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Time-delayed quantum feedback and incomplete decoherence suppression
with a no-knowledge measurement
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The no-knowledge quantum feedback was proposed by Szigeti et al. [Phys. Rev. Lett. 113, 020407 (2014)]
as a measurement-based feedback protocol for decoherence suppression for an open quantum system. By
continuously measuring environmental noises and feeding back controls on the system, the protocol can
completely reverse the measurement back-action and therefore suppress the system’s decoherence. However,
the complete decoherence cancellation was shown only for the instantaneous feedback, which is impractical in
real experiments. Therefore, in this work, we generalize the original work and investigate how the decoherence
suppression can be degraded with unavoidable delay times, by analyzing non-Markovian average dynamics.
We present analytical expressions for the average dynamics and numerically analyze the effects of the delayed
feedback for a coherently driven two-level system, coupled to a bosonic bath via a Hermitian coupling operator.
We also find that, when the qubit’s unitary dynamics does not commute with the measurement and feedback
controls, the decoherence rate can be either suppressed or amplified, depending on the delay time.
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I. INTRODUCTION

Decoherence for an open quantum system arises when
the quantum system of interest interacts with its environ-
ment, resulting in the system losing its coherence properties
and degrading its abilities to perform useful tasks for quan-
tum technology [1–3]. To mitigate decoherence, there are
techniques that have been proposed, such as error-correcting
codes [4–6], dynamical decoupling [7–10], and measurement-
feedback controls [11–14]. Most of the existing techniques
consist of two main components: one is the part of collecting
information (or knowledge) about the system via measure-
ments, and another part is controlling the system to mitigate
the decoherence effects, based on the collected information
from the measurements. However, it was recently proposed
that the decoherence cancellation was possible by only mea-
suring the environmental noise affecting the system, e.g.,
using the so-called “no-knowledge” measurement [15]. In the
protocol, measurement results contain no information about
the system and the decoherence effect could be completely
suppressed using feedback control based on the information
of the environment noise.

The no-knowledge quantum feedback [15] was proposed
as a decoherence cancellation protocol for a quantum sys-
tem continuously coupled to a Markovian bosonic bath
(environment). The protocol requires no need of any prior
state filtering [16,17], or knowledge about the measured
system state. This is possible through a carefully chosen
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measurement setting, such that its measurement record is pro-
portional to a Gaussian white noise y(t ) ∝ ξ (t ) (e.g., using
a homodyne detection with a local oscillator phase π/2),
and the feedback control is a simple function of the record.
The no-knowledge quantum feedback was shown to com-
pletely cancel the back-action from the measurement. Once
the back-action is perfectly reversed for all individual noise
realizations, the decoherence on the system’s average dynam-
ics can be completely suppressed. The protocol can be applied
in the case where the system-bath coupling operators are Her-
mitian, but can also be adapted for non-Hermitian coupling
by adding extra conjugate channels (e.g., using gain and loss
channels for bosonic baths) and mixing output records using
beam splitters [15,18,19].

However, the analysis of the no-knowledge feedback so far
has been shown for ideal situations, with a strong assumption
that the measurement back-action on the system can be instan-
taneously reversed by the feedback control. A more realistic
model should take into account that, in any experiment, mea-
surement processes take time and the feedback process occurs
at a finite time after the measurement. From this more general
model, one can investigate robustness of the decoherence sup-
pression to a finite delay time. Moreover, the instantaneous
process can still be properly defined by taking a limit when
the delay time goes to zero. As long as the feedback process
occurs after the measurement, the time-causal order is still
preserved [11,12].

In this work, we investigate the no-knowledge feedback
with delay time via analytical calculations for open quantum
systems, supplemented by numerical simulations for qubit ex-
amples. In addition to the stochastic master equations (SMEs)
in Stratonovich interpretation used in the original work
[15], we analyze the SMEs, describing individual quantum
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trajectories with the feedback control [11], in both Itô and
Stratonovich interpretations [20,21]. The analysis shows that
the decoherence suppression is degraded with the delay times
and the complete suppression can only be achieved with the
ideal zero delay time. With finite delayed time, the correct
SMEs should be derived by treating the stochastic elements in
the feedback and measurement processes as two independent
noises.

In order to analyze the effect of delay time systemati-
cally, we implement the discrete-time operational approach
for continuous quantum trajectory with feedback delay [22]
and derive analytical solutions (whenever possible) for the
system’s average dynamics. The discrete-time operational ap-
proach for quantum trajectories has been used in numerical
simulations [23–25] and in processing measurement records
from experiments [26–28], in order to reduce numerical errors
from a finite-time resolution. The technique also allows us
to investigate the ordering of operations applied to system’s
state with explicit delay times. We consider three different
cases where the system’s dynamics includes (a) only the
measurement and feedback, (b) with additional commuting
unitary dynamics, and (c) with additional noncommuting uni-
tary dynamics. We then compare the analytical results with
numerically simulated dynamics for an example of a coher-
ently driven qubit coupled to a bosonic bath. Our results
explicitly show how much the decoherence suppression can
be degraded, as the delay time τ increases, i.e., from the ideal
case of full cancellation (τ → 0) to the other limiting case
of the pure decoherence (no feedback, or τ → ∞). We also
show that, for the case (c), when the delay time is comparable
to the timescale of the Hamiltonian evolution of the system,
the decoherence rate can be either suppressed or amplified.
By setting the delay time to be half-integers of the qubit’s Rabi
period, the decoherence effect can even be worse than the case
with no feedback at all. This similar effect has been recently
found in a cavity-QED system with a time-delayed coherent
feedback [29].

This paper is organized as follows. In Sec. II, we briefly
review the SMEs for homodyne measurement and the no-
knowledge measurement with feedback control. We show that
a contradiction in deriving the SMEs can arise from misinter-
preting the stochastic feedback. In Sec. III, we introduce the
time-delayed feedback for the no-knowledge measurement
and present our results for SMEs with finite delay time τ .
We then implement the time-discrete operation for quantum
trajectories in Sec. IV, derive the system’s average dynamics,
and show comparisons with numerical simulations for the
qubit examples. The conclusion is in Sec. V and a derivation
for the time-delayed feedback SMEs is shown in Appendix.

II. PERFECT NO-KNOWLEDGE MEASUREMENT
AND FEEDBACK

We first briefly review the decoherence and stochastic
master equations for homodyne detections, and then discuss
no-knowledge quantum feedback with delay times. Let us first
consider a quantum system coupled to M bosonic baths via
Lindblad operators ĉ j for j = 1, 2, . . . , M under the strong
Markov assumption [30]. For the case when there is no mea-
surement on the bath, or measurement results are unknown,

the system’s dynamics is given by the Lindblad master equa-
tion (ME) [31]

∂tρ(t ) = Lρ(t ) ≡ −i[Ĥ , ρ(t )] +
M∑

j=1

D[ĉ j]ρ(t ), (1)

where ρ(t ) is a quantum state matrix of the system. The
superoperator L• represents both the system’s unitary dy-
namics (with the Hamiltonian Ĥ ) and the decoherence effect
from the system-bath coupling via the Lindblad operators,
where D[ĉ j]• ≡ ĉ j • ĉ†

j − 1
2 (ĉ†

j ĉ j • + • ĉ†
j ĉ j ). The solution of

the unconditional evolution equation (1) at any time t is given
by ρ(t ) = eLtρ0 for an initial condition ρ(t = 0) = ρ0.

However, when measurements are performed on the baths
and their results are known to us (as an observer), the sys-
tem’s state dynamics can be conditioned on the measurement
results, described by the quantum trajectory theory [1,12,32].
For simplicity, let us assume M = 1 (ĉ1 = L̂eiθ ) and the bath’s
detection is performed via the homodyne measurement with a
phase θ , where a measurement record yθ (t ) is acquired for
time t ∈ [0, T ). The quantum system’s dynamics conditioned
on the homodyne record is described by the diffusive-type
SMEs, which can be written in the Itô and Stratonovich
formulations. We first write the Stratonovich SME for the
quantum state under the homodyne detection with a measure-
ment efficiency η,

∂tρ(t ) = Lρ(t ) + √
η yθ (t )H[L̂eiθ ]ρ(t ) − η

2
A2[L̂eiθ ]ρ(t ),

(2)
where we have defined the superoperators H[ĉ]• = ĉ • + •
ĉ† − Tr(ĉ • + • ĉ†)• and A2[ĉ]• = Ā2[ĉ] • −Tr(Ā2[ĉ]•)•
using Ā[ĉ] = ĉ • + • ĉ†. The last two terms in Eq. (2) rep-
resent the stochastic term due to the measurement back-action
and the Stratonovich correction term, respectively. The mea-
surement signal can also be written as yθ (t ) = √

η Tr[(L̂eiθ +
L̂†e−iθ )ρ(t )] + ξ (t ), which contains the information about the
system and a stochastic Gaussian white noise ξ (t ). For com-
pleteness, we also note that the Stratonovich SME in Eq. (2)
is equivalent to the following Itô SME:

dρ(t ) = Lρ(t )dt + √
η ξ (t )H[L̂eiθ ]ρ(t )dt, (3)

where we have used “dρ” on the left-hand side to indicate
the explicit differential in the Itô formalism [12]. In Eq. (3),
we wrote the stochastic term using the Gaussian white noise
as defined before, but note that ξ (t )dt has the same statistical
properties as the Wiener increment dW (t ) [20,21]. The above
SMEs, after averaging over all possible measurement record
realizations, should both agree with the Lindblad decay evo-
lution in Eq. (1). This averaging over the records is equivalent
to tracing over the bath’s degree of freedom.

The no-knowledge measurement in Ref. [15] was intro-
duced with a set of conditions, such that the measurement
device only measures the noise of the environment. The con-
ditions are that L̂ must be Hermitian (L̂ = L̂†) and that the
homodyne phase must be θ = π/2. These lead to

L̂eiπ/2 + L̂†e−iπ/2 = 0, (4)

and the measurement signal is of the form

yπ/2(t ) = ξ (t ), (5)
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which contains no information about the measured state, only
about the stochastic noise at time t .

Following the original proposal that used Stratonovich
SMEs and assuming a perfect homodyne measurement η = 1,
we can obtain the SMEs by replacing the measurement signal
with the white noise, i.e., substituting Eq. (5) in Eq. (2).
Given that L̂ = L̂†, one obtains 1

2A2[L̂eiπ/2]ρ = D[L̂eiπ/2]ρ
that cancels the decoherence term in Lρ in Eq. (2). The
Stratonovich SME for the no-knowledge measurement be-
comes [15]

∂tρ(t ) = −i[Ĥ − yπ/2(t )L̂, ρ(t )], (6)

which clearly shows that the measurement back-action on the
system is unitary and therefore could be invertible. This was
the essence of the decoherence cancellation in the proposal,
where the system’s Hamiltonian was engineered so that the
measurement back-action could be completely canceled, i.e.,
by replacing Ĥ with Ĥeff (t ) = Ĥ + yπ/2(t )L̂. With this mod-
ification, the dynamics in Eq. (6) is reduced to the system’s
bare unitary dynamics

∂tρ(t ) = −i[Ĥeff (t ) − yπ/2(t )L̂, ρ(t )]

= −i[Ĥ , ρ(t )], (7)

which is the desired dynamics unaffected by the decoherence.
The engineered Hamiltonian can be considered as a result
of adding a feedback Hamiltonian ĤF(t ) = yπ/2(t )L̂ to the
system at time t , using the measured signal yπ/2(t ). This is the
perfect measurement-feedback protocol with no delay time or
latency.

To motivate the use of finite delay times, we will show
that the simple replacement of Ĥ with Ĥeff (t ) = Ĥ + ĤF (t )
in Eq. (7) (also in Ref. [15]) leads to the correct instantaneous
limit for the Stratonovich SME, but it fails to reproduce a
correct SME when using the Itô formulation. Indeed, applying
the no-knowledge conditions and replacing Ĥ with Ĥ + ĤF(t )
to the Itô SME in Eq. (3), we obtain

dρ(t ) = −i[Ĥ , ρ(t )]dt + D[L̂]ρ(t )dt = Lρ(t )dt . (8)

That is, the resulting dynamics is not the simple bare unitary
dynamics as in Eq. (7), but there is a decoherence effect on
the system. This contradiction emerges because, by simply
adding the feedback Hamiltonian ĤF(t ) in the Itô SME in
Eq. (8), one had mistakenly assumed that the feedback was
not stochastic. This is not true as the feedback Hamiltonian is
a function of the record yπ/2(t ), and the stochastic differential
equations should be treated carefully when it involves noise
terms that are not differentiable [20,21]. By including finite
delay times into the problem, we can explicitly determine
whether the noise from measurements should be correlated or
independent from the noise in the feedback term. In the next
section, we will show how to reconcile these two formulations
by appropriately treating the effect of delay times in the SMEs
for the no-knowledge feedback.

III. NO-KNOWLEDGE MEASUREMENT AND FEEDBACK
WITH DELAY TIME

As preluded in the previous section, we then need to con-
sider the measurement process as a separate process from the

feedback control. We use a discrete-time operational method
to compute the system state dynamics. The dynamics is
decomposed into discrete-time operations with the time res-
olution determined by a small, but finite, time step δt . This
technique allows us to investigate the effect of ordering of op-
erations applied to the system’s state and investigate the delay
time by explicitly specifying when feedback operations occur.
The operational technique also guarantees that the quantum
state is normalized and positive semidefinite at every time step
in the numerical simulation. Moreover, by expanding such
operations to first order in δt and taking the continuum limit
δt → dt , where dt is an infinitesimal time, one can get back
the usual SMEs.

For the system with no-knowledge feedback, there are
three types of dynamics that describe the system’s state dur-
ing a time step δt : (a) the system’s unitary evolution, (b)
the measurement back-action, and (c) the dynamics from the
feedback control. These can be written mathematically as
three separate operations. The system’s unitary dynamics is
described by Uδt [•] = Û • Û †, where Û = exp(−iĤδt ) is a
unitary operator. The measurement back-action, from the no-
knowledge measurement acquiring the noise yπ/2(t ) = ξ (t )
between time t and t + δt , is described by a measurement
operation Mt [•] = M̂t • M̂†

t , where

M̂t = exp[iξ (t )L̂δt] (9)

is the measurement operator. We note that this operator can
also be obtained from the conventional form of the Kraus
operator for diffusive continuous measurement [1,12] M̂t =
1̂ − 1

2 ĉ†ĉδt + ĉ yπ/2(t )δt + O(δt2), for the Lindblad operator
ĉ = L̂eiπ/2 = iL̂ and the record yπ/2(t ) = ξ (t ), applying the
Itô rule ξ (t )2δt2 ∼ δt [20,21].

For the no-feedback case, we can express the system’s state
dynamics from time t to t + δt as

ρ̃(t + δt ) = Û M̂t ρ̃(t )M̂†
t Û †, (10)

where ρ̃(t ) is an unnormalized state of the system at time t .
One can show that Eq. (10) is equivalent to the Stratonovich
SME in Eq. (6) and the Itô SME in Eq. (8). For the for-
mer, the proof can be done by expanding terms in Eq. (10)
to the first order in δt and then taking the time-continuum
limit δt → dt . For the latter, the equivalence can be shown
by expanding Eq. (10) to the order containing ξ (t )2δt2 and
applying the Itô rule. The equivalence, however, is valid only
when δt is small enough in order to ignore the contribution
from higher-order terms. Moreover, the ordering of M̂t and
Û here is irrelevant because the error from two different
orderings, i.e., M̂tÛ • Û †M̂†

t = Û M̂t • M̂†
t Û † + O(δt2), from

the noncommuting Û and M̂t , is of the order δt2, which is not
included [33,34].

Let us now consider the feedback process applied to the
system with a delay time τ . Following the intuition in Eq. (6),
with the modified Hamiltonian Ĥeff (t ), the feedback opera-
tion at time t can be defined as Ft [•] = F̂t • F̂ †

t where F̂t =
M̂†

t−τ = exp[−iξ (t − τ )L̂δt], using the measurement signal
acquired at time t − τ . We can therefore express the system’s
dynamics, when the feedback is turned on,

ρ̃(t + δt ) = F̂tÛ M̂t ρ̃(t )M̂†
t Û †F̂ †

t , (11)
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where we explicitly put the feedback operator after the mea-
surement operator [11]. This is so that the feedback process
still occurs after the measurement, even in the limit of τ → 0.

We can then derive (see Appendix for the derivation) the
corresponding SMEs for the no-knowledge measurement with
time-delayed feedback Eq. (11). For the Stratonovich inter-
pretation, we expand Eq. (11) to first order in δt [35] and take
δt → dt to get

∂tρ(t ) = −i[Ĥ , ρ(t )] − i[L̂, ρ(t )]{ξ (t − τ ) − ξ (t )} (12)

as the Stratonovich SME. For the Itô interpretation, one has
to be careful at treating the two noises, ξ (t ) and ξ (t − τ ),
as independent, when τ 	= 0. That is, the Itô rule has be to
applied separately to both noises. By expanding Eq. (11) to
first order in δt , ξ (t )2δt2 = δt , and ξ (t − τ )2δt2 = δt and
taking the continuum limit, we obtain

dρ(t ) = − i[Ĥ, ρ(t )]dt + 2D[L̂]ρ(t )dt

− i[L̂, ρ(t )]{ξ (t − τ ) − ξ (t )}dt (13)

as the Itô SME for the delayed feedback. Equations (12) and
(13) are non-Markovian SMEs because of the delay time.

Now, a question arises as to whether we can obtain no-
delay SMEs by simply taking τ = 0 in the above equations,
even though it is not practical in real experiments. The answer
is still no. This is because, with zero delay time, the two noises
in the feedback operator and the measurement operator are
exactly the same and strongly correlated. That is, the cross
term limτ→0 ξ (t )ξ (t − τ )δt2 = δt , should now be taken into
account. Therefore, one needs to use Eq. (11), taking τ = 0
and expanding terms to first order in δt and ξ (t )2δt2 = δt . We
then get

dρ(t ) = −i[Ĥ, ρ(t )]dt (14)

as the correct Itô SME for the no-delay feedback. This is in
agreement with the bare unitary dynamics in the Stratonovich
interpretation in Eq. (7).

IV. AVERAGE DYNAMICS AND EXAMPLE OF QUBIT
MEASUREMENT

For the ideal, but unphysical, case of the instantaneous
feedback, the quantum state dynamics is simply described
by the bare unitary dynamics as in Eq. (7). However, for
the feedback with delay time, the system’s evolution can be-
come fluctuating from the effect of noise that is not perfectly
canceled. Examples are presented in Fig. 1 for a single two-
level system coupled to a bosonic bath, where the perfect
cancellation results in the smooth rotation (blue curve) and
the delayed feedback results in the fluctuating curves (red and
green curves are for small and large delay times, respectively).
Because of the fluctuation, it is difficult to analyze the effect of
delay times for individual trajectories. Therefore, we instead
investigate how the delay times affect the system’s dynamics
on average.

In this section, we separate the investigation into three
cases, showing the analytical solutions whenever possible
and numerical results for a single-qubit example. The first
case is when the unitary dynamics is neglected and the sys-
tem is evolved with only the measurement and the feedback

FIG. 1. Individual realizations, shown on the Bloch sphere, for
the qubit example under the no-knowledge measurement and feed-
back protocols. For the perfect case with no delay time τ = 0,
the qubit evolves with the bare unitary evolution, described by the
smooth blue curve. The red and green curves represent qubit’s trajec-
tories for the delay times τ = 10−3T
 and τ = 0.1T
, respectively.
The initial state ρ0 = 1

2 [1 + 1√
2
(σ̂x + σ̂y )] is indicated by the blue

dot. The parameters are 
 = 2πT −1

 and δt = 10−3T
.

processes. The second case is when there is the unitary
dynamics, but its Hamiltonian commutes with the system-
environment coupling operator. Finally, the third case is
when the Hamiltonian does not commute with the coupling
operator.

For the numerical results throughout this paper, we use
a single qubit coupled to a Markovian bosonic environment
through a Hermitian coupling (Lindblad) operator L̂ = √

γ σ̂z.
The qubit’s unitary dynamics is the Rabi oscillation described
by Ĥ = 


2 σ̂ j where σ̂ j is a Pauli matrix which determines
the axis of the rotation. For the numerical simulation, we
generate qubit’s trajectories using the operational forms in
Eqs. (10) and (11) with random white noises (Gaussian distri-
bution with zero mean and a standard deviation 1/

√
δt) using

Python programming. The qubit’s initial state is set to ρ0 =
1
2 [1 + 1√

2
(σ̂x + σ̂y)] for simplicity. The time step δt is chosen

to be small enough to satisfy δt 
 T
, where T
 = 2π/
 is
the Rabi period.

A. Feedback process without unitary dynamics

For the first case, we assume no qubit’s unitary evolution,
so that we can solely investigate effects of the measurement
and feedback cancellation with delay time. During the time
before the feedback occurs, i.e., t < τ , the system’s dynamics
is a result of only the measurement back-action, which leads
to an average dynamics described by the complete decoher-
ence in Eq. (1). Once the feedback kicks in, when t � τ ,
the system’s dynamics includes the evolution from the feed-
back operator F̂t = M̂†

t−τ = exp{−iξ (t − τ )L̂δt}. Since the
feedback operator always commutes with the measurement
operator, [M̂t , F̂t ′ ] = 0, for any times t, t ′, as they are inverses
of each other, any added feedback operators can subsequently
cancel the measurement operators with the same measurement
results at τ time earlier, i.e., F̂t M̂t−τ = 1̂.
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FIG. 2. Average dynamics for the feedback process without the
unitary evolution. The plot shows average qubit’s dynamics for the
x coordinate Sx (t ) = Tr[ρav(t )σ̂x], for the Lindblad master equation
(ME), and τ = αTγ , where Tγ = 1/γ is the dephasing time and
α = 0.1, 0.3, and 0.5. The decoherence cancellation in this case
results in the stabilization of the system’s state, which occurs after the
feedback process is present. The analytical solutions (15) are shown
in solid lines and the numerically simulated results are shown as
colored dots. Since the measurement back-action is to simply rotate
the qubit around the z axis, the averaging effect is similar for both in
the x and y coordinates and the dynamics in z coordinate is constant
in time.

Therefore, using the update equation in Eq. (11), one can
find that there is always effectively a fixed number (m = τ/δt)
of the measurement operators that cannot be canceled by the
feedback operators, for any time t � τ . We can obtain an
analytic solution for the average evolution

ρav(t ) =
{

eD[L̂]tρ0, t < τ

eD[L̂]τ ρ0, t � τ .
(15)

This describes the usual Lindblad decay (without the uni-
tary dynamics) for t < τ , and the dynamics after t = τ is
frozen at the state ρav(τ ) = eD[L̂]τ ρ0. For the instantaneous
feedback, the state should be stabilized at the initial state ρ0.
As a result, the decoherence cancellation is not perfect for a
finite delay time, where the stabilized state is degraded from
the initial state.

We apply the above result to the qubit example where L̂ =√
γ σ̂z. The steady-state fidelity between the initial state and

the degraded stabilized state can also be found analytically
for the pure initial state ρ0,

F ≡ Tr[ρ0 ρav(∞)]

= 1

2
{[1 + Sz(0)2] + [1 − Sz(0)2]e−2γ τ }, (16)

where Sz(0) = Tr(ρ0σ̂z ).We show, in Fig. 2, the dynamics of
the qubit example from numerically simulating 5 × 103 qubit
trajectories, for τ = αTγ , where Tγ = 1/γ is the dephasing
time and α = 0.1, 0.3, and 0.5.

B. Feedback process with commuting unitary dynamics

For the second case, we include the commuting unitary dy-
namics Û = exp(−iĤδt ) to the system, given that [Ĥ, L̂] = 0.
We show that the feedback operation can still cancel the mea-
surement back-action in a similar manner as in the previous

case. Let us introduce the time indices j ∈ {0, 1, 2, . . . , n},
where the initial time is t0 = 0, an arbitrary time is t j = jδt ,
a time of interest is t = nδt , and the delay time is τ = κδt .
We denote the measurement noise ξ j = ξ (t j ) as the noise
acquired between t j and t j+1. Therefore, the feedback operator
applied to the system at time t j is a function of the measure-
ment noise at time t j − τ , which is given by F̂t j = M̂†

t j−τ =
exp(−iξ j−κ L̂δt ).

During the first κ time steps (or when t < τ ), there is
no feedback on the system and the system evolves only via
the unitary dynamics and the measurement back-action, i.e.,
ρ̃(t + δt ) = Û M̂t ρ̃(t )M̂†

t Û †. The average dynamics for this
part is therefore the Lindblad decay ρav(t ) = eLtρ0 for t < τ .
At the delay time τ = κδt , the feedback process starts by
feeding in the dynamics that is a function of the noise at
τ time earlier, leading to a different dynamics described by
ρ̃(t + δt ) = M̂†

t−τÛ M̂t ρ̃(t )M̂†
t Û †M̂t−τ for t � τ .

Given that all operators commute, we can write the
quantum state at any time t = nδt � τ conditioned on the
measurement results and the feedback as

ρc(t ) = (F̂t−δt . . . F̂τ )(M̂t−δt . . . M̂0)Û nρ0(. . . )†

= Un
κ ρ0 Un†

κ , (17)

where we have rearranged the operators so that the same
types are grouped together. In the first line, we used (. . . )†

to represent the adjoint of all operators on the left side of ρ0.
In the second line, we denoted a single operator Un

κ for those
operators, where the superscript and the subscript denote the
time of interest t = nδt and the delay time κδt , respectively.
The operator can be written explicitly as

Un
κ = exp

(
−iL̂δt

n−κ−1∑
k=0

ξk

)
exp

(
iL̂δt

n−1∑
k=0

ξk

)

× exp(−iĤnδt ), (18)

using the definition of noises as defined earlier. The first and
the second exponential terms come from the feedback opera-
tors and the measurement operators, respectively. We can see
that the feedback operations cancel some of the measurement
back-action, leaving terms with noises at κ times, which are
ξn−κ , . . . , ξn−1.

Knowing that the noises all have Gaussian distribution, we
can therefore solve for the ensemble average of the dynamics,
for t � τ , by averaging over all realizations of the uncanceled
noises,

ρav(t ) =
∫
Dξ P (ξn−κ , . . . , ξn−1)Un

κ ρ0Un†
κ , (19)

where we have defined the measure for the integration as∫
Dξ = ∫ ∏n−1

k=n−κ dξk . The joint probability distribution of
white noises is defined as

P (ξa . . . ξb) =
b∏

k=a

G(ξk; 0, 1/
√

δt ), (20)

that is, a product of Gaussian distributions with zero means
and variances 1/

√
δt . Since the noises ξ j are independent

from each other, we can simplify the average in Eq. (19) by
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FIG. 3. Average dynamics for the feedback process with com-
muting unitary evolution. The plot shows average qubit’s dy-
namics for the x and z coordinates Sx = Tr[ρav(t )σ̂x] and Sz =
Tr[ρav(t )σ̂z], for the master equation (ME) and τ = αT
/2 where
α = 0.2, 0.6, 1.0. The qubit’s state average dynamics follows the
Lindblad ME decay for t < τ and deviates from it after that time,
showing that the feedback can restore the amplitude of Rabi os-
cillation inverse proportional to the delay. Analytical results from
Eq. (23) are plotted in solid curves with numerical results in dots.
The plot of z coordinate will be used to compare with results from
the noncommuting case.

separating out n − κ unitary operators and doing the integra-
tion over the κ white noises, defined for simplicity as η1 . . . ηκ ,
and obtain

ρav(t ) = Û n−κ�(τ )(Û †)n−κ , (21)

where

�(τ ) =
∫
DηP (η1, . . . , ηκ )Û eiL̂δtηκ . . . Û eiL̂δtη1ρ0(. . . )†,

(22)

using the measure
∫
Dη = ∫ ∏κ

k=1 dηk . The integral in
Eq. (22) simply gives the Lindblad decay dynamics �(τ ) =
eLτ ρ0. Therefore, we obtain the full solution for the average
dynamics for this case,

ρav(t ) =
{

eLtρ0, t < τ

eK(t−τ )ρ(τ ), t � τ
(23)

where K• = −i[Ĥ, •] represents the generator for the pure
unitary map. This solution shows that the feedback can par-
tially interrupt the dephasing effect and restore the unitary
dynamics; however, the quality of the restoration depends
on the size of the delay time. One can see that the solution
reduces to the pure unitary dynamics when τ → 0 and reduces
to Eq. (15) for Ĥ = 0.

We show, in Fig. 3, the qubit’s average dynamics with
the Rabi oscillation Ĥ = 


2 σ̂z, where we set 
 = 2π . The
effects of the delay time appear as the deviation of the average
dynamics from the Lindblad decay (dashed red), occurring
at the delay time τ = αT
/2, for α = 0.2, 0.6, and 1.0.
The revival of oscillation amplitudes is presented after that.
The strength of the restored oscillation amplitude depends
on the state ρ(τ ) at time τ , which depends on the size of
the delay times. The oscillation can be restored close to the

pure Rabi oscillation (high amplitude) when the delay time
is small.

C. Feedback process with noncommuting unitary dynamics

The last case we investigate is when the unitary dynamics
does not commute with the measurement back-action, that is
[Ĥ , L̂] 	= 0. Unlike the previous example, we cannot rearrange
the operators from different time steps or combine them to
cancel each other. Because of the noncommuting property
[Ĥ , L̂] = ε, rearranging dynamical operators will create terms
with polynomials of ε and terms of the order O(δt ). There-
fore, an analytic solution for this case is rather difficult to
achieve. We then numerically investigate the qubit example,
with a noncommuting Rabi oscillation given by Ĥ = 


2 σ̂x,
for the same coupling operator L̂ = √

γ σ̂z, as in the previous
cases.

Average dynamics of the qubit with the noncommuting
unitary evolution is shown in Fig. 4, using 5 × 103 noise
realizations, for different delay times τ = αT
/2, where α =
2.0, 3.0, 3.5, 4.0, and 5.0. Here, the values of α and T


are chosen such that the remarkably different effects on the
decoherence dynamics can be easily seen. The qubit’s dynam-
ics shows oscillation in the y-z plane of the Bloch sphere,
which is the same plane as the rotation dynamics caused by
the measurement back-action. Differently from the previous
case, the results show that the delayed feedback can either
(a) partially restore he unitary dynamics (Rabi oscillation)
or even (b) speed up the damping. As seen in Fig. 4(a), the
average dynamics in the x coordinate can either be increased
or reduced in size, depending on the delay time. For τ = T


and 2T
 (green and brown circle dots in Fig. 4), we can see the
effect of restoration of the oscillation in Fig. 4(b) as their am-
plitudes are slightly larger than that of the Lindblad evolution
(dashed red). This similar pattern also happens for the delay
times equal to other integer multiples of T
. However, for the
delay times that are multiples of half the Rabi period, such as
τ = 1.5T
 and 2.5T
, the oscillation amplitudes are smaller
than those of the Lindblad decay, shown in pink and purple
stars in Fig. 4(b). Surprisingly, this damping effect could be
even worse for shorter delay times (for example, see the purple
stars in comparison to the pink stars).

We can understand the two opposite effects on the os-
cillation amplitude from looking at the qubit’s dynamics on
the Bloch sphere (see Fig. 5). The Rabi oscillation makes
the qubit’s state rotate around the x axis (shown as the red
curves and red arrows), while the measurement back-action
(blue arrows) and the feedback (green arrows) rotate the state
around the z axis, depending on the signs and values of the
measurement results. Let us first consider an effect for a
particular measurement result occurring when the state is at
the blue dot in Fig. 5(a), where the measurement back-action
creates a kick in the direction of the blue arrow. If there is
no delay, the kick will be canceled instantaneously with the
feedback shown as the green arrow. If the delay time is an
integer of the Rabi period τ = kT
 for k = 1, 2, . . ., the qubit
state has evolved from the blue dot, but will still be roughly
back to the initial point after the delay time (given that k not
too big). Therefore, the feedback kick can still move the state
in the opposite direction and partially reverse the past effect of

022208-6



TIME-DELAYED QUANTUM FEEDBACK AND INCOMPLETE … PHYSICAL REVIEW A 103, 022208 (2021)

FIG. 4. Average dynamics of the qubit for the no-knowledge feedback process with noncommuting unitary evolution, for the master
equation (ME) and τ = αT
/2 where α = 2.0, 3.0, 3.5, 4.0, and 5.0. The Rabi oscillation is chosen to be around the x axis with the frequency

, where the measurement back-action and feedback kick the qubit in the x-y plane. (a) Shows the averaged x coordinate of the qubit Sx (t ) =
Tr[ρav(t )σ̂x] for all chosen delay times, while (b) and (c) show the averaged z coordinate Sz(t ) = Tr[ρav(t )σ̂z]. The pure unitary evolution is
shown as dashed blue curves and the Lindblad decay is shown as solid blue curves in all panels. The vertical lines represent the times at which
the delayed feedback starts. Numerically simulated data are presented as colored markers for the in-phase (τ = kT
) and the out-of-phase
(τ = k

2 T
) conditions. We also show an intermediate case (the orange diamond-shape marker), where τ = 1.75T
, separately in (c) for clarity.
In this simulation, we use δt = 10−4T
.

the back-action, though not as perfect as in the instantaneous
case.

However, if the delay time is equal to half-integers of
the period [Fig. 5(b)], the kick from the feedback operation
(green arrow) will instead amplify the effect of the back-action
and diverge the qubit path away from the correct Rabi path
(moving towards states with lower values in the x coordi-
nate). This can be considered a similar effect as when an
additional noise is added onto the system, making the qubit
state decay further in the x direction. Therefore, the delayed
feedback for the no-knowledge measurement can either sup-
press or enhance the amplitude damping, depending on the
system’s dynamics and the delay time. We also note that the
two opposite effects can occur in a more complicated set-
ting, e.g., when a system’s evolution has multiple timescales.
As long as such a system has a well-defined periodic evo-
lution, the incomplete decoherence suppression can still be
achieved by setting the delay time equal to an integer of its
evolution’s period.

This result suggests that, in the case of slow feedback (the
delay time is of the order of the oscillation period), or fast
feedback is not possible, the experiments can be designed

with specific finite delay times where the decoherence can still
be partially suppressed. In our analyses, the delay times are
defined in units of the dephasing time Tγ or the Rabi period
T
, so they can be conveniently converted to values in exper-
iments. Recent examples with continuous measurements and
feedback controls are the superconducting-qubit experiments
[36–38], where the detection chains and feedback operations
typically add delay times of about 50–500 ns, for the dephas-
ing time and the Rabi period in the order of microseconds. In
that case, the delay time can be tuned to values as small as
τ ≈ 0.05Tγ ∼ 0.05T
.

V. CONCLUSION

We have presented the investigation on the time-delayed
feedback with no-knowledge continuous measurement, and
showed that finite delay times can degrade the decoherence
suppression, even with perfect efficient detectors and com-
muting system’s dynamics. We have performed theoretical
analyses from the perspective of SMEs, modified with feed-
back delay times, and analytical solutions of the system’s
average dynamics. We showed results for three scenarios, with
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FIG. 5. Diagrams showing the two cases where the delayed feed-
back can suppress (a) or enhance (b) the decoherence. The unitary
dynamics is presented with the red curves and arrows, while the
dynamics from back-action and feedback are presented with blue
arrows and green arrows, respectively. The decoherence suppression
occurs when the feedback is delayed by an integer multiple of the
Rabi period (a) and the decoherence enhancement occurs when the
delay time is half-integer multiple of the period.

different combinations of measurement, feedback, and unitary
evolution (both for commuting and noncommuting cases),
and investigated numerical simulations for the driven qubit
example. We have simulated the qubit trajectories and com-
puted their average dynamics from an ensemble of stochastic
realizations.

Since the measurement back-action causes the qubit to
decohere on average, any imperfect back-action cancellation
from the time-delayed feedback can result in an incomplete
decoherence suppression. From our results of qubit’s averaged
trajectories, we find that the delay time can have significant
effects on the decoherence suppression, i.e., degrading the
stabilized states in the case of no unitary evolution (Fig. 2)
and degrading the Rabi oscillations in the case of commuting
unitary dynamics (Fig. 3).

Interestingly, when the qubit’s unitary evolution (Rabi os-
cillations) do not commute with the measurement back-action,
we find that the effect of delay time can either suppress or en-
hance the oscillation amplitude damping. We showed that the
feedback needed to be turned on at the time equal to multiples
of the Rabi period, in order to get the best partial decoher-
ence cancellation. Otherwise, the decoherence effect could be
worse, especially when the delay time is at half-integers of the
Rabi period, where the qubit’s oscillation amplitude damped
even faster than the Lindblad dynamics with no feedback
control.

For the final remarks, we emphasize that the decoherence
suppression from this no-knowledge feedback is a result of
measuring the environmental noise that affects the system
and removing the noise back-action on the system via the
feedback control. The ability to measure noises that affect
the system is not inherently quantum. It is also possible for
classical stochastic systems. However, for the quantum cases,
it is necessary that the measurement is “no knowledge,” that
is, the measurement result should not have any information
about the measured system. Moreover, we note that there are
also other factors in real experiments, such as measurement ef-
ficiencies and unmonitored noise channels, which can further

degrade the decoherence suppression, and their effects are to
be investigated further in future work.
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APPENDIX: DERIVATION

Here, we derive the Stratonovich and Itô SMEs for the
no-knowledge feedback with delay time. After the feedback
is added, the quantum state is mapped by three operators:
the measurement operator M̂t = exp[iξ (t )L̂δt], the unitary
operator Û = exp[−iĤδt], and the feedback operator F̂t =
exp[−iξ (t − τ )L̂δt]. The evolution of the normalized state is
given by

ρ(t + δt ) = F̂tÛ M̂tρ(t )M̂†
t Û †F̂ †

t

Tr[F̂tÛ M̂tρ(t )M̂†
t Û †F̂ †

t ]
. (A1)

The Stratonovich SME is obtained by expanding the above
equation to the first order of an infinitesimal interval δt . The
three operators become

M̂ ≈ I + iξ (t )L̂δt, (A2)

Û ≈ I − iĤδt, (A3)

F̂t ≈ I − iξ (t − τ )L̂δt, (A4)

and the combination of all three is given by

F̂tÛ M̂t = I − iĤδt + i[ξ (t ) − ξ (t − τ )]L̂δt + O(δt2). (A5)

Putting these approximations into Eq. (A1), keeping terms up
to O(δt ), and taking the continuum limit δt → dt , we get

ρ̇(t ) = − i[Ĥ − [ξ (t ) − ξ (t − τ )]L̂, ρ(t )] (A6)

as the Stratonovich SME for a finite delay time τ .
On the other hand, for the Itô SME, we need to consider

the Itô rule, which comes from the Wiener’s process defined
by dW (t ) = ξ (t )dt . Therefore, when expanding the operators
in Eq. (A1), we need to keep in mind that the Wiener process
has an important property (dW (t ))2 = (ξ (t )δt )2 ≈ δt in the
mean-square limit. Therefore, the measurement and feedback
operators become

M̂t ≈ I + iξ (t )L̂δt − 1

2
L̂L̂δt, (A7)

F̂t ≈ I − iξ (t − τ )L̂δt − 1

2
L̂L̂δt . (A8)

As a result, substituting these back in Eq. (A1) and applying
the Itô rule whenever possible, this gives the Itô SME for the
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delayed feedback,

ρ(t + δt ) = {
I − iĤδt + i[ξ (t ) − ξ (t − τ )]L̂δt − 1

2 L̂L̂δt
}

×ρ(t )
{
I + iĤδt − i[ξ (t ) − ξ (t − τ )]

× L̂δt − 1
2 L̂L̂δt

}
, (A9)

which becomes Eq. (13) in the main text:

dρ(t ) = − i[Ĥ − [ξ (t ) − ξ (t − τ )]L̂, ρ(t )]δt (A10)

− 2D[L]ρ(t )[ξ (t )ξ (t − τ )δt2 − δt], (A11)

in the time-continuum limit δt → dt .
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