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Verification of complementarity relations between quantum steering criteria using an optical system
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The ability that one system immediately affects another one by using local measurements is regarded as
quantum steering, which can be detected by various steering criteria. Recently, Mondal et al. [Phys. Rev. A
98, 052330 (2018)] derived the complementarity relations of coherence steering criteria, and revealed that
the quantum steering of a system can be observed through the average coherence of a subsystem. Here, we
experimentally verify the complementarity relations between quantum steering criteria by employing two-photon
Bell-like states and three Pauli operators. The results demonstrate that if prepared quantum states can violate two
setting coherence steering criteria and turn out to be steerable states, then they cannot violate the complementary
settings criteria. Three measurement settings inequalities, which establish a set of complementarity relations
between these two coherence steering criteria, are always obeyed by all prepared quantum states in experiment.
In addition, we experimentally certify that the strengths of coherence steering criteria depend on the choice of
coherence measure. In comparison with two setting coherence steering criteria based on l1 norm of coherence
and relative entropy of coherence, our experimental results show that the steering criterion based on skew
information of coherence is the strongest in detecting the steerability of two-photon Bell-like states. Thus, our
experimental demonstration can deepen the understanding of the relation between the quantum steering and
quantum coherence.
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I. INTRODUCTION

Quantum steering describes a nontrivial trait of the quan-
tum world that one subsystem of bipartite systems can
instantaneously affect another one by using local measure-
ments [1,2]. In contrast to the entanglement [3] and Bell
nonlocality [4,5], quantum steering was only rigorously and
formally defined from the perspective of quantum information
theory in 2007 [6], subsequently, it has been attracting exten-
sive attention in different fields [7]. The detection of quantum
steering can be realized through the violations of steering cri-
teria (also called steering inequalities), which can be obtained
by using correlations, state assemblages, and full information
[7]. There are various steering criteria, including linear and
nonlinear steering criteria [8,9], steering inequality from un-
certainty relations [10–13], steering criterion from geometric
Bell-like inequality [14], steering inequalities from semidef-
inite programs [15], and full information steering inequality
[16]. So far, quantum steering embodies vital application val-
ues in subchannel discrimination, resource theory of steering,
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quantum communication, quantum teleportation, randomness
generation, and so on [7]. Also, it has been demonstrated in a
series of significant experiments [17–26].

Coherence, which originates from the superposition prin-
ciple of quantum mechanics, reflects one of the fundamental
essences in many quantum phenomena [27,28]. Although the
investigations concerning coherence have a long-standing his-
tory, the rigorous quantification of coherence in the field of
quantum information has never been established. Until 2014,
based on incoherent operations, Baumgratz et al. [29] put
forward the general frame of quantifying coherence for quan-
tum states, and this quantification relies on a fixed reference
basis. One can measure quantum coherence via l1 norm of
coherence (l1C) [29], relative entropy of coherence (REC)
[29], robustness of coherence [30,31], and skew information
of coherence (SIC) [32–34]. Recently, quantum coherence has
become a hot topic in both theory [35–40] and experiment
[41–44]. It plays a central part in different fields, such as
quantum metrology, quantum thermodynamics, quantum al-
gorithms, and quantum channel discrimination [27].

The concept of complementarity describes that two quan-
tum observables of quantum mechanics cannot be measured
simultaneously [45]. Notably, it is a new tendency for
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establishing the complementarity relations of different phys-
ical quantities in quantum information theory. According to
these complementary relations, one can establish a bound
on a quantity via another complementary quantity, and can
also deeply understand the correlation between these com-
plementary quantities. There are several promising efforts
in concerning fields [46–53]. Singh et al. [46] obtained a
complementarity relation between maximal coherence and
mixedness, and examined the limitation of a system’s mixed-
ness on the quantum coherence. Their results revealed that
the upper bound of maximum coherence of a quantum state
can be obtained through its complementary quantity, i.e., the
mixedness. Since the noise of the external environment can
enhance the mixedness of the state, this complementary re-
lation is also beneficial to understand the interplay between
coherence and noise [46]. Cheng and Hall [47] explored
complementarity relations between the coherences of mutu-
ally unbiased bases, and derived relations among coherence,
purity, and uncertainty. Considering the maximal violations
of the Clauser-Horne-Shimony-Holt inequality, the trade-off
relations of Bell violations among pairwise qubit systems
were investigated by Qin et al. [48], and the relations con-
strain the distribution of nonlocality among the subsystems.
By using the REC, Sharma and Pati [49] presented the trade-
off relation between the system’s coherence and disturbance
induced by a completely positive trace-preserving map. For
a multipartite system, the trade-off relations for tripartite
nonlocality were established by Zhao et al. [50]. Experimen-
tally, different complementarity and trade-off relations were
also tested [54–56]. By employing a photonic qutrit-qubit
hybrid system, Zhan et al. [54] experimentally verified the
contextuality-nonlocality trade-off relation, and the results
certified that entanglement is a particular form for a funda-
mental quantum resource. Weston et al. [55] experimentally
tested the universal complementarity relations satisfied by any
joint measurement of two observables. In two noncommut-
ing reference bases, Lv et al. [56] experimentally verified
the trade-off relation of quantum coherence, and their results
displayed that the lower and upper bounds restrict the sum of
quantum coherence under these bases.

Recently, Mondal et al. [57] obtained the complementarity
relations between coherence steering criteria by employing
different quantifications of quantum coherence. This work
established a connection between two valuable quantum re-
sources in quantum information task, i.e., quantum steering
and quantum coherence. However, the test of the comple-
mentarity relations in experiment is still lacking. The present
investigation may further deepen our understanding of the re-
lation between the quantum steering and quantum coherence
in practice. Also, it can demonstrate a method to detect quan-
tum steering in experiment, namely, one can witness quantum
steering of the system via detecting the quantum coherence of
the subsystem. Motivated by this, we experimentally verify
the complementarity relations between different coherence
steering criteria in this work. The experimental results show
that one setting coherence steering criteria cannot be violated
if its complementary criteria can be violated by prepared
quantum states. In comparison with two setting coherence
steering criteria from l1C and REC, the prepared states more

easily violate two setting coherence steering criterion based
on SIC, suggesting that it can detect more steerable Bell-like
states in experiment.

II. COHERENCE STEERING CRITERIA AND
COMPLEMENTARITY RELATIONS

An entangled state ρAB is prepared by Alice. And then,
the system B is sent to Bob. The task of Alice is to make
Bob believe the fact that the state shared by them is indeed
entangled, hence, the nonlocal correlation is shared by them.
However, Bob does not trust Alice and only considers the
system B is quantum. Also, Bob thinks that Alice may use
a single quantum system B to cheat him [17]. If and only
if the state of Bob cannot be represented by using the local
hidden state (LHS) model [6] ρA

a = ∑
λ p(λ)p(a|A, λ)ρQ

B (λ),
then Bob accepts the fact that the ρAB prepared by Alice is an
entangled state, and nonlocal correlation is shared by them.
Here, λ is a hidden variable with

∑
λ p(λ) = 1, and ρ

Q
B (λ) is

LHS. {p(λ), ρQ
B (λ)} denotes an ensemble of preexisting LHSs

for Bob, and p(a|A, λ) indicates the stochastic map of Alice,
which is used to convince or fool Bob via ρA

a . The ρAB is a
steerable state if and only if the joint probabilities of mea-
surement outcomes (Alice performs the measurement A on her
subsystem and obtains the outcome a ∈ {0, 1}; Bob performs
the measurement B and obtains the outcome b ∈ {0, 1}) can-
not be described by employing a local hidden variable–local
hidden state (LHV-LHS) model, namely, P(a, b|A, B, ρAB) =∑

λ P(λ)P(a|A, λ)PQ(b|B, ρλ), where PQ(b|B, ρλ) is the
probability of the outcome b corresponding to mea-
surement B.

In 2018, Mondal and Kaszlikowski [57] proposed the
coherence steering criteria, which can help us to observe
the quantum steering of a two-qubit state via the quan-
tum coherence of the subsystem. For two-qubit states ρAB =
(I ⊗ I + r · σ ⊗ I + I ⊗ s · σ + ∑

i, j ti jσi ⊗ σ j )/4 and three
Pauli operators {σi} (i = x, y, z) as a complete set of mutu-
ally unbiased bases (MUBs), where r = tr(ρABσ ⊗ I), s =
tr(ρABI ⊗ σ ), and ti j = tr(ρABσi ⊗ σ j ), Alice implements a
projective measurement on her system by using the eigen-
basis of σi and the corresponding outcome is a ∈ {0, 1}. The
corresponding probability is p(ρB|Mi

a
) = tr[(Mi

a ⊗ I)ρAB], and
the measurement operator is Mi

a = [I + (−1)aσi]/2. Simi-
larly, Alice can measure her system by employing another
measurement operator Mk

a = [I + (−1)aσk]/2, and k �= i, k ∈
{x, y, z}. For each projective measurement implemented by
Alice, Bob can measure the coherence of his conditional state
ρB|Mi

a
under the eigenbasis of every Pauli operator. According

to the number of Pauli operators chosen by Bob, the coherence
steering criteria can be divided into one measurement setting
(or one setting) and two measurement settings (or two setting),
respectively [57]. Explicitly, the probability superposition of
coherences of ρB|Mi

a
can be defined as

SB
� (ρAB) =

∑

i,a

p
(
ρB|Mi

a

)
Cq

i+�

(
ρB|Mi

a

)
, (1)

where � ∈ {0, 1, 2}, Cq
i (ρ) represents different coherence

measures under the eigenbasis of Pauli operator σi, in-
cluding l1C [q = l1C and Cl1C

i (ρ) = ∑
i �= j |〈ki|ρ|k j〉|], REC
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[q = REC and CREC
i (ρ) = S(ρdiag) − S(ρ)], and SIC [q =

SIC and CSIC
i (ρ) = −(tr[

√
ρ, σi]2)/2]. {|ki〉, |k j〉} denote the

eigenvectors of σi, S(x) is the von Neumann entropy, and
ρdiag =

∑
i |ki〉〈ki|ρ|ki〉〈ki|. If Bob measures the coherence

only in one Pauli operator σi, which is the same as each
projective measurement chosen by Alice (i.e., � = 0), then the
one setting coherence steering criteria are given by

SB
0 (ρAB) =

∑

i,a

p
(
ρB|Mi

a

)
Cq

i

(
ρB|Mi

a

)
� εq. (2)

Here, q ∈ {l1C, REC, SIC} indicates different coherence mea-
sures, εq ∈ {√6, 2.23, 2} [51] represents the upper bounds of
quantum coherence measured in a complete set of MUBs for
a single-qubit state, and the quantum coherence of any single-
qubit state cannot puncture the bounds. The violation of the
criteria means that the ρAB is a steerable state. If Bob measures
the coherence in the eigenbasis of another two Pauli operators
σ j and σk ( j �= k �= i) (corresponding to � = 1, 2), which are
different from the one chosen by Alice’s measurement, there
exists the two setting coherence steering criteria

1
2 SB

12(ρAB) = 1
2

[
SB

1 (ρAB) + SB
2 (ρAB)

]
� εq. (3)

Bob’s conditional state with the LHS model obeys these
steering criteria. For a bipartite state, by performing local
measurements on subsystem Alice, the average coherence of
the conditional state of subsystem Bob summing over the
MUBs [i.e., the left side of Eq. (3)] can puncture the upper
bounds εq. This phenomenon is termed as the nonlocal ad-
vantage of quantum coherence (NAQC), and any two-qubit
state that can achieve NAQC is not only entangled but also
steerable [51]. Also, there are some steerable states which
cannot achieve NAQC, and the average coherence of Bob’s
system can certify the steerability of bipartite states [51,57].
The violation of the criteria means that the ρAB is steerable.
If Bob measures the coherence under the eigenbasis of three
Pauli operators after each projective measurement performed
by Alice on her subsystem, the inequality of three measure-
ment settings is

1
3 SB

012(ρAB) = 1
3

[
SB

0 (ρAB) + SB
1 (ρAB) + SB

2 (ρAB)
]
� εq. (4)

The LHS model of Bob’s conditional state is not used in the
derivation of Eq. (4) [57], and all two-qubit states ρAB satisfy
Eq. (4). For this reason, the inequality of three measurement
settings cannot be used to detect the quantum steering of
ρAB. In reality, Eq. (4) describes a set of complementarity
relations between one setting coherence steering criteria and
two setting coherence steering criteria, that is,

1
3 SB

012(ρAB) = 1
3

[
SB

0 (ρAB) + SB
12(ρAB)

]
� εq. (5)

The results manifest that if one criterion between Eqs. (2) and
(3) is violated, then the other one as a compensation can never
be violated.

III. EXPERIMENTAL DEMONSTRATION AND RESULTS

In the process of our experimental implementation, we
choose two-photon Bell-like states as test states. The polarized
photons are encoded as qubits. The horizontally and verti-
cally polarized states are described by using |H〉 and |V 〉,
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FIG. 1. Experimental setup. The module (a) is used to prepare
two-photon Bell-like states. Module (b) is used to achieve six PMOs
on Alice’s photon. The first role of module (c) is used to perform
the tomography on quantum states. The second role of module (c) is
to implement six PMOs on the photons of Alice and Bob, which is
used to carry out a steering inequality test for prepared two-photon
Bell-like states. PBS, polarizing beam splitter; HWP, half-wave plate;
BBO, type-I β-barium borate; QWP, quarter-wave plate; IF: interfer-
ence filter; SPD: single-photon detector. w1 and w2: the types of wave
plates; θ1 and θ2: the angles of optical axes of wave plates.

respectively. Hence, two-photon Bell-like states are ρAB =
|φAB〉〈φAB| with |φAB〉 = cos θ |HH〉 + sin θ |VV 〉.

Figure 1 provides the schematic diagram of an all-optical
experiment setup which is used to realize the verification
of the complementarity relations. The setup contains three
modules. The yellow area is the module (a) to prepare test
states. To be explicit, high-power continuous pumped beam
(the power is 130 mW and the wavelength is 405 nm) passes
through the polarization beam splitter (PBS). The state of
pumped beam transforms into the horizontally polarized state
|H〉. This light beam first passes through the half-wave plate
(HWP), and then is focused on two type-I β-barium borate
(BBO) crystals (6.0 × 6.0 × 0.5 mm3, and the optical axis is
cut at 29.2◦). Under the spontaneous parametric down con-
version [58], Bell-like states |φAB〉 = cos θ |HH〉 + sin θ |VV 〉
shared by a pair of entangled photons (the central wavelength
is 810 nm) are prepared. The state parameter θ can be eas-
ily changed by controlling the angle of optical axis of the
HWP. Experimentally, we set θ to 0◦, 10◦, 20◦, 30◦, 40o,
45◦, 50◦, 60◦, 70◦, 80◦, and 90◦, respectively. The average
fidelity of these test states is F̄ = 0.9986 ± 0.0042, which
is obtained according to F (ρ, ρtheor ) ≡ Tr

√√
ρρtheor

√
ρ [59].

Here, the theoretical and experimental density matrices are
indicated by ρtheor and ρ, respectively. We estimate the er-
ror bars according to the statistical variation of coincidence
counts obeyed by the Poisson distribution [60]. In order to
experimentally demonstrate the complementarity relations be-
tween quantum steering criteria in Ref. [57], we need to
realize a complete set of MUB measurements. In our experi-
ment, we choose X = {|D〉〈D|, |A〉〈A|}, Y = {|R〉〈R|, |L〉〈L|},
and Z = {|H〉〈H |, |V 〉〈V |} as a complete set of MUB

TABLE I. The settings of wave plates in the module [Fig. 1(b)]
for realizing different PMOs on the photon of Alice.

Settings Mx
0 Mx

1 My
0 My

1 Mz
0 Mz

1

w1 HWP HWP QWP QWP HWP HWP
θ1 22.5◦ −22.5◦ 45◦ −45◦ 0◦ 45◦

w2 HWP HWP QWP QWP HWP HWP
θ2 22.5◦ −22.5◦ −45◦ 45◦ 0◦ 45◦
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FIG. 2. Experimental results of the l1C. The red rhombuses in-
dicate the experimental results of SB

012(ρAB)/3, the purple squares
denote the experimental results of SB

12(ρAB )/2, and the green solid
circles represent the experimental results of SB

0 (ρAB). The corre-
sponding theoretical predictions are represented by using solid lines
with different colors. The black dashed line represents the upper
bound εl1C = √

6.

measurements. Here, {|D〉 = (|H〉 + |V 〉)/
√

2, |A〉 = (|H〉 −
|V 〉)/

√
2}, {|R〉 = (|H〉 + i|V 〉)/

√
2, |L〉 = (|H〉 − i|V 〉)/

√
2},

and {|H〉, |V 〉} are eigenvectors of σx, σy, and σz, respec-
tively. For simplicity, we use Mx

0 = |D〉〈D|, Mx
1 = |A〉〈A|,

My
0 = |R〉〈R|, My

1 = |L〉〈L|, Mz
0 = |H〉〈H |, and Mz

1 = |V 〉〈V |
to represent six projection measurement operators (PMOs). In
this work, the six PMOs implemented on Alice’s photon can
be realized in the module [Fig. 1(b)]. This module consists of
two wave plates (denoted by w1 and w2; the rotation angles
of the optical axes for w1 and w2 are denoted by θ1 and θ2,
respectively) and a PBS. The six PMOs can be realized by
adjusting the types and angles of the two wave plates in the
module [Fig. 1(b)], as shown in Table I. The density matrices
of states can be reconstructed through the quantum state to-
mography [61,62] in the module [Fig. 1(c)] (as the pink area
displayed in Fig. 1). Beyond this, the module [Fig. 1(c)] can
also be used to implement a steering inequality test for pre-
pared two-photon Bell-like states. Of particular note, consider
the scenario of quantum steering; in order to observe quantum
steering of Bell-like states by using the coherence steering cri-

TABLE II. Experimental data of SB
012(ρAB)/3, SB

12(ρAB)/2, and
SB

0 (ρAB ) based on the l1C.

θ SB
012(ρAB)/3 SB

12(ρAB)/2 SB
0 (ρAB)

0◦ 2.006 ± 0.020 2.002 ± 0.020 2.015 ± 0.019
10◦ 2.192 ± 0.031 2.338 ± 0.030 1.899 ± 0.032
20◦ 2.275 ± 0.020 2.637 ± 0.017 1.550 ± 0.025
30◦ 2.247 ± 0.017 2.862 ± 0.015 1.019 ± 0.022
40◦ 2.107 ± 0.017 2.981 ± 0.013 0.358 ± 0.024
45◦ 2.010 ± 0.047 2.995 ± 0.047 0.038 ± 0.049
50◦ 2.106 ± 0.036 2.981 ± 0.039 0.356 ± 0.029
60◦ 2.245 ± 0.015 2.863 ± 0.012 1.010 ± 0.022
70◦ 2.274 ± 0.014 2.642 ± 0.011 1.537 ± 0.019
80◦ 2.189 ± 0.021 2.340 ± 0.021 1.888 ± 0.020
90◦ 2.002 ± 0.015 2.001 ± 0.016 2.004 ± 0.015

FIG. 3. Experimental results of the REC. The red rhombuses
indicate the experimental results of SB

012(ρAB)/3, the purple squares
denote the experimental results of SB

12(ρAB)/2, and the green solid cir-
cles represent the experimental results of SB

0 (ρAB). The corresponding
theoretical predictions are represented by employing solid lines with
different colors. The black dashed line represents the upper bound
εREC = 2.23.

teria, the experiment would need to be altered such that Alice
does not need to be trusted. That is to say, one can remove the
module [Fig. 1(b)]; the wave plates and PBS of Alice’s side in
the module [Fig. 1(c)] are used to realize different PMOs and
obtain the corresponding measurement outcomes; the wave
plates and PBS of Bob’s side in the module [Fig. 1(c)] are
used to implement single-qubit tomography and attain corre-
sponding Bob’s states (with his state conditioned on Alice’s
measurement setting and outcome).

Now let us turn to verify the complementarity relations
between quantum steering criteria in experiment. The
experimental measurement probabilities p(ρB|Mi

a
) in

Eqs. (2)–(4) are obtained by virtue of coincidence counts [63],
and the corresponding coherence Cq

i (ρB|Mi
a
) are calculated

according to the density matrices of states restructured
via quantum state tomography. Thus, the experimental
results of SB

0 (ρAB), SB
12(ρAB)/2, and SB

012(ρAB)/3 can be
attained in different coherence measures. In detail, Fig. 2
and Table II depict the results based on l1C. Figure 3 and
Table III provide the results based on REC. The results

TABLE III. Experimental data of SB
012(ρAB)/3, SB

12(ρAB)/2, and
SB

0 (ρAB) based on the REC.

θ SB
012(ρAB)/3 SB

12(ρAB)/2 SB
0 (ρAB)

0◦ 1.968 ± 0.024 1.969 ± 0.020 1.967 ± 0.032
10◦ 2.056 ± 0.057 2.173 ± 0.055 1.821 ± 0.060
20◦ 2.108 ± 0.046 2.491 ± 0.049 1.342 ± 0.041
30◦ 2.093 ± 0.044 2.788 ± 0.051 0.704 ± 0.030
40◦ 2.012 ± 0.037 2.955 ± 0.048 0.125 ± 0.014
45◦ 1.983 ± 0.065 2.974 ± 0.092 0.002 ± 0.011
50◦ 2.009 ± 0.062 2.953 ± 0.086 0.120 ± 0.014
60◦ 2.093 ± 0.037 2.790 ± 0.042 0.700 ± 0.026
70◦ 2.115 ± 0.031 2.503 ± 0.033 1.339 ± 0.026
80◦ 2.057 ± 0.039 2.176 ± 0.040 1.819 ± 0.038
90◦ 1.966 ± 0.015 1.968 ± 0.013 1.961 ± 0.020
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FIG. 4. Experimental results of SIC. The red rhombuses indicate
the experimental results of SB

012(ρAB)/3, the purple squares denote
the experimental results of SB

12(ρAB)/2, and the green solid circles
represent the experimental results of SB

0 (ρAB ). The corresponding the-
oretical predictions are represented by using solid lines with different
colors. The black dashed line represents the upper bound εSIC = 2.

based on SIC are depicted in Fig. 4 and Table IV. The error
bars in Figs. 2–5 and Tables II–IV, and VI represent one
standard deviation, and mainly originate from the fluctuation
of the statistical distribution of photons. Hence, for each
quantity, we use the subprogram of Poisson distribution
in Mathematica 11.0 to randomly generate 100 grouped
coincidence counts. The error bar of this quantity is estimated
according to the standard deviation. It is worthwhile to
note that some of the error bars are too short to exhibit in
Figs. 2–4. For all figures, the green solid circles, purple
squares, and red rhombuses denote the experimental results
of SB

0 (ρAB), SB
12(ρAB)/2, and SB

012(ρAB)/3, respectively. The
corresponding theoretical results are displayed by means
of different colored curves, and the black dashed lines are
the upper bounds εq(q = l1C, REC, SIC) in Eqs. (2)–(4).
As displayed from Figs. 2–4, the experimental results are in
good agreement with the theoretical predictions. No matter
what kind of coherence measure is chosen, the experimental
results of SB

0 (ρAB) are anticorrelated with those of SB
12(ρAB)/2.

Moreover, the experimental results certify that if two setting
coherence steering criteria are violated [SB

12(ρAB)/2 > εq] by

TABLE IV. Experimental data of SB
012(ρAB)/3, SB

12(ρAB)/2, and
SB

0 (ρAB ) based on SIC.

θ SB
012(ρAB)/3 SB

12(ρAB)/2 SB
0 (ρAB)

0◦ 1.846 ± 0.036 1.849 ± 0.031 1.842 ± 0.047
10◦ 1.913 ± 0.077 2.011 ± 0.072 1.716 ± 0.089
20◦ 1.888 ± 0.075 2.273 ± 0.084 1.118 ± 0.058
30◦ 1.911 ± 0.078 2.624 ± 0.103 0.486 ± 0.028
40◦ 1.906 ± 0.071 2.831 ± 0.104 0.058 ± 0.006
45◦ 1.899 ± 0.092 2.849 ± 0.135 0.001 ± 0.007
50◦ 1.898 ± 0.092 2.819 ± 0.135 0.056 ± 0.006
60◦ 1.912 ± 0.070 2.627 ± 0.092 0.482 ± 0.025
70◦ 1.912 ± 0.058 2.304 ± 0.066 1.127 ± 0.044
80◦ 1.917 ± 0.065 2.018 ± 0.061 1.714 ± 0.073
90◦ 1.841 ± 0.026 1.848 ± 0.022 1.829 ± 0.035

FIG. 5. Experimental results of LHS-SIGEUR for prepared
Bell-like states. The inset represents the magnifications of the ex-
perimental results for Bell-like states with θ = 0◦ and θ = 90◦.

prepared Bell-like states, then one setting coherence steering
criteria as compensations cannot be violated [SB

0 (ρAB) � εq]
by these states. All prepared Bell-like states cannot
violate three measurement settings inequalities
[SB

012(ρAB)/3 � εq].
From Figs. 2–4 and Tables II–IV, one can find

that seven prepared Bell-like states (θ = 20◦, 30◦, 40◦, 45◦,
50◦, 60◦, 70◦) can violate two setting coherence steering cri-
teria based on different coherence measures (i.e., l1C, REC,
and SIC). For these states, the experimental average coherence
of Bob’s conditional states can puncture the upper bounds
εq that cannot be punctured by any single-qubit state. The
results demonstrate that these seven prepared Bell-like states
are steerable states. It also deserves emphasizing that two
prepared Bell-like states with θ = 10◦ and θ = 80◦ (labeled
by 1 and 2 in Figs. 2–4, respectively) can violate two set-
ting coherence steering criterion based on SIC. However,
these two states cannot violate the criteria based on l1C
and REC. The experimental results verify that the quan-
tum steering of these two states can only be detected by
the two setting coherence steering criterion based on SIC,
and cannot be captured through the ones based on l1C and
REC. In order to further certify the advantage of the two
setting coherence steering criterion based on SIC in detecting
the steerability of Bell-like states with θ = 10◦ and θ = 80◦,
we perform a steering inequality test on all prepared states
by using steering inequality from the general entropic un-
certainty relation (SIGEUR), which is an effective tool to
detect quantum steering [12,25,26]. The SIGEUR is writ-
ten as (n − 1)−1 ∑

i {1 − ∑
ab [(p(i)

ab)
n
/(p(i)

a )n−1]} � C(n)
B with

C(n)
B = m lnn[md/(d + m − 1)] for n ∈ (0, 2]. Here, lnn(x) =

(x1−n − 1)/(1 − n), and p(i)
ab (i = x, y, z and a, b ∈ {0, 1}) rep-

TABLE V. The settings of HWP and QWP in the module (c) for
realizing different PMOs on both Alice’s photon and Bob’s photon.

Settings Mx
0 Mx

1 My
0 My

1 Mz
0 Mz

1

The angle of HWP 22.5◦ −22.5◦ 22.5◦ −22.5◦ 0◦ 45◦

The angle of QWP 45◦ 45◦ 0◦ 0◦ 0◦ 0◦
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TABLE VI. Experimental data of LHS-SIGEUR for prepared
Bell-like states.

θ The LHS-SIGEUR for prepared Bell-like states

0◦ 1.002 ± 0.001
10◦ 0.887 ± 0.005
20◦ 0.592 ± 0.008
30◦ 0.253 ± 0.007
40◦ 0.034 ± 0.003
45◦ 0.004 ± 0.001
50◦ 0.033 ± 0.003
60◦ 0.255 ± 0.007
70◦ 0.591 ± 0.007
80◦ 0.888 ± 0.004
90◦ 1.003 ± 0.001

resents the probability of outcome (a, b) for a set of
measurements Ai ⊗ Bi implemented on the photons of both
Alice and Bob. p(i)

a is the probability of marginal outcome for
measurement Ai of Alice. d is the dimension of the system,
and m is the number of MUBs. In our experiment, d = 2,
m = 3, and we choose n = 2 because the SIGEUR is the
strongest one in this case [12,25,26]. Hence, the lower bound
C(n)

B = 1. In technology, we remove the module [Fig. 1(b)],
and use module (c) to achieve the six PMOs performed on
both Alice’s photon and Bob’s photon, as illuminated in
Table V. Thereby, the steering inequality test can be imple-
mented on all prepared Bell-like states. One can conveniently
calculate p(i)

ab and p(i)
a according to the coincidence counts

in experiment. The experimental left-hand sides of SIGEUR
(LHS-SIGEUR) are shown in Fig. 5 and Table VI. The inset
in Fig. 5 is the magnifications of the experimental results for
Bell-like states with θ = 0◦ and θ = 90◦. It is experimentally
demonstrated that the LHS-SIGEUR of nine prepared Bell-
like states (θ = 10◦, 20◦, 30◦, 40◦, 45◦, 50◦, 60◦, 70◦, 80◦) can
violate the SIGEUR (i.e., LHS-SIGEUR is less than 1). These
experimental results further certify that the nine prepared
Bell-like states are steerable states. Notably, the steerability
of prepared Bell-like states with θ = 10◦ and θ = 80◦ (labeled
by 1 and 2 in Fig. 5, respectively) can be observed by the
SIGEUR. It further verifies that two setting coherence steering
criterion based on SIC can indeed detect more steerable Bell-
like states than the ones based on l1C and REC.

IV. CONCLUSIONS

In this work, we experimentally demonstrate the com-
plementarity relations between quantum steering criteria by
employing prepared Bell-like states with high fidelity and
three Pauli operators. The experimental results are in good
accordance with the theoretical curves, and one can reveal
the steerability of the system by detecting the average coher-
ence of the subsystem. Whatever coherence measure is used,
three measurement settings inequalities are always obeyed by
all prepared Bell-like states in experiment. Meanwhile, the
experimental SB

0 (ρAB) are anticorrelated with the SB
12(ρAB)/2.

If the prepared Bell-like states violate two setting coherence
steering criteria, then these states cannot violate one set-
ting coherence steering criteria. Furthermore, the strengths of
coherence steering criteria rely on the choice of coherence
measure. In comparison with two setting coherence steering
criteria based on l1 norm of coherence and relative entropy of
coherence, two setting coherence steering criterion based on
skew information of coherence is most effective in witnessing
two-photon steerable Bell-like states. From the perspective of
experiment, the quantum coherence is an easily measurable
quantity. Our experimental results imply that the quantum
coherence as a resource can provide a useful tool to wit-
ness quantum steering in practical quantum information tasks.
Also, our results demonstrate the connection between these
two fundamental resources, namely, quantum coherence and
quantum steering. These results may help us to investigate and
understand the roles that these two resources play in quantum
information and quantum thermodynamics.
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