limit. We will then
use these to define what we call the “collimation” of an oper-
ator, an important notion that characterizes how the action of
an operator on a state induces a spread in eigenspace.

We explain the basics of GPOs in Appendix C. The es-
sential point is that we can construct Hermitian conjugate
operators q̂ and p̂ that match onto position- and momentum-
like operators in the infinite-dimensional limit. To do this we
introduce two unitary operators Â and B̂ that will generate the
GPO algebra. On a Hilbert space of dimension d < ∞, they
obey the Weyl braiding relation,

ÂB̂ = ω−1B̂Â, (31)

where ω = exp (2π i/d ) is the dth primitive root of unity, and
are sometimes referred to as “Clock” and “Shift” operators in
the literature. Then the conjugate variables are defined via

Â ≡ exp (−iαπ̂ ), B̂ = exp (iβφ̂), (32)

where α and β are nonzero real parameters that set the scale
of the eigenspectrum of the operators φ̂ and π̂ with a cyclic
structure. For concreteness, we take the dimension to be an
odd integer, d = 2l + 1 for some l ∈ Z+.

The set of N2 linearly independent unitary matrices
{BbAa|b, a = −l, (−l + 1), . . . , 0, . . . , (l − 1), l}, which in-
cludes the identity for a = b = 0, form a unitary basis for
L(H). Schwinger [40] studied the role of such unitary basis,
hence this operator basis is often called Schwinger’s unitary
basis. Any operator M̂ ∈ L(H) can be expanded in this basis,

M̂ =
l∑

b,a=−l

mbaB̂bÂa. (33)

Since from the structure of the GPO algebra we have
Tr [(B̂b′

Âa′
)
†
(B̂bÂa)] = d δb,b′δa,a′ , we can invert Eq. (33) to

get the coefficients mba as

mba = 1

d
Tr [Â−aB̂−bM̂]. (34)

The GPO generator Â corresponds to a unit shift in the eigen-
states of φ̂, and B̂ generates unit shifts in the eigenstates of
π̂ ; hence, a basis element BbAa generates a units of shift in
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eigenstates of φ̂ and b units in eigenstates of π̂ , respectively
(up to overall phase factors).

For an operator M̂ that is Hermitian M̂† = M̂, we get a
constraint on the expansion coefficients, ω−bam∗

−b,−a = mba,
which implies |mba| = |m−b,−a| since ω = exp [2π i/(2l + 1)]
is a primitive root of unity. The coefficients mba are a set of
basis-independent numbers that quantify the spread induced
by the operator M̂ along each of the conjugate variables φ̂ and
π̂ . To be precise, |mb,a| represents the amplitude of b shifts
along π̂ for an eigenstate of π̂ and a shifts along φ̂ for an
eigenstate of φ̂. The indices of mba run from −l, . . . , 0, . . . , l
along both conjugate variables and thus, characterize shifts
in both increasing (a or b > 0) and decreasing (a or b < 0)
eigenvalues on the cyclic lattice. The action of M̂ on a state
depends on details of the state and in general will lead to a su-
perposition in the eigenstates of the chosen conjugate variable
as our basis states, but the set of numbers mba quantify the
spread along conjugate directions by the operator M̂ indepen-
dent of the choice of state. The coefficient m00 accompanies
the identity Î, and hence corresponds to no shift in either of
the conjugate variables.

From mba, which encodes amplitudes of shifts in both φ̂

and π̂ eigenstates, we would like to extract profiles which il-
lustrate the spreading features of M̂ in each conjugate variable
separately. Since the coefficients mba depend on details of M̂,
in particular its norm, we define normalized amplitudes m̃ba

for these shifts,

m̃ba = mba∑l
b′,a′=−l |mb′a′ | . (35)

Then we define the φ̂-shift profile of M̂ by marginalizing over
all possible shifts in π̂ ,

m(φ)
a =

l∑
b=−l

|m̃ba| =
∑l

b=−l |mba|∑l
b′,a′=−l |mb′a′ | , (36)

which is a set of (2l + 1) positive numbers, normalized under∑l
a=−l m(φ)

a = 1, characterizing the relative importance of M̂
spreading the φ̂ variable by a units, a = −l, . . . , 0, . . . , l .
Thus, M̂ acting on an eigenstate of φ̂, say, |φ = j〉, will in
general result in a superposition over the support of the basis
of the φ̂ eigenstates {|φ = j + a (mod l )〉} ∀ a, such that the
relative importance (absolute value of the coefficients in the
superposition) of each such term is upper bounded by m(φ)

a .
Let us now quantify this spread by defining the collimation

for each conjugate variable. Consider the φ-shift profile first.
Operators with a large m(φ)

a for small |a| will have small spread
in the φ̂-direction, while those with larger m(φ)

a for larger |a|
can be thought of connecting states further out on the lattice
for each eigenstate. Following this motivation, we define the
φ-collimation Cφ of the operator M̂ as

Cφ (M̂ ) =
l∑

a=−l

m(φ)
a exp

(
− |a|

2l + 1

)
. (37)

The exponential function suppresses the contribution of large
shifts in our definition of collimation. There is some freedom
in our choice of the decay function in our definition of col-
limation, and using an exponential function as in Eq. (37)

is one such choice. Thus, an operator with a larger Cφ is
highly collimated in the φ̂-direction and does not spread out
eigenstates with support on a large number of basis states on
the lattice.

On similar lines, one can define the π -shift profile for M̂ as

m(π )
b =

l∑
a=−l

|m̃ba| =
∑l

a=−l |mba|∑l
b′a′=−l |mb′a′ | , (38)

and a corresponding π -collimation Cπ with a similar interpre-
tation as the φ̂-case,

Cπ (M̂ ) =
l∑

b=−l

m(π )
b exp

(
− |b|

2l + 1

)
. (39)

Operators such as M̂ ≡ M̂(π̂ ) that depend on only one of the
conjugate variables will only induce spread in the φ̂ direction,
since they have mb,a = m0,aδb,0, hence they possess maximum
π -collimation, Cπ (M̂ ) = 1, as they do not spread eigenstates
of π̂ at all.

While the maximum value of Cπ (M̂(π̂ )) can be at most
unity, one can easily see that the Hermitian operator,

M̂(π̂ ) = A + A†

2
= exp (−iαπ̂ ) + exp (iαπ̂ )

2
= cos (απ̂ )

= Î − α2π̂2

2
+ α4π̂4

4
− · · · , (40)

has the least nonzero spread along the φ̂ direction: it con-
nects only ±1 shifts along eigenstates of φ̂ and hence has
highest (nonunity) φ-collimation Cφ (M̂ ). Thus, one can ex-
pect operators which are quadratic in conjugate variables are
highly collimated. This will connect to the fact that real-world
Hamiltonians include terms that are quadratic in the momen-
tum variables (but typically not higher powers) and will help
explain the emergence of classicality: it is Hamiltonians of
that form that have high position collimation, and therefore
induce minimal spread in the position variable.

The quadratic operator π̂2 has higher φ-collimation than
any other integer5 power π̂n, n � 1, n 
= 2. In Fig. 2 we plot
the φ-shift profiles for a few powers of π̂ and it is explicitly
seen that quadratic π̂2 has the least spreading and hence is
most φ̂-collimated, values for which are plotted in Fig. 3.
Note that due to the symmetry |mb,a| = |m−b,−a|, we needed
only to plot the positive half for a > 0, which captures all
the information about the spread. Also, for comparison, we
also plot the φ-spread and the φ̂-collimation of a random
Hermitian operator (with random matrix elements in the φ̂

basis); such operators spread states almost evenly and thus
have low values of collimation.

5There is a difference between odd and even powers of π̂ , with
even powers systematically having larger collimations than the odd
powers. This is because odd powers of π̂ no have support of the
identity Î term in the Schwinger unitary basis expansion (and hence
have m00 = 0), and having an identity contribution boosts collima-
tion since it contributes to the highest weight in Cφ by virtue of
causing no shifts.
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FIG. 2. Plot showing φ̂-shift profiles of various powers of π̂ . The quadratic operator π̂2 has the most collimated profile, implying that this
operator does the least to spread the state in the conjugate direction. Also plotted is the profile for a random Hermitian operator, for which the
spread is approximately uniform.

B. Operator collimation, locality, and the self-Hamiltonian

Typically, one begins with a notion of classical subsys-
tems, then defines the Hamiltonian for these systems based
on classical energy functions, and proceeds to quantize. In
nonrelativistic quantum mechanics, the self terms usually go
as p̂2/2m + V̂ (q̂) for canonically conjugate operators p̂ and
q̂. Interaction terms usually depend on one of the conjugate
variables, usually the position of each subsystem.

For each subsystem one can associate a set of finite-
dimensional conjugate operators from the Generalized Pauli
Operators. For our bipartite split H = A ⊗ B, we have con-
jugate operators {φ̂A, π̂A} ∈ L(A) and {φ̂B, π̂B} ∈ L(B). For
arbitrary factorizations, these GPO-based conjugate variables
will not correspond to physical position and momentum
variables; only in a quasiclassical decomposition would the
identification π̂ ≡ p̂ and φ̂ ≡ q̂ be appropriate.

FIG. 3. φ-collimation of various powers of π̂ . Even powers are seen to have systematically larger values of φ-collimation. Also plotted for
comparison is a line marking the φ-collimation of a random Hermitian operator.
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FIG. 4. Plot showing correlation between rate of change of variance of the pointer observable d (
2ÔA)/dt and collimation Cφ (ĤA) of the
self-Hamiltonian ĤA. More collimated self terms do not spread states much in the conjugate directions and correspondingly induce a small
change in the variance of the consistent pointer observable that depends on one of these conjugate variables. In this example, we kept ÔA

fixed at ÔA ≡ φ̂A and changed the self-Hamiltonian ĤA and computed the correlation for a peaked state in φ̂A eigenspace in a Hilbert space of
dimA = 27.

The conjugate variables can be used to define the
Schwinger Unitary Basis [40], and hence we can write self
terms in the Hamiltonian Ĥ from (3) in terms of these conju-
gates,

ĤA ≡ ĤA(π̂A, φ̂A) ĤB ≡ ĤB(π̂B, φ̂B), (41)

and the interaction term can be written as

Ĥint ≡ Ĥint (π̂A, φ̂A, π̂B, φ̂B)

=
∑

α

λα[Âα (π̂A, φ̂A) ⊗ B̂α (π̂B, φ̂B)]. (42)

Before we explicitly discuss the idea of collimation and
the role it plays in emergent quasiclassicality, let us comment
on the functional form of Ĥint for there to exist a robust
pointer observable as described in the previous Sec. II. Since
φ̂A and π̂A do not commute, for there to exist a compatible
pointer observable monitored consistently by other subsys-
tems, we would demand that interaction terms Âα depend only
on one such conjugate variable, say, φ̂A. In many physical
cases, the interaction term is the position of the subsystem
under consideration, as that is the quantity that is monitored
by the environment, since interactions are local in space.
Under these conditions, the pointer observable can be iden-
tified as ÔA ≡ ÔA(φ̂A), depending only on one conjugate
variable.

Let us see how the idea of predictability connects with
features of the self-Hamiltonian. From Eq. (19), we see that
the rate of change of variance of the pointer observable de-
pends, in addition to the state at t = 0, on the Heisenberg
equation of motion for ÔA(φ̂A) under the self-Hamiltonian ĤA.
Thus, it can be expected that self terms ĤA that are collimated
in the φ̂A variable will spread states less rapidly under time
evolution and keep the change of variance of ÔA small. They

therefore offer a predictable interpretation to ÔA. This can
be seen in the following example. We keep fixed the pointer
observable ÔA ≡ φ̂A and vary the self-Hamiltonian, and for
each choice of the self-Hamiltonian we compute the time
derivative of 
2ÔA from Eq. (19) for an initial state that is
a peaked Gaussian profile in φ̂A states, representing a peaked
wave packet. In Fig. 4 we plot these results and see that high
φ-collimation Cφ (ĤA) inversely correlates with the variance
change of the pointer observable. Therefore, evolving under a
highly φ-collimated self-Hamiltonian, peaked states in pointer
space have a smaller rate of change of variance of the pointer
observable ÔA.

One can then interpret the results of Figs. 1 and 4 together
to correlate the pointer entropy growth with the collima-
tion of the self-Hamiltonian, which will play a crucial role
in determining how fast the pointer entropy spreads out,
thus quantifying the predictability of the pointer observ-
able. Self-Hamiltonians with a higher collimation will induce
smaller spread and hence a slower growth in pointer en-
tropy (and rate of change of variance) for peaked pointer
states.

Note the different roles played by collimation and lo-
cality. In quantum field theories or lattice theories, we can
factor Hilbert space into sets of degrees of freedom located
in small regions of space. Spatial locality then implies that
the interaction Hamiltonian takes a k-local form, where each
factor interacts directly with only its neighboring factors; cf.
Eq. (A7). For our purposes we can turn this around, looking
for factorizations in which interactions are k-local, which is
a necessary requirement for the emergence of spatial locality
[22]. Collimation, by contrast, is an important feature of the
self-Hamiltonian. In order to recover familiar classical behav-
ior, we require that pointer observables evolve in relatively
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predictable ways, rather than being instantly spread out over a
wide range of values.

C. Classical dynamics

Besides the existence of predictable pointer observables,
the other feature we require for quasiclassical behavior is that
conjugate “position” and “momentum” operators, or some
generalization thereof, approximately obey the corresponding
classical Heisenberg equations of motion.

As was shown in Ref [41], and this argument can be easily
extended for multipartite systems, the equations of motion for
the conjugate operators φ̂A and π̂A for some subsystem A can
be found to be

d

dt
π̂ = i[Ĥ, π̂A] = −

(̂
∂H

∂φA

)
+

odd∑
n=3

in

n!
αn−1[π̂A, Ĥ ]n, (43)

where we have defined [π̂A, Ĥ ]
n

as the n-point nested commu-
tator in π̂A,

[π̂A, Ĥ ]n = [π̂A, [π̂A, [π̂A · · · (n times), Ĥ ] · · · ]]. (44)

The corresponding equation for φ̂A can be found on similar
lines,

d

dt
φ̂A = i[Ĥ, φ̂A] =

(̂
∂H

∂πA

)
+

odd∑
n=3

in

n!
βn−1[φ̂A, Ĥ ]n. (45)

In the infinite-dimensional limit, we take l � 1, and α

and β are taken to be infinitesimal but obeying αβd = 2π to
recover the Heisenberg CCR in an appropriately understood
sense [42].6 For our analysis, we take α = β = √

2π/d since
there is no distinguishing φ̂ and π̂ at the level of the algebra.
Their symmetry is broken in their physical interpretation as
position and momentum, respectively, due to the different
roles they play in the Hamiltonian. In this limit the equations
of motion simplify to resemble Hamilton’s equations,

d

dt
π̂A = i[Ĥ, π̂A] = −

(̂
∂H

∂φA

)
(46)

6A finite-dimensional Hilbert space, however large, cannot be iso-
morphic to an infinite-dimensional one. Due to this, the d � 1 limit
of the finite-dimensional commutation [φ̂, π̂] will not formally give
the Heisenberg CCR. This is due to the fact that unitary translation
operators are cyclically closed in the finite-dimensional construction,
because of which their hermitian generators are trace-class, unlike
their infinite-dimensional counterparts on L2(R). One manifestation
of this is that the trace of the finite-dimensional commutator will
identically vanish, whereas it is “infinite” in the infinite-dimensional
case. Many of the involved sums become highly oscillatory, and it is
important to deal with them appropriately. However, as was shown
in Ref. [43], a large number of eigenvalues of the finite-dimensional
commutator [φ̂, π̂ ] approach i in the d � 1 limit, and in this sense,
if one further restricts attention to states which do not have sub-
stantially large support (on the eigenbasis of either φ̂ or π̂) for the
cyclic closure effects to matter, then the large-dimension limit can
be safely taken. In our analysis, we are predominantly focusing on
peaked states of a pointer observable for which these effects would
not matter, and hence we are able to interpret our results in the
large-dimension limit.

and

d

dt
φ̂A = i[Ĥ, φ̂A] =

(̂
∂H

∂πA

)
, (47)

where Ĥ is the Hamiltonian for the entire Hilbert space. Even
though in the large-dimension limit these resemble classical
equations of motion, they are inherently quantum mechanical
equations for operators in L(H). Additional features have to
be imposed for the conjugate variables φ̂A and π̂A to serve as
classical conjugate variables.

These equations serve as classical evolution equations
when we consider peaked states of the pointer observable ÔA

that would depend on only one of the conjugate variables, say,
ÔA ≡ ÔA(φ̂A). Peaked states in ÔA eigenspace can be candi-
dates for classical evolution since they can obey the Ehrenfest
theorem when one takes expectation value of Eqs. (46) and
(47) by pulling in the expectation into the Hamiltonian, for
example,〈(̂

∂H

∂πA

)〉
→

(
∂〈Ĥ〉
∂πA

)
for peaked states in

× pointer observable space. (48)

The condition for persistence of such classical states obeying
classical equation of motion will be to have low spreading of
the variance of such a peaked state, which as we saw corre-
sponds to a highly collimated self-Hamiltonian. Thus, under
the criterion of there existing a predictable and consistent
pointer observable (from Ĥint in the Quantum Measurement
Limit) that depends on one of the conjugate variables and
a collimated self-Hamiltonian, we would be able to identify
the conjugate variables φ̂A and π̂A (from the GPO algebra)
with classical conjugate variables. While one can always
define conjugates, the existence of classical ones correspond-
ing to our familiar notion of position and momenta are
highly nongeneric and connect to predictability features in the
Hamiltonian.

VII. EXAMPLE

We now demonstrate the algorithm with a simple example
where we recover the quasiclassical factorization by sifting
through different factorizations of Hilbert space and selecting
the one which minimizes Schwinger Entropy for candidate
classical states. Let us take our complete quantum system to
be described by two harmonic oscillators, coupled together
(interacting) by their positions in the quasiclassical factoriza-
tion. We take both these oscillators to have the same mass
m and same frequency ω, and thus having their respective
self-Hamiltonians,

ĤA = π̂2
A

2m
+ 1

2
mω2φ̂2

A, (49)

ĤB = π̂2
B

2m
+ 1

2
mω2φ̂2

B. (50)

The interaction term is modeled as oscillator A’s position φ̂A

coupled to the position φ̂B of oscillator B with an interaction
strength λ,

Ĥint = λ(φ̂A ⊗ φ̂B). (51)
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FIG. 5. Quantum Mereology Algorithm: sifting through different factorizations of Hilbert space to recover the QC factorization by
minimization of the Schwinger Entropy. In the QC factorization, the quantum system is described by two harmonic oscillators coupled by
their positions. The quasiclassical factorization (the first factorization we begin with) is marked by a red square.

This conventional way of writing the model makes phys-
ical sense to us, and implies a corresponding factorization
of Hilbert space. As we now show, this choice matches our
above criteria for a quasiclassical factorization as elaborated
in Secs. III and IV. The interaction Hamiltonian in the QC
factorization takes the simple form Ĥint = λ(Â ⊗ B̂) that is
compatible with having low entropy pointer states robust
to entanglement under evolution. The pointer observable of
subsystem A under consideration is the position φ̂A of that
oscillator. The self-Hamiltonian is highly collimated with re-
spect to φ̂A, as can be seen by the quadratic power of π̂A in ĤA.
We choose values of the parameters m, ω, λ such that we are in
the quantum measurement limit (QML) where the interaction
term dominates.

We now demonstrate the Quantum Mereology algorithm
by “forgetting” that we start in the QC factorization, and
try to recover it by sifting through factorizations and se-
lect the QC one by minimization of the Schwinger Entropy.
We change factorizations by introducing incremental, random
perturbations away from the identity operator [by making the
parameters {θ} nonzero in Eq. (A5)] to construct the global
unitary transformation Ũ (θ ). Since we are focusing on the
quantum measurement limit, we make sure perturbations do
not get large enough so as to break down the assumption of
applicability of the QML regime (for example, a factorization
change to make the two oscillators completely decoupled
would no longer be in the QML, and hence we do not focus
on such factorizations in this paper). For each factorization,
while the total Hamiltonian is left invariant, the form of the
self and interaction terms are altered. We run the Quantum
Mereology Algorithm as outlined in Sec. V B with choosing
eigenstates of the CPO ˆ̃OA as our peaked initial, low entropy

states (one could construct peaked superpositions too which
does not alter the results).

In Fig. 5 we plot the Schwinger Entropy for many factor-
izations the algorithm sifts through, beginning with the QC
factorization and then scrambling away. Since we are focusing
on small times, we evolve quantum states to a character-
istic time of t0 = 1/||Ĥ ||2 and use the Schwinger Entropy
SSchwinger at t = t0 as the representative measure of classical-
ity, instead of explicitly computing the second derivative at
t = 0, S̈Schwinger (t = 0). This is done purely for convenience,
and does not affect the interpretation of picking out the QC
factorization since for small times, both the linear entangle-
ment entropy and pointer entropy grow as t2. It is seen that
Schwinger Entropy is minimized for the QC factorization,
which exhibits features of both robustness and predictability.
In Fig. 6 we plot the results of a similar run but this time
with larger, successive perturbations away from the QC factor-
ization (while still being in the quantum measurement limit).
While in Fig. 5 we see a more gradual deviation from classi-
cality, in Fig. 6 there is more rapid growth and saturation of the
Schwinger Entropy to larger values which are characteristic of
generic, nonclassical factorizations.

VIII. DISCUSSION

In this paper we have developed a set of criteria, and an
associated algorithm, for starting with an initially featureless
Hilbert space H and Hamiltonian Ĥ , and factorizing H into
a system and environment, optimizing the extent to which the
system exhibits quasiclassical behavior. The basic criteria we
introduced were that system pointer states remain relatively
robust against increasing entanglement with the environment,
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FIG. 6. Quantum Mereology Algorithm: a run similar to Fig. 5 sifting through different factorizations of Hilbert space but this time with
larger, successive perturbations away from the identity operator to generate the unitary transformation �. In the QC factorization, which
minimizes the Schwinger Entropy, the quantum system is described by two harmonic oscillators coupled by their positions. Factorizations
away from QC quickly saturate to generic, large values of Schwinger Entropy. The quasiclassical factorization (the first factorization we begin
with) is marked by a red square.

and that pointer observables evolve in relatively predictable
ways. Both notions were quantified in terms of entropy: the
linear entropy for entanglement robustness, and pointer en-
tropy for predictability. Useful factorizations are those that
minimize the growth of both of these entropies, which we
suggested combining into a single “Schwinger Entropy.”

This work suggests a number of open questions and di-
rections for future investigation. Let us briefly note some of
them:

(1) While promising in principle, it is unclear how fea-
sible our algorithm is in practice. Given nothing but the
spectrum of a finite-dimensional Hamiltonian, it could take
a long time to sift through the space of factorizations to
find the one that minimizes the Schwinger Entropy growth
rate. It would be interesting to look for more computational
feasible algorithms, even if only approximate. Schwinger
Entropy, as defined in Eq. (30), is a suggestive quantity
which attempts to capture both of the classical features (of
robustness and predictability) we want. Further work could
also focus on refining the definition and purview of such a
quantity.

(2) We focused on how to factorize Hilbert space into
system and environment, but ultimately we would want to
continue to factorize the system into appropriate subsystems.
We believe that the same basic strategy should apply, though
locality and other considerations may come into play. It would
also be interesting to look at an algorithm which sifts over
different dimensions of the underlying Hilbert space subfac-

tors to study the effect of varying dimension associated with
classical subsystems.

(3) We looked exclusively at the Quantum Measurement
Limit, in which the system is continuously monitored by
the environment. The other extreme case of the Quantum
Decoherence Limit is when the self-Hamiltonian domi-
nates, and the pointer states are energy eigenstates of the
self-Hamiltonian. We feel that the same essential concepts
should apply, but it would be interesting to look at this case
more explicitly.

(4) The stability of the quasiclassical factorization is an-
other interesting question to study. Do quasiclassical features
stay preserved under infinitesimal perturbations of the fac-
torizations or is quasiclassicality finely tuned? We expect
classicality to be a robust feature enhanced by the existence of
multiple subsystems each redundantly recording information
about the others. This ties back into the idea of Quantum
Darwinism [17] and it would be interesting to investigate this
question further.

As we mentioned at the start, in typical laboratory situ-
ations the choice of how to factorize Hilbert space is fairly
evident, and the question of mereology doesn’t arise. But
as we consider more abstract theories, including those of
emergent spacetime in quantum gravity [8,9], our laboratory
intuition may no longer be relevant, and an algorithm of the
sort presented here can become important. The separation
into system and environment that we considered here may be
related to how states are redundantly specified in a quantum
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error-correcting code [9,44]. It is certainly a central concern
of the program of reconstructing the quasiclassical world
from the spectrum of the Hamiltonian [1,22]. Regardless, it
is important to understand in principle why we impose the
structures on Hilbert space that we do.
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APPENDIX A: BASES AND FACTORIZATIONS

To factorize a Hilbert space of finite dimension dimH =
D < ∞ is to express it as a tensor product of N smaller
factors,

H �
N⊗
μ

Hμ. (A1)

The factors Hμ have dimensions dμ. These need not be equal
for all μ, but their product must give the overall dimension,∏N

μ dμ = D.
The most straightforward way to specify a factorization is

in terms of a tensor-product basis that is adapted to it. For
convenience we take all of our bases to be orthonormal. In
each factor Hμ we fix a basis,

Hμ � span
{∣∣e(μ)

i

〉}
, i = 1, 2, . . . , dμ. (A2)

We can then define basis vectors for H as a whole by taking
the tensor product of individual basis elements,

H �
N⊗

μ=1

span
{∣∣e(μ)

i

〉}
. (A3)

Of course such bases are highly nonunique; unitary transfor-
mations within each separate factor will leave the associated
factorization itself unchanged.

In practice, one can construct different factorizations of
H by starting with some reference factorization and as-
sociated tensor-product basis, then performing a unitary
transformation that mixes factors. To implement the change
in decomposition, we pick a special unitary matrix Ũ ∈
SU(D)\[

⊗N
μ=1 U (dμ)] that is characterized by (D2 − 1)

real parameters {θa | a = 1, 2, . . . , (D2 − 1)} and has D2 −
1 traceless, Hermitian generators {�a :| a = 1, 2, . . . , (D2 −
1)}, which can be identified with the Generalized Gell-Mann
matrices (GGMM). These GGMMs come in three groups:
symmetric, antisymmetric, and diagonal matrices. In the no-
tation where E jk is the D × D matrix with all zeros, except a

1 in the ( j, k) location, the GGMMs have the following form,
each identified with one of the �a:

� jk
sym = Ek j + E jk, 1 � j < k � D, (A4a)

�
jk
antisym = −i(E jk − Ek j ), 1 � j < k � D, (A4b)

�l
diag =

√
2

l (l + 1)

(
−l E l+1,l+1 +

l∑
j=1

E j j

)
,

1 � l � D − 1. (A4c)

We work with special unitary instead of unitary since the
global U (1) phase is irrelevant to the physics of factorization
changes and now we can express the factorization change
unitary Ũ (θ ) as

Ũ (θ ) = exp

(
D2−1∑
a=1

θa�a

)
, (A5)

and factorization changes can be implemented on the refer-
ence decomposition.

In light of this parametrization, let us label decompositions
by the set of parameters {θ}, which are used to implement the
factorization change relative to the reference decomposition
{0}. This notation will help us succinctly show dependence
of various quantities on the factorization of Hilbert space.
Product states in the old tensor-product basis (such as basis
states in this factorization) will now be entangled in the new
global basis identified with a new tensor product structure.
Generally, operators that are local in their action to a certain
sub-factor in a given decomposition such as Ôν ≡ Î ⊗ Î ⊗
· · · ⊗ ôν ⊗ · · · ⊗ Î, which act nontrivially only on the νth
subsystem, will generically act on more than one subfactor
in a different factorization. Locality of operators is a highly
factorization-dependent statement and it has been shown [22]
that most tensor factorizations of Hilbert space for a given
Hamiltonian do not look local and the existence of dual local
descriptions is rare and almost unique.

In a given decomposition, any operator M̂ ∈ L(H), the
space of linear operators on H can then be naturally decom-
posed as

M̂ =
(m0

D

)
Î +

N∑
μ=1

M̂self
μ + M̂int, (A6)

where m0 = Tr (M̂ ) is the trace of M̂, the operator M̂self
μ is the

(traceless) term that acts locally only on the Hμ subfactor and
an interaction term, also traceless, connecting different sub-
factors M̂int. The interaction term can be decomposed further
as a sum of n-point interactions,

M̂int =
N∑

n=2

[ ∑
μ1>μ2>···>μn

M̂int (μ1, μ2, · · · , μn)

]
, (A7)

where, M̂int (μ1, μ2, . . . , μn) is a term connecting subfactors
labeled by μ1, μ2, . . . , μn. Any traceless, local term M̂μ

that acts on a single subfactor Hμ can be expanded out in
the basis of Generalize Gell-Mann operators �̂μ

a with a =
1, 2, . . . , (d2

μ − 1), which are (d2
μ − 1) traceless, Hermitian
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generators of the SU(dμ),

M̂μ ≡ Î ⊗ Î ⊗ · · · ⊗ M̂μ ⊗ · · · ⊗ Î

= Î ⊗ Î ⊗ · · · ⊗
d2

μ−1∑
a=1

ma�̂a ⊗ · · · ⊗ Î. (A8)

In general, any operator M̂ can also be decomposed in the
canonical operator basis formed from the defining tensor-
product basis,

M̂ =
D∑

i, j=1

mi j |ei〉TPB 〈e j | . (A9)

Such expansions do not necessarily show the locality and
interaction terms explicitly, but in the preferred, semiclassical
decomposition, one would be able to arrange them in the form
of familiar semiclassical terms in which features like robust-
ness, quasiseparability and decoherence will be manifest.

APPENDIX B: EVOLUTION OF THE LINEAR ENTROPY

In this section we calculate the evolution of the linear en-
tropy Slin to O(t2), leading to Eq. (10). Using the Zassenhaus
expansion, which is a corollary of the Baker-Campbell-
Haursdorff (BCH) lemma, one can separate the sum in the
time evolution exponential Û (t ) as

Û (t ) = exp [−i(Ĥself + Ĥint )t], (B1)

Û (t ) = exp (−iĤintt ) exp (−iĤselft )

× exp

[
− (−it )2

2
[Ĥint, Ĥself ]

]
exp [O(t3)]. (B2)

We can move the exp [− (−it )2

2 [Ĥint, Ĥself ]] past the
exp (−iĤselft ) term to the left since the commutator we
pick up is O(t3) as can be explicitly checked by use of the
Zassenhaus expansion again to get

Û (t ) = exp (−iĤintt ) exp

[
− (−it )2

2
[Ĥint, Ĥself ]

]

× exp (−iĤselft ) exp [O(t3)]. (B3)

Further one can see that the first two pieces involving Ĥint and
[Ĥint, Ĥself ] in Eq. (B3) can be combined into a sum of a single
exponential since the noncommuting pieces will be O(t3), and
this gives us a succinct expression for Û (t ) to O(t2),

U (t ) = exp [−iÊ (t )t] exp (−iĤselft ) + O(t3), (B4)

where

Ê (t ) ≡ Ĥint + it

2
[Ĥint, Ĥself ]. (B5)

Taking Û (t ) from Eq. (B4), the time evolved state can
be written as ρ̂(t ) = Û (t )ρ̂(0)Û †(t ) to O(t2). Let us define
self-evolved states σ̂A(t ) = exp (−iĤAt )ρ̂A(0) exp (iĤAt ) and
σ̂B(t ) = exp (−iĤBt )ρ̂B(0) exp (iĤBt ) and write the state ρ̂(t )
as

ρ̂(t ) = exp [−iÊ (t )t](σ̂A ⊗ σ̂B) exp [iÊ (t )t], (B6)

which can be expanded out to O(t2) as

ρ̂(t ) = (σ̂A ⊗ σ̂B)O(t2 ) − it[Ê (t ), (σ̂A ⊗ σ̂B)]

+ (−it )2

2
[Ê (t ), [Ê (t ), σ̂A ⊗ σ̂B]] + O(t3). (B7)

Let us now focus on one subsystem, say, A, and look at its
reduced dynamics by computing its reduced density matrix
ρ̂A(t ) by tracing out B,

ρ̂A(t ) = TrBρ̂(t ) = σ̂A(t )

− itTrB

[
Ĥint + it

2
[Ĥint, Ĥself ], (σ̂A ⊗ σ̂B)

]

− t2

2
TrB[Ĥint, [Ĥint, ρ̂(0)]] + O(t3). (B8)

Written out (almost) explicitly using the diagonal form of Ĥint

of Eq. (5), ρ̂A(t ) takes the following form:

ρ̂A(t ) = σ̂A(t ) − it
∑

α

λαTrB(Âασ̂A ⊗ B̂ασ̂B − σ̂AÂα ⊗ σ̂BB̂α )

+ t2

2

∑
α

λαTrB[[Âα ⊗ B̂α, Ĥself ], σ̂A(t ) ⊗ σ̂B(t )]

− t2

2

∑
α,β

λαλβTrB[Âα ⊗ B̂β, [Âα ⊗ B̂β, ρ̂(0)]]

+ O(t3). (B9)

The partial trace over B can be used to condense terms into
expectation values of operators that act only on B for a given
state ρ̂B since TrB(ÔBρ̂B) = 〈ÔB〉. Let us compactly write
ρ̂A(t ) = σ̂A(t )O(t2 ) + T1 + T2 + T3, which can be simplified as

T1 = −it
∑

α

λαTrB(Âασ̂A ⊗ B̂ασ̂B − σ̂AÂα ⊗ σ̂BB̂α ) + O(t3)

= −it
∑

α

λα ([Âα, σ̂A(t )]〈B̂α〉self (t )), (B10)

where 〈B̂α〉self
t = TrB[B̂ασ̂B(t )]. We can write the other terms

T2 and T3 to O(t2) as

T2 = t2

2

∑
α

λα ([Âα, ĤA], ρ̂A(0)]〈B̂α〉0

+ [Âα, ρ̂A(0)]〈[B̂α, ĤB]〉0), (B11)

and

T3 = −t2

2

∑
α,β

λαλβ (ÂαÂβρ̂A(0)〈B̂αB̂β〉0

− Âβ ρ̂A(0)Âα〈B̂αB̂β〉0 − Âαρ̂A(0)Âβ〈B̂β B̂α〉0

+ ρ̂A(0)Âβ Âα〈B̂β B̂α〉0). (B12)

We next consider entanglement between the two sub-
systems A and B. A common measure is to use the von
Neumann entanglement entropy SvN (ρ̂ ) = −Tr (ρ̂ log ρ̂ ) for
a given density matrix ρ̂. However, the presence of the log-
arithm makes the entropy hard to analytically compute and
give expressions for, hence we will focus on its leading order
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contribution, the linear entropy (which is the Tsallis second-
order entropy measure), Slin(ρ̂) = (1 − Tr ρ̂2).

We can expand the self-evolved density matrix σ̂A(t ) to
O(t2) as

σ̂A(t ) = ρ̂A(0) − it[ĤA, ρ̂A(0)]

+ (−it )2

2
[ĤA, [ĤA, ρ̂A(0)]] + O(t3). (B13)

It can be explicitly checked that despite truncation upto O(t2),
in each order of the expansion, the self-evolved density oper-
ator σ̂A(t ) is pure and obeys σ̂ 2

A (t ) = σ̂A(t ) and Tr σ̂A(t ) = 1.
Let us now compute the linear entanglement entropy

Slin(ρ̂A(t )) = [1 − Tr ρ̂2
A(t )] for the reduced density matrix

of A given by Eq. (B7), which corresponds to start-
ing with an unentangled (and hence, zero entropy) state
ρ̂(0). Using the cyclic property of trace, it can be shown
that Tr [σ̂A(t )T1] = Tr [σ̂A(t )T2] = 0 to O(t2), and hence we
get

Slin[ρ̂A(t )] = 1 − Tr
[
σ̂ 2

A (t )
] − Tr

(
T 2

1

)
− Tr [σ̂A(t )T3] + O(t3), (B14)

which further using Tr σ̂A(t ) = Tr σ̂ 2
A (t ) = 1 reduces to

Slin[ρ̂A(t )] = −Tr
(
T 2

1

) − Tr [σ̂A(t )T3] + O(t3). (B15)

As we will do below—since we are working to O(t2)—we
will replace σ̂A(t ) with ρ̂A(0) in any terms that have a factor
of t2 out front. The remaining two terms in Eq. (B15) can be
computed to O(t2) in a straightforward way,

Tr
(
T 2

1

) = (−it )2
∑
α,β

λαλβ〈B̂α〉0〈B̂β〉0Tr [[Âα, ρ̂A(0)]

× [Âβ, ρ̂A(0)]], (B16)

which can be simplified by noting that for pure states ρ̂A(0) =
|ψA(0)〉 〈ψA(0)|, certain trace terms simplify into product of
expectation values, such as

Tr [Âαρ̂A(0)Âβρ̂A(0)] = 〈Âα〉0〈Âβ〉0. (B17)

Thus, further using such simplifications, we arrive at the
following expressions for Tr (T 2

1 ) and Tr [σ̂A(t )T3] to O(t2):

Tr
(
T 2

1

) = −t2
∑
α,β

λαλβ〈B̂α〉0〈B̂β〉0(2〈Âα〉0〈Âβ〉0

−〈{Âα, Âβ}+〉0), (B18)

Tr [ρ̂A(0)T3] = Tr [σ̂A(t )T3]=− t2

2

∑
α,β

λαλβ (〈B̂αB̂β〉0〈ÂαÂβ〉0

−〈B̂αB̂β〉0〈Âα〉0〈Âβ〉0 − 〈B̂β B̂α〉0〈Âα〉0〈Âβ〉0

+〈B̂β B̂α〉0〈ÂαÂβ〉0), (B19)

where {Ô1, Ô2}+ = (Ô1Ô2 + Ô2Ô1) is the anticommutator of
Ô1 and Ô2. Putting these together in Eq. (B15), we obtain the
desired result of Eq. (10),

Slin(ρ̂A(t ))

= t2
∑
α,β

λαλβ[〈ÂαÂβ〉0〈B̂αB̂β〉0 + 〈Âβ Âα〉0〈B̂β B̂α〉0

−〈Âα〉0〈Âβ〉0(〈{B̂α, B̂β}+〉0 − 〈B̂α〉0〈B̂β〉0)

−〈B̂α〉0〈B̂β〉0

(〈{Âα, Âβ}+〉0 − 〈Âα〉0〈Âβ〉0

)
] + O(t3).

(B20)

APPENDIX C: GENERALIZED PAULI OPERATORS

Here we provide a brief review of Generalized Pauli Op-
erators (GPOs) and their use to define finite-dimensional
conjugate variables closely following the exposition of
Ref. [41]. The interested reader is referred to Refs. [41,45,46]
(and references therein) for more details.

Consider a finite-dimensional Hilbert space H of dimen-
sion dimH = d ∈ Z+ with d < ∞. The GPO algebra on the
space of linear operators L(H) acting on H comes equipped
with two unitary (but not necessarily Hermitian) operators as
generators of the algebra, call them Â and B̂, which satisfy the
following commutation relation:

ÂB̂ = ω−1B̂Â, (C1)

where ω = exp (2π i/d ) is the dth primitive root of unity. This
commutation relation is also more commonly known as the
Weyl braiding relation [47], and any further notions of com-
mutations between conjugate, self-adjoint operators defined
from Â and B̂ will be derived from this relation. In addition
to being unitary, ÂÂ† = Â†Â = Î = B̂B̂† = B̂†B̂, the algebra
cyclically closes, giving it a cyclic structure in eigenspace,

Âd = B̂d = Î, (C2)

where Î is the identity operator on L(H).
The GPO algebra can be constructed for both even and odd

values of d and both cases are important and useful in different
contexts. Here, we focus on the case of odd d ≡ 2l + 1, which
will be useful in constructing conjugate variables whose
eigenvalues can be thought of labeling lattice sites, centered
around zero. While the subsequent construction can be done in
a basis-independent way, we choose a hybrid route, switching
between an explicit representation of the GPO and abstract
vector space relations. Let us follow the convention that all
indices used in this section(for the case of odd d = 2l + 1),
for labeling states or matrix elements of an operator in some
basis will run from −l, (−l + 1), . . . ,−1, 0, 1, . . . , l . The
operators are further specified by their eigenvalue spectrum,
and it is identical for both the GPO generators Â and B̂,

spec(Â) = spec(B̂) = {ω−l , ω−l+1, . . . , ω−1,

1, ω1, . . . , ωl−1, ωl}. (C3)

There exists a unique irreducible representation (up to uni-
tary equivalences) (see Ref. [48] for details) of the generators
of the GPO defined via Eqs. (31) and (C2) in terms of N × N
matrices

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 . . . 1
1 0 0 . . . 0
0 1 0 . . . 0
. . . . . .

. . . . . .

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦

N×N

, (C4)
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B =

⎡
⎢⎢⎢⎢⎣

ω−l 0 0 . . . 0
0 ω−l+1 0 . . . 0
. . . . . .

. . . . . .

0 0 0 . . . ωl

⎤
⎥⎥⎥⎥⎦

N×N

. (C5)

The .̂ has been removed to stress that these matrices are
representations of the operators Â and B̂ in a particular basis,
in this case, the eigenbasis B̂ (so that B is diagonal). More
compactly, the matrix elements of operators Â and B̂ in the
basis representation of eigenstates of B̂,

[A] jk ≡ 〈b j |Â|bk〉 = δ j,k+1, (C6)

[B] jk ≡ 〈b j |B̂|bk〉 = ω jδ j,k, (C7)

where δ is the Kronecker delta function. The operator Â acts
as a a “cyclic shift” operator for the eigenstates of B̂, sending
an eigenstate to the next,

Â |b j〉 = |b j+1〉. (C8)

The unitary nature of these generators implies a cyclic
structure which identifies |bl+1〉 ≡ |b−l〉, so that Â |bl〉 =
|b−l〉. The operators Â and B̂ have the same relative action
on the other’s eigenstates, since nothing in the algebra sets
the two apart. It has already been seen in Eq. (C8) that Â
generates (unitary, cyclic) unit shifts in eigenstates of B and
the opposite holds too: the operator B̂ generates unit shifts in
eigenstates of Â [given by the relation Â |ak〉 = ωk |ak〉 , k =
−l, . . . , 0, . . . , l] and has a similar action with a cyclic corre-
spondence to ensure unitarity,

B̂ |ak〉 = |ak+1〉, (C9)

with cyclic identification |al+1〉 ≡ |a−l〉. Hence we already
have a set of operators that generate shifts in the eigenstates of
the other, which is precisely what conjugate variables do and
which is why we see that the GPOs provides a very natural
structure to define conjugate variables on Hilbert space. The
GPO generators Â and B̂ have been extensively studied in
various contexts in quantum mechanics, and offer a higher
dimensional, non-Hermitian generalization of the Pauli ma-
trices. In particular, for d = 2 it will be seen that A = σ1 and
B = σ3, which recovers the Pauli matrices.

The defining notion for a pair of conjugate variables
is the identification of two self-adjoint operators acting on
Hilbert space, each of which generates translations in the
eigenstates of the other. For instance, in (conventionally
infinite-dimensional) textbook quantum mechanics, the mo-
mentum operator p̂ generates shifts or translations in the
eigenstates of its conjugate variable, the position q̂ operator,
and vice versa. Taking this as our defining criterion, we define
a pair of Hermitian conjugate operators φ̂ and π̂ , acting on a
finite-dimensional Hilbert space, each of which is the genera-
tor of translations in the eigenstates of its conjugate, with the
following identification:

Â ≡ exp (−iαπ̂ ), B̂ = exp (iβφ̂), (C10)

where α and β are nonzero real parameters.
To further reinforce this conjugacy relation between op-

erators Â and B̂, we see that they are connected to each

under a discrete Fourier transformation implemented by
Sylvester’s Circulant Matrix S, which is a N × N unitary
matrix (SS† = S†S = Î), connecting A and B,

SAS−1 = B. (C11)

Sylvester’s matrix has the following form, which we iden-
tify to be in the {|b j〉} basis, with j and k running from
−l, . . . , 0, . . . , l:

[S] jk = ω jk

√
N

. (C12)

Since A and B are nonsingular and diagonalizable, it follows
that log A and log B exist, even though multivalued. In the case
of odd dimension d = 2l + 1, their principle logarithms are
well defined, and we are able to find explicit matrix repre-
sentations for operators φ̂ and π̂ . In particular, we can obtain
matrix representation for π̂ in the |φ j〉 basis,

〈φ j |π̂ |φ j′ 〉 =
[

2π

(2l + 1)2α

] l∑
n=−l

n exp

[
2π i( j − j′)n

2l + 1

]

=
⎧⎨
⎩

0, if j = j′

[
iπ

(2l+1)α

]
cosec

[ 2π l ( j− j′ )
2l+1

]
, if j 
= j′

.

(C13)

The matrix elements of π̂ in the eigenbasis of φ̂ are non-
local, in the sense that they have power-law-like decay in
( j − j′), and hence connect arbitrary “far” eigenstates of φ̂.
This is a feature of the finite-dimensional construction and in
the infinite-dimensional limit d → ∞, we recover the local
form of φ̂ as −id/dφ as expected. Of course, φ̂ has common
eigenstates with those of B̂ and π̂ shares eigenstates with Â.
The corresponding eigenvalue equations for φ̂ and π̂ can be
easily deduced using Eqs. (32) and (C3),

φ̂ |φ j〉 = j

[
2π

(2l + 1)β

]
|φ j〉 , j = −l, . . . , 0, . . . , l,

(C14)

π̂ |π j〉 = j

[
2π

(2l + 1)α

]
|π j〉 , j = −l, . . . , 0, . . . , l.

(C15)

These conjugate variables defined on a finite-dimensional
Hilbert space will not satisfy Heisenberg canonical commu-
tation relation [φ̂, π̂ ] = i (in units where h̄ = 1), since by the
Stone–von Neumann theorem there are no finite-dimensional
representations of Heisenberg CCR. However, φ̂ and π̂ still
serve as a robust notion of conjugate variables and their com-
mutation can be derived from the more fundamental Weyl
Braiding Relation of Eq. (31). In the large dimension limit
d → ∞, one recovers Heisenberg form of the CCR if the
parameters α and β are constrained to obey αβ = 2π/d .

APPENDIX D: GENERIC EVOLUTION OF REDUCED
DENSITY OPERATORS

We can further illustrate how decoherence is a nongeneric
feature as discussed in Sec. III A by taking the general expres-
sion found for the reduced density operator ρ̂A(t ) to O(t2) in
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the bipartite case discussed in Eq. (B9) and studying it further
to find conditions when off-diagonal elements in the pointer
basis get suppressed relatively quickly leading to effective
decoherence.

Let us compute the time derivative of the reduced den-
sity matrix, ˙̂ρA(t ) to help us understand when decoherence
is effective and leads to dynamic suppression of off-diagonal
elements in the pointer basis. We will work explicitly to O(t )
to keep a tractable number of terms, enough to help us see
decoherence in action,

˙̂ρA(t ) = ˙̂σA(t ) + Ṫ1 + Ṫ2 + Ṫ3 + O(t2), (D1)

where we can use the von Neumann evolution equation for
a density operator, ˙̂σA(t ) = −i[ĤA, σ̂A(t )]. The time deriva-
tives of T2 and T3 are easy to take from Eqs. (B11)
and (B12) since they both have a factor of t2 out front.
The time derivative of T1 can be computed to O(t ) as
follows:

Ṫ1 =
{

−i
∑

α

λα〈B̂α〉self
t [Âα, σ̂A(t )]

}

− it
∑

α

λα〈 ˙̂Bα〉0[Âα, ρ̂A(0)]

− it
∑

α

λα〈B̂α〉0[Âα, ˙̂σA(t )] + O(t2), (D2)

where to to retain Eq. (D2) to O(t ), we can write ˙̂σA(t )O(t ) =
−i[ĤA, ρ̂A(0)] and from the expression for 〈B̂α〉self

t ,

〈B̂α〉self
t = Tr[σ̂B(t )B̂α] = 〈B̂α〉0 − itTr[[ĤB, ρ̂B(0)]B̂α]

− t2

2
Tr[[ĤB, [ĤB, ρ̂B(0)]]B̂α] + O(t3), (D3)

we can extract the 〈 ˙̂Bα〉0 which will contribute to Eq. (D2) to
O(t ),

〈 ˙̂Bα〉0 = i〈[ĤB, B̂α]〉0. (D4)

Plugging these in Eq. (D1), we that find the term with 〈 ˙̂Bα〉0
cancels with one of the terms in Ṫ2 to yield

˙̂ρA(t ) = −i
[
Ĥ eff

A (t ), σ̂A(t )
] − t

∑
α

λα〈B̂α〉0{[Âα, [ĤA, ρ̂A(0)]]

− [[Âα, ĤA], ρ̂A(0)]} + Ṫ3 + O(t2), (D5)

where we have defined an effective self-Hamiltonian for A,
which weighs in a relevant contribution from the interaction
terms Âα ,

Ĥ eff
A (t ) = ĤA +

∑
α

λα〈B̂α〉self
t Âα + O(t2). (D6)

Let us write this in a more suggestive way such that the
evolution equation of ˙̂ρA(t ) can be explicitly split into a uni-
tary piece and a piece that will induce decoherence under
the right conditions. To O(t ), let us write σ̂A(t ) = ρ̂A(t )O(t ) −
(T1)O(t ) and substitute in Eq. (D5) while also noticing that
the term {[Âα, [ĤA, ρ̂A(0)]] − [[Âα, ĤA], ρ̂A(0)]} condenses to

[ĤA, [Âα, ρ̂A(0)]],

˙̂ρA(t ) = −i
[
Ĥ eff

A (t ), ρ̂A(t )
] + t

∑
α

λα〈B̂α〉0[ĤA, [Âα, ρ̂A(0)]]

+ t
∑
α,β

λαλβ〈B̂α〉0〈B̂β〉0[Âα, [Âβ, ρ̂A(0)]]

− t
∑

α

λα〈B̂α〉0[ĤA, [Âα, ρ̂A(0)]] + Ṫ3 + O(t2).

(D7)

The term containing [ĤA, [Âα, ρ̂A(0)]] cancels away, and after
substituting for Ṫ3 from Eq. (B12) and collecting terms, we
see that the final expression for ˙̂ρA(t ) to O(t ) is

˙̂ρA(t ) = −i
[
Ĥ eff

A (t ), ρ̂A(t )
] − t

∑
α,β

λαλβ{[ÂαÂβρ̂A(0)

− Âβ ρ̂A(0)Âα](〈B̂αB̂β〉0 − 〈B̂α〉0〈B̂β〉0)

+ [ρ̂A(0)Âβ Âα − Âαρ̂A(0)Âβ]
(〈B̂β B̂α〉0

−〈B̂β〉0〈B̂α〉0

)} + O(t2). (D8)

Thus, we see that the equation for ˙̂ρA(t ) to O(t ) splits into a
term [−i[Ĥ eff

A (t ), ρ̂A(t )]], which corresponds to unitary evolu-
tion of ρ̂A(t ) under the effective self-Hamiltonian Ĥ eff

A (t ) and
a term that will be responsible for decoherence under right
conditions.

Let us focus on this “decoherence” term D(ρ̂A) and not
concern ourselves with the unitary evolution for the moment
(the ⊃ representing that we are focusing only on the decoher-
ence term),

˙̂ρA(t ) ⊃ D(ρ̂A) + O(t2)

≡ −t
∑
α,β

λαλβ{[ÂαÂβρ̂A(0) − Âβρ̂A(0)Âα](〈B̂αB̂β〉0

−〈B̂α〉0〈B̂β〉0)

+ [ρ̂A(0)Âβ Âα − Âαρ̂A(0)Âβ]
(〈B̂β B̂α〉0

−〈B̂β〉0〈B̂α〉0

)} + O(t2). (D9)

In the Quantum Measurement Limit, when there exists a
consistent pointer basis {|a j〉 | j = 1, 2, . . . , dA} which will
be selected such that it forms simultaneous eigenstates of all
Âα ∀ α,

Âα |a j〉 = aα
j |a j〉 ∀ α and j = 1, 2, . . . , dA. (D10)

This is a highly nongeneric situation, since an arbitrary Hamil-
tonian in an arbitrary factorization will have noncommuting
terms in Ĥint and hence not admit a complete basis satisfying
Eq. (D10) to serve as a pointer basis. For decoherence to be
effective, there would be a small number of consistent terms
in Ĥint being monitored by the other subsystem as discussed
in Sec. III B.

Let us see this explicitly by considering the off-diagonal
matrix element 〈a j | ˙̂ρA(t )|ak〉 , j 
= k of ˙̂ρA(t ) in the pur-
ported pointer basis {|aj〉}. The decoherence term D(ρ̂A(t )) in
Eq. (D9) can be further split into α = β terms and α 
= β ones.
The cross-terms with α 
= β are not seen to have a definitive
sign that is needed for decoherence to take place. On the other
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hand, let us look at the α = β terms of the matrix element,

〈a j | ˙̂ρA(t )|ak〉 ⊃ −t
∑

α

λ2
α

(〈
B̂2

α

〉
0 − 〈B̂α〉2

0

)〈a j |
[
Â2

αρ̂A(0)

− 2Âαρ̂A(0)Âα + ρ̂A(0)Â2
α

]|ak〉 , j 
= k,

(D11)

which can be further simplified using Eq. (D10),[
d

dt
ρ̂A(t )

]
jk

⊃ −t
∑

α

λ2
α

(〈
B̂2

α

〉
0 − 〈B̂α〉2

0

)
(a j − ak )2[ρ̂A(0)] jk + O(t2).

(D12)

Now since we are working to O(t ) in Eq. (D12), we can re-
place [ρ̂A(0)] jk with [ρ̂A(t )] jk since corrections will contribute
to O(t2) due to the presence of the factor of t in the expansion,

[
d

dt
ρ̂A(t )

]
jk

⊃ −t

[∑
α

λ2
α 
2(B̂α )0(a j − ak )2

]

× [ρ̂A(t )] jk + O(t2). (D13)

The term in the parentheses [
∑

α λ2
α 
2(B̂α )0(a j − ak )2] is

positive definite since the term, 
2(B̂α )0 ≡ (〈B̂2
α〉0 − 〈B̂α〉2

0),
is the variance of B̂α in the state ρ̂A(0), and hence positive
by construction. This leads to decoherence since off-diagonal
terms in Eq. (D13) get suppressed dynamically in the pointer
basis selected by Ĥint .

Thus, we see that for decoherence to be effective, there
should exist a small number of consistent terms in Ĥint being
monitored by the other subsystems (B in this case), which will
give us a notion of pointer basis in which off-diagonal ele-
ments of ρ̂A(t ) are dynamically suppressed due to interaction
with the environment. Most of our classic models of decoher-
ence [36] indeed consist of a single term (or a small number
of compatible terms) representing environmental monitoring
of the form Ĥint = λ(Â ⊗ B̂) and hence there will be deco-
herence in the eigenbasis of Â, which serve as pointer states.
From Eq. (D13), we can give an estimate for the decoherence
timescale τd for the ( j, k) matrix element, focusing on the
Ĥint = λ(Â ⊗ B̂) for clarity,

(τd ) jk ∼
√

2

|λ| |a j − ak| |
(B̂α )0|
. (D14)

Thus, as we can see from Eq. (D14), for higher interaction
strength, there is more stronger monitoring of A by B and
hence faster decoherence. More variance of B̂ in the initial
state allows for more support in state space for monitoring
and quicker suppression of interference and also, we see
that decoherence timescales are inversely proportional to the
spectral differences in Â. This can also be easily understood
since more spacing between eigenvalues of Â would lead to
inducing faster orthogonality in conditional states of B, and
hence more effective decoherence.

APPENDIX E: POINTER ENTROPY GROWTH IN THE
QUASICLASSICAL FACTORIZATION

In this Appendix, we compute S̈pointer (0) for the QC factor-
ization of a given Hamiltonian (which satisfies the QML). Let
us first compute Ṡpointer explicitly to help us get to S̈pointer (0).
Since we want an expression for S̈pointer (0), we will just retain
O(t ) in the following Ṡpointer calculation. From the definition
of Spointer of Eq. (21), we see

Ṡpointer (t ) = −2
dA∑
j=1

p j (t ) ṗ j (t ), (E1)

where p j (t ) is the probability distribution defined by

p j (t ) = Tr A[ρ̂A(t ) |a j〉 〈a j |] ≡ Tr A[ρ̂A(t )Ô j] = 〈a j |ρ̂A(t )|a j〉,
(E2)

where {|aj〉} is the set of eigenstates of the pointer observ-
able ÔA, and Ô j ≡ |a j〉 〈a j |. Following the construction in
Appendix (B), we can write ρ̂A(t ) to O(t ) as

ρ̂A(t ) = ρ̂A(0) − it[ĤA, ρ̂A(0)] − it
∑

α

λα〈B̂α〉0[Âα, ρ̂A(0)]

≡ ρ̂A(0) − it
[
Ĥ eff

A (0), ρ̂A(0)
] + O(t2), (E3)

from which we get

p j (t ) = Tr [ρ̂A(t )Ô j] = p j (0) − it
〈[

Ô j, Ĥ eff
A (0)

]〉
0 + O(t2).

(E4)
To O(t ) in the above equation, the effective self-Hamiltonian
Ĥ eff

A (0) contains a contribution from the interaction terms,

Ĥ eff
A (0) = ĤA +

∑
α

λα〈B̂α〉0Âα. (E5)

The pointer observable in the QML satisfies [Ô j, Âα] =
0 ∀ α, j, this can be simplified further to depend only on ĤA,

p j (t ) = p j (0) − it〈[Ô j, ĤA]〉0 + O(t2) (QML), (E6)

where p j (0) = 〈Ô j〉0.
To compute Ṡpointer (t ), we use Eq. (D8) for d ρ̂A/dt to

O(t ) and notice that, as remarked in Sec. IV A, the diagonal
entries of the decoherence term D(ρ̂A(t )) in the pointer basis
vanish identically, giving the diagonal entries of d ρ̂A/dt in the
pointer basis as shown in Eq. (20),[

d

dt
ρ̂A(t )

]
j j

=
{
−i[ĤA(t ), ρ̂A(t )] j j

}
+ O(t2), (E7)

which gives us

ṗ j (t ) = Tr

[
Ô j

d

dt
ρ̂A(t )

]
= −iTr {[ĤA, ρ̂A(t )]Ô j} + O(t2).

(E8)

Substituting for ρ̂A(t ) to O(t ) from Eq. (E3), we get

ṗ j (t ) = ṗ j (0) − tTr {[ĤA,
[
ĤA, ρ̂A(0)]

]
Ô j}

− t
∑

α

λα〈B̂α〉0Tr {[ĤA, [Âα, ρ̂A(0)]]Ô j} + O(t2),

(E9)

where ṗ j (0) = −iTr {[ĤA, ρ̂A(0)]Ô j} = −i〈[Ô j, ĤA]〉0. We
can now further simplify this in the Quantum Measurement
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Limit when a consistent pointer observable exists, and after a
few lines of trace manipulations we obtain

ṗ j (t ) = ṗ j (0) − t
〈
Ô jĤ

2
A + Ĥ2

AÔ j − 2ĤAÔ jĤA
〉
0

− t
∑

α

λα〈B̂α〉0〈[Ô j, [ĤA, Âα]]〉0 + O(t2). (E10)

We can now string everything together to give us an expres-
sion for S̈pointer (0) for the pointer observable ÔA, by taking a
time derivative of Ṡpointer (t ) constructed out of Eqs. (E6) and

(E10),

S̈pointer (0) = 2
dA∑
j=1

〈[Ô j, ĤA]〉2
0

+2
dA∑
j=1

[
p j (0)

〈
Ô jĤ

2
A + Ĥ2

AÔ j − 2ĤAÔ jĤA
〉
0

]

+ 2
dA∑
j=1

{
p j (0)

∑
α

λα〈B̂α〉0〈[Ô j, [ĤA, Âα]]〉0

}
.

(E11)
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