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Nonclassicality according to the singularity or negativity of the Glauber P-function is a powerful resource
in quantum information, with relevant implications in quantum optics. In a Gaussian setting, and for a system
of two modes, we explore how P-nonclassicality may be conditionally generated or influenced on one mode
by Gaussian measurements on the other mode. Starting from the class of two-mode squeezed thermal states
(TMST), we introduce the notion of nonclassical steering (NS) and the graphical tool of Gaussian triangoloids.
In particular, we derive a necessary and sufficient condition for a TMST to be nonclassically steerable and show
that entanglement is necessary. We also apply our criterion to noisy propagation of a twin-beam state and evaluate
the time after which NS is no longer achievable. We then generalize the notion of NS to the full set of Gaussian
states of two modes and recognize that it may occur in a weak form, which does not imply entanglement, and in
a strong form, which implies EPR steerability and, a fortiori, also entanglement. These two types of NS coincide
exactly for TMSTs, and they merge with the previously known notion of EPR steering. By the same token,
we recognize another operational interpretation of P-nonclassicality: It is the distinctive property that allows
one-party entanglement verification on TMSTs.
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I. INTRODUCTION

The remarkable consequences of quantum correlations
have attracted theoretical efforts since the early days of quan-
tum mechanics. The first authors to pinpoint the features
of these correlations were probably Einstein, Podolsky, and
Rosen (EPR) [1]. They considered two parties, that we will
call Alice and Bob for our convenience, sharing a pair of
quantum systems described altogether by the entangled pure
state

|ψ〉〉 =
∑

a

ca|a〉1 ⊗ |a〉2 =
∑

α

dα|α〉1 ⊗ |α〉2,

where {|a〉 j} and {|α〉 j} are two distinct, orthonormal bases
of the jth system, j = 1, 2. They noted that, according to
quantum mechanics, Alice can choose to perform a projec-
tive measurement on her system either in the {|a〉1} basis
or in the {|α〉1} basis, thereby collapsing the state of Bob’s
system into distinguishable quantum states (in {|a〉2} or in
{|α〉2}, respectively), a phenomenon later termed steering by
Schrödinger [2]. Refusing to abandon their notion of locality
and observing that {|a〉 j} and {|α〉 j}, j = 1, 2 may be chosen
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to be the eigenstates of two noncommuting observables, EPR
concluded that there was more to be known on Bob’s system
than what was provided by the quantum state’s description [3].
In other words, they concluded that the quantum mechanical
description of a physical system must be incomplete if locality
holds at the level of quantum states. The modern point of
view is that locality does not hold for quantum states but in
such a way that causality, namely signal locality, which is
also the actual essential ingredient to special relativity, is still
preserved. In fact, Bob cannot detect on his own the influ-
ence produced on his quantum state, in compliance with the
no-signaling theorem [4–7]. On the other hand, if Alice com-
municates her choice of measurement to Bob and they repeat
the experiment many times, starting with the same entangled
state each time, Bob can now check that Alice was indeed
able to steer his state. Since, for bipartite pure states, being
entangled is precisely equivalent to being unfactorizable, we
conclude that quantum steering is possible with a given pure
bipartite state if and only if it is entangled.

At a variance with the pure case, mixed states can exhibit
fully classical correlations, thus failing to be factorized even
without entanglement. A generalized definition of entangle-
ment for them was provided in Ref. [8], and it is based on the
impossibility to construct an entangled state starting from a
factorized one and using just local operations and classical
communication (LOCC). There, the author also considered
another celebrated manifestation of quantum correlations, the
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violation of Bell’s inequality [9,10], which was known to be
possible with all and only entangled states in the pure case;
Ref. [8] showed that among mixed states, instead, only a
strict subset of entangled states allows for a violation of such
inequality. It started to become apparent, then, that there is a
true hierarchy of quantum correlations.

On this line, but only much later, the concept of quantum
steering received a general formulation in Refs. [11,12]. Since
classical correlations in bipartite mixed states can imitate the
influence on one party by measurements on the other one,
the idea of the authors was to declare that, given a shared
bipartite state, Alice can steer Bob’s state if she can condition
his quantum state into different ensembles, in such a way that
he cannot explain such an influence using a local hidden-
variable model and assuming just classical correlations with
Alice, and therefore he becomes convinced that the shared
state was entangled. If there is a choice of quantum mea-
surements on her party allowing Alice to convince Bob that
the shared state was entangled, the state is called steerable
by Alice. In contrast to the pure case, steering becomes a
truly asymmetric property for mixed states, and it was shown
[12] that one-way steerability is a stronger condition than
entanglement, but a weaker condition than violation of Bell’s
inequality in general. The definition of quantum steering was
also specialized to the case of Gaussian states of continuous-
variable (CV) quantum systems, and we will refer to this
notion as EPR steering. Steering is now widely considered a
fundamental resource for quantum information tasks [13–18],
for example, in one-sided device-independent quantum key
distribution (QKD) [13], and many criteria for its detection
have been explored [19–22].

In addition to quantum correlations, a wealth of other
concepts concerning the nonclassical character of quantum
states have been put forward [23]. The nonclassicality of a
CV quantum state ρ̂ is often determined by the behavior of its
Glauber P-function [24–27], which amounts to its expansion
onto coherent states |α〉 (α ∈ C) according to

ρ̂ =
∫
C

d2α P[ρ̂](α)|α〉〈α|. (1)

A major reason for the wide use of the P-function stems
from its connection with experimentally accessible quantities,
so that it leads to the most physically inspired notion of
nonclassicality. It is known to be necessary for antibunch-
ing and sub-Poissonian photon statistics [28] in quantum
optics, among others, whereas being classical according to
the P-function implies the empirical adequacy of Maxwell’s
equations in the phenomenological description of the cor-
responding state of light. On a practical level, the more
nonclassical a state is, the harder it becomes to fabri-
cate it with optical equipment [29,30] (as in the case of
highly squeezed states), and we may therefore say that P-
nonclassicality has a resource character [31–33].

In this article, we shall explore the possibility of steering
nonclassicality, in the setting of two-mode Gaussian states. In
particular, we focus on Gaussian measurements on one of the
modes and examine the effects on the nonclassicality of the
state of the other mode, conditioned on the outcome of
the measurement.

This paper is structured as follows. In Sec. II, we set our
notation for Gaussian states and P-nonclassicality. In Sec. III,
we consider the case of two-mode squeezed thermal states
(TMSTs), introducing the concept of nonclassical steering
and studying its relation with entanglement and its asymmet-
ric behavior. We also introduce triangoloid plots, a graphical
tool that will guide our analysis and lead us to anticipate
one of the main results: Projective measurements on field
quadratures are optimal, among all Gaussian measurements,
to remotely influence nonclassicality. In Sec. IV, we discuss
the situation of a twin-beam state (TWB), whose mode we
wish to steer interacts with a noisy, thermal environment. We
show that the resulting state is a generic TMST and we de-
rive the maximum propagation time after which nonclassical
steering is no longer viable, comparing it to the time needed
to destroy all initial entanglement. In Sec. V, we generalize
our results to all Gaussian states of two modes, explaining the
necessity to distinguish between weak and strong nonclassical
steering. In particular, weak nonclassical steering will be seen
to be independent on entanglement, therefore we examine its
relation with Gaussian quantum discord. We conclude with a
comparison between nonclassical steering and EPR steering,
showing that they coincide for TMST states, with possible
practical implications in quantum key distribution.

II. GAUSSIAN STATES AND NONCLASSICALITY

A. Phase space formalism and notation for Gaussian states

We consider the Fock space F (n) = ⊗n
k=1 Fk that is con-

structed as the tensor product of n single-mode Fock spaces
Fk , each generated by the usual creation operators â†

k acting
on the vacuum |0〉k of the respective mode, such that together
with the corresponding annihilation operators âk they satisfy
the standard commutation relations for bosons. From these,
we can define the ordinary conjugated canonical variables:

q̂k := âk + â†
k√

2
, p̂k := âk − â†

k

i
√

2
,

which can be collected in the quadrature vector R̂ =
(q̂1, p̂1, ..., q̂n, p̂n)T , so that the canonical commutation rela-
tions are compactly written as

[R̂ j, R̂k] = i� jk, (2)

� :=
n⊕

k=1

ω , ω :=
(

0 1
−1 0

)
. (3)

Given a state ρ̂, i.e., a trace-class, positive semidefinite,
bounded linear operator from F (n) to itself, we define its
characteristic function [34,35] as

χ [ρ̂](�) := Tr[ρ̂ D̂(�)], (4)

where we introduced the displacement operator,

D̂(�) := exp [−i�T �R̂] =
n⊗

k=1

eλk â†
k−λ∗

k âk , (5)

with � = (a1, b1, . . . , an, bn)T and λk = 1√
2
(ak + ibk ). The

Wigner function can be expressed in terms of the
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characteristic function as

W [ρ̂](X ) =
∫
R2n

d2n�

(2π2)n
ei�T �X χ [ρ̂](�). (6)

We say that ρ̂ is a Gaussian state of n modes if its Wigner
function is a Gaussian function [36] on a 2n-dimensional
phase space, namely,

W [ρ̂](X ) = 1

πn
√

det[σ]
e− 1

2 (X−〈R̂〉)T
σ−1(X−〈R̂〉), (7)

where 〈R̂〉 = Tr[ρ̂R̂] is the first-moments vector and

[σ] jk = 1
2 〈R̂ j R̂k + R̂kR̂ j〉 − 〈R̂ j〉〈R̂k〉 (8)

is the covariance matrix (CM) of the state, and it is a positive
semidefinite, symmetric matrix. Moreover, since it encodes
the covariances for the expectation values of conjugate canon-
ical observables, σ should fulfill the uncertainty relations
(UR) that are valid for any physical state ρ̂, and they take the
following form on phase space [37]:

σ + i

2
� � 0. (9)

It is important to stress that Ineq. (9) is automatically true for
any σ derived from the Wigner function of a Gaussian state ρ̂,
whereas it has to be imposed on σ if a physical Gaussian state
ρ̂ has to be defined from its Wigner function. In that case, any
Gaussian function whose CM σ is symmetric, with σ � 0 and
fulfilling Ineq. (9), is the Wigner function of some physical
Gaussian state ρ̂.

B. Nonclassicality

The Glauber P-function introduced before is a member of
a continuous family of phase space quasiprobability distri-
butions, known as s-ordered Wigner functions (also referred
to as s-ordered representations to avoid confusion with the
properly called Wigner function) and defined according to
[26,38]

Ws[ρ̂](X ) =
∫
Rn

d2n�

(2π2)n
e

1
4 s|�|2+i�T �X χ [ρ̂](�) (10)

for s ∈ [−1, 1]. With s = 0, we recover the Wigner function.
Instead, the case s = 1, which is the most singular of the
family and can behave even more singularly than a tempered
distribution, corresponds precisely to the P-function. A CV
quantum state ρ̂ is termed nonclassical [28,39,40] whenever
its P-function is not positive semidefinite [41] and/or it is
more singular than a δ distribution. One can also introduce the
so-called nonclassical depth T[ρ̂] of a CV state ρ̂ to quantify
its nonclassicality:

T[ρ̂] := 1 − sm

2
, (11)

where sm is the largest real number such that Ws[ρ̂](X ) is
nonsingular and non-negative ∀s < sm. In terms of T[ρ̂], we
may say that ρ̂ is nonclassical if T[ρ̂] > 0 and classical if
T[ρ̂] = 0. According to this definition, coherent states are the
only classical pure states [42], while number states are highly
nonclassical, with |n〉 having a P-function proportional to the
nth derivative of the δ distribution [28].

We should also mention that the Wigner function is often
regarded as the closest approach to a classical description of a
quantum state on phase space: It is always a nonsingular, nor-
malized function, but for certain quantum states it may be not
everywhere positive on phase space. For this reason, Wigner
negativity, i.e., having a Wigner function that attains negative
values in at least some regions of phase space, can be encoun-
tered as an alternative definition of nonclassicality. However,
Wigner negativity always implies P-nonclassicality and, con-
versely, a nonsingular, non-negative P-function guarantees a
non-negative Wigner function. Furthermore, Gaussian states
cannot exhibit Wigner negativity by definition, but Gaussian
squeezed states are known to possess nonclassical features
[43,44]. We take these considerations as further reasons to
back up our choice of nonclassicality (see also Ref. [45]).

Let us look in greater detail at the definition of P-
nonclassicality for Gaussian states [46]. Since, for a Gaussian
state ρ̂, by definition χ [ρ̂](�) is a Gaussian function on phase
space, it is straightforward to conclude from Eqs. (7) and (10)
that ρ̂ is nonclassical if and only if the least eigenvalue λ− of
its CM σ is smaller than 1

2 . In that case, the nonclassical depth
of ρ̂ is given by

T[ρ̂] = 1
2 − λ−. (12)

Among classical Gaussian states, we find all the (displaced)
thermal states, including coherent states, while squeezed vac-
uum states are always nonclassical. In fact, squeezing is
essentially the only source of P-nonclassicality in the Gaus-
sian landscape.

III. NONCLASSICAL STEERING WITH TMST STATES

A. Gaussian measurements and conditional states

Our first goal will be to describe the single-mode Gaussian
states that can be prepared on Alice’s mode, by Gaussian mea-
surements on Bob’s mode of a generic two-mode Gaussian
state, and classical communication of the outcome.

A Gaussian measurement is implemented at the mathe-
matical level by a positive operator-valued measure (POVM)
{�̂α}α whose effects have Gaussian Wigner functions. In the
single-mode case, we have

�̂α = 1

π
D̂(α)ρ̂MD̂†(α), (13)

where D̂(α) = eαâ†−α∗â, α ∈ C, and ρ̂M is a single-mode
Gaussian state with zero first-moments vector and a CM σM

that can always be written in the following form [47]:

σM = 1

2μμs

(
1 + κs cos φ −κs sin φ

−κs sin φ 1 − κs cos φ

)
, (14a)

μ = Tr
[
ρ̂2

M

] ∈ [0, 1], (14b)

μs = 1

1 + 2 sinh2 rm
∈ [0, 1], (14c)

where μ is the purity of ρ̂M , μs is the (single-mode) squeez-
ing purity parameter, and we introduced κs =

√
1 − μs

2 for
notational convenience. Here rm represents the single-mode
squeezing parameter whereas φ ∈ [0, 2π ) is the squeezing
phase.
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Let us now consider such a measurement performed by
Bob on the second mode of a generic Gaussian state ρ̂AB of
two modes. The probability of getting the outcome α is

pα = TrAB[ρ̂AB(IA ⊗ �̂α )], (15)

where IA is the identity operator on the Hilbert space of
Alice’s mode. If now Bob communicates α to Alice, she
can update the quantum state she uses to describe her mode,
ρ̂A = TrB[ρ̂AB], according to

ρ̂A → ρ̂
(α)
A = TrB

[
ρ̂

(α)
AB

]
(16a)

= 1

pα

TrB[ρ̂AB(IA ⊗ �̂α )], (16b)

where ρ̂
(α)
AB is the quantum state of the two modes after the

Gaussian measurement on the second mode resulted in the
outcome α. We will call ρ̂

(α)
A the conditional state of Alice’s

mode. Notice that, in order to specify ρ̂
(α)
A , one does not need

the decomposition of the Gaussian POVM into measurement
operators, but it suffices to know the effects �̂α (unlike for the
calculation of ρ̂

(α)
AB ).

The state ρ̂
(α)
A is still a Gaussian state [35,48,49], and if we

write the CM σ of the initial state ρ̂AB in block form according
to

σ =
(

A C
CT B

)
, (17)

then the conditional CM σ
(α)
A of ρ̂

(α)
A is the Schur complement

[50] of B + σM in σ:

σ
(α)
A = σ/(B + σM ) = A − CT (B + σM )−1C, (18)

where σM is the CM of the POVM. The first-moments vector
of the conditional state can also be calculated, but we do
not need it because it does not influence the nonclassicality
of ρ̂

(α)
A .

The crucial point here is that the conditional CM σ
(α)
A does

not depend on the outcome α that Bob observed. This means
that the nonclassical properties of the conditional state ρ̂

(α)
A

of Alice’s mode are completely specified by the CM σ of the
initial state and the choice of Gaussian measurement made
by Bob (which amounts to fixing σM). However, one should
keep in mind that Alice could not check that the CM of her
mode after Bob’s measurement is σ

(α)
A , unless he reports the

observed value of α to her: In other words, she needs to know
the updated first-moments vector of her mode. Since σ

(α)
A does

not really depend on α, we shall rename it σc
A from now on, to

distinguish it from the unconditional CM σA of Alice’s state
before the measurement, ρ̂A = TrB[ρ̂AB]. Since σc

A is a single-
mode CM, it too can be recast in the form of Eq. (14a):

σc
A = 1

2μcμsc

(
1 + κsc cos φc −κsc sin φc

−κsc sin φc 1 − κsc cos φc

)
(19)

with μc = Tr[(ρ̂(α)
A )2] and κsc =

√
1 − μsc

2 as before.
We could also calculate the eigenvalues of σc

A from
Eq. (19):

λ± = 1 ± κsc

2μcμsc
. (20)

Thus, recalling the the nonclassical depth (12), we can assert
that a single-mode Gaussian state is nonclassical if and only
if

λ− = 1 − κsc

2μcμsc
<

1

2
⇒ μsc <

2μc

1 + μc
2
. (21)

Since μsc = (1 + sinh2 rc)−1, where rc is the single-mode
squeezing parameter, we can read Ineq. (21) as a lower bound
on the single-mode squeezing, depending upon the purity of
the state. Notice that the nonclassicality condition Ineq. (21)
does not depend on the phase φc.

B. General features of TMST states

Two-mode squeezed thermal states provide a simple but
sufficiently general and rich background to start our explo-
rations [51–53]. They are described by a density operator:

ρ̂AB := Ŝ (2)(ξ )[ν̂th(NA) ⊗ ν̂th(NB)]Ŝ (2)(ξ )†, (22)

where the two-mode squeezing unitary operator is defined as

Ŝ (2)(ξ ) := eξ â†b̂†−ξ∗âb̂, ξ := reiψ,

and r is the two-mode squeezing parameter [54]. The single-
mode thermal states ν̂th(N ), instead, are defined according to

ν̂th(N ) = 1

1 + N

∞∑
n=0

( N

1 + N

)n

|n〉〈n|, (23)

where N the average number of photons. It is often practical
to introduce purity parameters:

μ(N ) := 1

1 + 2N
, μs(r) := 1

1 + 2 sinh2 r
. (24)

With these definitions, μ(N ) is precisely the purity of a
single-mode thermal state ν̂th(N ), while μs(r) is a two-mode
squeezing purity parameter, and it can be thought of as the
purity of each mode in a two-mode squeezed vacuum state
with squeezing parameter r: the larger r, the larger the entan-
glement, the smaller the purities of the partial traces. Note that
they are a sufficiently vast class of two-mode Gaussian state
to host both entangled and separable states.

Using the phase-space formalism and the fact that uni-
tary transformations generated by inhomogeneous quadratic
Hamiltonians act as affine symplectic transformations on the
quadrature variables, one can deduce the form of the CM for a
generic TMST state (we will assume a squeezing phase ψ = 0
from now on):

σ =

⎛
⎜⎝

a 0 c 0
0 a 0 −c
c 0 b 0
0 −c 0 b

⎞
⎟⎠, (25)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

a = −μA + μB + (μA + μB) cosh 2r

4μAμB

b = μA − μB + (μA + μB) cosh 2r

4μAμB

c = (μA + μB) sinh 2r

4μAμB

. (26)
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Another feature of TMST states that makes them handy
in the study of remote generation of nonclassicality is the
following. Consider the first mode of a TMST, controlled by
Alice. Its quantum state is given by ρ̂A = TrB[ρ̂AB]: This is
still a Gaussian state, with CM proportional to the 2×2 iden-
tity matrix, σA = a · I2 and a given by Eq. (26). Since a � 1

2 ,
according to our criterion for P-nonclassicality of Gaussian
states, ρ̂A is always classical. The same holds true for ρ̂B,
of course, the reduced quantum state of the second mode,
controlled by Bob. In other words, TMST states never possess
any local nonclassicality.

C. Gaussian steering triangoloids

Our next task is to determine analytically σc
A in the par-

ticular case of an initial TMST state ρ̂AB. Thus, we should
determine the functional dependence of μc, μsc, and φc on the
initial state’s parameters μA, μB, r and the POVM parameters
μ,μs, φ. According to Eqs. (25), (26), and (18), for a TMST
we have

σc
A = a · I2 − c2[σz · (b · I2 + σM )−1 · σz], (27)

where σz = diag(1,−1). We now introduce two new parame-
ters to clear up the formulas:

α := b + 1

2μμs
, β := κs

2μμs
(28)

with κs =
√

1 − μs
2 as in Eq. (14a). Noting that α > β � 0,

we may write

(b · I2 + σM )−1 = 1

α2 − β2

(
α + β cos φ −β sin φ

−β sin φ α − β cos φ

)
,

which can be inserted in Eq. (27) to arrive at

σc
A = a · I2 − c2

α2 − β2

(
α − β cos φ −β sin φ

−β sin φ α + β cos φ

)
. (29)

At this point, φ is still the phase of the measurement. However,
note that μc and μsc can be retrieved from Eq. (19) using the
following relations:

det
[
σc

A

] = (2μc)−2, Tr
[
σc

A

] = (μcμsc)−1 . (30)

We can use these relations to solve Eq. (29) for μc and μsc:

μc = 1

2

√
α2 − β2

(c2 − aα)2 − a2β2
,

μsc =
√

(α2 − β2)[(c2 − aα)2 − a2β2]

a(α2 − β2) − αc2
, (31)

and we see that μc and μsc are independent of φ; therefore the
same holds true for the conditional nonclassicality, as implied
by Ineq. (21). We also deduce that φc = φ, so that we can
completely ignore the phase for TMST states.

We can display the results of Eq. (31) using triangoloid
plots. For a given TMST state, i.e., for fixed values of μA,
μB, and r, we plot the region in the parameters’ space of σc

A
containing all points (μc, μsc) ∈ (0, 1]×(0, 1] described by
Eq. (31) for all possible Gaussian measurements on Bob’s
mode, or in other words, for all possible values of the pa-
rameters μ,μs ∈ (0, 1] of the measurement’s CM. For μA =

μB = 0.4 and r = 1.2, we obtain the triangular-shaped region
in the left image of Fig. 1, delimited by red, green, and
blue sides. The light-brown region covering the bottom-right
corner, instead, contains all values of μc and μsc correspond-
ing to a nonclassical conditional state, according to Ineq.
(21). Since the triangoloid intersects this nonclassical region,
the chosen TMST state allows Bob to steer Alice’s mode
into a nonclassical state by means of some Gaussian mea-
surements. In this case, the area of intersection is shaded
according to the nonclassical depths of the conditional states,
with lighter (yellow) colors corresponding to higher values
of T.

On the other hand, the triangoloid associated with a TMST
whose parameters are μA = μB = 0.15 and r = 1.2 does not
intersect the nonclassical region, as shown in the middle panel
of Fig. 1: Starting with this state, there is no Gaussian mea-
surement that Bob can do on his mode to condition Alice’s
mode into a nonclassical state. We are therefore led to the
following definition:

Definition 1. A TMST state is said to be nonclassically
steerable from mode B to mode A if there exists a Gaussian
measurement {�̂α}α∈C on mode B such that the conditional
state ρ̂

(α)
A of mode A is nonclassical.

A clarification on nomenclature is due here. The phe-
nomenon we are considering here should be more appro-
priately named P-nonclassical steering; indeed, quantum
steering is already a nonclassical process, while we are using
the qualifier nonclassical to specifically refer to Glauber P-
function nonclassicality of the conditional state. That being
settled, we are using nonclassical steering throughout the
paper for its simpliticty, once the possible misunderstand-
ing on the nature of the nonclassicality has been averted.
In order to gain some intuition about what kind of TMST
states are nonclassically steerable, let us look closer at the
triangoloid plots. We will list the relationships between
the relevant points and sides of the triangoloid, and the
corresponding measurements that achieve those conditional
states:

(1) The red, rightmost side corresponds to μ = 1 in
the measurement’s CM. Hence, these are conditional states
of Alice’s mode corresponding to (nonorthogonal) projec-
tive measurements of Bob’s mode on displaced single-mode
squeezed vacuum states. The upper-right red vertex is attained
for zero squeezing (μs = 1), or in other words heterodyne
measurement, implemented by projectors onto coherent states.
Squeezing of the measurement increases toward the blue ver-
tex (μs decreases). Note that this precisely corresponds to an
increasing of the conditional squeezing (μsc decreases too).

(2) The green, uppermost side corresponds to non-
squeezed POVMs (μs = 1). Inserting this value in the second
of Eq. (31), one can immediately deduce that μsc = 1 for any
TMST state: The conditional state has zero squeezing too, and
therefore it is always classical. The purity of the associated
POVMs decreases (μ decreases) along this side from the red
vertex to the green vertex, and correspondingly so does the
purity of the conditional state.

(3) The leftmost, blue side is not strictly part of the trian-
goloid, because it is attained only in some unphysical limit of
the POVM. Specifically, if one renames the measurement’s
purity parameters as μ = tx and μs = x, the parametric
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FIG. 1. (Left) Triangoloid for TMST state with μA = μB = 0.4 and r = 1.2, μc is the purity of the conditional state, while μsc =
(1 + 2 sinh2 rc )−1 quantifies squeezing of the conditional state. The light-brown region contains all nonclassical conditional states. (Right)
Triangoloid for μA = μB = 0.15 and r = 1.2. (Bottom) Triangoloid showing the directions of increasing purity of the measurement μ (red
arrow) and increasing squeezing of the measurement rm (blue arrow).

equation for the blue side as a function of the parameter
t ∈ R+ is given by

lim
x→0+

μc[μA, μB, r; μ = tx, μs = x], (32a)

lim
x→0+

μsc[μA, μB, r; μ = tx, μs = x]. (32b)

The value of t increases from t = 0 at the upper-left, green
vertex, to t → +∞ toward the blue, bottom vertex. Note
that the green vertex (t = 0) amounts to setting μ = 0 before
taking the limit: In this case, the conditional CM becomes
independent of μ, provided that μ �= 0. In such a limit, all
POVM’s effects �̂α approach the identity operator on mode
B, which is equivalent to measuring without recording the
outcome, and hence we can describe the green vertex by the
condition σc

A = σA.
(4) The blue, bottom vertex is the most important point for

nonclassical steering. Indeed, one can infer graphically (and
we will later prove it analytically) that this is the decisive point
to establish whether the triangoloid intersects the nonclassical
region. Formally, it amounts to taking the two limits t → +∞
and x → 0 together in Eq. (32), so as to keep μ > 0 and
finite, and consequently μs → 0+. However, it is simpler to
describe it directly as the infinite measurement’s squeezing
limit (μs → 0) of Eq. (31); the conditional parameters μc

and μsc become independent of μ �= 0 in this limit. Physi-
cally, this is achieved by projective measurements on the field
quadratures (also known as homodyne measurements). Note
that, since μc and μsc do not depend on the measurement’s
phase φ, any choice of field quadrature of mode B will lead
to this point, but because φc = φ, different choices of φ yield
distinct conditional states.

The trends we just listed are summarized by the right panel
of Fig. 1: The red arrow shows the direction in which the con-
ditional states in the triangoloid are associated with increasing
purity of the Gaussian measurements that generated them,
while the blue arrow indicates the direction of increasing
squeezing of the associated Gaussian measurements. Relying
on these qualitative considerations, we now prove the main
result concerning nonclassical steering for TMST states:

Proposition 1. Given a generic TMST state ρ̂AB, the
nonclassicality of the conditional state ρ̂

(α)
A resulting from

Gaussian measurement on mode B is monotonically nonde-
creasing with the squeezing parameter rm of the measurement.
In particular, among Gaussian measurements, any field-
quadrature projective measurement is optimal to remotely
generate nonclassicality with a TMST state and the TMST is
nonclassically steerable from mode B to mode A if and only if
its parameters fulfill the following inequality,

ςA|B > 1, (33)

where we introduced the nonclassical steerability from B
to A,

ςA|B := μA − μB

2
+ μA + μB

2
cosh 2r . (34)

Proof. Combining Eqs. (31) and (20), one can express
the nonclassicality of the conditional state, T = 1

2 − λ−,
where λ− is the smallest eigenvalue of σc

A, as a function of
μA, μB, r, μ, and μs. Explicit calculation of the derivative of
T with respect to μs = (1 + sinh2 rm)−1 shows, by inspec-
tion, that it is always nonpositive (under the assumptions 0 <

μ,μs, μA, μB � 1), and therefore T is monotonically nonde-
creasing with the measurement’s squeezing rm. Inequality (33)
then follows from Ineq. (21) in the homodyne limit μs → 0
(μ �= 0). Detailed steps and intermediate formulas are pro-
vided in Appendix A. �

D. Role of entanglement

An interesting question at this point is whether nonclassical
steering implies (or is it implied by) entanglement. In order
to answer this question, it is mandatory to recall that the
Peres-Horodecki criterion, based on the negativity of the par-
tially transposed quantum state, is a necessary and sufficient
condition for Gaussian entanglement [55]. Let us suppose that
ρ̂AB is a generic bipartite Gaussian state with CM σ. If we call

ε := max[0,− log(2d̃−)] (35)
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the entanglement negativity, where d̃− is the smallest sym-
plectic eigenvalue of the partially mirror-reflected σ, the
condition for entanglement of ρ̂AB is simply ε > 0. In the case
of a TMST state [56], one arrives at the following necessary
and sufficient inequality for entanglement:√

(μA + μB)2 cosh2 2r − 4μAμB

2 − (μA + μB) cosh 2r
> 1 . (36)

We can now provide the answer to the aforementioned
question in the form of the following proposition:

Proposition 2. Given a generic TMST Gaussian state,
entanglement is necessary but not sufficient for it to be non-
classically steerable (in at least one direction).

Proof. We will show that ςA|B > 1 implies ε > 0 and then
we provide a counterexample to the inverse implication. Since
initial entanglement is always a symmetric quantity in μA and
μB, we can assume ς ≡ ςA|B > 1 so that mode B can steer
mode A without any loss of generality. Let us re-express Ineq.
(36) in terms of μA, μB, and ς, by inverting the definition of
the steering parameter:√

(2ς − μA + μB)2 − 4μAμB > 2 − (2ς − μA + μB) .

(37)

From Ineq. (36), we already know that the left-hand side is
real and non-negative. Then, if the right-hand side is strictly
negative, ε > 0 and we are done. Otherwise, suppose that
2ς − μA + μB � 2, so that the right-hand side of Ineq. (37)
is also positive and we can square both sides and cancel some
terms:

2ς > 1 + μA − μB(1 − μA) . (38)

The right-hand side is clearly � 2, while the left-hand side
of Ineq. (38) is always >2 under the steerability hypothesis
ς > 1. This concludes the proof that ς > 1 implies ε > 0.

To show that the contrary is not necessarily true and en-
tanglement is not sufficient for nonclassical steerability, let us
limit ourselves to the symmetric case μA = μB, in which the
entanglement condition Ineq. (36) reduces to

μA

√
cosh2 2r − 1 > 1 − μA cosh 2r . (39)

These states are not nonclassically steerable if and only if

ςA|B[μA, μA, r] = μA cosh 2r < 1 . (40)

We can then solve jointly Ineqs. (39) and (40) by noting that
the second allows us to square the first and then imposing
again Ineq. (40) to finally arrive at

1 + μ2
A

2μA
< cosh 2r <

1

μA
. (41)

This constraint on r admits solutions for any 0 < μA � 1,
because the lower bound is always smaller than the upper
bound in the allowed range of μA, so no matter the amount
of two-mode squeezing, there exist infinitely many symmetric
entangled initial states that cannot be used for nonclassical
steering. Asymmetric instances also exist: Take, for exam-
ple, μA = 0.5 and μB = 0. Then one can check that for 2 <

cosh 2r < 3 both ε > 0 and ςA|B < 1. Since μA > μB in this

case, ςB|A < ςA|B, so nonclassical steering is forbidden also in
the other direction. �

E. Asymmetric nonclassical steering and further comments

Since Ineq. (33) is clearly asymmetric with respect to the
two modes, it is possible to have TMST states that are non-
classically steerable just in one direction. For example, we can
consider together the inequalities for nonclassical steerability
from mode B to A and nonsteerability from A to B:

μA − μB + (μA + μB) cosh 2r > 2 ,

μB − μA + (μA + μB) cosh 2r < 2 .

They can be re-expressed as

μA > μB ∧ 2 − μA + μB

μA + μB
< cosh 2r <

2 + μA − μB

μA + μB
.

(42)

This can happen for arbitrarily large values of the two-mode
squeezing parameter r, since it suffices to choose μ1 = 3

2n and
μ2 = 1

2n , with n being a large natural number, to have n − 1
2 <

cosh 2r < n + 1
2 . At fixed values of μA and μB, instead, we

see that there is a minimum value of r after which nonclassical
steering becomes possible, but in only one direction (mode
B can steer mode A if μA > μB and the reverse otherwise),
until a maximum value of r is exceeded and then the ability of
nonclassical steering becomes necessarily symmetric for all
larger values of r.

We can also recast the condition ςA|B > 1 in terms of the
mean number of squeezing photons per mode, Ns = sinh2 r,
and the mean number of thermal photons in each mode, NA =
1−μA

2μA
(and similarly for NB):

Ns >
NA(1 + 2NB)

1 + NA + NB
. (43)

We can deduce some useful characterization exploiting the
above inequality:

(1) If NA = 0, i.e., the mode to be steered has zero thermal
noise, then any amount of initial squeezing (Ns > 0) is enough
to ensure nonclassical steerability from B to A. Graphically,
NA = 0 corresponds to triangoloids whose red, upper-right
vertex is in (μc, μsc) = (1, 1), so that graphically it is clear
that they always intersect the nonclassical region.

(2) If NB = 0, then the mode to be measured has zero
thermal noise and

Ns >
NA

1 + NA
.

In particular, Ns > 1, or r > asinh(1) � 0.8814 guarantees
nonclassical steerability for any NA.

(3) If NA → +∞, the condition simplifies to

Ns > 2NB + 1,

while for NB → +∞
Ns > 2NA.

(4) For symmetric TMST states, i.e., for NA = NB, the
condition simplifies to Ns > NA: The number of nonclassical

022209-7



FRIGERIO, OLIVARES, AND PARIS PHYSICAL REVIEW A 103, 022209 (2021)

resources per mode (Ns) should be strictly larger than the
number of thermal photons per mode.

IV. APPLICATION TO NOISY PROPAGATION
OF TWB STATES

We will now discuss a partially realistic scenario to test the
notion of nonclassical steering. It would involve Bob prepar-
ing a correlated two-mode state, sending one of the modes
to Alice through an inevitably noisy channel and then trying
to nonclassically steer her mode at a distance by Gaussian
measurement on the mode he kept. Clearly, then, the residual
noise acting directly on Bob’s mode can be neglected: If it is
detrimental, he can perform the measurement on mode B just
after the preparation, before any noise can spoil his state, and
then send the conditional state of mode A to Alice. The noise
acting on mode A, instead, is truly inescapable, as always
when one tries to broadcast quantum states. If we call ρ̂AB the
generic bipartite state of the two modes and EA(t ) the noise
map acting on mode A, then the state of the two modes after a
propagation time t of mode A is

ρ̂AB(t ) = (EA ⊗ IB)[ρ̂AB(0)] (44)

with ρ̂AB(0) = ρ̂AB. Bob can perform a measurement de-
scribed by the POVM {�̂α}α∈C (not necessarily Gaussian at
this stage) on his mode either at time t = 0, just after the
preparation, or at a later time t . Using a Kraus decomposition
of EA, it is simple to show that the conditional state that will
arrive to Alice, ρ̂

(α)
A (t ), is the same in both cases: He does

not gain anything by waiting, but he can delay his choice
of measurement without loosing any power in his task of
preparing a nonclassical state at Alice’s place.

Let us now discuss the effects of such a noisy propagation
on triangoloids and on the nonclassical steerability condition,
Ineq. (33). We will assume that the quantum state of the two
modes immediately after its preparation is a TMST state with
zero thermal noise on both modes, i.e., it is a twin-beam state
(TWB, also known as two-mode squeezed vacuum state):

|r〉〉 = er(â†b̂†−âb̂)|0〉A ⊗ |0〉B (45)

with r ∈ R+. The TWB states are maximally entangled states
of two modes at fixed energy. Indeed, they can be written in
the number eigenbasis of the two modes as

|r〉〉 =
√

1 − λ2
∞∑

n=0

λn|n〉 ⊗ |n〉, (46)

where λ = tanh r, and hence they manifest perfect correla-
tions in photon-counting measurements and they provide one
of the few ways to generate higher photon number states.
Their entanglement negativity is εTWB[r] = 2r, and hence all
TWB states are entangled, as long as r > 0. Moreover, they
are always nonclassically steerable because they have NA =
NB = 0. Their triangoloids have a right-angled red vertex, in
μc = μsc = 1, as in Fig. 2.

The noisy propagation of mode A of the TWB state inside
an optical medium can be modeled by a coupling of the mode
with a nonzero temperature reservoir, i.e., a bath of infinitely
many decoupled oscillators thermalized at the same temper-
ature [57]. The dynamics can be described in terms of the

FIG. 2. Triangoloid for TWB state, with μA = μB = 1 and
r = 1.2.

master equation, also known as Lindblad equation, which for
an n-mode state ρ̂ reads

d ρ̂(t )

dt
=

n∑
k=1

�k

2
{(Nth,k + 1)L[âk] + Nth,kL[â†

k]}ρ̂(t ), (47)

where �k � 0 is the damping rate for the kth mode, taking
into account the couplings between the bath and the mode,
Nth,k ∈ R+ is the mean photon-number density per unit fre-
quency around the frequency of mode k interacting with the
bath, and L is the Lindblad superoperator:

L[Ô]ρ̂ = 2Ôρ̂Ô† − Ô†Ôρ̂ − ρ̂Ô†Ô. (48)

Passing to the phase space formalism through a differential
representation of the mode operators in Eq. (47), one can
derive a Fokker-Planck equation [58] for the Wigner function
of ρ̂(t ). When the initial state is Gaussian, it will stay Gaussian
throughout the evolution and a simple solution can be derived
for the time evolution σt of the CM of ρ̂(t ):

σt = G
1/2
t σ0G

1/2
t + (I2n − Gt )σ∞, (49a)

Gt :=
n⊕

k=1

e−�ktI2, (49b)

σ∞ :=
n⊕

k=1

(
Nk + 1

2

)
I2. (49c)

In Eq. (49a), σ0 is the initial CM, while σt is the CM
after a propagation time t and σ∞ is the asymptotic CM,
corresponding to complete thermalization of each mode of the
state with the corresponding bath of oscillators.

In our case, we shall assume that only mode A interacts
with a bath, therefore �B = 0, and we rename �A = �. We can
also call Nth the average number density of thermal photons in
the bath at the frequency of mode A. Moreover, the initial CM
σ0 is the CM of a TWB state, which is in canonical form with
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parameters

a0 = b0 = Ns + 1
2 ,

c0
1 = −c0

2 =
√

Ns(1 + Ns), (50)

and Ns = sinh2 r as usual. Inserting the corresponding σ0,
Gt = (e−�tI2) ⊕ I2 and σ∞ = (Nth + 1

2 )I4 in Eq. (49a), we
find the CM of the two modes at time t :

σt =

⎛
⎜⎝

a′ 0 c′ 0
0 a′ 0 −c′
c′ 0 b′ 0
0 −c′ 0 b′

⎞
⎟⎠ (51)

with time-dependent parameters a′, b′, and c′ given by

a′(t ) = Nth + 1
2 + e−�t (Ns − Nth ) , (52a)

b′ = Ns + 1
2 , (52b)

c′(t ) =
√

e−�t Ns(1 + Ns) . (52c)

The initial TWB state, after propagation of mode A for
a time t in the thermal environment, has become a generic
TMST state, with a CM σt in canonical form with c′

1 =
−c′

2 = c′. We can now compare Eq. (26) with Eq. (52) to get
the new purity parameters of the two modes, μ′

A and μ′
B, and

the new two-mode squeezing parameter r′. The result is

μ′
A(t ) = e�t

(Ns − Nth )(1 − e�t ) +
√

[Ns − Nth + e�t (1 + Ns + Nth )]2 − 4e�t Ns(1 + Ns)
, (53a)

μ′
B(t ) = e�t

(Nth − Ns)(1 − e�t ) +
√

[Ns − Nth + e�t (1 + Ns + Nth )]2 − 4e�t Ns(1 + Ns)
, (53b)

r′(t ) = 1

2
arccosh

⎡
⎣ Ns − Nth + e�t (1 + Ns + Nth )√

[Ns − Nth + e�t (1 + Ns + Nth )]2 − 4e�t Ns(1 + Ns)

⎤
⎦ . (53c)

All these quantities decrease monotonically with prop-
agation time t . While r′(t ) drops to 0, implying that the
state asymptotically becomes factorized, μ′

A(t ) and μ′
B(t )

approach asymptotic values given by

lim
t→+∞ μ′

A(t ) = 1

1 + 2Nth
, (54a)

lim
t→+∞ μ′

B(t ) = 1

1 + 2Ns
. (54b)

We can put to use Ineq. (33) to decide whether the state
after propagation of mode A for a time t is still nonclassically
steerable or not. Computing the nonclassical steerability ςA|B
from Eqs. (34) and (53), we find the maximum propagation
time for nonclassical steering, tns, after which Bob can no
longer steer Alice’s mode into a nonclassical state:

tns = 1

�
log

[
1 + Ns

Nth(1 + 2Ns)

]
. (55)

In general, tns is smaller than the maximum time tent after
which the modes are no longer entangled, which was com-
puted for example in Ref. [59] for the case of a TWB having
both modes interacting with reservoirs at the same tempera-
ture and with equal damping rates. We explicitly calculated
tent for our situation using entanglement negativity:

tent = 1

�
log

(
1 + 1

Nth

)
. (56)

Surprisingly, it does not depend on Ns and it is always greater
than the upper bound on tns, even in the limit of infinite
initial entanglement, Ns → +∞. A similar result has been
obtained in Ref. [60] [in particular, see Eq. (5.3) therein and
the subsequent discussion]. We therefore stress the fact that

there is always a nonzero time lapse, between tent and tns,
during which we observe entangled TMST states that are not
nonclassically steerable: This is in perfect agreement with our
result, Proposition 2, reinforcing the idea that being nonclas-
sically steerable is a stronger condition than entanglement for
TMST states, and shows that such states are not rare and odd
exceptions, but they arise quite naturally.

We can exploit the triangoloid plots to monitor the evo-
lution of the set of conditional states that can be prepared on
mode A at any given time (or, equivalently, the evolution of the
set of conditional states generated just after the preparation
of the TWB). In Fig. 3, we depicted a time sequence of
triangoloids arising from an initial TWB state with Ns = 1, for
a damping rate � = 0.1 and Nth = 0.2. They shrink progres-
sively, until they completely get out of the nonclassical region
at t = tns. At later times, they continue to contract toward
a point on the upper, green side; indeed, for t → +∞, the
two-mode state becomes factorized and the state of mode A
cannot be conditioned by measurements on mode B, being just
a thermal state with purity given by Eq. (54a). Note that the
impression that they contract without drifting is not true in
general, but only for some choices of Ns and Nth.

V. THE NOTION OF NONCLASSICAL STEERING
FOR A GENERIC TWO-MODE GAUSSIAN STATE

The main conceptual difficulty we may encounter in gen-
eralizing the idea of nonclassical steering to all two-mode
Gaussian state arises from single-mode squeezing: For a gen-
eral Gaussian state ρ̂AB of two modes, the unconditional
quantum state ρ̂A = TrB[ρ̂AB] of mode A may already be non-
classical due to single-mode squeezing. However, as we are
trying to capture a type of quantum correlations, we should
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FIG. 3. Time sequence of triangoloids, starting from a TWB state
with Ns = sinh2 r = 1. The damping rate of the noisy channel acting
on mode A is � = 0.1 and the average number density of thermal
photons is Nth = 0.2. At t = tns and for all greater times, the overlap
with the nonclassical region (light brown) vanishes.

be able to perform local unitary operations without affecting
them. In our context, we may freely perform local Gaussian
unitary transformations (LGUTs) on the two modes in order
to bring ρ̂AB into a simpler form. In particular, it is well
understood that, by means of LGUTs, any two-mode Gaussian
state can always be brought into the so-called canonical form
[35,61,62], for which the generic CM σ, written in block form
as in Eq. (17), has

A = a · I2, B = b · I2, C = diag(c1, c2) . (57)

Here a, b, c1, c2 ∈ R are truly independent real parameters,
but they nevertheless have to obey the constraints required by
the positivity of σ and by Ineq. (9). The UR imply that a, b �
1
2 , and hence the unconditional states ρ̂A = TrB[ρ̂AB] and ρ̂B =
TrA[ρ̂AB] of both modes are still classical, for any two-mode
Gaussian state ρ̂AB in canonical form. This observation lets us
suggest the following generalization of Definition 1:

Definition 2. A two-mode Gaussian state ρ̂AB in canonical
form is called weakly nonclassically steerable (WNS) from
mode B to mode A (B → A) if there exists a Gaussian positive
operator-valued measure (POVM) {�̂α}α∈C on mode B such
that the conditional state of mode A, ρ̂

(α)
A , is a nonclassical

state.
We can also directly generalize Proposition 1:
Proposition 3. The least classical conditional state ρ̂

(α)
A of

mode A resulting from conditioning upon Gaussian mea-
surements on mode B of a two-mode Gaussian state ρ̂AB in
canonical form is generated by a field-quadrature measure-
ment on mode B, either of the x̂B quadrature if |c2| � |c1|,
or of the p̂B quadrature otherwise. In particular, ρ̂AB is WNS
(B → A) if and only if the parameters of its CM satisfy

a − c2

b
<

1

2
, c = max{|c1|, |c2|} . (58)

Proof. Inserting Eqs. (57) for the canonical form in the
general formula (18) for the conditional CM σc

A, we ob-
serve that, since A is diagonal, the smallest eigenvalue of
σc

A is minimized (over all possible CMs σM) when the great-
est eigenvalue λM of CT (B + σM )−1C attains its supremum,
which is positive semidefinite, and hence λM � 0. By explicit
calculation, to maximize λM the measurement’s phase has
to be φ = 0 if |c2| � |c1| and φ = π otherwise. Once the
phase is settled to one of these values, λM is a monotonic
decreasing function of μs, as can be checked by inspection
of its first derivative with respect to μs. Therefore, λM is
further maximized in the limit μs → 0, for which the value
of μ( �= 0) becomes irrelevant and the Gaussian POVM �̂α

reduces to the spectral measure of the x̂ quadrature for φ = 0
and of the p̂ quadrature for φ = π . As for Eq. (58), note that
if c = |c2| � |c1|, then we can fix the POVM’s phase to φ = 0
and, for μs → 0, we explicitly work out the minimum of the
smallest eigenvalue of σc

A:

min {λm} = a − c2

b
.

This has to fulfill min{λm} < 1/2 in order for the state ρ̂AB to
be nonclassically steerable, as stated by Eq. (58). Otherwise,
if c = |c1| > |c2|, we choose φ = π to arrive at the same
conclusion. �

In switching from TMST states to generic states in
canonical form, we called weak this generalized notion of
nonclassical steering. The reason is that it does not imply en-
tanglement, as we showed with some examples of parameters
and also with explicit constructions of separable states that
are nevertheless WNS (see Appendix B 1). A question may
arise now on whether WNS is related to a more general class
of quantum correlations, such as Gaussian quantum discord
(GQD) [63–67]. We remark that Gaussian states with zero
GQD, being factorized, are obviously not WNS. A reasonable
guess, however, could be to expect a strictly positive lower
bound to GQD for states exhibiting WNS. By construction of
explicit counterexamples, we showed that this is not the case
(see Appendix B 2).

Motivated by these findings, we shall introduce a tighter
notion of nonclassical steering:

Proposition 4. A two-mode Gaussian state ρ̂AB in canon-
ical form is called strongly nonclassically steerable (SNS)
from mode B to mode A if any field-quadrature measurement
on mode B generates a nonclassical conditional state of mode
A. A necessary and sufficient condition for ρ̂AB to be SNS is

a − c′2

b
<

1

2
, c′ = min{|c1|, |c2|}, (59)

where a, b, c1, c2 are the parameters of its CM in canonical
form.

Proof. We follow the proof of Proposition 3. Among all
quadrature measurements on mode B, the one leading to the
least nonclassical conditional state of mode A corresponds to
the “wrong” choice of measurement’s phase (φ = π for |c2| �
|c1| and φ = 0 otherwise). Therefore, it suffices to require the
smallest eigenvalue of σc

A to be smaller than 1
2 also in this case,

which gives Ineq. (59). �
Comparing Ineqs. (58) and (59), we immediately conclude

that weak and strong nonclassical steering coincide precisely
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for the class of TMST states, since they are all and only those
states in canonical form with c1 = −c2.

We now seek a generalization of weak and strong nonclas-
sical steering to all Gaussian states of two modes. We recall
once again that any two-mode Gaussian state can be brought
to its unique canonical form through LGUTs without altering
the correlations, and thus we can extend the definitions in the
following way:

Definition 3. A generic two-mode Gaussian state ρ̂AB is
called weakly (strongly) nonclassically steerable if the unique
Gaussian state ρ̂′

ABin canonical form related to ρ̂AB by LGUTs
is weakly (strongly) nonclassically steerable.

As for the results regarding the necessary and sufficient
conditions for WNS and/or SNS, we have to define the effect
of LGUTs on σc

A. Given that any Gaussian unitary trans-
formation is implemented on phase space by a symplectic
linear transformation and conversely, a LGUT on a two-mode
system is described by a direct sum SA ⊕ SB of 2×2 matrices
acting on quantum phase space, where SA(B) ∈ SLA(B)(2). The
2×2 blocks of a generic CM σ, written as in Eq. (17) trans-
form according to

A′ = SAAST
A , B′ = SBAST

B , C′ = SACST
B . (60)

If SA ⊕ SB brings the initial σ in canonical form, then we
have A′ = a′ · I2, B′ = b′ · I2, and C′ = diag(c′

1, c′
2). We can

rearrange the conditional CM σc
A resulting from a Gaussian

measurement with CM σM on the initial state with CM σ as

σc
A = ST

A [A′ − C′(B′ + σ ′
M )−1C′T ]SA, (61)

where we redefined the CM of the measurement as σ ′
M =

ST
B σMSB. We deduce that, for what concerns the conditional

state of mode A, the measurement associated with σM acts
on the two-mode state with CM σ in the same way as the
measurement σ ′

M acts on the canonical form state related to σ,
followed by a transformation induced by SA on the resulting
conditional CM. Hence, the action of SA does not interfere
with the steering process and we can simply factor it out. At
the same time, as long as SB does not involve infinite squeez-
ing, we can still reproduce the desired limit of σ ′

M , acting on
the state in canonical form, by an infinite squeezing limit of
σM with a suitable phase. We can finally replace a, b, c1, c2

in Ineqs. (58) and (59) with their expressions in terms of
symplectic invariants [61] to arrive at the most general form
of the necessary and sufficient conditions for WNS and SNS:

I1 = a2 , I2 = b2 ,

I3 = c1c2 , I4 = (
ab − c1

2
)(

ab − c2
2
)
. (62)

Indeed, these are the only independent combinations of the
canonical parameters a, b, c1, c2 that are invariant under all
LGUTs.

Proposition 5. Given any two-mode Gaussian state ρ̂AB,
it is WNS from mode B → A if and only if its symplectic
invariants satisfy the inequality

I ′ −
√

I ′2 − 4I1I2I4

2I2
√

I1
<

1

2
, (63)

while it is SNS from mode B → A if and only if they fulfill

I ′ +
√

I ′2 − 4I1I2I4

2I2
√

I1
<

1

2
, (64)

where I ′ = I1I2 − I3
2 + I4.

Clearly, strong nonclassical steering implies weak nonclas-
sical steering. It deserves its name because it also implies
entanglement, but we will prove this indirectly, via a stronger
result:

Theorem 1. Any two-mode Gaussian state ρ̂AB that is SNS
from mode B to mode A is also EPR steerable in the same
direction. In particular, it must be entangled.

Proof. Following Ref. [12], a two-mode Gaussian state is
EPR steerable from mode B to mode A by Gaussian measure-
ments if and only if its CM violates the inequality

σ + i

2
ωA ⊕ 0B � 0, (65)

where σ is the CM of ρ̂AB and 0B is the zero matrix on
phase space of mode B. Exploiting LGUT invariance, we can
restrict the comparison between EPR steerability and SNS to
Gaussian states in canonical form. In this case, keeping in
mind that a > 1

2 , violation of the above inequality reduces to
[12,68] (

a − c2
1

b

)(
a − c2

2

b

)
<

1

4
, (66)

which is certainly true under the SNS Ineq. (59). �
One might wonder whether the EPR-steerability condition

Ineq. (66) can be fulfilled by physical parameters a, b, c1, c2

that nevertheless violate the SNS condition Ineq. (59): In other
words, if there actually exist two-mode Gaussian states which
are EPR steerable but not strongly nonclassically steerable in
the same direction. We confirmed that this is the case with
an explicit example, provided in Appendix B 3. It is also
clear, from the proof of Theorem 1 we just presented, that
TMST states are EPR steerable from one mode to the other
if and only if they are nonclassically steerable in the same
direction, so that the three notions of steering coincide for
them and Ineq. (66) takes the simpler form of Ineq. (33). This
observation suggests a new, surprising role for the notion of
P-nonclassicality: Alice can be certain that the initially shared
TMST state was indeed entangled if and only if the condi-
tional state of her mode is nonclassical; we foresee that this
fact could find applications in one-sided device-independent
quantum key distribution [13], especially in light of the rich
variety of techniques developed to detect nonclassicality (see
Ref. [69] and references therein). Moreover, in light of this
observation for TMST states, Proposition 2 amounts to the
well-known fact that EPR steerability is generally a stronger
requirement than entanglement; however, the proof we pro-
vided adds quantitative aspects to these considerations. For
example, it shows that, for unconstrained local purities, there
is no lower bound on two-mode squeezing that guarantees an
entangled TMST state to be EPR steerable, as one can also see
from Ineq. (41).

As a further comment on the asymmetry of nonclassi-
cal steering, note that the WNS-SNS Ineq. (63) from B to
A is tighter than the corresponding inequality from A to B
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[corresponding to exchanging I1 and I2 in Ineq. (63)] if and
only if I1 > I2, but I1 and I2 are inversely proportional to the
squares of the purities of the partial traces [70]:

IA(B) = 1

4μ2
1(2)

, μ1(2) = Tr
[
ρ̂2

A(B)

]
, (67)

where ρ̂A = TrB[ρ̂AB] and ρ̂B = TrA[ρ̂AB]. Therefore, weak
and strong nonclassical steering are easier to achieve when
measuring the mode with lower purity to influence the mode
with higher purity.

Finally, we should mention some similarities between our
results and related works on CV quantum systems. The quan-
tities on the left sides of (58) and (59) are well known as
the conditional variances appearing in the Reid EPR crite-
rion [71,72], whose test is already experimentally accessible
[73,74]. This is in agreement with a result stating that quadra-
ture measurements are the best choice for Gaussian EPR
steering [75]. Expressed in these quantities, weak nonclassical
steering corresponds to at least one of such variances being
smaller than the vacuum value, whereas, for strong nonclassi-
cal steering, both of them have to be smaller. EPR steerability
amounts to asking that the product of them is smaller than
the value attained by the same quantity on the vacuum [76].
More recently [77], the remote generation of Wigner nega-
tivity using bipartite Gaussian states as a starting point and
one-photon subtraction instead of Gaussian measurements,
has been discussed. It was found that if the initial Gaussian
state is described by a CM σ given in block form as in Eq. (17),
then the condition for remote generation of Wigner negativity
on mode B by one-photon subtraction on mode A is

Tr[σA|B] = Tr[A − CT B−1C] < 1. (68)

If the initial state is in canonical form, the above inequality
reduces to (

a − c2
1

b

)
+

(
a − c2

2

b

)
< 1, (69)

which is clearly implied by the strong nonclassical steering
inequality from mode B to mode A (59), but mind the reversal
of the order with respect to the generation of Wigner negativ-
ity. Therefore, we can assert that two-mode Gaussian states in
canonical form that are strongly nonclassically steerable are
also amenable to remote generation of Wigner negativity, a
stronger, non-Gaussian form of nonclassicality [78,79] that
is believed to be a necessary resource in universal quantum
computation with CV systems [80,81]. Since Ineq. (68) is
not invariant under LGUTs, this conclusion cannot be di-
rectly generalized to all two-mode Gaussian states; however,
in Ref. [77] the authors noted that, if one allows for passive
unitary Gaussian transformations to act on mode A before the
one-photon subtraction, then EPR steerability (and, a fortiori,
SNS) becomes a sufficient condition for the remote generation
of Wigner negativity with the most general bipartite Gaussian
state as a starting point. This means that, from a resource
viewpoint, all strongly nonclassically steerable states of two
modes are suited for remote Wigner negativity generation
using one-photon subtraction.

weakly
 noncl. 
steerable

strongly
noncl.
steerable

entangled

EPR
steerable

G
Q

D
>

0
two-mode
Gaussian
   states

FIG. 4. Quantum correlations for two-mode Gaussian states.
GQD stands for Gaussian quantum discord. The same ordering be-
tween the modes must be adopted for all steering correlations in the
diagram, while the ordering for GQD can be arbitrary. No single,
specific ordering between the two parties involved in the correlations
is implied by the positions of the sets inside the diagram.

VI. CONCLUSIONS

Upon exploring how P-nonclassicality may be generated
on one mode of a TMST state by Gaussian measurements
on the other mode, we have introduced, and discussed in
detail, the concept of nonclassical steering (NS). We have
characterized all conditional states generated in this fashion
by using triangoloid plots and we have deduced a necessary
and sufficient condition for NS with TMST states, arising
from the nondecreasing behavior of the conditional nonclas-
sicality with respect to the squeezing of the measurement.
After discussing the necessity of entanglement for nonclassi-
cal steering with TMST states, and its asymmetric character,
we put to use these results in the practical situation of a
noisy propagation of a TWB state, for which we evaluated
the maximum propagation time for NS.

We have also generalized NS to generic two-mode Gaus-
sian states thanks to invariance under LGUTs, and two
separate notions have emerged: weak and strong nonclassical
steering. The first does not even imply entanglement, while
the second implies EPR steerability. We have also proved that
nonclassical steering for TMST states is EPR steering, a con-
clusion that may open the way for the use of nonclassicality
in QKD.

The classification of quantum correlations for two-mode
Gaussian states emerging from our results is summarized
in the diagram of Fig. 4. All the quantities, with the only
exception of entanglement, are asymmetric: The diagram is
thus valid as long as the same ordering of the modes is
chosen for weak, strong, and EPR steering, while the order
of Gaussian quantum discord (GQD) can be chosen at will.
However, no specific ordering (A steering B or B steering A)
is implied by the diagram and, in particular, left and right
positions of the sets are arbitrary, and they were adjusted
solely in order to display the set-theoretic relations in a neat
way. The diagram makes it clear that the sets of entangled and
weakly nonclassically steerable states intersect (light-purple
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region and everything inside it), but neither of them is a strict
subset of the other. Moreover, they are both internally tangent
to the boundary of states with positive GQD, because one
can find sequences of states with arbitrarily small GQD in
both sets. Notice, however, that the question about a possi-
ble lower bound on GQD for states that are both entangled
and WNS was not answered in our work and should not
be deduced from the diagram. We also point out a possi-
ble analogy between the Gaussian steering triangoloids we
have introduced and the quantum steering ellipsoids [82,83]
arising in the context of steering for a two-qubit system.
Further explorations in this direction may be useful to bet-
ter characterize the set of conditional states also in the CV
setting.

Overall, the results of our work suggests that the hierar-
chy of quantum correlations for two-mode Gaussian states is
more involved than previously believed and, from weakest to
strongest, includes positive GQD, weak nonclassical steerabil-
ity, entanglement, EPR steerability, and strong nonclassical
steerability.
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APPENDIX A: DERIVATION OF THE NONCLASSICAL
STEERING CONDITION FOR TMST STATE

We provide here a step-by-step derivation of Eq. (33). In
order to have slightly more manageable expressions, let us
first invert Eq. (34), taken as a definition of the quantity ςA|B,
to express cosh 2r in terms of ςA|B, μA, and μB:

cosh 2r = 2ςA|B − μA + μB

μA + μB
. (A1)

Using this relation, we can rewrite Eq. (31) to express the
conditional parameters μc and μsc in terms of initial state’s pa-
rameters μA, μB, ςA|B, and POVM’s paramaters x = μ (purity
of the POVM) and y = μs (purity parameter for the POVM’s
single-mode squeezing), omitting the subscript on ςA|B for
shortness:

μc[μA, μB, ς, x, y] =
√

y
(
μ2

Aμ2
B + x2ς2

) + 2μAμBxς

y(x2 + (−μA + μB + ς )2) + 2x(−μA + μB + ς )
, (A2a)

μsc[μA, μB, ς, x, y] =
√[

y
(
μ2

Aμ2
B + x2ς2

) + 2μAμBxς
]
[y(x2 + (−μA + μB + ς )2) + 2x(−μA + μB + ς )]

x[μAμB + ς (μB − μA) + ς2] + y[x2ς + μAμB(−μA + μB + ς )]
. (A2b)

These equations can be inserted in Eq. (21) to find the smallest eigenvalue λ− of the conditional CM as a function of
μA, μB, ς, x, and y:

λ−[μA, μB, ς, x, y] = 1

2

x[μAμB +
√

1 − y2(μA − ς )(μB + ς )] + x2yς + (−μA + μB + ς )(yμAμB + xς )

y
(
μ2

Aμ2
B + x2ς2

) + 2xςμAμB
. (A3)

Our goal now is to prove that the conditional nonclassical depth T is a monotonically nondecreasing function of the POVM’s
squeezing parameter rm; since y = μs = (1 + 2 sinh2 rm)−1 and T = 1

2 − λ−, this amounts to showing that λ−, as expressed by
Eq. (A3) above, is a monotonically nondecreasing function of y. Indeed, by taking the derivative of Eq. (A3) with respect to y
one arrives at

dλ−
dy

= x(ς − μA)(ς + μB)
[
x2ς2(1 −

√
1 − y2) + 2yμAμBxς + (1 +

√
1 − y2)μ2

Aμ2
B

]
2
√

1 − y2
[
y
(
μ2

Aμ2
B + x2ς2

) + 2xςμAμB
]2 (A4)

Since ς > μA, as it is apparent from its definition in Eq. (34),
we see by inspection that indeed dλ−

dy � 0. Therefore, the most
nonclassical conditional state of mode A will be attained in the
limit of infinite measurement’s squeezing, or y → 0+, which
can be readily evaluated from Eq. (A3):

Tmax = 1

2
− lim

y→0
λ− = ς − 1

2ς
. (A5)

The state is P-nonclassically steerable from B to A, by def-
inition, if and only if it is indeed possible to prepare a
P-nonclassical conditional state of mode A by at least one
generalized Gaussian measurement on mode B, i.e., if and
only if Tmax > 0, and thus

Tmax > 0 ⇐⇒ ς > 1, (A6)

which is the sought condition of Eq. (33).

APPENDIX B: EXPLICIT COUNTEREXAMPLES

1. Separable states allowing weak nonclassical steering

A simple choice of parameters for the CM of a two-mode
Gaussian state in canonical form, which is separable, and
WNS is

a = b = 13.9,

c1 = 4.6, c2 = −13.7. (B1)

It is simple to check that the corresponding Gaussian state is
physical (σ > 0 and fulfilling the UR).

There are also instances of physical states in canonical
form with c1c2 > 0, a notorious sufficient condition for sepa-
rability, that are nevertheless WNS, for example,

a = b = 1.8,

c1 = 0.4, c2 = 1.6. (B2)
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Furthermore, we explicitly constructed a counterexample in terms of a Williamson’s decomposition [84,85]:

σswns = 	
(2)
R · Sm

φ · [	(1)
r ⊕ 	(1)

r

] · [σ th(μA) ⊕ σ th(μB)] · [	(1)
r ⊕ 	(1)

r

]T · (Sm
φ

)T · (	(2)
R

)T
, (B3a)

R = ln 2, φ = π

4
, r = 1

4
ln

(
μA + 16μB

16μA + μB

)
, (B3b)

where

σ th(μk ) = 1

2μk
I2, (B4a)

Sm
φ =

(
cos φI2 sin φI2

− sin φI2 cos φI2

)
, (B4b)

	(1)
r = diag

(
e2r, e−2r

)
, (B4c)

	
(2)
R =

(
cosh R · I2 sinh R · σz

sinh R · σz cosh R · I2

)
, (B4d)

and σz = diag(1,−1) is the third Pauli matrix. In physical
terms, σ th(μk ) is the CM of a single-mode thermal state, Sm

φ

performs a two-mode mixing (without cross mixing of x’s and
p’s quadratures), 	(1)

r implements single-mode squeezing at
the level of phase-space, and finally 	

(2)
R introduces a two-

mode squeezing. Notice that we choose φ = π
4 , so that the

two-mode mixing is equivalent to the action of a balanced
beam splitter, and we also took the same, real single-mode
squeezing parameter r for both modes. The resulting CM
σswns corresponds necessarily to a physical state, because this
decomposition implies that it could be prepared with modern
optical equipment, at least in principle. One can check that,
for the given choice of the parameters r, R, φ, the matrix σswns

is in canonical form. Moreover, for μ1 = 1
32 and μ2 = 1

4 , it
describes a Gaussian state which is both separable and weakly
nonclassically steerable.

2. GQD and weak nonclassical steering

Consider a sequence of Gaussian states in canonical form
with the following parameters:

an = n + 2

2n + 1
, bn = n, (B5a)

c1,n = 1√
2n

, c2,n = −
√

2n

2n + 1
, (B5b)

for integers n > 2. By direct computation, one can check
that the corresponding CMs are positive and fulfilling the
UR. They are also weakly nonclassically steerable, because
|c2,n| > |c1,n| and

an − c2
2,n

bn
= n

2n + 1
<

1

2
.

The asymptotic values of the parameters as n → +∞ are

an −→ 1
2

+
, bn −→ +∞,

c1,n −→ 0+ , c2,n −→ −1+, (B6)

but these values have to be approached in the right way, given,
for example, by Eq. (B5), in order to respect the physical
constraints for any finite n. As n → +∞, both the Gaus-
sian quantum discords, DA|B and DB|A, monotonically drop to
zero, as we confirmed numerically. Therefore, weakly non-
classically steerable Gaussian states can have arbitrarily small
GQDs in both directions.

3. An EPR-steerable but not strongly
nonclassically steerable state

We will now show that it is possible for a two-mode
Gaussian state in canonical form to be EPR steerable without
being strongly nonclassically steerable. We seek parameters
a, b, c1, c2 corresponding to a physical state, for which the
greatest factor on the left-hand side of Ineq. (66) is greater
than 1

2 (so that the state is not strongly nonclassically steer-
able), while the other factor is small enough to ensure that the
product is still smaller than 1

4 (so that it is EPR steerable). An
instance of such a state is provided by the following choice of
parameters:

a = b = 0.9,

c1 = 0.55, c2 = −0.7. (B7)
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