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We introduce action quantum speed limits (QSLs) as a family of bounds on the minimal time to connect
two states that, unlike the usual geometric approach, crucially depend on how the path is traversed, i.e., on the
instantaneous speed. The two approaches provide consistent bounds when the instantaneous speed is optimized
along a fixed path and we demonstrate this explicitly for the case of a thermalizing qubit employing techniques
from optimal control theory. In addition, we critically analyze the interpretation of QSLs based on different
choices of metric establishing that, in general, these open-system QSL times provide an indication of optimality
with respect to the geodesic path, rather than necessarily being indicative of an achievable minimal time.
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I. INTRODUCTION

Time has always proved to be a difficult physical con-
cept to grasp. Its intrinsic directionality, commonly quantified
through the notion of entropy production, allows to uniquely
define a “before” and an “after,” and therefore time dictates
the evolution of a system, i.e., its transformation between
different configurations (or states). The theory of quantum
computation, for one, considers time a key resource to
optimize since it relates to the number of elementary compu-
tational operations that can be performed [1]. A basic question
naturally arises: Is there a lower bound on the time it can take
to transform between a given initial and final target states?
The ubiquity of this simple inquiry has stimulated significant
research efforts, aimed at determining the ultimate limits on a
physical evolution.

The laws of quantum mechanics allow to introduce a fun-
damental bound on the speed of evolution. Among the first
to realize this were Mandelstam and Tamm [2] (MT), who in
their seminal work showed that the minimum amount of time
for a quantum system to unitarily evolve from a pure state |ψi〉
to an orthogonal state |ψ f 〉 is given by τ � τMT

QSL = (π/2) h̄
�H ,

where (�H )2 is the variance of the energy of the system in the
initial state. This revolutionary reinterpretation of the energy-
time uncertainty relation was termed the quantum speed limit
(QSL) time. Their result was later generalized to arbitrary
initial states by Bhattacharyya [3,4], who proved that

τ � τQSL = h̄ arccos[|〈ψ (0)|ψ (τ )〉|]
�H

. (1)

Subsequently, Anandan and Aharonov [5] further extended
the situation to time-dependent Hamiltonians and, most im-
portantly, showed that Eq. (1) could be understood from a
purely geometric perspective as a consequence of the proper-
ties of the Fubini-Study metric on the Riemannian manifold of
quantum states. In particular, they showed that in this metric,
the geodesic length is given by the Bures angle and the path
length of any unitary dynamics is given by

∫ τ

0 dt �H (t )/h̄.

Therefore, the MT bound simply follows from the fact that the
path length cannot be smaller than the geodesic length. An al-
ternative QSL bound, valid under the same assumptions, was
derived by Margolus and Levitin [6] (ML), although crucially
involving the mean energy 〈H〉 of the initial state instead of
the variance �H : τ � τML

QSL =π h̄/2〈H〉. Importantly, Levitin
and Toffoli [7] later proved that both bounds τMT

QSL, τML
QSL are

only attainable when �H =〈H〉 and therefore become equiv-
alent when saturated. Understanding and developing these
results has been the focus of sustained work [8–28].

Extending the notion of QSLs to open quantum systems
has, however, proven to be a more formidable task, with the
geometric approach bearing the most fruit [29–50] (see also
the reviews [51,52]). Arguably, the main hurdle in moving
to the open-system setting is that there is an infinite family
of suitable metrics for mixed states describing open quantum
systems to choose as a distance measure, as characterized
by the Morozova, Čencov, and Petz (MCP) theorem [53,54].
This is in contrast to pure states undergoing unitary dynamics
where the Fisher information metric is the sole contractive
Riemannian metric that can be defined in order to measure
the distance between states, thus enforcing Eq. (1) as the only
saturable geometric bound under these conditions. However,
for open systems any given choice of metric leads to a bona
fide QSL. While Pires et al. [29] derived an infinite family
of geometric QSLs, they also crucially showed that, for any
fixed path connecting two arbitrary (initial and final) states,
it was possible (at least in principle) to identify the metric
that gives rise to the tightest QSL bound. However, fixing the
path and the end points in the geometric approach completely
determines all the quantities and, therefore, unless the given
path already coincides with a geodesic according to some
metric tensor, the theoretical lower bound for the QSL time
is not achievable.

In this work, we highlight that the speed at which a path
is traversed represents a further meaningful parameter for
optimization of the dynamics. Curiously, geometric QSLs
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are insensitive to this degree of freedom since by construc-
tion they only rely on the time-averaged speed. Therefore,
we introduce a different approach to the problem, the ac-
tion QSL, showing that their saturability depends both on
the path taken and on the speed at which that path is tra-
versed. Geometric QSLs are shown to coincide with special
instances of the action QSLs, thus demonstrating the con-
sistency of our result with that of Ref. [29], however, while
the geometric formulation will imply that all ramp profiles
along a path are equivalent, the action QSL is sensitive to
the instantaneous speed. Due to their construction, finding the
best way to traverse a path is naturally suited to be tackled
with quantum optimal control theory [55]. This is explicitly
shown in a paradigmatic example of a qubit thermalizing
with an environment modeled using a generalized amplitude-
damping channel. The implementation of standard optimal
control techniques allows us to find the optimal way to travel
along the path.

The paper is organized as follows. Section II is devoted
to a brief review of geometric QSLs, highlighting some main
conceptual limitations which are then elucidated through a
simple example of a qubit subject to a generalized amplitude
damping channel. In Sec. III we introduce action quantum
speed limits as an alternative to the geometric approach and
establish that they provide consistent bounds when the path
is optimally traversed. In Sec. III we explicitly illustrate this
by combining action QSLs with optimal control techniques.
Finally, our conclusions and some further discussions are are
presented in Sec. IV.

II. GEOMETRIC QUANTUM SPEED LIMITS

The geometric approach to deriving quantum speed limits
in essence relies on the simple and elegant consideration that
the geodesic distance between any two points of a Rieman-
nian metric is the shortest possible length connecting them.
In particular, in the case of open quantum systems, such a
manifold, which we denote by D, is represented by the set
of statistical operators ρ over a given Hilbert space H , i.e.,
the convex set of positive-semidefinite and trace-1 linear op-
erators acting on H . The MCP theorem [53,54] characterizes
the whole family of Riemannian metrics {g} on D that are
contractive under the action of physical channels, i.e., com-
pletely positive and trace-preserving (CPTP) maps, and can
therefore be used to distinguish between two states. Since in
the framework of QSLs we are interested in finding the mini-
mum time required to evolve an initial state into a final target
state, let us parametrize the density matrices by ρ(λ), where
λ ∈ RM denotes a set of time-dependent control parameters
which are changed according to some given smooth protocol.
Upon choosing the parametrization t ∈ [0, τ ] → λ(t ), with τ

denoting the total evolution time, a protocol which changes
smoothly λI ≡ λ(0) to λF ≡ λ(τ ) geometrically draws a path
γ onto the Riemannian manifold of quantum states that con-
nects ρ0 ≡ ρ(λI ) and ρτ ≡ ρ(λF ).

The length of the path is then obtained by integrating the
metric-induced infinitesimal length along the curve γ , i.e.,

�γ
g (ρ0, ρτ ) =

∫
γ

ds =
∫ τ

0
dt

√√√√ M∑
jk=1

g jk
dλ j

dt

dλk

dt
. (2)

Being the shortest path, the length of the corresponding
geodesic curve is defined as

Lg(ρ0, ρτ ) = min
γ

�γ
g (ρ0, ρτ ). (3)

The family of geometric QSL stems precisely from Eq. (3),
restated as

Lg(ρ0, ρτ ) � �γ
g (ρ0, ρτ ). (4)

It is important to stress that Eq. (3) expresses a hierarchy
among all possible paths connecting the two states ρ0 and ρτ

for a fixed metric g.
In order to translate this inequality into a QSL for the

evolution time as in Eq. (1), one usually introduces the path-
average speed

vγ
g = 1

τ
�γ

g (ρ(0), ρ(τ )), (5)

from which it straightforwardly follows that

τ � τ γ
g = Lg(ρ(0), ρ(τ ))

v
γ
g

. (6)

Saturating Eq. (4) is equivalent to τ =τ
γ
g and this occurs when

the dynamics follows the corresponding geodesic path for a
given metric g. As already mentioned, for pure states and
unitary evolution, the Fisher information metric represents
the unique contractive Riemannian metric g and leads to the
MT bound. Furthermore, in this case the speed is related to
a physical resource of the system, namely, the (square root
of the) energy variance of the initial state. Whenever open
quantum systems and mixed states are considered, however,
the nonuniqueness of g naturally brings forward an important
question: Is there a particular metric which gives rise to a
QSL which is the tightest possible, therefore representing the
ultimate lower bound on the evolution time?

The answer to the above question is actually very subtle. In
Ref. [29] it was argued that, for any given path γ ∗ between two
fixed initial and final states ρ0, ρτ , the hierarchy of the MCP
metrics reflects into the possibility to find, at least in principle,
the geodesic which gives rise to the tightest geometric QSL
bound to the evolution. The latter is given by

τQSL = τ
γ ∗
g∗ � τ, (7)

where the metric g∗ is the one such that its geodesic
Lg∗ (ρ(0), ρ(τ )) is the closest to the actual given path γ ∗, i.e.,

g∗ such that inf
g

δγ ∗
g = δ

γ ∗
g∗ , (8)

with δ
γ ∗
g ≡ τ/τ

γ ∗
g − 1.

This result highlights that geometric QSLs should be care-
fully interpreted. Once all the quantities entering the bound
(7) are uniquely determined, i.e., once a path γ ∗ and start and
end points are fixed, nothing more can be done in order to
approach the QSL bound. Equivalently said, if a given path
connecting two quantum states is not already optimal, in the
sense that does not already coincide with a geodesic path
according to some contractive Riemannian metric, then the
geometric QSL bound is never saturable and will only provide
an estimate of “how far from optimal” the evolution time is
with respect to τQSL.
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Thus, if we are free to choose the path connecting a given
initial and target state, then the QSL bound for every metric
g can be saturated simply by moving along a path which
coincides to the geodesic for that metric. A priori, the choice
of one metric over another may be dictated by the physics of
the problem at hand, e.g., the average initial energy as in the
ML bound or the initial energy variance as for the MT bound.
Regardless, though, the corresponding QSL bound can, in
principle, be achieved. Conversely, however, when a particular
dynamics is considered, i.e., one dictated by a specified CPTP
map, then there is no single metric g which represents the
tightest QSL for every possible choice of the path’s boundary
conditions.

Let us provide an explicit demonstration of the above for
a simple paradigmatic example consisting of a qubit undergo-
ing a generalized amplitude-damping channel (GADC). This
rather ubiquitous situation describes a two-level quantum sys-
tem undergoing equilibration with a large thermal bath, such
that its evolution is described in terms of the following master
equation (in interaction picture):

�̇S = L(�S ) = γ
(
σ−�Sσ+ − 1

2 {�S, σ+σ−})
+

(
σ+�Sσ− − 1

2 {�S, σ−σ+}), (9)

where β = 1
2 ln γ


denotes the inverse temperature of the bath

in units of the qubit’s energy.
While we will consider the dynamics (GADC) and the final

state (i.e., the thermal state) fixed, we will vary the initial state
ρ0, thus resulting in a different path on the Bloch sphere for
each starting configuration. We will focus on three impor-
tant metrics for which their geodesics can be calculated and
compute the respective QSL bound (6). The first is based on
the quantum Fisher information (QFI) [8,9,56]. The geodesic
distance in this metric is given by the Bures angle

LQFI(ρ, σ ) = arccos(tr
√√

ρσ
√

ρ ). (10)

The quantum Fisher information is defined as the expectation
value of the square of the symmetric logarithmic derivative
operator L, FQ = tr[ρL2] where L is defined implicitly by ρ̇ =
(ρL + Lρ)/2. The resulting QSL reads as [30]

τQFI = LQFI
1
τ

∫ τ

0 dt
√
FQ

. (11)

The second metric we will consider is the one based on
the Wigner-Yanase (WY) skew information metric [29]. The
geodesic distance in this metric is given by

LWY(ρ, σ ) = arccos[tr(
√

ρ
√

σ )]. (12)

This geodesic distance was derived by Gibilisco and Isola
[57,58] and is a quantum generalization of the Bhattacharya
angle. This metric is known as the WY metric because for
unitary dynamics with time-dependent Hamiltonian Ht we
have [29,58]

�
γ

WY(ρ0, ρτ ) =
√

2
1

τ

∫ τ

0
dt

√
I(ρt , Ht ), (13)

where I(ρ, A)=−(1/2)tr{[√ρ, A]2} is the WY skew infor-
mation of the self-adjoint matrix A. Finally, we will consider
the metric based on the trace distance (TD) [42] which stems

FIG. 1. (a) Plot of τ γ
g /τ , with β =0.5, for three different choices

of metric g = WY, QFI, TD (Wigner-Yanase, quantum Fisher infor-
mation, and trace distance, respectively), as a function of the initial
state parameter θ . The path γ corresponds to the GADC. (b) Bloch
sphere representation of the various paths for a two-level system
connecting |�0〉= 1

2 |0〉 +
√

3
2 |1〉 and the steady state of Eq. (9) with

β =0.5. The innermost straight, blue line corresponds to the TD
geodesic path. The QFI geodesic corresponds to the outermost solid,
green curve. The remaining solid, purple line is the WY geodesic.
Finally, the path followed by the GADC is shown in dashed, red.

from a direct application of the triangle inequality [43]. The
distance is given by the trace norm

LTD(ρ, σ ) = ‖ρ(0) − ρ(τ )‖1 = tr
√

[ρ(0) − ρ(τ )]2. (14)

The geodesic paths are also known for all of these three met-
rics, for example, the TD geodesic path is simply a “straight
line” between the initial and final states

ρ(t ) = [1 − p(t )]ρ(0) + p(t )ρ(τ ), (15)

where p(t ) is any function satisfying p(0)=0 and p(τ )=1
that is monotonically increasing on that interval. The paths
for the QFI and WY metrics were derived by Uhlmann [59]
and Gibilisco [58], respectively, and are explicitly provided
in Appendix A. Exemplary paths for a qubit are shown in
Fig. 1(b).

Figure 1(a) shows the result of the evaluation of the three
QSL bounds as a function of the parameter θ which deter-
mines the initial state that, without any loss of generality,
is taken to be pure ρ0(θ )=|�0(θ )〉 〈�0(θ )|, with |�0(θ )〉=
cos(θ ) |0〉 + sin(θ ) |1〉. While for any given fixed path (i.e., in
this case, fixed θ ), one QSL is clearly tighter than the other,
thus confirming Eq. (7), it is evident that none of them provide
the tightest QSL for every parameter θ ∈ [0, π ]. The tightest
bound for any given initial state is the one corresponding to
the metric whose geodesic happens to be closest to the GADC
dynamics for that particular choice of θ . We finally notice
that for θ =0, π all the bounds saturate because the GADC
becomes equivalent to the depolarizing channel, which traces
a geodesic path for all of the considered metrics.

III. ACTION QUANTUM SPEED LIMITS

The previous section highlights that when open quantum
systems are considered, there is no single Riemannian con-
tractive metric for which the corresponding geometric QSL
bound is the tightest unless the path and end points are fixed.
Fixing a path is therefore a necessary requirement in order to
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have a well-defined unique and tightest QSL bound (7) such
that Eq. (8) holds. If every parameter of the problem is fixed,
however, unless a given dynamics already coincides with a
geodesic path according to some metric (e.g., in the case of
a depolarizing channel, see θ = 0, π in the above example),
then the geometric QSL time provides a quantitative indica-
tion of how far the traversed path is from the optimal path,
according to the specific metric in question. Nevertheless, in
spite of what the name might suggest, the geometric quantum
speed limit time is completely insensitive to the actual instan-
taneous speed.

This simple observation represents the starting point for
introducing our family of QSLs. The instantaneous speed at
which a given path is traveled is an important degree of free-
dom. Indeed, the varying speed of evolution provides a vital
tool in many physical settings, for example, every thermody-
namic cycle of any driven engine is crucially dependent on the
speed at which the protocol is performed [60] and high-fidelity
control can be achieved by varying the speed with which some
time-dependent ramp is applied such that the dynamics slows
down when energy gaps close which applies to understanding
the dynamics across quantum phase transitions in light of the
Kibble-Zurek mechanism [26].

We incorporate the instantaneous speed into the formula-
tion of quantum speed limits by borrowing inspiration from
recent developments in thermodynamic geometry [60–67].
This can be achieved by applying the Cauchy-Schwarz in-
equality

∫ τ

0 h2dt
∫ τ

0 f 2dt � [
∫ τ

0 f h dt]2 to the path length in
Eq. (4). Specifically, by setting h=1, one has

τ

∫ τ

0
dt

M∑
jk=1

g jk
dλ j

dt

dλk

dt
�

⎛
⎝∫ τ

0
dt

√√√√ M∑
jk=1

g jk
dλ j

dt

dλk

dt

⎞
⎠

2

(16)
which leads to the following result:

τ � τ γ
a = Lg(ρ(0), ρ(τ ))2

aγ
g

, (17)

where aγ
g =∫ τ

0 dt
∑M

jk=1 g jk
dλ j

dt
dλk
dt possesses the dimensions

of an action. Equation (17) is the anticipated family of QSLs
which, in light of the above quantity and its interpretation,
we name action quantum speed limits. We remark that ac-
tion QSLs do not suffer some of the issues associated with
geometric QSLs. In particular, as highlighted in Ref. [37],
for the damped Jaynes-Cummings model, geometric QSLs
may diverge as the total process time increases, despite the
fact that the distance between initial and steady state is fixed
and, furthermore, the time required to approach infinitesi-
mally close to the steady state being finite. In contrast, due to
their construction, action QSLs remain bounded and therefore
capture the essence of the original QSL formulations more
aptly [37].

It is crucial to point out that, for any given path γ ∗, Eq. (17)
is saturated when γ ∗ is a geodesic and the speed along it√∑M

jk=1 g jk
dλ j

dt
dλk
dt is constant. This means that, if a given

path is already optimal in the sense that it coincides with a
geodesic and thus saturates the geometric QSL, then the action
QSL will also be saturated provided this path is traversed
at a constant speed in the corresponding metric. Conversely,

when a given path is not optimal, then Eq. (17) becomes more
delicately dependent on this instantaneous speed, as we show
explicitly below.

Another important consideration stems from the following
chain of inequalities:

τ
γ
a

τ
= Lg(ρ(0), ρ(τ ))2

τ aγ
g

� Lg(ρ(0), ρ(τ ))2

τ 2
(
v

γ
g
)2 =

(
τ

γ
g

τ

)2

.

(18)

This result highlights the fact that the geometric QSL is a
special instance, corresponding to the upper bound, of the
action QSL. This physically indicates that, for every nonop-
timal path, any time-dependent profile for the speed will lead
to a QSL bound which is going to be less than or equal
to the geometric ideal QSL value. This is, however, a very
important property, as it implies that different strategies aimed
at optimizing the speed for any given nonoptimal path will
reflect in the value of the action-QSL time which progres-
sively approaches the bound given in Eq. (18). Due to the very
structure of it involving the action aγ

g , finding the optimal way
to traverse a path is naturally suited to be solved by techniques
borrowed from optimal control theory [55,68–75].

Optimizing the instantaneous speed

In order to identify the optimal time-dependent profile for
the dynamics, we can make use of Pontryagin’s optimum
principle [68,76] to find an effective control Hamiltonian that
realizes a particular dynamics while minimizing a given ac-
tion. A full explanation of the optimal control procedure can
be found in Appendix B. In order to explicitly show this, we
will consider the same example as Sec. II, a qubit subject to
a generalized amplitude-damping channel. To explicitly ac-
count for the time dependence following the path we express
this channel using the Kraus operators

K0(t ) = √
c

(√
1 − p(t ) 0

0 1

)
,

K1(t ) = √
c

(
0 0√
p(t ) 0

)
,

K2(t ) = √
1 − c

(
1 0
0

√
1 − p(t )

)
,

K3(t ) = √
1 − c

(
0

√
p(t )

0 0

)
, (19)

where c= 1
2 (1 + tanh β ) and with β being the inverse tem-

perature of the bath. The path is fixed by the value of β,
while p(t ) describes how that path is traversed. It is important
to stress that to optimize the dynamics we must saturate the
Cauchy-Schwarz inequality, which corresponds to finding the
ramp profile that results in a constant speed in the metric. As
we demonstrate by explicit example for nongeodesic paths,
achieving a constant speed in the metric generally requires a
nontrivial temporal ramp profile.

In Fig. 2 we display the result of the numerical imple-
mentation of optimal control strategies on ṗ(t ) and their
impact on the associated QSL. First, it is immediately ev-
ident from Fig. 2(a) that different profiles of p(t ) (shown
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FIG. 2. (a) The solid blue line shows the (square of the) geomet-
ric TD speed limit for the generalized amplitude damping channel
with β = 0.5 (arbitrarily chosen). This QSL time is independent of
p(t ) as long as ṗ(t )>0. The purple points represent the value of the
TD action QSL for our initial guess of constant ṗ(t ). The red points
are the value of the TD action speed limit after optimizing over all
possible ṗ(t ) with the desired start and end points. These points lie
on the blue line demonstrating that we can use optimal control to
saturate Eq. (18). (b) Shows the optimal function p(t ) for various
values of θ as compared to our initial guess. (c), (d) Are as for (a) and
(b) except applied to the QFI speed limit. (e), (f) Are as for (a) and
(b) except applied to the WY speed limit.

as dotted curves) lead to very different values of the
action-QSL bound. In particular, since the path does not
coincide with the geodesic, a constant ramp profile p(t ) =
t
τ

(lower, purple dots) is clearly a nonoptimal solution, as
it results in a value markedly below the tightest theoreti-
cal bound given by the geometric QSL (blue solid curve),
Eq. (18). A fully optimized ṗ(t ) (red dots) demonstrates that
we are able to saturate Eq. (18). In contrast, however, eval-
uating Eq. (6) using these two ramp profiles gives the same
result (the solid blue curve in Fig. 2) thus confirming that
geometric QSLs are insensitive to the instantaneous speed.
In Fig. 2(b) we show the optimal profiles p(t ) which result
in a constant metric speed, for different values of θ , i.e., for
different fixed paths. A completely analogous treatment can
be implemented for any other metric, e.g., for the QFI and
WY action introduced above. The optimal protocols for p(t )
will of course be different given choice and path as determined
by θ . This is shown in Figs. 2(c)–2(f) for the QFI and for the

WY metrics, thus demonstrating the general validity of our
approach.

IV. CONCLUSIONS

In this work we carefully assessed the geometric approach
to QSLs in open quantum systems. If one has the freedom to
choose any path connecting two states, then any and all of
the infinite families of geometric QSL are saturable. While
the existence of a unique and tightest lower bound for the
evolution time is guaranteed once a path and dynamics are
completely specified, these constraints necessarily leave no
room for optimization if the dynamics does not already co-
incide with a geodesic path. Therefore, care must be taken in
interpreting open-system geometric QSL times: they provide
a quantitative indication of how far a given path is from
the geodesic rather than necessarily indicating an achievable
minimal time. We also highlighted that these geometric QSL
times are insensitive to how this path is traversed and are
therefore agnostic to the instantaneous speed.

Nevertheless, this speed is an important and tunable degree
of freedom. We have introduced a family of QSLs, termed
action quantum speed limits, that explicitly depend on both
the path and the instantaneous speed for a given metric.
Our derivation relied on the same geometrical representa-
tion of quantum states and followed from the application
of the Cauchy-Schwartz inequality to the path length. We
established that the bound provided by the geometric QSL co-
incides with a special instance of the action QSL, specifically
when the instantaneous speed of the latter is fully optimized
along the path. We explicitly demonstrated this using optimal
control techniques applied to a qubit undergoing a dynamics
described in terms of a generalized amplitude damping chan-
nel for three choices of metric: the trace distance, quantum
Fisher information, and Wigner-Yanase skew information.
While our formulation applies to arbitrary finite-dimensional
systems, we expect that solving the optimal control problem
becomes computationally more demanding for increasing sys-
tem size. Our results provide a means to quantitatively assess
the optimality of a given dynamical process from a purely
geometric perspective. In addition, we have highlighted that
the geometric formulation of quantum speed limits can be
combined with optimal control techniques to characterize a
particular dynamics; such an approach could be employed to
find achievable minimal times for a given process [15,27,50].
Our results may also be relevant to recent proposals em-
ploying optimal control in dynamical quantum estimation
schemes [73–75,77]. Furthermore, our framework can natu-
rally be extended to recently proposed resource speed limits
[49,78].
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APPENDIX A: GEODESIC PATHS

The geodesic paths for the QFI were derived by Uhlmann
[59] and are given by

ρ(t ) = [{p(t )ωτ + [1 − p(t )]ω0}({p(t )ω†
τ + [1 − p(t )]ω†

0})]

‖p(t )ωτ + [1 − p(t )]ω0‖2
,

(A1)

where ω0 is a purification of ρ(0)=ω0ω
†
0. Therefore, if ρ(0)

has a spectral decomposition ρ(0)=∑
i pi|pi〉〈pi|, then we de-

fine ω0 =∑
i
√

pi |pi〉 〈φi| where |φi〉 is another orthonormal
basis of the Hilbert space, with ωτ defined in terms of ω0 as

ωτ = ρ(0)−1/2(ρ(0)1/2ρ(τ )ρ(0)1/2)1/2ρ(0)−1/2ω0. (A2)

Similarly for the WY metric the geodesic path was derived by
Gibilisco [58] and is given by

ρ(t ) = ([1 − p(t )]
√

ρ(0) + p(t )
√

ρ(τ ))2

tr{([1 − p(t )]
√

ρ(0) + p(t )
√

ρ(τ ))2} . (A3)

Finally, for the TD, and in fact in any p norm, the geodesic
can be shown to be

ρ(t ) = [1 − p(t )]ρ(0) + p(t )ρ(τ ). (A4)

The proof of this is shown below. Deffner [43] showed that
for any Schatten p distance

Lp(ρ0, ρτ ) = ‖ ρ0 − ρτ‖p ≡ (tr{| ρ0 − ρτ |p})1/p (A5)

we have the inequality

L̇p(ρ0, ρt ) � ‖ ρ̇t‖p. (A6)

Integrating both sides of this inequality gives us a QSL of the
form in Eq. (4). Substituting the geodesic path from Eq. (A4)
into the right-hand side of our inequality we arrive at

‖ ṗ(t )(ρτ − ρ0)‖p = | ṗt |Lp(ρ0, ρτ ). (A7)

Under the condition that ṗ(t )�0 this path will saturate any of
the infinite family of p-distance-based QSLs.

APPENDIX B: OPTIMAL CONTROL

Here, we will give an overview of the optimal control
techniques used in the calculation of the ramp profile p(t )
that minimizes the action. For a more detailed explanation
see, for example, Refs. [55,68]. We make use of Pontryagin’s
optimum principle [76]. The cost functional that we want to
minimize is the action along our path:

aγ
g =

∫ τ

0
dt

M∑
jk=1

g jk
dλ j

dt

dλk

dt
≡

∫ τ

0
dt L (ρ(t ), ρ̇(t ), ṗ(t )).

(B1)
This equation defines the control Lagrangian
L (ρ(t ), ρ̇(t ), ṗ(t )) of the dynamics. ṗ(t ) is simply the
time derivative of the ramp profile and can be thought of as
the external control parameter. We then take the Legendre
transform of the control Lagrangian to get the control
Hamiltonian. This Hamiltonian is metric dependent and has
no relation to the Hamiltonian that appears in the Schrödinger
equation. We can now apply Pontryagin’s optimum principle
which states that control protocol ṗ∗(t ) that minimizes our
action is given by

H ( ṗ∗(t )) = sup
ṗ(t )∈A

H ( ṗ(t )). (B2)

Here, A represents the set of all admissible profiles. In our
case this corresponds to all profiles that map our pure initial
state to the the thermal state, i.e.,

∫ τ

0 dt ṗ(t ) = p(τ ) − p(0) =
1. This allows us to find the optimal profile by a pointwise
optimization of the Hamiltonian rather than an optimization
over the full function space of p(t ). In order to perform the
optimization we use a modified gradient descent algorithm

ṗn+1 = ṗn + ε

(
∂Hn

∂ ṗ
− 1

τ

∫ τ

0
dt

∂Hn

∂ ṗ

)
, (B3)

and this method always results in an admissible profile.
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